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Summary

Whereas most models for incomplete longitudinal data are formulated within the se-
lection model framework, pattern-mixture models have gained considerable interest in
recent years (Little, 1993, 1994), since it is often argued that selection models, although
many are identifiable, should be approached with caution, especially in the context
of MNAR models (Glynn, Laird and Rubin, 1986). In this paper, focus is on several
strategies to fit pattern-mixture models for non-monotone categorical outcomes. The
issue of under-identification in pattern-mixture models is addressed through identifying
restrictions. Attention will be given to the derivation of the marginal covariate effect in
pattern-mixture models for non-monotone categorical data, which is less straightforward
than in the case of linear models for continuous data. The techniques developed will be
used to analyze data from a clinical study in psychiatry.
Key words: Categorical Data; Identifying Restrictions; Multivariate Dale Model; Non-
monotone Missingness; Pattern Mixture Models.

1 Introduction

A vast number of studies collect data longitudinally. In such studies, measurement sequences are

prone to incompleteness, an issue requiring attention. A model for incomplete data starts from

the joint distribution of the outcomes, Y say, and the non-response process, R say. This joint

distribution f(y, r|θ,ψ) can be factorized in several ways. A selection model is based on the

factorization f(y|θ)f(r|y,ψ), whereas the reverse factorization f(y|r, θ)f(r|ψ) is referred to as
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a pattern-mixture model (Little, 1993, 1994). When a common set of random-effects is thought

to influence both the Y and R processes, conditional upon which they are independent, then the

so introduced model is referred to as a shared-parameter model. For reviews, see Kenward and

Molenberghs (1998); Little (1995); Wu and Carroll (1988). The non-response process R can either

be monotone, also called dropout, or non-monotone when there are intermittent missing values. For

each of these processes different modeling strategies are needed. For details see Molenberghs and

Kenward (2007).

Several authors have contrasted selection models and pattern-mixture models, to either compare

the answer to the same scientific question, such as marginal treatment effect or time evolution, as

a form of sensitivity analysis, or to gain additional insight by supplementing the results from a

selection model analysis with those from a pattern-mixture approach. Examples can be found in

Verbeke, Lesaffre and Spiessens (2001) and Michiels et al. (2002) for continuous outcomes, while

categorical outcomes have been treated by Michiels, Molenberghs and Lipsitz (1999a,b).

An important issue is that pattern-mixture models are by construction under-identified. Little

(1993, 1994) solved this problem through the use of identifying restrictions: inestimable parameters

of the incomplete patterns are set equal to (functions of) the parameters describing the distribution

of the completers. In this way, the conditional distribution of the unobserved measurements, given

the observed ones in a specific pattern, is identified. Molenberghs et al. (1998) proposed a particular

set of restrictions for the monotone case which corresponds to MAR and in Thijs et al. (2002) a

formal way for how to handle this kind of restrictions is introduced. Alternatively, several types of

simplified (identified) models can be considered. The advantage is that the number of parameters

decreases, which is generally an issue with pattern-mixture models. Hogan and Laird (1997) noted

that in order to estimate the large number of parameters in general pattern-mixture models, one

has to make the awkward requirement that each dropout pattern is sufficiently “filled”, in other
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words, one has to require large numbers of dropouts. This problem is less prominent in simplified

models. Note, however, that simplified models, qualified as “assumption rich” by Sheiner, Beal

and Dunne (1997), are also making untestable assumptions and therefore reiterate that no models

are able to circumvent the need for making assumptions; pattern-mixture models are no exception.

Notwithstanding this, pattern-mixture models render the need for making assumptions and the

implications thereof more obvious, since it is clear that for some components there is no information.

On a parallel research track, categorical data modeling has received a lot of attention during the

past decades (Agresti, 2002). More recently, quite a bit of attention has been devoted to repeated

categorical data (Diggle et al., 2002; Fahrmeir and Tutz, 1994; Molenberghs and Verbeke, 2005).

Combining both strands of research, methods have been developed to analyze non-monotone missing

categorical data (Jansen et al., 2003; Jansen and Molenberghs, 2008). However, these models all

belong to the selection model framework. Pattern-mixture models for monotone missing categorical

outcomes have been treated by Michiels, Molenberghs and Lipsitz (1999a,b). In this paper, focus

will be on pattern-mixture models to analyze non-monotone missing categorical data. One of the

major differences with work for continuous data, such as in Thijs et al. (2002) is that, owing

to the presence of a non-linear link function in most models commonly considered, unlike in the

normal case, marginalization of pattern-specific effects is less than straightforward. In particular,

such marginalizations do not merely follow as simple weighted averages of the pattern-specific

parameters.

However, the most important difference is between the monotone and non-monotone cases. Indeed,

Diggle and Kenward (1994) and Molenberghs, Kenward and Lesaffre (1997) were able to exploit

monotonicity through the use of iterated logistic regressions for the dropout model. One important

contribution of this paper is that we use a Dale model, a model for multivariate categorical data

(Molenberghs and Lesaffre, 1999), not only for the outcomes of interest, but also for the missingness
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model.

The rest of the paper is organized as follows. In Section 2, the general context of pattern-mixture

models will be sketched, together with the strategy of identifying restrictions. Section 3 gives

attention to the use of the multivariate Dale model to fit pattern-mixture models for categorical

outcomes, while Section 4 will discuss the assumptions needed when intermittent missingness is

present. Section 5 focuses on the derivation of marginal effects in pattern-mixture models for

categorical outcomes. Finally, in Section 6, the techniques developed are applied to data from a

psychiatric study.

2 Pattern-Mixture Modeling in the Monotone Case

The family of pattern-mixture models is based on the factorization

f(y, r|θ,ψ) = f(y|r, θ)f(r|ψ),

where dependence on covariates is suppressed from notation. Thus, the conditional density of the

measurements given the missingness process is combined with the marginal density describing the

missingness mechanism. Both factors can depend on covariates. It is, of course, possible to have

different covariate dependencies in either components of the factorization.

Pattern-mixture have received quite a bit of attention (Rubin, 1987; Little, 1993, 1994). There are

three steps in the analysis procedure: (a) the initial model will be fitted to the observed data within

each of the patterns; (b) a process of identification (or data augmentation) takes place to identify

the distribution of the unobserved measurements, given the observed ones; (c) a model fitted to the

so-augmented data. Fitting such models can be conveniently done using multiple imputation. Then,

the identification step corresponds to the so-called imputation task. The final model corresponds

to the MI analysis task. Finally, combining the inferences from the, say, M , imputations into a
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single one is the inference task. Details can be found in Rubin (1987); Schafer (1997); Verbeke and

Molenberghs (2000).

