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HOCHSCHILD (CO)HOMOLOGY FOR LIE ALGEBROIDS

DAMIEN CALAQUE, CARLO A. ROSSI, AND MICHEL VAN DEN BERGH

Abstract. We define the Hochschild (co)homology of a ringed space relative
to a locally free Lie algebroid. Our definitions mimic those of Swan and Cal-
dararu for an algebraic variety. We show that our (co)homology groups can
be computed using suitable standard complexes.

Our formulæ depend on certain natural structures on jetbundles over Lie
algebroids. In an appendix we explain this by showing that such jetbundles are
formal groupoids which serve as the formal exponentiation of the Lie algebroid.

1. Introduction

This is a companion note to [5]. Throughout k is a base field of characteristic
zero. If X is a smooth algebraic variety over k of dimension d then Caldararu
defines the Hochschild (co)homology of X as

HHn(X) = ExtnOX×X
(O∆,O∆)

HHn(X) = Extd−n
OX×X

(ω−1
∆ ,O∆)

(1.1)

where ∆ ⊂ X × X denotes the diagonal. The first of these definitions is due to
Swan [16].

From these definitions it is clear that HH•(X) has a canonical algebra structure
(by the Yoneda product) and HH•(X) is a module over it (by the action of HH•(X)
on O∆). As customary we refer below to these algebra and module structures as
“cup” and “cap” products.

Building on the work of a number of people (notably Kontsevich and Shoikhet)
we completed in [5] the proof of a conjecture by Caldararu which asserts that there
is a certain Duflo type isomorphism between the above Hochschild (co)homology
groups and the cohomology groups of poly-vector fields and differential forms which
preserves the natural algebra and module structures. We refer to [7, 8, 9] for
background information and additional results.

One small issue was left open. Instead of using (1.1) directly we used explicit
chain and cochain complexes for the definition of Hochschild (co)homology. As a
result it is not immediately obvious that our algebra and module structures are
precisely the same as Caldararu’s. The fact that this is true for the cup product
was proved in [19] by Yekutieli.

In [5] we actually proved a version of Caldararu’s conjecture valid for locally
free Lie algebroids. This yields in particular the algebraic, analytic and C∞-setting
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ANR project GéSAQ (project number JC08 320699).
The third author is a director of research at the FWO..

1

http://de.arxiv.org/abs/0908.2630v3


2 DAMIEN CALAQUE, CARLO A. ROSSI, AND MICHEL VAN DEN BERGH

as special cases. In this paper we prove in the Lie algebroid setting an agree-
ment property (see Theorem 13.1) between the Hochschild (co)homology defined
by complexes and by formulæ similar to (1.1) (see (6.2)).

Our formulæ depend on various interesting structures on the sheaf of jet bundles
of a Lie algebroid. In Appendix A we clarify this by showing that these structures
make the sheaf of jet bundles into a formal groupoid which serves as the formal
exponentiation of the Lie algebroid (see also [11, Appendix] and [12, §3.4]).

2. Acknowledgement

The authors thank the referee for his thorough reading of the paper as well as
for pointing out Proposition 11.2.

3. Notation and conventions

Unadorned tensor products are over k. We usually write ⊗X instead of ⊗OX
and

we apply a similar convention for Hom. We often drop “sheaf of”. For example we
usually speak of an algebra instead of a sheaf of algebras. Lower indices denote ho-
mological grading. If we need to translate between homological and cohomological
grading we use the convention Hn(−) = H−n(−).

Some objects below come with a natural topology which will be appropriately
specified. If an object is introduced without a specific topology then it is assumed
to have the discrete topology. This applies in particular to structure sheaves.

4. Preliminaries

4.1. Sites. For the theory of sites we refer to [2]. We freely use sheaf theory over
(ringed) sites and in particular the fact that the category of modules over a ringed
site is a Grothendieck category (see [2, Prop. II.6.7]). By definition this is an abelian
category with a generator and exact filtered colimits. Such a category automatically
has enough injectives and arbitrary products [10].

We will also use the fact that the category of complexes over a ringed site has
both K-flat resolutions [15, Theorem 3.4] and K-injective resolutions [1]. Hence
we may freely use unbounded Hom’s and tensor products and the corresponding
Hom-tensor identities.

5. Lie algebroids, enveloping algebras, jet bundles and connections

5.1. Lie algebroids. Throughout (X,OX) is a ringed site (or ringed space if the
reader is not interested in the utmost generality) and L is a Lie algebroid on X
locally free of rank d. By definition L is a sheaf of Lie algebras acting on OX which
is also an OX -module satisfying the following conditions

(5.1)

(f1l)(f2) = f1l(f2)

l(f1f2) = l(f1)f2 + f1l(f2)

[l1, l2](f) = l1(l2(f))− l2(l1(f))

[l1, f l2] = l1(f)l2 + f [l1, l2]

for sections f, f1, f2 of OX and sections l, l1, l2 of L.
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5.2. Universal enveloping algebras. The universal enveloping algebra (see [14])
of L is denoted by UXL. To define this object note that OX ⊕ L also carries the
structure of a sheaf of Lie algebras via [(f1, l1), (f2, l2)] = (l1(f2) − l2(f1), [l1, l2]).
Then UXL is the quotient of the universal enveloping algebra of OX ⊕ L subject
to the additional relation f · l = fl, for f in OX and l in OX ⊕ L.

If X is a smooth algebraic variety and L = TX then UXL equals DX , the sheaf
of differential operators on X . In general the properties of UXL mimic those of
DX . In particular giving OX degree zero and L degree one, UXL becomes equipped
with an ascending filtration F • such that

(5.2) grF UXL = SXL

The action of L on OX extends to an action of UXL on OX which makes OX into
a left UXL-module.

As UXL contains OX it is equipped with a natural left OX -action. We view
UXL as a central(!) OX -bimodule with the right OX -action defined to be equal to
the left one. In this way UXL becomes a sheaf of cocommutative OX -coalgebras.
More precisely there is a comultiplication ∆ : UXL → UXL⊗X UXL and a counit
ǫ : UXL → OX which are locally given by the following formulæ (using the Sweedler
convention)

(5.3)

∆(f) = f ⊗ 1 = 1⊗ f

∆(l) = l ⊗ 1 + 1⊗ l

∆(DE) =
∑

D,E

D(1)E(1) ⊗D(2)E(2)

ǫ(D) = D(1)

for f a section of OX , l a section of L and D,E sections of UXL. Although
UXL⊗X UXL is not a sheaf of algebras the third formula is well defined as ∆ takes
values in a certain subsheaf of UXL ⊗X UXL which is an algebra (see e.g. [17]).

5.3. Jet bundles. The sheaf of L-jets on X is defined as

(5.4) JXL = HomX(UXL,OX)

(this is unambiguous, as the left and right OX -modules structures on UXL are the
same). Being the dual of an OX -module JXL is also an OX -module (given that
OX is commutative). Below we will sometimes use the corresponding OX -linear
evaluation pairing

(5.5) 〈−,−〉 : JXL ×UXL → OX

The cocommutative coalgebra structure on UXL induces a commutative algebra
structure on JXL by the usual formula

(5.6) (αβ)(D) =
∑

D

α(D(1))β(E(2))

for α, β sections on JXL and D a section of UXL. The unit “1” of JXL is given
by ǫ. One verifies that OX → JXL : f 7→ f · 1 is an algebra homomorphism. So
JXL is an OX -algebra.

