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We study knotted polymers in equilibrium with an array of obstacles which models confinement in
a gel or immersion in a melt. We find a crossover in both the geometrical and the topological behavior
of the polymer. When the polymers’ radius of gyration, RG, and that of the region containing the
knot, RG,k, are small compared to the distance b between the obstacles, the knot is weakly localised
and RG scales as in a good solvent with an amplitude that depends on knot type. In an intermediate
regime where RG > b > RG,k, the geometry of the polymer becomes branched. When RG,k exceeds
b, the knot delocalises and becomes also branched. In this regime, RG is independent of knot type.
We discuss the implications of this behavior for gel electrophoresis experiments on knotted DNA in
weak fields.

PACS numbers: 36.20.Ey, 87.15.A-, 02.10.Kn

Circular DNA, as found in bacteria and phages, is of-
ten knotted [1]. Such knots are produced by the action
of enzymes known as topoisomerases or by random cy-
clization inside the head of a phage [2]. Investigation of
the types of knots produced can give important insights
in the working of these processes. The knot type of a
single DNA can be determined from electron or atomic
force microscopy. When large numbers of knotted rings
have to be analysed one uses gel electrophoresis [3]. One
expects that for a fixed number of basepairs (bp), a DNA
with larger minimal crossing number nc [4] will have a
smaller radius and hence a higher mobility under weak
electric field. This expectation is verified experimentally
[5] but despite extensive work [6] the precise relation be-
tween mobility and knot complexity is not fully under-
stood. For example, the dependence on the length of the
DNA, as measured by the number of basepairs, has not
been clarified yet.

The behavior of melts of polymers of various archi-
tecture (linear, branched, ring) is also of high interest
[7]. In [8], the geometrical and dynamical properties of
an unknotted ring polymer in an array of obstacles were
studied. The array was used as a model for a gel but
the results were also considered to be relevant for melts
of ring polymers. Indeed, in a recent experiment [9], the
relaxation spectrum predicted in [8] was observed in a
melt of ring polystyrenes. However, since these polymers
were synthesized near theta conditions, they can contain
knots [10]. This is thus another situation in which topo-
logical and geometrical constraints may simultaneously
affect the behavior of a polymer.

Finally, in the crowded environment of a cell, the av-
erage size of a macromolecule is often larger than the
average distance between macromolecules, leading, e.g.,
to important effects on kinetics and geometry of proteins
[11]. Since some proteins are also knotted [12] it is of
interest to understand how their topological properties

are modified in crowded in vivo situations.

Here we study the behavior of a single knotted and
self-avoiding ring polymer in a regular, cubic, array of
obstacles with lattice constant b. Besides being a model
of a gel or melt, such regular arrays can also be realised
experimentally using hydrogels [13] and in microfluidics
[14, 15], where they have been used to separate DNA.

In this Letter, we clarify how the excluded volume con-
straints exerted by the presence of an array of obstacles
affect the geometrical behaviors of knotted ring polymers
in equilibrium. The novel insight concerning knot local-
ization [16] and topology dependence of the size of the
rings will be valuable for the interpretation of gel elec-
trophoresis of knotted DNA in weak fields.

Knotted polymer rings are modelled as N edges self-
avoiding polygons [17] on the cubic lattice. Each edge
corresponds to one persistence length. In the case of
DNA this length equals approximately 50 nm or 150 bp.
For an agarose gel, in which most of the experiments with
(knotted) DNA are performed, the size of the holes is of
the order of 200 to 500 nm [3]. In our model, this corre-
sponds to a b-value from 4 to 10. In the microlitographic
arrays of ref. [14], the effective pore size of 1µm cor-
responds to b ≈ 20. Vertices occupied by obstacles, and
the edges connecting them, are not available for the poly-
gons. This constraint will decrease the overall entropy of
the polygons with respect to the free space case affecting
both their overall conformational equilibrium properties
and the typical size of the knotted portion.