The choice of final model is done based on carefully weighing the target of inference and the nature of

the multiple imputation procedure. Regarding the latter, Rubin (1987) refers to proper imputation

as one where the analysis model is in agreement with the imputation model. This means, broadly,

that the imputation model ideally is a super-model of the analysis model. Regarding the former

point, if one is interested in an overall (treatment) effect, it would be natural to use an SEM.

However, this may then clash with the desire for proper imputation, in which case considering a

PMM as well for the analysis task might be considered wise, even when interest lies in a marginal

effect. In this case, the target effect needs to be obtained by marginalizing the PMM. The latter is

more challenging with nonlinear models, including generalized linear models; only the linear case

allows for forthright marginalization. Additional reasons to choose for PMM in the analysis include

(1) as a sensitivity analysis viz. the direct use of SEM; (2) as a response to questions that are

inherently of a PMM type, such as the wish to study differences between, say, completers and early

dropouts. In summary, one needs to, and has the ability to, balance the desire for proper imputation

with the nature of the scientific question.

Pattern-mixture modeling for the general monotone case is summarized in Molenberghs and Ver-

beke (2005). In the next section, we will focus on binary data and monotone and non-monotone

missingness, respectively.

3 Pattern-Mixture Models for Categorical Outcomes in the

Monotone Case

Let us focus on the case of three binary measurements. Extension to more than three outcomes

and/or to more than two outcome categories is straightforward. The multivariate Dale model
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(Molenberghs and Lesaffre, 1994) will be used to estimate the parameters of the identifiable densities.

For the completers (pattern 3), a trivariate Dale model will be used, for pattern 2 a bivariate Dale

model, and a univariate Dale model (which is equal to conventional logistic regression) for pattern 1.

We will term this the minimal approach. The multivariate Dale model combines logistic regression

for each of the measurements with marginal global odds ratios to describe the association between

outcomes. For three measurements, i.e., for the group of completers, this results in the following

logistic-regression and odds-ratio formulations (subject-specific indices i are removed for the ease

of notation, as is an index to pattern 3 that should be present, strictly speaking, in the η, p, and

X functions):

η1 = ln

(

p1++

1 − p1++

)

= X1θ,

η2 = ln

(

p+1+

1 − p+1+

)

= X2θ,

η3 = ln

(

p++1

1 − p++1

)

= X3θ,

η4 = ln ϕ12 = ln

(

p11+(1 − p1++ − p+1+ + p11+)

(p1++ − p11+)(p+1+ − p11+)

)

= X4θ,

η5 = ln ϕ13 = ln

(

p1+1(1 − p1++ − p++1 + p1+1)

(p1++ − p1+1)(p++1 − p1+1)

)

= X5θ,

η6 = ln ϕ23 = ln

(

p+11(1 − p++1 − p+1+ + p+11)

(p++1 − p+11)(p+1+ − p+11)

)

= X6θ,

η7 = ln ϕ123 = ln

(

p111p122p212p221

p112p121p211p222

)

= X7θ,

with pijk = P (Y1 = i, Y2 = j, Y3 = k), (i, j, k = 1, 2), and a + in lieu of a subscript indicating

that the marginal probability over this index needs to be used. Therefore, the incomplete patterns

provide information neither about the unobserved outcomes nor about the associations involving

those unobserved outcomes. Thus, for pattern 2, an analogous model only involving η1, η2, and

η4 can be obtained from the data, while for pattern 1 only η1 will be available. Of course, the η

functions are specific to the pattern and therefore also the design matrices may change from pattern
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to pattern. This is necessary, among others, when different patterns correspond to different sets of

parameters.

Also in this setting, one is interested in model parameters for the full set of repeated outcomes,

and thus identifying restrictions are necessary to determine the unknown probabilities by equating

them to functions of known probabilities. In the normal case, restrictions are very natural to apply,

because marginal as well as conditional distributions can be expressed as simple functions of the

mean vector and the covariance matrix components. For categorical data in general and for the

Dale model in particular, there is no easy transition from marginal to conditional distributions in

terms of the model parameters.

First, the minimal approach is followed in the sense that a trivariate Dale model for the complete

pattern is combined with a bivariate and univariate Dale model for the incomplete patterns. This

results in the densities f3(y1, y2, y3), f2(y1, y2), and f1(y1), respectively. From this approach the

underlying probabilities py1y2y3|3 = P (Y1 = y1, Y2 = y2, Y3 = y3|pattern = 3), py1y2|2 = P (Y1 =

y1, Y2 = y2|pattern = 2) and py1|1 = P (Y1 = y1|pattern = 1) can be estimated. The corresponding

counts are indicated by the symbol Z. For pattern 2, there is only one possibility to impute

the missing cell counts, since information on the third measurement can only be borrowed from

pattern 3. So, the partial counts Zy1y2|2 and the conditional probabilities py3|y1y2,3 = P (Y3 =

y3|Y1 = y1, Y2 = y2, pattern = 3) have to be used to identify Z∗
y1y2y3|2

as Zy1y2|2 × py3|y1y2,3. The

asterisk refers to a completed count. For pattern 1, we have several possibilities to impute the

missing cell counts, since information on the second measurement can be borrowed from pattern 2

as well as from pattern 3. Using (??), the joint probability of y1, y2 and y3 in pattern 1 can be

written as

py1y2y3|1 = py1|1

[

ωpy2|y1,2 + (1 − ω)py2|y1,3

]

py3|y1y2,3,

where specific choices of ω lead to three sets of identifying restrictions: (a) complete case missing
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values, CCMV , where identification is always done from the completers’ pattern; (b) neighboring

case missing values, NCMV , where the pattern with one more observation is used for identifica-

tion; and (c) available case missing values, ACMV , where a particular linear combination of the

information coming from all patterns with strictly more measurements taken is used:

CCMV : py1|1 py2|y1,3 py3|y1y2,3,

NCMV : py1|1 py2|y1,2 py3|y1y2,3,

ACMV : ω =
π2py1|2

π2py1|2 + π3py1|3
,

such that the missing cell counts can be identified as follows:

CCMV : Z∗
y1y2y3|1

= Zy1|1 py2|y1,3 py3|y1y2,3, (3.1)

NCMV : Z∗
y1y2y3|1

= Zy1|1 py2|y1,2 py3|y1y2,3, (3.2)

ACMV : Z∗
y1y2y3|1 = Zy1|1

[

π2py1y2|2 + π3py1y2|3

π2py1|2 + π3py1|3

]

py3|y1y2,3. (3.3)

As shown by Molenberghs et al. (1998), ACVM is the PMM counterpart to MAR.

Multiple imputations are then generated by drawing uniformly from Bernoulli variables with the

probabilities embedded in (3.1)–(3.3). As stated earlier, once the imputations have been generated,

the analysis task model (final model) can be fitted and multiple-imputation inference conducted.