The natural ascending filtration F • on UXL introduced above induces a de-
scending filtration F• on JXL where FnJXL is given by those sections of JXL =
HomX(UXL,OX) which vanish on FnUXL.
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One checks by a local computation that F• is the adic filtration for the ideal
JcXL = F1JXL ⊂ JXL. For this adic filtration JXL is complete and furthermore
we have

(5.7) gr JXL = SXL∗

Locally we may lift a basis x1, . . . , xd for L∗ to JcL and in this way one obtains a
local isomorphism of sheaves of algebras

(5.8) JXL ∼= OX [[x1, . . . , xd]]

Lemma 5.1. If we equip UXL with the discrete topology and JXL with the JcXL-
adic topology then (5.5) is a non-degenerate pairing of sheaves of topological OX -
modules in the sense that it induces isomorphisms

JXL = HomX(UXL,OX)(5.9)

UXL = Homcont
X (JXL,OX)(5.10)

Proof. The first isomorphism is by definition so we concentrate on the second one.
Note that Homcont

X (JXL,OX) ⊂ HomX(JXL,OX) is given by those sections
which vanish (locally) on some power of JcXL. The pairing (5.5) induces a pairing
of locally free OX -modules of finite rank

〈−,−〉 : JXL/(JcXL)n × FnUXL → OX

and from (5.2) and (5.7) it follows easily that this pairing is non-degenerate.
Thus

FnUXL = HomX(JXL/(JcXL)n,OX)

Taking the direct limit yields (5.10) �

As a slight generalization we consider the pairing

〈−,−〉 : (JXL)⊗̂Xn × (UXL)⊗Xn → OX :

(α1 ⊗ · · · ⊗ αn, D1 ⊗ · · · ⊗Dn) 7→ 〈α1, D1〉 · · · 〈αn, Dn〉

The filtrations F • and F• on UXL and JXL induce corresponding filtrations on

(UXL)⊗Xn and (JXL)⊗̂Xn and the filtration on (JXL)⊗̂Xn is complete. As in
Lemma 5.1 one shows that 〈−,−〉 is non-degenerate.

5.4. Flat connections. If M is an OX -module then an L-connection on M is a
map

∇ : L ⊗k M → M

with properties mimicking those of ordinary connections (which correspond to L =
TX). Namely

∇fl(m) = f∇l(m)

∇l(fm) = l(f)m+ f∇l(m)

for sections f of OX , l of L and m of M1. Here and below we make use of the
standard notation ∇l(m) = ∇(l ⊗ m). A connection is flat if ∇[l1,l2] = ∇l1∇l2 −
∇l2∇l1 . All connections below are flat. A flat connection on M extends to a left
UXL-module structure on M, and in fact this construction is reversible yielding an

1Equivalently, an L-connection on M is determined by a map d∇ : M → L∗ ⊗X M satisfying
a Leibniz type identity (see e.g. [6]).
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equivalence between the two notions. If D is a section of UXL then we sometimes
denote its action on a module with a flat connection by ∇D.

Clearly OX and UXL are equipped with canonical flat connections

G∇lf = l(f)

G∇lD = lD

for sections f of OX , l of L and D of UXL.
If M,N are equipped with a flat L-connection then the same holds for M ⊗X N

and HomX(M,N). The formulæ are the same as in the case L = TX . This applies
in particular to the definition of JXL (5.4). Thus JXL is also equipped with a
canonical flat connection which we denote by G∇ as well.2 Explicitly for a section
l of L, a section α of JXL and a section D of UXL we have

G∇l(α)(D) = l(α(D))− α(lD)

One verifies in particular

(5.11) G∇l(αβ) =
G∇l(α)β + αG∇l(β)

Besides the left UXL-module on JXL induced by G∇ there is another left UXL-
action on JXL which we denote by 2∇. For sections D,E of UXL and α of JXL
we put

(2∇Eα)(D) = α(DE)

It is an easy verification that G∇ and 2∇ commute. See Appendix A for more
details.

If X is a smooth algebraic variety and L = TX then we can make the above defi-
nitions more concrete. As already mentioned above UXL is the sheaf of differential

operators DX on X . We also have JXL = pr1∗ ÔX×X,∆ and

(5.12)

〈f ⊠ g,D〉 = fD(g)

G∇D(f ⊠ g) = D(f)⊠ g

2∇D(f ⊠ g) = f ⊠D(g)

for sections f, g of OX and D of DX . The first line refers to the pairing between
JXL and UXL as in (5.5).

Remark 5.2. This example is a special case of the following one: consider a smooth
groupoid scheme G = G(G,X, s, t, e, µ) over X where s, t : G → X are respectively
the source and target maps, e : X → G is the unit map and µ : G×s,X,t G → G is
the composition.

If x ∈ X , g ∈ t−1x and u is a section of Ot−1x then we put (Lgu)(h) = u(gh).
This definition is such that (Lgu)(h) is defined when t(h) = s(g). In other words
Lgu is a function on t−1s(g). Thus Lg maps sections of Ot−1t(g) to sections of
Ot−1s(g).

Let us write Tt ⊂ TG for the relative tangent bundle of t : G → X . The vector
fields in Tt act by derivations on Ot−1x for any x ∈ X . We say that a vector field
ξ in Tt is left invariant if for any g ∈ G and for any section u of Ot−1t(g) we have
ξ(Lgu) = Lgξ(u). It is easy to see that the left invariant sections of s∗Tt are closed

2The “G” stands for Grothendieck, as this connection is often referred to as the “Grothendieck
connection.”
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under Lie brackets of vector fields and hence they form a Lie algebroid on X . By
definition this is the Lie algebroid associated to G and it is denoted by LG .

In this setting JXL = s∗ÔG,X where X is regarded as a subscheme of G via the

unit map e. Vector fields on G act on s∗ÔG,X by derivations. The Grothendieck
connection G∇ is the restriction of this action to the left invariant vector fields.

If we putG = X×X , s(x, y) = x, t(x, y) = y, e(x) = (x, x) and µ((w, y), (x,w)) =
(x, y) then the data (G,X, s, t, e, µ) form a groupoid on X . One verifies that the
left invariant vector fields are precisely those vector fields which are obtained by
pullback from the first projection X × X → X . This gives an expression for the
Grothendieck connection which agrees with (5.12).

6. Hochschild (co)homology for Lie algebroids

We need a fragment of the groupoid structure on JXL (see Appendix A) namely
the counit

(6.1) ǫ : JXL → OX : α 7→ α(1)

where the 1 is the unit of UXL. The kernel of ǫ is the sheaf of ideals JcXL introduced
above.

We use ǫ to make any OX -module into a JXL-module. We define the Hochschild
(co)homology for (X,OX ,L) as

HHn
L(X) = ExtnJXL(OX ,OX)

HHL
n(X) = Extd−n

JXL(∧
dL,OX)

(6.2)

This definition is motivated by the following proposition

Proposition 6.1. Assume that X is a smooth algebraic variety of dimension d and
L = TX . Then we have an isomorphism

(HHn
L(X),HHL

n(X)) ∼= (HHn(X),HHn(X))

compatible with the obvious algebra and module structures.

Proof. From (5.12)(6.1) we obtain that ǫ is given by ǫ(f ⊠ g) = fg. Thus we get
(taking into account ∧dTX = ω−1

X ).

