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A good understanding of chance models is crucial for mastering basic ideas in 
statistical inference. Mature students should be introduced to the concepts of 
inference through a study of the underlying chance mechanisms. They should learn to 
think globally, in models. In an introductory course, these models should have their 
own clear and unambiguous notation. Fuzziness and flaws, as encountered by our 
students in textbooks and software, may hamper their learning process seriously. The 
above claims are based on my experience as an instructor for university students. 
They should be substantiated by systematic research on the potential advantage of 
“thinking in models”, possibly also for younger pupils.   

INTRODUCTION 
From my experience as a teacher of statistics, thinking in models is a stumbling block 
for many mature students when they are confronted with the basic concepts of 
statistical inference. As long as students do not master the connection between 
underlying chance mechanisms and statistical conclusions, procedures like the 
construction of confidence intervals remain “black boxes”. The main problems with 
confidence intervals have been discussed in a previous paper (Callaert 2007) where 
the ability of “thinking backwards” was shown to be essential. After seeing the data, 
the main question was: “how did those data come to me?” This is a question about an 
underlying probability model as an ideal mathematical construct for modelling 
outcomes in a physical world. Those models are the main theme of the current paper. 
This paper has two parts. It first shows how mathematical mature students can be 
introduced to chance models at all places, from populations over samples to statistics. 
A simple example illustrates how the models are built. It points at the same time to 
the fact that a clear and unambiguous notation is crucial for acquiring clear and 
unambiguous insight. Students discover the need for distinguishing a population 
mean from a sample mean, or an “observable” chance model from an “unobservable” 
but fixed parameter. Many of the inaccuracies found in research papers, textbooks 
and software packages have their origin in a lack of insight in underlying chance 
models. Some examples are given in the second part of this paper. 
The current text is focused on mathematical mature students (using explicit 
mathematical notation). The underlying concepts however are very fundamental and 
it certainly is worthwhile finding out what can be done with younger pupils. Research 
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by Prodromou (2007) and Prodromou and Pratt (2006) is most interesting in this 
respect. They look at the connection between a data-centric and a modelling view on 
distributions, and write that: “The modelling perspective reflects the mindset of 
statisticians when applying classical statistical inference”. How and at what age can 
the connection with statistical inference be made? 

THE POPULATION AS A CHANCE MODEL 
From the very start, it is important that pupils not only are interested in “what” comes 
to them but also in “how” it comes to them. When they are allowed to build their own 
chance mechanisms, it is clear that (after some time and some experiments) they 
focus on both aspects. Nice examples can be found in a variety of research papers, 
such as in the study carried out by Pratt (1998) where children are able to manipulate 
“the underlying chance mechanism” (workings box). Another example is described in 
a paper by Cerulli et al. (2007) where they write: 

In that study, one team of pupils creates not just a Garden but a Random Garden. This 
means that the pupils not only think about the composition of the garden (the flowers 
and trees) but they also know that the Bird will extract objects “at random and with 
replacement”. A competing team of pupils has to guess the Random Garden after 
they have inspected a Nest. That the objects in the Nest came “at random and with 
replacement” is key information and it is used (rather implicitly) by the competing 
team when they look at bar graphs and counters. One of the important consequences 
of the setup of this study is that pupils start discussing (and understanding) the 
concept of “equivalent chance mechanisms” (called equivalent gardens). If the study 
would have been set up differently, with the same flowers and trees but with a Bird 
that extracts objects not at random or without replacement, the “Guess my Garden 
Game” would have been completely different. This aspect might be stressed even 
more in such types of studies since it is important to find out at what age pupils are 
able to “think in models” and what kind of strategies can be used for enhancing (and 
evaluating) this type of thought-processes. 
The above examples refer to studies with younger pupils (such as 11-12 years old). 
At a later stage the concrete objects in populations (such as flowers or colored 
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segments) are replaced by numbers. But the basic question about a population stays 
unaltered: “which numbers will come to me and with what probability?” For 
mathematical mature students, comfortable with abstract notation, it is helpful to 
make a distinction between a chance model and its outcomes. In line with the notation 
for random variables, a chance model can be denoted by a capital letter (such as ) 
and outcomes by the corresponding small letter