Using conventional multiple-imputation machinery, obtaining parameter and precision estimates is

straightforward. In particular, the asymptotic covariance matrix of the form

V = W +

(

M + 1

M

)

B, (3.4)

where W is the average within-imputation variance, B the between-imputation variance, and M

the number of imputations (Rubin, 1987).
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4 Assumptions Needed for the Intermittent Missingness

Case

We will extend the above strategy to the situation of non-monotone missing data. It is therefore

useful to label the patterns by a triple-index system, The first three patterns are the monotone ones,

which have been discussed already in Section 4. Pattern 3 becomes 111, the fully observed pattern,

which does not need any imputation. Patterns 1 and 2, relabeled as 100 and 110, respectively, will

be considered again in this section, since many more possibilities will be available now to impute

the unobserved data.

Let us first consider the patterns for which only one measurement is missing, namely patterns 110,

101, and 011, where the third, the second and the first outcome, respectively, are unobserved. A

bivariate Dale model can be used to fit the observed data densities f110(y1, y2), f101(y1, y3) and

f011(y2, y3). Since it is recommended to use as much of the available data as possible to impute

the conditional distributions of the unobserved outcomes, given the observed ones, we can only use

information from pattern 111 for imputation. This results in the following complete data densities:

f110(y1, y2, y3) = f110(y1, y2)f111(y3|y1, y2),

f101(y1, y2, y3) = f101(y1, y3)f111(y2|y1, y3),

f011(y1, y2, y3) = f011(y2, y3)f111(y1|y2, y3).

Next, patterns 100, 010, and 001 will be discussed. Here, only one out of the three outcomes is

measured, and a univariate Dale model can be used to obtain f100(y1), f010(y2), and f001(y3). First,

we have to decide which of the two unobserved outcomes will be imputed first. In the case of

monotone missingness, the obvious choice for pattern 100 was to first impute y2 and then y3. In

the case of non-monotone missingness, there is no such obvious choice. Therefore, we will consider

both possibilities simultaneously. For pattern 001, for example, we can first consider the conditional
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density of y1, given y3. Information on this density can be borrowed from either the completers

(pattern 111) or the neighbors (pattern 101), or a combination of both densities. The conditional

density of y2, given y1 and y3, can only be borrowed from pattern 111. Similarly, the conditional

density of y2, given y3, can be obtained first, using one of the available identifying restrictions,

and afterwards the conditional density of y1, given y2 and y3. In fact, these choices are merely

two options out of a continuum, where all information available is being used. This produces the

following complete-data densitites for patterns 100, 010, and 001:

f100(y1, y2, y3) = f100(y1) × {ω100,1f110(y2|y1)f111(y3|y1, y2)

+ω100,2f101(y3|y1)f111(y2|y1, y3)

+ ω100,3f111(y2, y3|y1)} ,

f010(y1, y2, y3) = f010(y2) × {ω010,1f110(y1|y2)f111(y3|y1, y2)

+ω010,2f011(y3|y2)f111(y1|y2, y3)

+ ω010,3f111(y1, y3|y2)} ,

f001(y1, y2, y3) = f001(y3) × {ω001,1f101(y1|y3)f111(y2|y1, y3)

+ω001,2f011(y2|y3)f111(y1|y2, y3)

+ ω001,3f111(y1, y2|y3)} .

Now, CCMV results from setting ω100,3 = ω010,3 = ω001,3 = 1, with the others equal to zero. NCMV

corresponds to all situations where ω100,3 = ω010,3 = ω001,3 = 0. In the non-monotone case, an

explicit expression for ACMV is not straightforward.

Note that there is an additional pattern 000, corresponding to no follow-up information. When no

covariate information is available, it follows that this pattern provides no information and would
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effectively cancel out. When covariates are observed for pattern 000, this corresponds to having

more outcome variables, in which case the pattern is not really empty.

5 Marginal Effects Across Patterns

In Section 2 we asserted that in the analysis task there is room for choice. For example, one can

have an interest in a marginal effect and therefore opt for an SEM. Alternatively, scientific interest

can be pattern-specific, in which case a PMM is a more natural choice. In neither case is it necessary

to marginalize a PMM. However, when a strong emphasis is put on proper imputation, or when one

considers the PMM by way of sensitivity assessment for the SEM, then it is necessary to marginalize

the PMM. In the case of continuous data, where linear models are used, the overall effect is simply

a weighted average of the pattern-specific effects. We will show that this is not true for categorical

data. We therefore assume that the logistic regression

P (Yij = 1|pattern k) =
eαk+βkTi

1 + eαk+βkTi

,

where i refers to subject and j to measurement occasion, is used to model the data from pattern k =

1, . . . , K (as in the multivariate Dale model). α and β can depend on j, but we suppress this index

from notation.

Assume interest is in one particular effect T , e.g., treatment effect at the last occasion, and assume

πk to be the pattern probability as defined before. The marginal success probability is then equal

to

K
∑

k=1

πk

eαk+βkT

1 + eαk+βkT
. (5.1)

There are three ways to calculate the marginal treatment effect at the last occasion from this. First,
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the direct linear approach (Park and Lee, 1999) can be used, where

β ≃
∑

k

πkβk, (5.2)

but this is not always correct. It is a correct approach: (a) when data are continuous and linear,

usually Gaussian, methods are used; (b) when models for non-Gaussian data are used but with

an identity link; and (c) locally in a number of general situations, such as with logistic and probit

links, in the vicinity of the probability of 0.5.

Second, the marginal probability can be approximated via a logistic regression, a probit model, or by

fully using the longitudinal nature of the design, through a Dale model, a generalized linear mixed

model (GLMM), etc. Third, classical averaging can be performed. To this effect, keep function

(5.1) as is and compute and graph, or sample. Note that averaging in this way will be similar to

the marginalization of random-effects models (e.g., GLMM to GEE). Here, the marginalization is

over pattern, rather than over random effects. When a GLMM is used in each pattern, then there

is a double marginalization, one over the random effects and one over the patterns. It is our view

that both the second and third approach are broadly useful. The second one has the advantage

of providing parametric functions for the marginal effect, at the expense of approximation and the

need for additional calculation. The third approach immediately follows, but then does not lead to

specific parameters, such as, for example, a marginal treatment effect.

We will now discuss and illustrate the the second approach in more detail, using a marginal logistic

model.

Let us approximate (5.1) by a logistic regression, with obvious notation:

f(T ) =
∑

k

πk

eαk+βkT

1 + eαk+βkT
∼=

eA+BT

1 + eA+BT
. (5.3)

Then, the logit of f(T ) can be approximated by

F (T ) = logit (f(T )) ∼= A + BT.
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Using a first order Taylor expansion results in

F (0) +
∂F

∂T

∣

∣

∣

∣

T=0

T ∼= A + BT,

such that

A ≃ F (T = 0) = logit

(

∑

k

πk

eαk

1 + eαk

)

.