HHn
L(X) = Extn

ÔX×X,∆
(O∆,O∆)

HHL
n (X) = Extn

ÔX×X,∆
(ω−1

∆ ,O∆)

The inclusion map OX×X → ÔX×X,∆ induces maps

p : Extn
ÔX×X,∆

(O∆,O∆) → ExtnOX×X
(O∆,O∆)

q : Extn
ÔX×X,∆

(ω−1
∆ ,O∆) → ExtnOX×X

(ω−1
∆ ,O∆)

Which are obviously compatible with algebra and module structures. We will prove

that p, q are isomorphisms. The flatness of ÔX×X,∆ over OX×X implies that there
are isomorphisms

ÔX×X,∆

L
⊗OX×X

O∆
∼= O∆

ÔX×X,∆

L
⊗OX×X

ω−1
∆

∼= ω−1
∆
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in D(Mod(ÔX×X,∆)). Hence we obtain using change of rings

ExtnOX×X
(O∆,O∆) = Extn

ÔX×X,∆
(ÔX×X,∆

L
⊗OX×X

O∆,O∆)

∼= Extn
ÔX×X,∆

(O∆,O∆)

and one easily checks that this isomorphism is the inverse of p. The morphism q is
treated similarly. �

For the sequel the above definition of Hochschild homology is not so convenient.
We will modify it.

Lemma 6.2. There is a canonical isomorphism in D(Mod(JXL)).

(6.3) RHomJXL(OX , JXL) = ∧dL[−d]

Proof. We need to show

Ext iJXL(OX , JXL) =

{
∧dL if i = d

0 otherwise

First we establish this locally in the case that JXL = OX [[x1, . . . , xd]]. Let K• be
the Koszul resolution of OX as JXL module with respect to the regular sequence
(x1, . . . , xd). Thus K• = OX [[x1, . . . , xd]][ξ1, . . . , ξd] where (ξi) are variables of
degree −1 such that dξi = xi. One computes

Ext iJXL(OX , JXL) =

{
OXξ∗1 · · · ξ

∗
d = ∧dL if i = d

0 otherwise

One verifies that the resulting isomorphism ExtdJXL(OX , JXL) ∼= ∧dL is indepen-
dent of the choice of (x1, . . . , xd) and hence it globalizes. �

Proposition 6.3. We have a canonical isomorphism

(6.4) HHL
n(X) = Extd−n

JXL(∧
dL,OX) ∼= R−nΓ(X,OX

L
⊗JXL OX)

compatible with the HH•
L(X) actions on the rightmost copies of OX .

Proof. We compute

Extd−n
JXL(∧

dL,OX) = Rd−nΓ(X,RHomJXL(RHomJXL(OX , JXL)[d],OX))

= Rd−nΓ(X,OX

L
⊗JXL OX [−d])

= R−nΓ(X,OX

L
⊗JXL OX) �

As we have not touched the rightmost copy of OX on both sides of (6.4) it follows
that this isomorphism is compatible with the HH•

L(X)-action.

7. The Hochschild cochain complex

The Hochschild cochain complex of L (also called the sheaf of L-poly-differential
operators) HC•

L,X is defined as the tensor algebra3 TX(UXL) with differential

dH(D) =

{
0, p = 0

D ⊗ 1−∆p(D) + ∆p−1(D)− · · ·+ (−1)p+11⊗D p > 0

3In [5] we used a shifted version of this complex (denoted by DL

poly,X
) to make the Lie bracket

degree zero. Since here we emphasize the cup product we drop the shift.
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where D = D1 ⊗ · · · ⊗ Dp is a section of T p
X(UXL) and ∆i is ∆ applied to the

i-th factor. The Hochschild cochain complex is naturally a DG-algebra with the
product being derived from the standard product in the tensor algebra TX(UXL).
We refer to this product as the “cup product” and denote it by ∪. Explicitly we
have

(D1 ⊗ · · · ⊗Dp) ∪ (E1 ⊗ · · · ⊗ Eq) = (−1)pqD1 ⊗ · · · ⊗Dp ⊗ E1 ⊗ · · · ⊗ Eq

8. The Hochschild chain complex

The complex of L-poly-jets over X is defined as

ĤCX,•(JXL) =
⊕

p≥0

(JXL)⊗̂Xp+1

equipped with the usual Hochschild differential

bH(α0⊗α1⊗· · ·⊗αp) = α0α1⊗· · ·⊗αp−α0⊗α1α2⊗· · ·⊗αp+· · ·+(−1)pαpα0⊗· · ·⊗αp−1

In other words, as implied by the notation, ĤCX,•(JXL) is simply the (completed)
relative Hochschild chain complex of the OX -algebra JXL.

By the usual Leibniz rule G∇ acts on ĤCX,•(JXL) and one easily verifies that the
action of G∇ commutes with bH . In [5] (following [3]) we defined the Hochschild

chain complex4 HCL
X,• of (X,OX ,L) as the invariants of ĤCX,•(JXL) under G∇.

Explicitly for an object U → X of the site

HCL
X,p(U) = ĤCX,p(JXL)(U)

G∇

= {α ∈ ĤCX,p(JXL)(U) | ∀l ∈ L(U) : G∇l(α) = 0}

The reason for this somewhat roundabout way of defining the Hochschild chain
complex is technical. The idea is that the complicated formulæ of [4], valid for
the ordinary Hochschild chain complex of an algebra, can be applied verbatim to

ĤCX,•(JXL) which is also just an ordinary (relative) Hochschild chain complex.
We may then use the fact that these formulæ are invariant under G∇ to descend
them to HCL

X,•. This is a major work saving compared to working directly with

HCL
X,•.

For use in the sequel we give a more direct description of HCL
X,•.

Proposition 8.1. We have as complexes

(8.1) HCL
X,•

∼=
⊕

p≥0

(JXL)⊗̂Xp

with the differential on the right-hand side being given by

bH(α1 ⊗ · · · ⊗ αp) = ǫ(α1)α2 ⊗ · · · ⊗ αp − α1α2 ⊗ · · ·αp + · · ·

· · ·+ (−1)p−1α1 ⊗ · · · ⊗ αp−1αp + (−1)pα1 ⊗ · · · ⊗ αp−1ǫ(αp)

The isomorphism (8.1) is the restriction to ĤCX,•(JXL)
G∇ = HCL

X,• of the map

(8.2) ĤCX,•(JXL) →
⊕

p≥0

(JXL)⊗̂Xp

4In [5] we used the notation HCL

poly,X for HCL

X,•
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which sends

α0 ⊗ α1 ⊗ · · · ⊗ αp ∈ ĤCX,p(JXL)

to

ǫ(α0)α1 ⊗ · · · ⊗ αp ∈ HCL
X,p

The map (8.2) commutes with differentials.

Proof. That the restriction of (8.2) is an isomorphism is proved in [3, Prop. 1.11].
That (8.2) commutes with differentials is an easy verification. �

The cap product of a section D = D1 ⊗ · · · ⊗Dp of HCp
L,X and a section α =

α0 ⊗ · · · ⊗ αq of ĤCX,q(JXL) was in [5, §3.4] defined as

D ∩ α = α0
2∇D1α1 · · ·

2∇Dp
αp ⊗ αp+1 ⊗ · · · ⊗ αq

and for f ∈ HC0L,X = OX :

f ∩ α = fα0 ⊗ · · · ⊗ αq.

One verifies that this cap product is compatible with differentials.

bH(D ∩ α) = dHD ∩ α+ (−1)|D|D ∩ bHα

The fact that G∇ and 2∇ commute yields immediately

G∇l(D ∩ α) = D ∩ G∇l(α)

Hence ∩ descends to a cap product

(8.3) ∩ : HC•
L,X ×HCL

X,• → HCL
X,•

compatible with the differentials.