X
x . An example of such a “population 

chance model” is what I call a red die. Physically, it is just a regular die (falling on 
each side with probability 1/6) but the numbers on the faces have been changed. 
There are 3 faces with a 1, 2 faces with a 3, and one face with a 6. The way in which 
outcomes from this population appear is governed by a throw of this red die. Hence, 
one will never see a number 2 but, for example, one will get a number 3 with 
probability 2/6 , denoted as ( 3) 2/P X 6= = . The next table gives complete 
information about this population . X

x 1 3 6 

P(X=x) 3
6

 2
6

 1
6

 

Table 1. The population described by its chance model X
Remark that also in the continuous case it is customary to describe a population by 
providing at the same time the range of the values and their chance behavior, as 
reflected by statements like: “we work with a normal  population”. (124 ;16)N

THE SAMPLE AS A CHANCE MODEL 
Once students get used to look at populations from the perspective of chance models 
one would think that the step towards looking at a sample from the same perspective 
is straightforward. For most of my students, this was not evident. The following 
(simple) example became a real eye-opener for many of them. 
What happens when one takes a sample of size 2n =  from the population  
described in table 1 (the red die)? The main point here is that students have to answer 
the question before they actually take the sample. Hence, the question: “What will be 
the result of the first draw?” is not answered by “How can I know?” (reasoning only 
about specific outcomes after an experiment has been carried out) but by “I can tell 
you, beforehand, every possible value together with its probability”. And then of 
course it is not difficult to come up with the chance model  for the first draw. The 
second draw  has the same behavior. 

X

1X
2X

 

Table 2.     Table 3.  
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A model for a sample of size 2n =  now follows easily from tables 2 and 3. The 
model is denoted by  and its outcomes by 1 2( ,X X ) 1 2)( ,x x . It is instructive for 
students to construct this model for themselves arriving at table A1 (appendix) or at 
an urn model with random draws from the urn (figure 1).  
The insight that a sample result 1 2( , )x x  is nothing 
but one of the possible outcomes of an underlying 
chance mechanism  is very important. It 
creates the appropriate context for a proper 
understanding of the behavior of the sample mean 
(or of any other statistic constructed from a 
sample). 

1 2( ,X X )

         Figure 1. 

THE SAMPLE MEAN AS A CHANCE MODEL 
Continuing the above example, it takes just a few minutes to find all possible values 
of the sample mean together with their corresponding probabilities (see table A2 in 
the appendix). This leads to the following model: 

Table 4. The sample mean  1

2
2X XX +

=  described by its chance model 

Simulation tools might be extremely useful for learning statistical concepts but it is 
my experience that mature students (and secondary school mathematics teachers) also 
need an explicit confrontation with the more abstract tool of “thinking in models”. 
For many of them, the behavior of a sample mean is better understood in the context 
of chance models like table 4 than through the experience that a simulated bar chart 
or histogram is an approximation of a so-called sampling distribution. Properties like: 
“the mean of the sample mean is the population mean” can be discovered through 
simulations, but a clear view on underlying models surely can enrich insight in this 
discovery. In either case, an unambiguous notation is needed as a support to students 
for distinguishing populations from samples, and chance models from their outcomes. 
The next sections illustrate some problems.  

EXAMPLES FROM TEXTBOOKS 
During the past couple of decades reform in statistics education at the school level 
has been extensive in the United States. It has resulted in the production of new 
textbooks by authors such as: Yates, Moore and Starnes (2003) [YMS], Watkins, 
Scheaffer and Cobb (2004), Agresti and Franklin (2007), and many others. All these 
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books use capital letters (such as ) for random variables and small letters (such as X
1 2, ...x x ) for their outcomes. This is nice since this notation makes a clear distinction 

between an underlying chance process and a particular outcome. But once students 
start sampling, their attention is drawn to particular outcomes and the notation for 
underlying models, such as (capital) X  for the sample mean, is gone. Paul Velleman, 
author of ActivStats, says: “Convention in the introductory course is to emphasize the 
observed values, which are usually not thought of as random. Every text I know uses 
a lower case x  to represent the sample mean. The r.v. version is a hypothetical 
construct of which the sample mean at hand is one realization. A bit sloppy at times, 
but, I think, less confusing for students” [ (1999) personal communication]. The 
experience I have with my students tells me the opposite. On p.525 of [YMS] one 
reads: “The sampling distribution of x  describes how the statistic x  varies in all 
possible samples from the population. The mean of the sampling distribution is μ , so 
that x  is an unbiased estimator of μ ”. The fact that x  stands for an outcome while at 
the same time it is said that x  is unbiased is confusing. The problem persists in the 
chapter on hypothesis testing where one reads on p.568 that 0.3x =  and that 