The equilibrium properties of the polygons are studied
by Monte Carlo simulations based on BFACF, topology
preserving moves [18]. This algorithm works in a grand
canonical ensemble where configurations are weighted
with a step fugacity K [17]. The average number of
monomers N will diverge when the fugacity approaches
a critical value Kc, which is related to the entropy per
monomer s = −kB lnKc [17]. To increase the Monte
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Carlo efficiency we implement the BFACF algorithm on
to a multiple Markov chain sampling scheme [19] us-
ing several values of K < Kc. Kc depends strongly
on the confining geometry and, for each value of b an
exploratory simulation has to be done in order to esti-
mate Kc(b). In free space, Kc = 0.213538. We deter-
mined Kc(b = 10) = 0.2227,Kc(b = 7) = 0.2318 and
Kc(b = 5) = 0.2515. As expected Kc(b) increases as b
decreases since for smaller values of the lattice constant
b, obstacles are more dense in space, the confinement of
the polymers is stronger and hence the entropy s is lower.
We perform our simulations up toK-values slightly below
Kc(b), which allows us to study self-avoiding polygons of
several thousand steps, which in the DNA-context corre-
spond with molecules of a few hundred kbp, a regime in
which self-avoidance effects cannot be neglected.

We next determined the average mean squared radius
of gyration 〈R2〉 as a function of binned N -values inde-
pendently of the K-value at which polygons of a given
knot type were generated. We expect 〈R2〉 ∼ N2ν . In
three-dimensional free space, ν = νf = 0.589. The poly-
mer should begin to ’feel’ the presence of the obstacles
when its typical size RG = 〈R2〉1/2 becomes of the or-
der of b. When RG/b is small, we should recover the
behavior in absence of obstacles. If on the other hand
RG/b is sufficiently large, a new regime dominated by
the obstacles should appear. Fig. 1 shows our data for
〈R2〉/b2 as a function of x = N/g where g is the number
of monomers in one b-cell, R(N = g) ≡ b. For large b this
gives g ∼ b1/νf so that x = N/b1/νf follows. The results
refer to the trefoil knot (nc = 3). The data for various b-
values collapse on a single curve, which can be fitted as a
combination of two straight lines, the slopes of which are
respectively 2ν = 1.15± 0.02 and 2ν = 0.99± 0.02. The
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FIG. 1: (Color online) Log-log plot of 〈R2〉/b2 as a function

of x = N/b1/0.589 for three b-values (results for trefoil knot).
The dashed line has a slope 1.16, the dot-dashed one 1.00.

former value agrees with 2νf . The latter is well consis-
tent with that for self-avoiding branched polymer (BP)
in d = 3 for which νBP = 1/2 [20, 21] (Fig. 2). The
crossover that we find here was never observed before. It
occurs around x = xc ≈ 20. Fig. 1 clearly shows that at
the crossover, RG ≈ b.

FIG. 2: (Color online) Branched polygon with a composite
31♯ 31 knot in an array with b = 7.

Another important property of knotted polymers is the
size lk of the knotted region. Intuitively it corresponds
to the minimal number of monomers that still contain
the topological entanglement of the knot. Research in
the last decade has clearly shown that lk [16, 22] is a
fluctuating quantity whose statistical properties strongly
depends on the physical conditions of the polymer [23].
In good solvent, it was found that a knot is weakly local-
ized. This means that the average number of monomers
in the knot 〈lk〉 grows as a power of N, 〈lk〉 ∼ N t, with
an exponent t < 1 [16]. Numerically, one has t ≃ 0.75.
In contrast, in the collapsed globular phase, the knot de-
localizes (t = 1) [16, 24].
For the knotted polymer inside the array of obstacles

we determined lk using the ’cut and join’-algorithm pre-
sented in [16]. In Fig. 3, we report 〈lk〉/b

1/νf as a func-
tion of x for the trefoil and for different b-values. The
results collapse once more on one curve. Moreover, there
is again a crossover between two regimes. In the first
one, the knot is weakly localised with an exponent that
we estimate as t = 0.69 ± 0.04, consistent within error
bars, with the value in good solvent [16]. At higher x,
the exponent t = 1.05 ± 0.15 indicates delocalization of
the knot.
This delocalisation crossover occurs at a higher value

of x than that of the geometrical crossover, namely
x = xd ≈ 100 . This suggest that the delocalisation of
the knot only occurs when the average squared radius of
gyration of the knotted region, 〈R2

k〉 becomes of the order
of b2. In Fig. 4 we have therefore plotted 〈R2

k〉/b
2 versus

〈lk〉/b
1/νf . These results indeed show that the knotted
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FIG. 3: (Color online) Log-log plot of the mean length of the

trefoil knot, 〈l31〉, scaled by b1/νf as a function of x for three
b-values. The dashed line has a slope 0.69.