Proposition 8.2. For a section D = D1 ⊗ · · · ⊗ Dp of HCp
L,X and a section

α = α1 ⊗ · · · ⊗ αq of HCL
X,q (using the identification (8.1)) we have

(8.4) D ∩ α = α1(D1) · · ·αp(Dp)αp+1 ⊗ · · · ⊗ αq

and for f ∈ HC0L,X = OX :

f ∩ α = fα1 ⊗ · · · ⊗ αq

Proof. This is a straightforward verification. �

9. A digression

The Hochschild cohomology as we have defined it is computed in the category
Mod(JXL). Inside Mod(JXL) we have the full subcategory Dis(JXL) of modules
whose sections are locally annihilated by powers of JcXL.

Lemma 9.1. Dis(JXL) is a Grothendieck subcategory of Mod(JXL).

Proof. Dis(JXL) is clearly an abelian subcategory of Mod(JXL) which is closed
under colimits. Hence it remains to construct a set of generators. The objects
j!(JULU )/(J

c
ULU )

n where j : U → X runs through the objects of the site and n is
arbitrary, do the job. �
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SinceOX ∈ Dis(JXL) this suggests the following alternative definition for Hochschild
cohomology

HHn
L,dis(X) = ExtnDis(JXL)(OX ,OX)

We show below that this yields in fact the same result as before. Along the way we
will prove some technical results needed later.

For K ∈ Dis(JXL) let RHomDis(JXL)(K,−) be the right derived functor of
HomDis(JXL)(K,−) which sends F ∈ Dis(JXL) to the sheaf U 7→ HomJUL(K|U,F|U).
The exactness of j! implies that injectives in Dis(JXL) are preserved under restric-
tion. This implies that RHomDis(JXL)(K,−) is compatible with restriction.

Lemma 9.2. Let M ∈ Dis(JXOX). The natural map

(9.1) RHomDis(JXL)(OX ,M) → RHomJXL(OX ,M)

is an isomorphism.

Proof. We may check this locally. Therefore we may assume that L is free over OX

and JXL = OX [[x1, . . . , xd]].
Let E be an injective object in Dis(JXL). We need to check that ExtnJXL(OX , E) =

0 for n > 0.
Let K• = OX [[x1, . . . , xd]][ξ1, . . . , xd] be the Koszul resolution of OX associated

to the regular sequence (x1, . . . , xd) in JXL (with differential dξi = xi). Then

RHomJXL(OX , E) = HomJXL(K
•, E)

Now put for p ≥ 1
pK• = K•/(x1, . . . , xd, ξ1, . . . , ξd)

p

Passing to associated graded objects it is easy to see that pK• (equipped with the
differential inherited from K•) is a resolution of OX . Since pK• is a complex in
Dis(JXL) and E is injective in Dis(JXL) we find

Hn(HomJXL(
pK•, E)) =

{
0 n > 0

HomJXL(OX , E) n = 0

We find for n > 0:

Hn(HomJXL(K•, E)) = Hn(inj lim
p

HomJXL(
pK•, E))

= inj lim
p

Hn(HomJXL(
pK•, E))

= 0

The first line is based on the observation that for any M ∈ Dis(JXL) we have

inj lim
p

HomJXL(JXL/(JcXL)p,M) = M �

Lemma 9.3. For any K, L in Dis(JXL) there is the following identity

(9.2) RHomDis(JXL)(K,L) = RΓ(X,RHomDis(JXL)(K,L))

in D(Ab).

Proof. To check (9.2) we need to verify that if E is an injective object in Dis(JXL)
then N = HomJXL(K, E) is acyclic for Γ(X,−) = HomZ

X
(ZX ,−). This is trivial

if we are on a space since one verifies immediately that N is flabby. If X is a
site then we can proceed as follows. By general properties of Ext an element α
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of Extn
ZX

(ZX ,N ) is represented by an element in Hn(HomZ
X
(G•,N )) for some

resolution G• → ZX → 0 in Mod(ZX) and by resolving G• further we may without
loss of generality assume that G• is flat. Then we have

Hn(HomZ
X
(G•,N )) = Hn(HomZ

X
(G•,HomJXL(K, E)))

= Hn(HomJXL(G
• ⊗Z

X
K, E))

where JXL acts on the second factor of G• ⊗Z
X
K. Since G• → ZX → 0 consist

entirely of flat ZX modules we have

Hn(G• ⊗Z
X
K) =

{
K if n = 0

0 otherwise

Since G• ⊗Z
X
K is a complex in Dis(JXL) and E was assumed to be injective in

Dis(JXL) we conclude that for n > 0

Hn(HomZ
X
(G•,N )) = Hn(HomJXL(G

• ⊗Z
X
K, E))

= HomJXL(H
n(G• ⊗Z

X
K), E)

= 0

Hence α = 0. Since this holds for any element of Extn
ZX

(ZX ,N ) we conclude

Extn
ZX

(ZX ,N ) = 0. �

Proposition 9.4. The natural map

HHn
L,dis(X) → HHn

L(X)

is an isomorphism.

Proof. We need to prove that the natural map

(9.3) RHomDis(JXL)(OX ,OX) → RHomJXL(OX ,OX)

is an isomorphism in D(Ab).
By the local global spectral sequences for RHomJXL(−,−) and RHomDis(JXL)(−,−)

(Lemma 9.3) this reduces to Lemma 9.2. �

10. The bar resolution

The L bar complex is defined as

BL
X,• =

⊕

p≥0

(JXL)⊗̂Xp+1

with differential

b′H(α0⊗· · ·⊗αp) = α0α1⊗· · ·⊗αp−α0⊗α1α2⊗· · ·αp+(−1)pα0⊗· · ·⊗αp−1ǫ(αp)

We consider BL
X,• as a JXL-module via

α · (α0 ⊗ · · · ⊗ αp) = αα0 ⊗ α1 ⊗ · · · ⊗ αp

Clearly b′H is JXL-linear. The map ǫ : JXL = BL
X,0 → OX defines an JXL

augmentation for BL
X,•.

Proposition 10.1. The bar complex is a resolution of OX as a JXL-module.
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Proof. We need to prove that

BL
X,•

ǫ
−→ OX → 0

is acyclic. To this end it suffices to construct a contracting homotopy as sheaves
of abelian groups. We do this as follows: we define h−1 : OX → BL,0 = JXL as
h−1(f) = f · 1 and for p ≥ 0 we put

hp(α0 ⊗ · · · ⊗ αp) = 1⊗ α0 ⊗ · · · ⊗ αp

It is easy to verify that this is indeed a contracting homotopy. �

We need a variant on the construction of BL
X,p. Put

qJXL = JXL/(JcXL)q. Define

qBL
X,• =

⊕

p≥0

(qJXL)⊗Xp+1

In the same way as in the proof of Proposition 10.1 one proves that qBL
X,• is a

resolution of OX .