( 0.3P x ≥ ) is needed for computing the p-value. But probability statements are 
statements 
about chance 
processes. 
Hence, the p-
value is the 
probability 
that (under the null hypothesis) the chance process X  generates values which are at 
least as large as the observed outcome x  . Notation is crucial here and the above 
phrase should be written as ( )P X x≥ . If 0.3x =  in the sample of one student while 

0.4x =  in the sample of another student, they now can start with the same notation 
( )P X x≥ . Afterwards, they only have to plug in their x -value for arriving at 
( 0.3P X ≥ )  [or at ( 0.4P X ≥ )  ] as meaningful expressions. 

EXAMPLES FROM SOFTWARE 
Software can provide powerful educational tools and can create unique opportunities 
for gaining insight in statistical concepts. This is not only true for our students but 
also for adults who (sporadically) need to carry out a statistical analysis. At those 
instances, people often use their favorite package as a fast resource, both for ideas 
and for computations. From a “statistical literacy” point of view, one would hope that 
statistical information encountered in widespread packages is clear and accurate. 
Excel 
When your student says that, in a one-sided two-sample t-test, the null hypothesis 
assumes that the two means are equal and the alternative hypothesis says that one 
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mean is larger than the other, you might be willing to consider the answer as correct. 
But when he writes 0 :H x y versus H x y= 1 : >  you can’t believe your eyes. In his 
notation, he tries to find out whether the mean in his first sample is larger than the 
mean in his second sample x y>  instead of investigating whether the mean of the 
first population is larger than the mean of the second population 1 2μ μ> . This type of 
confusion has been present in Excel for decades. Several versions in the nineties had 
in their “Data Analysis Toolpack” a help file called “Learn about the t-test: Two 
Sample Assuming Equal Variances Analyses”. What you could learn was as follows. 
“This analysis tool performs a two-sample Student’s t-test. This t-test form assumes 
that the means of both data sets are equal; it is referred to as a homoscedastic t-test. 
You can use t-tests to determine whether two sample means are equal”. Apparently, 
when you have two datasets you can use the Data Analysis Toolpack in Excel for 
finding out whether x  equals y . And you can do so at some alpha level, as follows. 
“Enter the confidence level for the test. This value must be in the range 0…1. The 
alpha level is a significance level related to the probability of having a type I error 
(rejecting a true hypothesis)”. There is no clear distinction between a null and an 
alternative hypothesis (which is the true hypothesis to be rejected?) nor is there any 
reference to underlying populations. This type of fuzziness is disturbing. Attention to 
these problems has been drawn at several occasions, even in a publication (Callaert 
1999). Change however is slow and confused. In Excel 2003 as well as in Excel 2007 
it depends on the order in which you call for help. Press F1 (Help), type the phrase 
Data Analysis and click Search. Then click on Data Analysis and in the new window 
click on t-Test. The following text appears. 
 
 
 
 
 
But if you click on Formulas –>More Functions–>Statistical–>TTEST–>”Help on 
this function”, then you can read about equality of population means together with a 
choice of using either a one-tailed or a two-tailed t-distribution. 
 
 
Fathom 
Never before I’ve worked with Fathom, so I only can give some first impressions by 
a novice (having downloaded a Fathom Evaluation Version 2.1). The fact that I was 
lost right from the start might be blamed on my inexperience. I think however that the 
rather abstract structure of Fathom working with “collections”, “attributes”, 
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“measures” and “statistical objects” is not obvious for beginning students. In contrast 
with this, Maxara and Biehler (2007) report on a study where Fathom was used 
systematically by their university students, apparently with success. I assume that 
those students’ first contact with Fathom was different from mine, since I clicked 
Help–>Sample Documents–>Statistics and started reading. I was quite amazed. 
To start with, a clear notation could be helpful. The Fathom Documents use “mu”, 
“Mean”, “popMean”, “m”, “Avg”,.. and “sigma”, “Std. dev.”, “popSD”, “s”, “sd”,… 
Why not stick to μ  and σ  for populations and to x  and s  for sample results? 