It is easily shown that

∂logit(x)

∂x
=

1

x(1 − x)

and

∂f

∂T
=
∑

k

πk

(

eαk+βkT
)

βk

(1 + eαk+βkT )2
,

such that

∂F

∂T

∣

∣

∣

∣

T=0

=
1

∑

k πk

eαk

1 + eαk

1
∑

k πk

1

1 + eαk

∑

k

βkπk

eαk

(1 + eαk)2
,

and equivalently

B ≃

∑

k βkπk

eαk

1 + eαk

1

1 + eαk

(

∑

k πk

eαk

1 + eαk

)(

∑

k πk

1

1 + eαk

) .

Let Pk =
eαk

1 + eαk

, then the approximate marginalized treatment effect can be estimated using

B ≃

∑

k βkπkPk(1 − Pk)

(
∑

k πkPk) [
∑

k πk(1 − Pk)]
. (5.4)

Note that direct expansion of (5.3), without taking the logit first, leads to exactly the same expres-

sion.

Let us now consider the special case where the treatment effect is the same in each pattern (βk =

β, ∀k), then

B ≃ β

∑

k πkPk(1 − Pk)

(
∑

k πkPk) (
∑

k πk(1 − Pk))
, (5.5)
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such that

|B| ≤ |β|, (5.6)

which follows from Jensen’s inequality, given that (5.5) is of the form B ≃ βEh(p)/h(E(p)).

This means that the marginal treatment effect at the last occasion, obtained through approximation

(5.3), will not be larger in absolute value than the marginal treatment effect, obtained from the

direct linear approach (5.2), when the treatment effects are equal across patterns.

Marginalization when the βk’s are different, may both increase and decrease the effect, in absolute

value. Let us consider the example of two patterns (K = 2). Set π1 = π, π2 = 1 − π, β1 = 1 and

β2 = ρ. Expressions (5.2) and (5.4) then reduce to

π + (1 − π)ρ and
πP1(1 − P1) + ρ(1 − π)P2(1 − P2)

[πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)]
. (5.7)

Let N = [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)]. Choosing ρ such that the equality be-

tween both expressions in (5.7) holds, results in

ρ =
π [N − P1(1 − P1)]

(1 − π) [P2(1 − P2) − N ]
. (5.8)

Since ρ ∈ R, setting ρ equal to this value is sufficient to have both equations equal. ρ + ε and ρ− ε

will then make the relative positions of both quantities go either way.

If P1 = P2 = P then the right hand side expression in (5.7) reduces to

πP (1 − P ) + ρ(1 − π)P (1 − P )

P [π + (1 − π)] (1 − P ) [π + (1 − π)]
,

which is equal to π+(1−π)ρ, and hence, for all ρ, both expressions in (5.7) are the same. Note also

that then in (5.8) the numerator and denominator are both equal to zero, confirming that the result

applies to every ρ. Thus, the difference emerges from a difference in background success probability

Pk. Deriving the sign of ρ is possible but tedious and deferred to the Appendix.

14



Given all of these considerations, it is clear that determining a marginal effect across patterns in

the case of non-Gaussian data, is less straightforward than in the Gaussian case. One should bear

in mind that the direct linear approach (Park and Lee, 1999) is invalid in the case of categorical

data, and that this method can neither be considered to be conservative nor liberal.

6 The Fluvoxamine Data

These data come from a multicenter, postmarketing study involving 315 patients that were treated

by fluvoxamine for psychiatric symptoms described as possibly resulting from a dysregulation of

serotonine in the brain. The data are discussed in Molenberghs and Lesaffre (1994), Kenward, Lesaf-

fre and Molenberghs (1994), Molenberghs, Kenward and Lesaffre (1997), Michiels and Molenberghs

(1997), Molenberghs et al. (1999), and Jansen et al. (2003).

After enrollment into the study, a number of baseline characteristics were scored, and the patient

was assessed at four follow-up visits. The therapeutic effect and the extent of worsening side effects

were scored at each visit on an ordinal scale. A side effect occurs if new symptoms appear while

there is therapeutic effect if old symptoms disappear. We will focus on a dichotomized version

(present/absent) of side effects. The first, second, and last visit will be considered, because three

time points is the smallest number that allows to usefully illustrate all similarities and differences

between various choices.

Note that a number of prior analyzes have been done, many summarized in Molenberghs and Verbeke

(2005) and Molenberghs and Kenward (2007). Among others, Markov models have been fitted to a

dichotomized version of the outcomes, as well as a Dale model, combined with logistic regression to

describe dropout, ignoring the non-monotone patterns. Interestingly, a pattern-mixture model had

been fitted to a dichotomized version of the data, combined with multiple imputation, and assuming

dropout. At the analysis stage, an SEM was compared with a PMM and noticeable differences were
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found, underscoring the usefulness in disposing of choice between both. Also a number of sensitivity

analysis tools were applied. We refer the reader to these references for more detail.

We will account for patients’ gender (0 = males, 1 = females), a covariate recorded for all. There

are 224 completers (pattern 111), 44 patients missed the last visit (pattern 110), 31 only appeared

at the first visit (pattern 100), 1 person belongs to pattern 011, 1 to pattern 001, and the remaining

14 patients do not have any observations at all (pattern 000). For those 14 patients, there is no

reasonable way to impute the missing outcomes, and therefore, they will not be considered for

analyses. Pattern 011 and pattern 001 both only contain 1 patient (0.33% of the total number of

subjects in the study), so their effect on the results can be ignored. This leaves 299 patients in the

study. The data are summarized in Table 1.

As described in Section 3, we start by fitting a trivariate Dale model to the completers, a bivariate

Dale model to pattern 110, and a logistic regression to pattern 100. Then, an identifying restriction

is chosen to define the conditional distributions of the unobserved outcomes, given the observed

ones. Thereafter, we draw multiple imputations (M = 10). We thus obtain, for each choice of

identifying restriction strategy, ten multiply-imputed sets of data, which can then be analyzed,

using several possible models.

Let us first discuss the results reported in Table 2. A single trivariate Dale model is fitted, producing

a SEM, with a log odds ratio independent of covariate effects, for each of the possible associations

between outcomes, and a possible effect of gender on the marginal probabilities. We notice that

the estimates for the association parameters are very close under the three possible identifying

restrictions. The associations ϕ12, ϕ13 and ϕ23 are highly significant (p < 0.0001), while ϕ123 is

borderline significant (p ≈ 0.045). Also, the estimates for the first marginal probability are almost

equal under CCMV, NCMV, and ACMV. This was to be expected, since the first outcome was

observed for all subjects that were included for analysis. The parameter estimates for the logistic

16



regression of the third marginal probability are also quite similar. This is due to the fact that all

identifying restrictions implied the same conditional density for the third outcome, given the first

and second ones, namely to borrow it from the completers. The small difference that is observed

nevertheless, results from a difference in imputation for the second outcome, since the imputation

of the third outcome is conditional on the second one. And as we can see, the estimates for the

second marginal probability differ much between the three identifying restrictions. The CCMV and

NCMV estimates, for the intercept as well as for gender, are lying furthest apart. ACMV estimates

are closer to CCMV estimates, since many more completers are available than neighbors, thus ω will

be smaller than 0.5. Finally, we will contemplate the effect of gender. We observe that the estimate

is negative for the first marginal probability, approximately zero for the second one, and positive

for the third one, meaning that the probability of no side effects is larger, equal or smaller for males

than for females, for the first, second and last measurement occasion, respectively. However, the

effect of gender on the marginal probabilities is not significant.