Lemma 10.2. For M ∈ Dis(JXL) we have

(10.1)

Homcont
JXL(B

L
X,p,M) = inj lim

q
HomJXL(

qBL
X,p,M)

= inj lim
q

HomOX
((qJXL)⊗Xp,M)

Proof. With the notations as in §5.3 we have

Homcont
JXL(B

L
X,p,M) = inj lim

n
Homcont

JXL(B
L
X,p/FnB

L
X,p,M)

where

FnB
L
X,p =

∑
∑

i ni=n

(JcXL)n1 ⊗̂X · · · ⊗̂X (JcXL)np+1

On the other hand we have

inj lim
q

HomJXL(
qBL

X,p,M) = inj lim
q

HomJXL(B
L
X,p/GqB

L
X,p,M)

with

GqB
L
X,p =

∑

i

(JXL)⊗̂Xi ⊗̂ (JcXL)q ⊗̂X (JXL)⊗̂Xp−i

It now suffices to note that the filtrations (FnBL
X,p)n and (GqBL

X,p)q are cofinal

inside BL
X,p. �

Proposition 10.3. In D(Mod(OX)) we have

OX

L
⊗JXL OX = OX ⊗JXL BL

X,•(10.2)

Furthermore for M ∈ Dis(JXL) the composition

Homcont
JXL(B

L
X,•,M)

σ
−→ HomJXL(B

L
X,•,M)

τ
−→ RHomJXL(B

L
X,•,M)

µ
∼= RHomJXL(OX ,M)

(whith σ, τ , µ the obvious natural maps) yields an isomorphism

RHomJXL(OX ,M)
(µτσ)−1

∼= Homcont
JXL(B

L
X,•,M)(10.3)
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Proof. We first discuss (10.3) (see also [18, Thm 0.3]). Let E• be an injective
resolution of M in Dis(JXL). According to Lemma 9.2 we know that injec-
tives in Dis(LXL) are acyclic for HomJXL(OX ,−). Hence RHomJXL(OX ,M) ∼=
HomJXL(OX , E•).

Furthermore from the second line of (10.1), taking into account that (qJXL)⊗Xp

is locally free over OX and that direct limits are exact it follows that the co-
homology for the columns of the double complex Homcont

JXL(B
L
X,•, E

•) is equal to

Homcont
JXL(B

L
X,•,M). Thus Homcont

JXL(B
L
X,•,M) ∼= Homcont

JXL(B
L
X,•, E

•) as objects in

D(Mod(OX)).
We claim that the cohomology for the rows of Homcont

JXL(B
L
X,•, E

•) is equal to

HomJXL(OX , E•). Let E be a single injective in Dis(JXL). Standard manipula-
tions with adjoint functors establish that

qE = HomJXL(JXL/(JXL)q, E)

is injective in Mod(qJXL). Using the fact that qBL
X,p is a resolution of OX (as noted

above) we compute

Hn(Homcont
JXL(B

L
X,p,

qE)) = inj lim
q

Hn(HomqJXL(
qBL

X,p,
qE))

= inj lim
q

HomqJXL(Hn(
qBL

X,p),
qE)

=

{
0 n > 0

inj limq HomqJXL(OX , qE) n = 0

=

{
0 n > 0

HomJXL(OX , E) n = 0

Thus as objects in D(Mod(OX)) we have HomJXL(OX , E•) ∼= Homcont
JXL(B

L
X,•, E

•).
We now obtain a commutative diagram

HomJXL(OX , E•)
∼=

//

∼=

��

Homcont
JXL(B

L
X,•, E

•)
σ

// HomJXL(B
L
X,•, E

•)

τ

��

RHomJXL(OX , E•)
µ−1

∼=
// RHomJXL(B

L
X,•, E

•)

where the “∼=” denote quasi-isomorphisms. It follows that µτσ is indeed an isomor-
phism in D(Mod(OX)).

Now we discuss (10.2). It is easy to see that we have to show that

(10.4) Hn(OX

L
⊗JXL BL

X,p) = 0 for n > 0

We may check this locally. I.e. we may assume JXL = OX [[x1, . . . , xd]] and hence

(10.5) BL
X,p = OX [[x

(1)
1 , . . . , x

(p+1)
d ]]

with JXL acting through the variables x
(1)
1 , . . . , x

(1)
d .

Then OX = JXL/(x1, . . . , xd) and (10.5) shows that (x1, . . . , xd) forms a regular
sequence on BL

X,p. The required vanishing in (10.4) now follows in the usual way. �
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11. Discussion of the cup product.

We will consider D(Mod(OX)) as a symmetric monoidal category through the
derived tensor product over OX .

Proposition 11.1. There is a canonical isomorphism of algebra objects in D(Mod(OX))

(11.1) Φ : (HC•
L,X)opp

∼=
−→ RHomJXL(OX ,OX)

which sends the opposite of the cup product to the Yoneda product.

Proof. We have

RHomJXL(OX ,OX) = RHomJXL(B
•
X,L,B

•
X,L)

Thus Φ is an element of

HomOX

(
(HC•

L,X)opp,RHomJXL(B
•
X,L,B

•
X,L)

)

or using the Hom-tensor relations (see §4.1), a map in D(Mod(JXL))

(HC•
L,X)opp ⊗OX

B•
X,L → B•

X,L

Note that the tensor product is not derived since both factors are OX -flat.
Thus to define a morphism like in (11.1) it suffices to define a JXL-linear action

of B•
X,L on

(
HC•

L,X

)opp
. One easily verifies that if the action makes B•

X,L into a

DG-module over
(
HC•

L,X

)opp
then Φ is an algebra morphism.

For a section D = D1 ⊗ · · · ⊗Dp of HCp
L,X and a section α = α0 ⊗ · · · ⊗ αq of

BL
X,q we put

(11.2) D ∩ α =

{
α0

2∇D1α1 · · · 2∇Dp
αp ⊗ αp+1 ⊗ · · · ⊗ αq if q ≥ p

0 otherwise

and for f a section of HC0L,X = OX we put

f ∩ (α0 ⊗ · · · ⊗ αq) = fα0 ⊗ · · · ⊗ αq

This action is obviously JXL-linear and furthermore it is an easy verification that

b′H(D ∩ α) = dH(D) ∩ α+ (−1)|D|D ∩ b′H(α)

Hence we have indeed defined a morphism as in (11.1). The fact that it sends the
opposite of the cup product to the Yoneda product follows from the easily verified
identity:

(D ∪ E) ∩ α = (−1)|D||E|E ∩ (D ∩ α)

It is easy to see that the composition

(11.3) HC•
L,X → HomJXL(B

L
X,•,B

L
X,•)

ǫ◦−
−−→ HomJXL(B

L
X,•,OX)

is given by (we will pass silently over the special case p = 0 as it is easy)

D1 ⊗ · · · ⊗Dp 7→

(
α0 ⊗ · · · ⊗ αq 7→

{
〈α0, 1〉〈α1, D1〉 · · · 〈αp, Dp〉 if p = q

0 otherwise

)

From this formula it is easy to see that the image of HCp
L,X under (11.3) lies in

Homcont
JXL(B

L
X,p,OX) = Homcont

OX
((JXL)⊗̂p,OX)
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and the resulting map

HCp
L,X → Homcont

OX
((JXL)⊗̂p,OX)

is given by

D1 ⊗ · · · ⊗Dp 7→ (α1 ⊗ · · · ⊗ αp 7→ 〈α1, D1〉 · · · 〈αp, Dp〉)

which by the discussion in §5.3 is an isomorphism.
We may now construct the following commutative diagram

(11.4)

HCL,X
∩

//

∼=

��

HomJXL(B
L
X,•,B

L
X,•) //

��

RHomJXL(B
L
X,•,B

L
X,•)

∼=

��

Homcont
JXL(B

L
X,•,OX)

∼=

33σ
// HomJXL(B

L
X,•,OX)

τ
// RHomJXL(B

L
X,•,OX)

Here the left square is commutative by the fact that (11.3) has its image inside
Homcont(BL

X,•,OX) (as we have discussed in the previous paragraph). The right
horizontal arrows are derived from the obvious JXL-linear actions

HomJXL(B
L
X,•,B

L
X,•)⊗OX

BL
X,• → BL

X,•

HomJXL(B
L
X,•,OX)⊗OX

BL
X,• → OX

(as explained in the beginning of the proof for the HCL,X -action)

The curved arrow is an isomorphism by Proposition 10.3. It follows that (11.1)
is indeed an isomorphism. �

The following result was observed by the referee.