Furthermore, the notational distinction between a binomial model  (capital letter) 
and its -values (small letter) should be applauded were it not that  is said to be a 

random variable chosen from the set of possible values.  

X
x X

The binomial model comes up several times but its discrete nature is seldom stressed, 
even in small samples. The “Polling Simulation” document wants to compare theory 
and experiment and uses   resulting in a 
theoretical model where a lot of possible outcomes and their associated probabilities 
are missing. It is not because one has not seen 17 successes in a particular simulation 
(and hence not a proportion of 17/20=0.85) that the predicted probability of a 
proportion of 0.85 doesn’t exist. 
 
 
 
 
 
 
 
A further problem with this document lies in its histogram representation comparing 
the simulation results with the (also truncated of course) theoretical model. Repeating 
a poll of size 20 1000 times does not produce 1000 different outcomes. There still are 
only 21 different possible proportions. A bar graph comparing theoretical 
probabilities with experimental relative frequencies would make sense here since the 
chance model is discrete. By the way, try to let your students discover for themselves 
the formula  for drawing such a 
histogram. Of course, the problem is much deeper and relates to the obsession of 
making curves fit histograms who themselves have to represent experiments with 
discrete outcomes. The “Normal” document for example shows a histogram of 100 
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random numbers from a normal population together with [quote]: “a plotted curve of 
a normal distribution with the same mean, standard deviation, and area as the 
histogram”. Yes, with the same area! Fortunately the example uses a histogram on a 
density scale. But there is no problem if one would use a histogram with frequencies. 
In the same document under number 3 of the “To do” list attention is drawn to the 
fact that the density then has to be multiplied by both the count and the bin width. If 
you do this, you find the figure on the right. 

But  is a 
model for what? It is a curve fitting the “frequency 
histogram” but it certainly isn’t a model for an 
underlying chance mechanism. These problems are 
not uncommon. In Schaeffer and Tabor (2008) one 
finds a similar figure. This time, a histogram has been 
drawn on a Relative Frequency scale and the density has only been multiplied by the 
bin width. The authors write: “The figure shows a simulated sampling distribution of 
sample proportions. This sampling distribution has a mean of 0.53 and a standard 
deviation of 0.05 and is nicely represented by the normal distribution (overlaid 
smooth curve) with that same mean and 
standard deviation”. But the top of a 
normal density  is equal to 8, 
not to 0.16. So, what’s the name of a bell-
shaped curve that (i) is nowhere negative 
and (ii) has an area under the curve equal to 
0.02? Indeed, that’s the blue curve in that 
paper. 

(0.53; 0.05)N

Fathom’s “Central limit Theorem” document has analogous problems. Wouldn’t it be 
nice to compare the histograms of the simulated sample means x  with the target 
model of X  ? That model is normal 
with mean 1.5μ =  and with standard 
deviation / 0.5 /nσ = n . The 
document instead uses the mean and 
standard deviation of the randomly 
generated set of 200 x -values. 
Moreover, the collection called “Population” is not the population but contains the 
sample values, while the population itself is represented by a bimodal curve 
integrating out to 2 (yes, two). 

CONCLUSION 
Thinking in chance models might be too abstract for the young learner but at some 
level in the developmental process the more mature student might need more than 
“approximations by simulation” in order to fully understand the underlying reasoning 
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of statistical inference. At this point one needs a careful identification of all the 
involved entities, together with a clear notation, both in textbooks and software. It 
might be interesting for further research to investigate the impact of an unambiguous 
notation on the effectiveness of student’s learning and understanding of statistics. 
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APPENDIX 
 
 
 
 
 
 
 
 
 
 
 

Table A1. The sample  described by its chance model 1 2( ,X X )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A2. Sample mean values 1

2
2x xx +

=  for all possible sample outcomes (x1 , x2). 

The arithmetic mean is computed for all outcomes (x1 , x2) from table A1. 
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