region behaves in a way completely similar to the whole
polymer: once RG,k = 〈R2

k〉
1/2 becomes equal to the dis-

tance between the obstacles, its geometry changes from
self-avoiding to branched. Comparing Fig. 3 and Fig.
4, we see that the knot indeed delocalises when RG,k is
close to b.
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FIG. 4: (Color online) Log-log plot of 〈R2

k〉/b
2 as a function of

〈lk〉/b
1/0.589 for three b-values (results for trefoil knot). The

dashed line has a slope 1.18, the dot-dashed one 0.98.

To summarize, there are three regimes for a knotted
ring polymer in an array of obstacles. In the first regime
the knot is weakly localised and geometrically both the
knot and the whole polymer behave as in good solvent
with ν = νf . The polymer is essentially confined in one
single cell of the array of obstacles. In a second regime,
for 20 < x < 100, the polymer spreads over several cells
but the knot is still confined to a single one. As a con-
sequence the geometry of the whole polymer becomes

branched, whereas the knotted part still behaves as in
good solvent. In these two regimes, the knot is localised.
Finally, for x > 100, the knot delocalises and assumes a
branched shape just as the whole polymer.
We next investigated the dependence of our results

on knot complexity by extending our calculations to the
prime knots 41 and 61 and to the composite knot 31♯ 31
and, for comparison, to the unknot. For this study we
fixed b = 7.
In Fig. 5 we present our results for 〈R2〉/N as a func-

tion of N for the various knot types. The curves should
reach a constant in the BP-regime. This figure shows
several interesting features. Firstly, one observes that
for small N , the 〈R2〉 depends on knot type. The higher
nc, the smaller is the polymer. This is a result similar
to that found for ideal knots [25]. Secondly, since more
complex knots are smaller they feel the presence of the
obstacles only for larger N . Hence, xc depends on nc.
Finally, one notices that in the BP-regime, polymer size
hardly depends on knot complexity. This result is rather
unexpected. Therefore in the BP-regime it is difficult
to determine the knot topology from geometry. This in
contrast to the good solvent regime where the part of
the polymer occupied by the knot, as measured by 〈lk〉,
increases with knot complexity. Evidence for this can be
seen in Fig. 6 where we plot 〈lk〉/lmin versus N . Here,
lmin is the minimal number of edges necessary to embed a
given knot type in the cubic lattice. For the trefoil, the
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FIG. 5: (Color online) 〈R2〉/N versus N for different knot
types in an array with b = 7.

41 and 61-knot, lmin equals respectively 24, 30 and 60 [26].
The data of Fig. 6 show that in the good solvent regime,
〈lk〉 = ClminN

0.69, where C is a knot-independent con-
stant. This implies that the fraction of monomers in the
knot, 〈lk〉/N , increases with knot complexity.
Our results can have implications for gel electrophore-

sis experiments. Assuming as a first approximation that
the knotted ring polymer is spherical with radius RG,
the mobility in a weak electric field µ ∼ R−1

G , should
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FIG. 6: (Color online) 〈lk〉/lmin as a function of N for different
knot types (b = 7). The dashed line has slope 0.69.

depend on knot type for small x-values. In this regime,
different knot types can be separated by electrophoresis.
However, our results predict that for x sufficiently large
this is no longer possible. The precise value of x where
this crossover occurs is model dependent and it is there-
fore not possible to predict at which N -values it should
occur in real DNA. As an example, the genome of the
P4-phage is an 11.6 kbp DNA which can contain differ-
ent types of knots [2]. Its size has been estimated from
atomic force microscopy to be about 300 nm [27]. This is
of the same order as that of the holes in an agarose gel,
so that x is of order one 1. Since these DNA’s have been
separated by electrophoresis, our results suggest that for
somewhat longer knotted DNA’s, the effects predicted
here could be measurable. Microlithographic arrays of
self-assembled magnetic beads [15] could also be used to
reveal the crossovers.
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