Proposition 11.2. The map of DG-algebras

(HC•
L,X)opp

∼=
−→ Homcont

JXL(B
L
X,•,B

L
X,•)

obtained from the (continuous!) action of HC•
L,X on BX,• through the capproduct

(see (11.2)), is a quasi-isomorphism.

Proof. The proof is easy in principle but we have to be careful with taking products
of sheaves. In particular the functor Homcont

JXL(B
L
X,•,−) is not exact. This problem

is solved by working on the presheaf level.
Looking at the leftmost square of (11.4) it is clearly sufficient to show that the

map

(11.5) Tot(Homcont
JXL(B

L
X,•,B

L
X,•)) → Homcont

JXL(B
L
X,•,OX)

obtained from the augmentation is a quasi-isomorphism. In this framework, we
regard Homcont

JXL(B
L
X,•,B

L
X,•) as a double complex located in the second quadrant.

Thus the horizontal differential comes from the differential on the rightmost copy
of BX,•.
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We first replace our site with a new one X ′ containing only the objects U for
which LU is free. Obviously X and X ′ have the same sheaf theory. Let U be an
object of X ′. We will show that

(11.6) Tot(Homcont
JXL(B

L
X,•,B

L
X,•))(U) = Tot(Homcont

JUL(B
L
U,•,B

L
U,•))

→ Homcont
JUL(B

L
U,•,OU ) = Homcont

JXL(B
L
X,•,OX)(U)

is a quasi-isomorphism. Thus we obtain a presheaf version of the required quasi-
isomorphism. We finish by applying sheafification.

Some diagram chasing reveals that to prove that (11.6) is a quasi-isomorphism it
is sufficient to check that the rows of the double complex Homcont

JUL(B
L
U,•,B

L
U,•) have

the correct cohomology. I.e. for any n we must check that the map

Homcont
JUL(B

L
U,n,B

L
U,•) → Homcont

JUL(B
L
U,n,OU )

is a quasi-isomorphism.
Now the local form of JUL (see (5.8)) implies that BL

U,n is topologically free.
Denote the indexing set for a basis by I. Then the functor

Homcont
JUL(B

L
U,n,−)

sends a sheaf M of complete linear topological JUL-modules to M(U)I . Hence it
remains to show that

BL
U,•(U) → OU (U) → 0

is acyclic (since then we may invoke exactness for products of abelian groups).
The fact that Γ(U,−) commutes with inverse limits and hence with completions

implies that

BL
U,•(U) = BL

• (O(U))

where

BL
• (O(U)) =

⊕

p≥0

(JUL(U))⊗̂Xp+1

with the usual differential and

JUL(U) ∼= OU (U)[[x1, . . . , xd]]

To finish the proof one uses the same method as in the proof of Proposition 10.1
to show that BL

U,•(U) is quasi-isomorphic to OU (U). �

12. Discussion of the cap product

Now we prove the following result.

Proposition 12.1. There is a canonical isomorphism in D(Mod(OX))

(12.1) Ψ : OX

L
⊗JXL OX

∼=
−→ HCL

X,•

which is compatible with Φ (see (11.1)) in the following sense: denote the action

of RHomJXL(OX ,OX) on the second argument of OX

L
⊗JXL OX by “∩”; then we

have

(12.2) D ∩Ψ(u) = Φ(D) ∩ u

for a section D of HC•
L,X and u of OX

L
⊗JXL OX .
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Proof. By (10.2) we have

OX

L
⊗JXL OX = OX ⊗JXL BL

X,•

We now define

Ψ : OX ⊗JXL BL
X,• → HCL

X,• : f ⊗ α0 ⊗ · · · ⊗ αp 7→ fǫ(α0)α1 ⊗ · · · ⊗ αp

where we use the version of HCL
X,• given by Proposition 8.1.

It is easy to see that Ψ commutes with differentials and is an isomorphism of
complexes. This gives the required isomorphism in (12.1).

To verify (12.2) we need to check that the following diagram is commutative

OX ⊗JXL BL
X,•

1⊗(D∩−)

��

Ψ
// HCL

X,•

D∩−

��

OX ⊗JXL BL
X,• Ψ

// HCL
X,•

where the cap product formulæ are (11.2) and (8.4). This is again a simple verifi-
cation. �

13. Main result

The following is our main result.

Theorem 13.1. There are isomorphisms

Φ : RnΓ(X,HC•
L,X)

∼=−→ HHn
L(X)

Ψ : HHL
n (X)

∼=−→ R−nΓ(X,HCL
X,•)

such that (Φ,Ψ−1) defines an isomorphism
(
R•Γ(X,HC•

L,X,), R
−•Γ(X,HCL

X,•)
)
∼=
(
HH•

L(X),HHL
• (X)

)

compatible with the natural algebra and module structures.

Proof. Combining Propositions 11.1 and 12.1 with the discussions and the results
of Sections 7 and 8 we get the result except that RnΓ(X,HC•

L,X) is replaced by
its opposite. However HC•

L,X is commutative as algebra object in D(Mod(kX)).

Hence R•Γ(X,HC•
L,X) is commutative as well. �

Appendix A. Jet bundles as formal exponentiations of Lie algebroids

A.1. Introduction. This appendix can be read more or or less independently of
the main paper. We show that the jet bundle of a Lie algebroid is a formal groupoid
(see §A.2). For simplicity of notation we work over rings. Thus L is a Lie algebroid
locally free of rank d over a commutative k-algebra R. This is not a restriction as
we may easily pass to spaces by sheafification.

We use self explanatory variants of our earlier notations. E.g. URL and JRL
instead of UXL and JXL.

The main result of this appendix appears without proof in [11, (A.5.10)]. At the
time this paper was about to be published, Hessel Posthuma pointed out to us the
anterior paper [12], where a different proof appears of the fact that the jet bundle
of a Lie algebroid is a formal groupoid. We make the relation between our proof
and theirs precise in Remark A.10.
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A.2. Statement of the main result. We will prove that a number of structures
exist on JRL (some of which already appeared before). All algebras and morphisms
are unitary.

(1) A commutative, associative algebra structure on JRL (as in the main pa-
per).

(2) Two “unit maps”

111 : R → JRL

112 : R → JRL

(with 111 being the R-algebra structure on JRL appearing in the main paper).
The unit maps are algebra morphisms.

(3) A “comultiplication”

∆ : JRL → JRL ⊗̂R JRL

which is an algebra morphism and also a morphism of R-R-bimodules where
R acts through 111 on the left of JRL and through 112 on the right of JRL.
This convention is also used to interpret the tensor product JRL ⊗̂R JRL.
Note that this convention is different from the one which was in use in the
main paper.

(4) A “counit” (as in the main paper)

ǫ : JRL → R

which is an algebra morphism and an R-R-bimodule morphism where R is
considered an R-bimodule in the obvious way.

(5) An invertible “antipode” which is an algebra morphism

S : JRL → JRL

and which exchanges the R-actions on JRL through 111 and 112.