Next, a more extended trivariate Dale model is presented in Table 3. Parameter estimates, specific

to each pattern, are supplemented with marginalized parameters added. Now, pattern-specific

intercepts are allowed in the logistic regressions for the marginal probabilities. The gender effect is

assumed to be the same for all patterns, and the associations between outcomes are still independent

of covariate effects. The parameter intercepti is the intercept in the logistic regression for the ith

marginal probability for pattern 111. pattern1i and pattern2i are dummy variables, such that they

correspond to the difference in intercept between pattern 3 and pattern 1 or pattern 2, respectively.

For the first marginal probability there is no significant difference between the pattern-specific

intercepts. Only in the NCMV case, a borderline non-significant difference (p ≈ 0.077) is observed

between pattern 100 and pattern 111. We notice that the intercept for pattern 111 is higher than

for the other patterns, resulting in a higher probability of no side effects at the first measurement
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occasion for the completers. Similar conclusions can be found for the second and last occasions.

Taking a closer look at the results for the second marginal probability, we notice that the intercepts

for pattern 110 and 111 are significantly different (p ≈ 0.035), while patterns 100 and 111 are

only borderline significantly different (p ≈ 0.05) when NCMV is used, and not significant when

CCMV or ACMV are used. This can be explained by the fact that for NCMV, pattern 1 borrows

all information from pattern 110 and thus takes distance from pattern 111, while under CCMV

and ACMV all, or most, of the information is borrowed from pattern 111, and therefore there is

only little distance between pattern 100 and 111. For the third marginal probability, there is no

significant difference between the three patterns for all identifying restrictions, since the missing

information is always identified from pattern 111. CCMV, NCMV, and ACMV lead to almost the

same estimates for all parameters concerning the third marginal probability. Finally, the effect

of gender changes over the different measurement occasions as before, and again its effect on the

marginal probabilities is not significant. The associations ϕ12, ϕ13, and ϕ23 are highly significant

(p < 0.0001), while ϕ123 is now borderline significant (p ≈ 0.045) only for NCMV, and borderline

non-significant (p ≈ 0.064) for CCMV and ACMV.

Third, Table 4 contains parameter estimates of a trivariate Dale model where now not only the

intercept, but also the gender effect is allowed to be different in the three patterns. Also here

intercepti corresponds to the effect of pattern 111, while the dummy variables pattern1i and

pattern2i model the difference in success probability between pattern 111 and pattern 100 or 110,

respectively. genderi represents the gender effect in pattern 111, while the interactions between

the dummies and gender refer to the difference in gender effect between pattern 3 and pattern 100

or 110, respectively. The parameter estimates for the logistic regression of p1++ reveal the following

results. The probability of no side effects is borderline significantly different (p ≈ 0.05) between pat-

tern 110 and 111, but not significantly different between pattern 100 and 111. Gender is borderline
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non-significant (p ≈ 0.058) in pattern 111, and a borderline non-significant different gender effect

occurred between pattern 2 and 3. For p+1+, similar conclusions are reached, but now the difference

in probability of no side effects is highly significant (p ≈ 0.006) between pattern 110 and 111, and

under NCMV borderline significant (p ≈ 0.05) between pattern 100 and 3. The gender effect in

pattern 111 is not significant anymore. Finally, the success probability p++1 is not different in the

three patterns, and the gender effect is not significant. The associations ϕ12, ϕ13 and ϕ23 are again

highly significant (p < 0.0001), while ϕ123 is borderline significant (p ≈ 0.044) only for NCMV, and

borderline non-significant (p ≈ 0.059) for CCMV and ACMV.

Finally, a trivariate Dale model is fitted to each of the patterns separately, with marginal proba-

bilities depending on gender, and associations between outcomes independent of covariate effects.

These results are summarized in Table 5. If the previous model was further extended, with, for

the three patterns, different associations between outcomes, the same estimates would have been

obtained, as in Table 5. We will now discuss the estimates that were obtained by fitting a separate

trivariate Dale model to each pattern. For pattern 111, of course, there is no difference between the

initial estimates and the multiple imputation estimates, since no imputation was necessary in this

pattern. For patterns 100 and 110, several estimates are tending to infinity, since a lot of sparse or

empty cells were present in the multiply-imputed sets of data, because the 13 males and 18 females

in pattern 100, and the 20 males and 24 females in pattern 110, had to be distributed over 8 cells,

with one more likely to be filled than the other. Especially the association parameters suffer from

those empty cells. Therefore, it is hard to draw conclusions for patterns 100 and 110. Also, it is no

avail trying to find the marginal effects of the covariate gender, using the technique of Section 5. If,

however, the proportion of subjects were equal in each pattern, then the marginal gender effects,

obtained by using those techniques, would correspond to the gender effects that resulted from the

first model that was fitted.
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The above results indicate, repeatedly, that the conclusions derived under different identifying

restrictions, such as CCMV, NCMV, and ACMV, under otherwise identical models, may differ

considerably. This begs the question as to how to choose between such restrictions. Unfortunately,

this is not formally possible purely on statistical grounds. Indeed, the difference between the models

is entirely in terms of the unobserved data, given the observed ones. As Molenberghs et al. (2008)

have shown, it is not possible to choose between such models, because they fit the observed data

equally well. The only difference is in terms of their prediction of the unobserved data, given the

observed ones. Arguably, this is where careful negotiation with the substantive scientists comes in.

Since the empty cells occurring through multiple imputation can be seen as sampling zeroes instead

of structural zeroes, a continuity correction (adding 1

2
to each cell count, which is possible given

that the data are organized as contingency tables for each covariate level) is advisable to overcome

the problem of estimates tending to ∞ (Agresti, 2002). Table 6 shows the results of a pattern-

specific analysis of these continuity corrected data. When comparing the parameter estimates of

the imputed data with the initial estimates, we observe that there is some deviation, probably due

to the continuity correction of 0.5. This, in itself, is interesting since it may point to some sensitivity

in the results owing to small cell counts. A sensitivity analysis can be performed by repeating the

analysis for continuity corrections of various sizes (10−8, 10−4, 10−2, 10−1) to explore their effect on

the parameter estimates.

From all the analyses performed here, we conclude that the first model is overly simple, since all

patterns are treated equally, and from more complex models, we conclude that some difference in

success probability exists between the patterns. Thus, this should at least be taken into account.

The last model, however, is very complex, and a continuity correction was needed before convergence

was reached. Also, marginal covariate effects cannot be obtained so easily. A sensible compromise

has to be chosen between the simplest and most complex model, ensuring that non-significant
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covariate effects be removed from the model.

7 Conclusions

In this paper, we reviewed the general concepts of pattern-mixture models and the technique of

identifying restrictions to specify the conditional distribution of the unobserved measurements,

given the observed ones. Then, these concepts were extended to categorical outcomes, subject to

intermittent missingness. The same identification families as employed with monotone missingness

are employed here as well.

Interest is often in an overall, marginal covariate effect. Even in such cases, the analysis model might

be chosen to be of the PMM type, for reasons of proper imputation and/or sensitivity analysis. One

then needs to marginalize the pattern-specific covariate effects. Since such an overall effect cannot

be obtained as simply as in the case of Gaussian data by averaging the pattern-specific effects,

attention was devoted to the derivation of a marginal effect of interest. Generally, the intuitive but

naive method of averaging can lead to both deflated as well as overestimated effects; it should not

be seen as a conservative method.

In addition to the arguments developed for selecting a PMM approach or rather, say, a SEM, it is

important to realize there can be an impact on efficiency. Especially when there are many different

patterns and/or patterns are sparsely filled, there may be a large number of parameters and limited

information. On the other hand, just like it can be beneficial to correct for auxiliary variables,

such as age and sex, in a regression context, ‘correcting’ for pattern may afford a more focused, less

imprecise assessment of, say, the effect of treatment. These considerations counteract each other,

and whether or not a PMM is a sensible choice will depend on the study at hand, as well as on the

other considerations contemplated earlier.
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The fluvoxamine data were analyzed, using the method of pattern-mixture models, including iden-

tifying restrictions. Several models were fitted to the multiply-imputed sets of data. Some were

too simple, others too complex, leading to sparse or even empty cells for the originally incomplete

patterns, and resulting in convergence problems. Nevertheless, the different ways in which the

data were analyzed, can be seen as a sensitivity analysis. Especially the use of different identifying

restrictions is a first step in assessing the sensitivity of the assumptions made.

Throughout, we have chosen to analyze three time points for a binary version of the outcome. While

extension to more time points and/or to categorical (ordinal or nominal) outcomes is in principle

straightforward, the algebra is tedious and would deflect from the key messages. Nevertheless, when

there are more than three time points, one can proceed sequentially, by imputing the next missing

measurement given the observed or already imputed earlier ones. When there are more time points

and/or non-monotone missingness reaches non-negligible proportions, the number of patterns and

hence parameters might proliferate, always in the initial model and in the final model when a PMM

is chosen for the analysis task. The user can then opt for allowing some parameters to be common

across patterns, or for them to vary in a parametric way. Arguably, there is then a tradeoff between

transparency and clarity on the one hand, and parsimony on the other hand. While the proposed

methodology is general and can encompass a wide variety of choices, models, as well as inferential

goals, building further empirical evidence as to its performance in practice would seem desirable.

Such an assessment is a topic of further research.
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Appendix

A Sign of ρ

As indicated in Section 6, we will determine the sign of ρ for P1 6= P2. Denote the coefficient of π

in the numerator of ρ by f1, and the coefficient of (1 − π) in the denominator by f2. Then,

f1 = [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)] − P1(1 − P1)

and

f2 = − [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)] + P2(1 − P2).

Since for π = 0, f1 = P2(1 − P2) − P1(1 − P1) = Q and f2 = 0, and for π = 1, f1 = 0 and

f2 = P2(1 − P2) − P1(1 − P1) = Q, both functions evolve in the interval [0, Q] when they are

monotone. To determine whether there are internal extrema in f1 and f2, we calculate

∂f1

∂π
= (P1 − P2) [π(1 − 2P1) + (1 − π)(1 − 2P2)] ,

which, since P1 6= P2 by assumption, equals 0 for π equal to

π∗ =
2P2 − 1

2(P2 − P1)
.

∂f2

∂π
equals zero at the same point π∗. By calculating the second order derivatives of f1 and f2 to π,

∂2f1

∂π2
= − 2(P1 − P2)

2 < 0,

∂2f2

∂π2
= 2(P1 − P2)

2 > 0,

we see that f1 reaches a maximum in π∗, while f2 is minimal in π∗. At π∗, f1 = 1

2
.1
2
−P1(1−P1) ≥ 0

and f2 = −1

2
.1
2

+ P2(1 − P2) ≤ 0. Note that π∗ is a valid extremum in [0, 1] if for P1 ≤
1

2
≤ P2 and

P1 < P2, and for P2 ≤ 1

2
≤ P1 with P2 < P1. In those situations, f1 > 0 and f2 < 0, and hence
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Figure 1: Graphical representation of the f1 (solid line) and f2 (dotted line) curves for several values
of P1 and P2. In the top panels, π∗ ∈ [0, 1], in the bottom panels, π∗ 6∈ [0, 1].

ρ < 0, in a neighborhood of π∗. When π∗ 6∈ [0, 1], then f1 and f2 are monotonic and both of the

same sign, such that ρ is nonnegative. Then there exist treatment effects (1, ρ) such that there is

no dilution of effect, but equality or inflation. Figure 1 shows the curves of f1 and f2 for several

values of P1 and P2. Two of those examples are further studied in detail in B and C.

B Example 1

Assume P1 = 0.2 and P2 = 0.7. Set π equal to π∗ = 0.4. Then f1 = 0.09 and f2 = −0.04 (see also

Figure 1), such that

ρ =
π

1 − π
.
f1

f2

= −
0.4

0.6
.
0.09

0.04
= −1.5.
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In this case, the treatment effects, (1;−1.5) are in the opposite direction. Since πP1(1−P1) = 0.064,

(1−π)P2(1−P2) = 0.126, πP1 +(1−π)P2 = 0.5 and π(1−P1)+(1−π)(1−P2) = 0.5, the marginal

treatment effect, calculated by (6.2) and (6.4) can be summarized as follows, for several values of ρ:

|B| versus |β|
|0.256 + 0.504ρ| |0.4 + 0.6ρ|

ρ = −2 | − 0.752| < | − 0.8|
ρ = −1.5 | − 0.5| = | − 0.5|
ρ = −1 | − 0.248| > | − 0.2|

C Example 2

Assume now P1 = 0.2 and P2 = 0.3. Then π∗ = −2 6∈ [0, 1]. We choose π = 0.5. Now f1 = 0.0275

and f2 = 0.0225, such that

ρ =
π

1 − π
.
f1

f2

=
0.5

0.5
.
0.0275

0.0225
=

11

9
.