These structures satisfy the following additional properties

(1) ∆ is coassociative in the obvious sense.
(2) ǫ ◦ 111 = idR = ǫ ◦ 111.
(3) For all α ∈ JRL we have

∑

α

(111 ◦ ǫ)(α(1))α(2) = α =
∑

α

α(1)(112 ◦ ǫ)(α(2))

(4) For all all α ∈ JRL we have
∑

α

S(α(1))α(2) = (112 ◦ ǫ)(α)

∑

α

α(1)S(α(2)) = (111 ◦ ǫ)(α)

We will also show

(5) S2 = idJRL

Just as in the Hopf algebra case this turns out to be a formal consequence of the
commutativity of JRL [13, Cor. 1.5.12].

Remark A.1. The listed properties are precisely those enjoyed by the coordinate
ring of a groupoid.
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Remark A.2. If R is a finitely generated and smooth over a field k and L = T
def
=

Derk(R) then JRL is the completion of R ⊗k R at the kernel of the multiplication
map R ⊗k R → R. In this case the structure maps are given by the following
formulæ

111(a) = a ⊗̂ 1

112(a) = 1 ⊗̂ a

∆(a ⊗̂ b) = (a ⊗̂ 1) ⊗̂ (1 ⊗̂ b)

ǫ(a ⊗̂ b) = ab

S(a ⊗̂ b) = b ⊗̂ a

One easily verifies that these maps have the indicated properties.

A.3. Proofs. The algebra structure on JRL and the counit ǫ were already intro-
duced in the main paper. See (5.6) and (6.1). We also introduced two commuting
left URL-module structures on JRL. Namely G∇ and 2∇ (see §5.4). For consistency
we will denote G∇ here by 1∇.

Lemma A.3. The two actions i∇ are compatible with the natural filtration on
JRL. On the associated graded algebra of JRL, which is equal to SRL

∗, the actions
for 1∇ and 2∇ are as follows

(1) For r ∈ R, 1∇r and 2∇r are multiplication by r.
(2) For l ∈ L, 2∇l is the contraction by l and 1∇l is the contraction by −l.

For r ∈ R ⊂ URL we define 11i(r) =
i∇r(1). Concretely 111(r)(D) = rD(1) and

112(r)(D) = D(r) and hence in particular

(A.1) 111(1) = 1 = 112(1).

Here the “1” in the middle is the algebra unit for JRL (see §5.3). Through the
identification JRL = HomR(URL,R) it corresponds to the counit on URL which
sends D to D(1). Equation (A.1) expresses the fact that 111 and 112 preserve algebra
units.

We must establish a number of trivial properties of i∇.

Lemma A.4. We have for α ∈ JRL, r, s ∈ R and i = 1, 2
i∇rα = 11i(r)α

11i(rs) = 11i(r)11i(s)

Thus the maps 11i are algebra morphisms R → JRL. Furthermore we have

ǫ ◦ 111 = idR = ǫ ◦ 112

Proof. Assuming the first claim the second claim follows:

11i(rs)α = i∇rsα = i∇r
i∇sα = 11i(r)11i(s)α

Taking α = 1 yields what we want.
Now we prove the first claim. We first consider the case i = 1. Let D ∈ URL.

Then we compute

(111(r)α)(D) =
∑

D

(111(r))(D(1))α(D(2)) = rǫ(D(1))α(D(2))

= rα(ǫ(D(1))D(2)) = rα(D) = (rα)(D) = (1∇rα)(D)
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Now we consider the case i = 2. We compute

(112(r)α)(D) =
∑

D

(112(r))(D(1))α(D(2)) =
∑

D

D(1)(r)α(D(2))

=
∑

D

α(D(1)(r)D(2)) = α(Dr) = (2∇rα)(D)

where in the fourth equality we have used the fact that URL is a so-called Hopf
algebroid with anchor [17]. The third claim is a trivial verification. �

Lemma A.5. We have
i∇D(1) = (11i ◦ ǫ)(D)

Proof. The right-hand side is equal to i∇D(1)(1). Hence replacing D by D −D(1)

we must prove that if D is such that D(1) = 0 then i∇D(1) = 0. Such a D is of the
form D′l, l ∈ L. Hence we reduce to the case D = l. We now conclude by using
the explicit formulæ for i∇. �

We define two pairings between URL and α ∈ JRL:

〈α,D〉i = ǫ(i∇Dα)

for i = 1, 2. We have 〈α,D〉2 = α(D). Hence 〈−,−〉2 is the pairing 〈−,−〉 in
the main paper (see §5.5). These pairings satisfy suitable linearity properties with
respect to the R-actions via 11i.

Lemma A.6. For r ∈ R, α ∈ JRL, D ∈ URL we have

(A.2) 〈α, rD〉i = r〈α,D〉i = 〈α11ı̄(r), D〉i

(A.3) 〈α,Dr〉i = 〈11i(r)α,D〉i

where ı̄ = 3− i and where in the second line we have used the right action of R on
URL obtained from the inclusion R ⊂ URL.

Proof. The identities in (A.2) are a direct consequence of Lemma A.4. For (A.3)
we compute

〈α,Dr〉i = ǫ(i∇Dr(α)) = ǫ(i∇D
i∇r(α)) = ǫ(i∇D(11i(r)α)) = 〈11i(r)α,D〉i �

Furthermore we have the following properties

Lemma A.7. We have for D ∈ URL, α ∈ JRL:

(A.4) 〈1, D〉1 = ǫ(D) = 〈1, D〉2

(A.5) 〈α, 1〉1 = ǫ(α) = 〈α, 1〉2

Proof. For (A.4) we need to prove (i∇D(1))(1) = D(1). For i = 2 this is immediate.
The case i = 1 follows by writing out D as a product of elements of L and working
out the expression 1∇D(1)(1). (A.5) is an immediate verification. �

Lemma A.8. The pairings 〈−,−〉i are non-degenerate R-linear pairings (in the
sense of Lemma 5.1) where R acts on JRL via 11ı̄.

Proof. The case i = 2 is Lemma 5.1. The case i = 1 is handled in a similar way by
passing to associated graded objects and applying Lemma A.3 to the definition of
〈−,−〉1. �
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Lemma A.9. We have for D ∈ URL

i∇D(αβ) =
∑

D

i∇D(1)(α)i∇D(2)(β)

Proof. The case i = 1 we have already encountered in the main paper. It expresses
the fact that JRL is an R-algebra (via 111) and that the multiplication on JRL is
compatible with the Grothendieck connection. See §5.3 and (5.11).

The case i = 2 is an easy verification

2∇D(αβ)(E) = (αβ)(ED) =
∑

E,D

α(E(1)D(1))β(E(2)D(2))

= 2∇D(1)
(α)(E(1))

2∇D(2)
(α)(E(2)) = (2∇D(1)

(α)2∇D(2)
(α))(E) �

We define the coproduct on JRL through the following formula

ǫ(1∇D
2∇E(α)) =

∑

α

〈α(1), D〉1〈α(2), E〉2

for all D,E ∈ URL, α ∈ JRL. The non-degeneracy of the pairings 〈−,−〉i, i = 1, 2
(see Lemma A.8), implies that this formula yields indeed a well-defined element∑

α α(1) ⊗̂ α(2) ∈ JRL ⊗̂R JRL.

Remark A.10. Keeping the previous notation, let us recall the simpler expression
of [12] for the coproduct:

(A.6) α(DE) =
∑

α

α(1)(Dα(2)(E)) .