So, in this case, both treatment effects, (1; 1.22) are quite close to each other. Since πP1(1− P1) =

0.08, (1−π)P2(1−P2) = 0.105, πP1 +(1−π)P2 = 0.25 and π(1−P1) + (1−π)(1−P2) = 0.75, the

marginal treatment effect, calculated by (6.2) and (6.4) can be summarized as follows, for several

values of ρ:

|B| versus |β|
|128/300 + 0.56ρ| |0.5 + 0.5ρ|

ρ = 10/9 |18.88/18| < |19/18|
ρ = 11/9 |10/9| = |10/9|
ρ = 12/9 |21.12/18| > |21/18|
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Table 1: Fluvoxamine Data. ‘Side effects’ (yes/no) at the first (horizontal), second (vertical) and
last visit. Top table for males, bottom table for females.

33 8

1 4

2 2

4

18
4 1

2 13

4 9

53 20

2 25

4 5

3

40
9 3

2 10

5 13

Table 2: Fluvoxamine Data. Multiple imputation estimates and standard errors for CCMV, NCMV
and ACMV. A trivariate Dale model, with marginal probabilities depending on gender, and constant
associations.

CCMV NCMV ACMV

intercept1 -0.1259(0.1949) -0.1266(0.1951) -0.1230(0.1949)
gender1 -0.2528(0.2423) -0.2516(0.2429) -0.2574(0.2424)
intercept2 0.1180(0.1995) 0.0385(0.1984) 0.1060(0.2005)
gender2 -0.0022(0.2536) 0.0375(0.2435) 0.0020(0.2531)
intercept3 0.3245(0.2134) 0.2901(0.2139) 0.3120(0.2166)
gender3 0.2816(0.2675) 0.3159(0.2700) 0.2968(0.2703)
ϕ12 3.1051(0.3433) 3.1218(0.3284) 3.1178(0.3386)
ϕ13 2.0288(0.3072) 2.0047(0.3077) 2.0220(0.3121)
ϕ23 2.8687(0.3583) 2.9588(0.3521) 2.8639(0.3548)
ϕ123 1.8446(0.9272) 1.9283(0.9269) 1.8524(0.9386)
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Table 3: Fluvoxamine Data. Multiple imputation estimates and standard errors for CCMV, NCMV
and ACMV. A trivariate Dale model, with marginal probabilities depending on a pattern-specific
intercept and a fixed gender effect, and constant associations.

CCMV NCMV ACMV

intercept1 0.0215(0.2134) 0.0266(0.2131) 0.0238(0.2133)
pattern11 -0.6731(0.4209) -0.7339(0.4151) -0.6736(0.4205)
pattern21 -0.3418(0.3379) -0.3429(0.3376) -0.3426(0.3379)
gender1 -0.3027(0.2458) -0.3013(0.2459) -0.3060(0.2457)
intercept2 0.3164(0.2250) 0.2935(0.2187) 0.3172(0.2240)
pattern12 -0.4485(0.4777) -0.9597(0.4906) -0.5451(0.4927)
pattern22 -0.6989(0.3324) -0.6914(0.3323) -0.7004(0.3325)
gender2 -0.0709(0.2629) -0.0424(0.2514) -0.0725(0.2608)
intercept3 0.4713(0.2326) 0.4503(0.2346) 0.4607(0.2321)
pattern13 -0.2846(0.5761) -0.4108(0.5997) -0.3162(0.5311)
pattern23 -0.5498(0.4615) -0.5469(0.4639) -0.5457(0.4620)
gender3 0.2309(0.2778) 0.2654(0.2812) 0.2476(0.2779)
ϕ12 3.1343(0.3469) 3.1410(0.3361) 3.1406(0.3444)
ϕ13 2.0304(0.3084) 2.0168(0.3134) 2.0208(0.3112)
ϕ23 2.8706(0.3589) 2.9654(0.3573) 2.8624(0.3561)
ϕ123 1.7910(0.9649) 1.9351(0.9666) 1.8100(0.9778)
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Table 4: Fluvoxamine Data. Multiple imputation estimates and standard errors for CCMV, NCMV
and ACMV. A trivariate Dale model, with marginal probabilities depending on a pattern-specific
intercept and a pattern-specific gender effect, and constant associations.

CCMV NCMV ACMV

intercept1 0.1878(0.2364) 0.1933(0.2356) 0.1882(0.2361)
pattern11 -0.9785(0.6495) -1.0467(0.6485) -0.9689(0.6510)
pattern21 -1.0648(0.5433) -1.0659(0.5424) -1.0664(0.5431)
gender1 -0.5432(0.2866) -0.5438(0.2862) -0.5434(0.2865)
pattern1×gender1 0.4447(0.8463) 0.4748(0.8506) 0.4224(0.8521)
pattern2×gender1 1.2278(0.6989) 1.2271(0.6981) 1.2297(0.6991)
intercept2 0.5089(0.2448) 0.5067(0.2456) 0.5087(0.2448)
pattern12 -0.8513(0.7509) -1.5285(0.7823) -0.9168(0.7770)
pattern22 -1.4699(0.5386) -1.4657(0.5382) -1.4711(0.5390)
gender2 -0.3519(0.2937) -0.3517(0.2943) -0.3519(0.2938)
pattern1×gender2 0.6298(1.1582) 0.8790(0.9177) 0.5870(1.1482)
pattern2×gender2 1.3098(0.6927) 1.3032(0.6929) 1.3095(0.6934)
intercept3 0.5916(0.2445) 0.5942(0.2446) 0.5922(0.2446)
pattern13 -0.5736(0.7847) -0.8706(0.8602) -0.6826(0.8516)
pattern23 -0.9877(0.6146) -0.9937(0.6158) -0.9868(0.6134)
gender3 0.0561(0.2979) 0.0542(0.2978) 0.0559(0.2979)
pattern1×gender3 0.4706(0.9388) 0.7796(1.0740) 0.5907(0.9538)
pattern2×gender3 0.7610(0.8722) 0.7683(0.8693) 0.7612(0.8700)
ϕ12 3.1328(0.3456) 3.1271(0.3359) 3.1412(0.3424)
ϕ13 2.0235(0.3102) 2.0092(0.3140) 2.0143(0.3139)
ϕ23 2.9035(0.3702) 2.9732(0.3564) 2.8943(0.3669)
ϕ123 1.7912(0.9537) 1.9162(0.9506) 1.8026(0.9504)

Marginalized effects

intercept1 -0.0591 -0.0600 -0.0580
gender1 -0.3288 -0.3263 -0.3308
intercept2 0.2074 0.1431 0.2004
gender22 -0.1076 -0.0930 -0.1123
intercept3 0.3795 0.3495 0.3686
gender3 0.2164 0.2457 0.2286
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Table 5: Fluvoxamine Data. Estimates from the initial Dale models for the incomplete data, together
with multiple imputation estimates and standard errors for CCMV, NCMV and ACMV. A trivariate
Dale model, with marginal probabilities depending on gender, and constant associations, fitted for
each pattern separately.