Without going into the details (for which we refer to [12] an references therein),
let us also mention that in [12] the authors consider a so-called “translation map”
D 7→

∑
D D+ ⊗D− which simplifies considerably the formula for the Grothendieck

connection, i.e. 1∇D(α)(E) =
∑

D D+(α(D−E)). Using this, our definition for the
coproduct reads:

(A.7)
∑

D

D+(α(D−E)) =
∑

D

∑

α

D+(α(1)(D−))α(2)(E) .

We now prove that the two definitions actually coincide. Suppose that (A.6) is
satisfied, then
∑

D

D+(α(D−E)) =
∑

D

∑

α

D+(α(1)(D−α(2)(E))) =
∑

α

1∇D(α(1))(α(2)(E))

=
∑

α

α(2)(E)1∇D(α(1))(1) =
∑

D

∑

α

α(2)(E)D+(α(1)(D−)

Therefore (A.7) is also satisfied.

Lemma A.11. The coproduct is an algebra morphism and a morphism of R-R-
bimodules.

Proof. The fact that the coproduct is a morphism of R-R-bimodules is an easy
consequence of the linearity properties of 〈−,−〉1,2 (see Lemma A.6).

We check that ∆(1) = 1⊗ 1. This means

ǫ(1∇D
2∇E(1)) = 〈D, 1〉1〈E, 1〉2 = ǫ(D)ǫ(E)
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(for the last equality we use (A.5)). We compute

ǫ(1∇D
2∇E(1)) = ǫ(1∇D(112(ǫ(E)))) (Lemma A.5)

= 〈112(ǫ(E)), D〉1

= ǫ(E)〈1, D〉1 (A.2)

= ǫ(E)ǫ(D) (A.5)

We now prove that the coproduct is compatible with multiplication. We compute
∑

αβ

〈(αβ)(1), D〉1〈E, (αβ)(2)〉2 = ǫ(1∇D
2∇E(αβ))

=
∑

D,E

ǫ(1∇D(1)

2∇E(1)
(α))ǫ(1∇D(2)

2∇E(2)
(β))

=
∑

D,E,α,β

〈α(1), D(1)〉1〈α(2), E(1)〉2〈β(1), D(2)〉1〈β(2), E(2)〉2

=
∑

α,β

〈α(1)β(1), D〉1〈α(2)β(2), E〉2 �

Lemma A.12. One has the following formulæ

1∇Dα = 111(〈α(1), D〉1)α(2)

2∇Dα = α(1)112(〈α(2), D〉2)

Hence in particular for D = 1 we get the counit axioms.

α = (111 ◦ ǫ)(α(1))α(2)

α = α(1)(112 ◦ ǫ)(α(2))

Proof. To prove for example the first formula we show that both sides give the same
results when applying 〈−, E〉2. We compute

〈111(〈α(1), D〉1)α(2), E〉2 = 〈α(1), D〉1〈α(2), E〉2

= ǫ(1∇D
2∇Eα)

= ǫ(2∇E
1∇Dα)

= 〈1∇Dα,E〉2

The second formula is proved in the same way. �

Lemma A.13. The coproduct on JRL is coassociative.

Proof. We compute the two sides of

2∇E
1∇D(α) = 1∇D

2∇E(α)

using the formulæ from Lemma A.12. For the left hand side we find
∑

α

2∇E
1∇D(α) = 111(〈α(1), D〉1)

2∇E(α(2))

=
∑

α

111(〈α(1), D〉1)112(〈α(2)(2), E〉2)α(2)(1)
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For the right hand side we find
∑

α

1∇D
2∇E(α) = 112(〈α(2), E〉2)

1∇D(α(1))

=
∑

α

112(〈α(2), E〉2)111(〈α(1)(1), D〉1)α(1)(2)

so that we get
∑

α

111(〈D,α(1)〉1)α(2)(1)112(〈E,α(2)(2)〉2) =
∑

α

111(〈D,α(1)(1)〉1)α(1)(2)112(〈E,α(2)〉2)

Since this is true for any D,E we deduce by passing to associated graded objects
and invoking Lemma A.3

∑

α

α(1) ⊗ α(2)(1) ⊗ α(2)(2) =
∑

α

α(1)(1) ⊗ α(1)(2) ⊗ α(2)

which is precisely coassociativity. �

The antipode is defined using a similar formula as for the coproduct

〈Sα,D〉1 = 〈α,D〉2

Once again the non-degeneracy of the pairings 〈−,−〉1,2 implies that we obtain an
invertible map S : JRL → JRL.

Lemma A.14. S is an algebra morphism which furthermore exchanges the actions
of R on JRL through 111 and 112.

Proof. The fact that S exchanges the two R-actions follows from the linearity prop-
erty of the pairings 〈−,−〉1,2 (see Lemma A.6).

The fact that S in an algebra morphism follows in a similar way a for the co-
multiplication. �

To verify the properties of the antipode we need the following formula.

Lemma A.15. One has for D ∈ URL, α ∈ JRL

(A.8)
∑

D,α

〈α(1), D(1)〉1〈α(2), D(2)〉2 = D(ǫ(α))

Proof. We first observe that by definition

〈α(1), D(1)〉1〈α(2), D(2)〉2 = ǫ(1∇D(1)

2∇D(2)
(α))

We first claim that that (A.8) is multiplicative in in D. Assume that (A.8) is correct
for D,E ∈ URL. The we claim it is also correct for DE.

ǫ(1∇(DE)(1)
2∇(DE)(2)(α)) = ǫ(1∇(D(1)E(1)

2∇D(2)E(2)
(α))

= ǫ(1∇(D(1)

1∇E(1)

2∇D(2)

2∇E(2)
(α))

= ǫ(1∇(D(1)

2∇D(2)

1∇E(1)

2∇E(2)
(α))

= ǫ(D(ǫ(1∇E(1)

2∇E(2)
(α)))) (induction)

= D(ǫ(1∇E(1)

2∇E(2)
(α)))

= DE(ǫ(α)) (induction)

Hence it suffices to look at the cases D = r ∈ R and D = l ∈ L. These are easy
verifications. �
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Lemma A.16. We have ∑

α

α(1)S(α(2)) = (111 ◦ ǫ)(α)(A.9)

∑

α

S(α(1))α(2) = (112 ◦ ǫ)(α)(A.10)

Proof. For (A.9) we compute
∑

α

〈α(1)S(α(2)), D〉1 =
∑

α,D

〈α(1), D(1)〉1〈S(α(2)), D(2)〉1

=
∑

α,D

〈α(1), D(1)〉1〈α(2), D(2)〉2

= D(ǫ(α)) (Lemma A.15)

and

〈D, 111 ◦ ǫ(α)〉1 = 〈Dǫ(α), 1〉1 (Lemma A.6)

= ǫ(Dǫ(α)) (Lemma A.7)

= D(ǫ(α))

The proof for (A.10) is similar (one uses the cocommutativity of URL). �

Finally we verify:

Lemma A.17. One has S2 = idJRL.

Proof. The proof is based on the following computation. On the one hand
∑

α

S2(α(1))S(α(2))α(3) =
∑

α

S2(α(1))(112 ◦ ǫ)(α(2))

=
∑

α

S2(α(1)(112 ◦ ǫ)(α(2)))

= S2(α);

and on the other hand∑

α

S2(α(1))S(α(2))α(3) =
∑

α

S(S(α(1))α(2))α(3)

=
∑

α

S((112 ◦ ǫ)(α(1)))α(2)

=
∑

α

(111 ◦ ǫ)(α(1))α(2)

= α.

We have used the coassociativity, the counit axioms and the fact that S is an algebra
morphism which intertwines the actions 111 and 112 of R on JRL. �
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