initial CCMV NCMV ACMV
Pattern 100

intercept1 -0.8109 (0.6009) -0.8329 (0.4665) -1.1210 (14.110) -0.7455 (0.5671)
gender1 -0.1446 (0.7988) -0.0794 (0.6389) 6.0180 (21.981) -0.3621 (0.9958)
intercept2 -0.4042 (0.5910) -13.062 (40.395) -0.5381 (0.7385)
gender2 0.2961 (0.9318) 0.5644 (0.8026) 0.3274 (0.9198)
intercept3 0.0394 (0.7034) -4.3260 (13.075) -0.0734 (0.7340)
gender3 0.5328 (0.8321) 12.117 (37.712) 0.6421 (0.8248)
ϕ12 6.7429 (979.38) -4010.0 (13044) 3.9641 (49.283)
ϕ13 20.529 (2.86E6) 13.581 (2462i) 4.8504 (115.91)
ϕ23 2.6890 (2.0828) 62.209 (205.04) 3.3699 (217.70)
ϕ123 -4.5287 (7.69E43) 226.80 (45980) -1.3710 (707.5i)
Pattern 110

intercept1 -0.8473 (0.4880) 1.4118 (7.2243) 1.4118 (7.2202) 1.4118 (7.2269)
gender1 0.6802 (0.6371) -1.9439 (8.2479) -1.9439 (8.2396) -1.9439 (8.2498)
intercept2 -1.0986 (0.5164) -4.4028 (12.501) -4.4028 (12.497) -4.4028 (12.500)
gender2 1.0986 (0.6583) 4.1350 (12.071) 4.1350 (12.064) 4.1350 (12.070)
intercept3 13.651 (46.566) 13.651 (46.555) 13.651 (46.566)
gender3 -13.221 (46.112) -13.221 (46.107) -13.221 (46.111)
ϕ12 2.9199 (0.8145) 3.9217 (28.152) 3.9217 (62.726) 3.9217 (48.873)
ϕ13 2596.9 (2.86E6) 2596.9 (8249.1) 2596.9 (8609.7)
ϕ23 -9.8258 (54.313) -9.8258 (73.867) -9.8258 (224.30)
ϕ123 2581.9 (7.69E43) 2581.9 (2.62E22) 2581.9 (2.62E22)
Pattern 111

intercept1 0.1956 (0.2376) 0.1956 (0.2376) 0.1956 (0.2376) 0.1956 (0.2376)
gender1 -0.5525 (0.2886) -0.5525 (0.2886) -0.5525 (0.2886) -0.5525 (0.2886)
intercept2 0.5107 (0.2437) 0.5107 (0.2437) 0.5107 (0.2437) 0.5107 (0.2437)
gender2 -0.3522 (0.2929) -0.3522 (0.2929) -0.3522 (0.2929) -0.3522 (0.2929)
intercept3 0.5824 (0.2447) 0.5824 (0.2447) 0.5824 (0.2447) 0.5824 (0.2447)
gender3 0.0679 (0.2987) 0.0679 (0.2987) 0.0679 (0.2987) 0.0679 (0.2987)
ϕ12 3.1325 (0.3889) 3.1325 (0.3889) 3.1325 (0.3889) 3.1325 (0.3889)
ϕ13 2.1026 (0.3533) 2.1026 (0.3533) 2.1026 (0.3533) 2.1026 (0.3533)
ϕ23 2.9471 (0.3726) 2.9471 (0.3726) 2.9471 (0.3726) 2.9471 (0.3726)
ϕ123 1.2110 (0.9510) 1.2110 (0.9510) 1.2110 (0.9510) 1.2110 (0.9510)

Marginalized effects
intercept1 -0.0128 -0.0146 -0.0118
gender1 -0.3529 -0.3495 -0.3548
intercept2 0.2331 0.1813 0.2250
gender2 -0.1275 -0.1143 -0.1270
intercept3 0.3834 0.3598 0.3743
gender3 0.1960 0.2185 0.2071
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Table 6: Fluvoxamine Data. Estimates from the initial Dale models for the incomplete data, together
with multiple imputation estimates and standard errors for CCMV, NCMV and ACMV. A trivariate
Dale model, with marginal probabilities depending on gender, and constant associations, fitted for
each pattern separately. A continuity correction of 1

2
is used to overcome the problem of sampling

zeroes.

initial CCMV NCMV ACMV
Pattern 100

intercept1 -0.8109 (0.6009) -0.6141 (0.5074) -0.6327 (0.5085) -0.6031 (0.5070)
gender1 -0.1446 (0.7988) -0.1426 (0.6797) -0.1074 (0.6778) -0.1622 (0.6812)
intercept2 -0.2541 (0.5666) -0.7844 (0.6024) -0.3323 (0.5774)
gender2 0.2087 (0.8750) 0.3775 (0.7287) 0.2146 (0.8557)
intercept3 0.0221 (0.6105) -0.1987 (0.6374) -0.0625 (0.6462)
gender3 0.4174 (0.7459) 0.6426 (0.8118) 0.5247 (0.7506)
ϕ12 2.2922 (1.0342) 2.4398 (0.8669) 2.3648 (0.9745)
ϕ13 1.4683 (0.9096) 1.2864 (0.9326) 1.4161 (0.9922)
ϕ23 1.5591 (0.9562) 1.8639 (0.9715) 1.4965 (1.0034)
ϕ123 1.0355 (2.4118) 1.9070 (2.4134) 1.2348 (2.5027)
Pattern 110

intercept1 -0.8473 (0.4880) -0.6859 (0.4294) -0.6859 (0.4294) -0.6859 (0.4294)
gender1 0.6802 (0.6371) 0.5381 (0.5675) 0.5381 (0.5675) 0.5381 (0.5675)
intercept2 -1.0986 (0.5164) -0.8357 (0.4337) -0.8357 (0.4337) -0.8357 (0.4337)
gender2 1.0986 (0.6583) 0.8075 (0.5716) 0.8075 (0.5716) 0.8075 (0.5716)
intercept3 -0.3284 (0.4858) -0.3284 (0.4858) -0.3284 (0.4858)
gender3 0.6901 (0.7085) 0.6901 (0.7085) 0.6901 (0.7085)
ϕ12 2.9199 (0.8145) 2.3211 (0.6719) 2.3211 (0.6719) 2.3211 (0.6719)
ϕ13 1.2766 (0.6825) 1.2766 (0.6825) 1.2766 (0.6825)
ϕ23 2.3965 (0.8353) 2.3965 (0.8353) 2.3965 (0.8353)
ϕ123 2.0700 (2.0344) 2.0700 (2.0344) 2.0700 (2.0344)
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