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Abstract

Statistical models often extend beyond the data available. First, in coarse data, what is
actually observed is less detailed than what might ideally be observed, owing to, for example,
incompleteness, censoring, grouping, or a combination thereof. Second, in augmented data set-
tings, the observed data are hypothetically but conveniently supplemented with such structures
as random effects, latent variables, latent classes, or component membership in mixture distri-
butions. The two settings together will be referred to as enriched data. Reasons for modeling
enriched data encompass mathematical and computational convenience, advantages in interpre-
tation, and substantive plausibility of such constructions. It is generally known that models for
enriched data combine evidence coming from empirical data with unverifiable model compo-
nents, resting entirely on assumptions. While a result that is fairly generally true, it has accute
consequences in the case of enriched data. This notwithstanding, knowledge about and insight
into this issue is somewhat scattered. We provide a unified framework for enriched data and
show, generally on the one hand and with focus on the cases of incomplete-data models and
random-effects models on the other hand, that to any given model an entire class of models can
be assigned, with all of its members producing the same fit to the observed data but arbitrary
regarding the unobservable parts of the enriched data. The concepts developed are illustrated
using a clinical trial in toenail dermatophyte onychomycosis and a developmental toxicity study
conducted in mice.

Some Keywords: Compound-symmetry; Empirical Bayes; Enriched data; Exponential ran-
dom effects; Gamma random effects; Linear mixed model; Missing at random; Missing completely
at random; Non-future dependence; Pattern-mixture model; Selection model; Shared-parameter
model.

1 Introduction

Augmented data, in the sense of supplementing the observed data with latent, unobserved structures,

is common throughout statistics. Examples include models for incompletely observed data, describing

observed and unobserved outcomes alike, random-effects models, latent class models, latent variable
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models, censored survival data, etc. Heitjan (Heitjan and Rubin, 1991; Zhang and Heitjan, 2007)

has unified some of these settings in a concept called coarsening , broadly referring to the fact that

the observed data are coarser than the hypothetically conceived data structures, while models target

the latter. It is obvious that models for such augmented structures are identifiable only by virtue

of making sometimes strong but always partially unverifiable modeling assumptions. These settings

taken together and from now on termed enriched data, will be treated in a unified way, such that

important, common features can be singled out and studied. Having said this, there is a subtle

distinction between both concepts. In the coarse-data setting, it is understood that a part of the

data would ideally be observed but are not in practice (e.g., actual survival time after censoring,

outcomes after dropout, etc.). Augmented data refers rather to the addition of useful but artificial

constructs to the data setting, such as random effects, latent classes, latent variables. These are

assumed to always be fully unobservable. Such augmentations then allow to drastically simplify

model development. A key example of coarsening is incomplete data, whereas a model with random

effects is a paradigm for augmented data.

Quite a bit of work to explore and address issues arising from enrichment has been done for the

context of incomplete data. In that setting, an often made assumption is that the missing data are

missing at random (MAR), meaning that the unobserved data provide no further information about

the mechanism governing missingness, given the observed outcomes (Rubin, 1976; Molenberghs and

Kenward, 2007). More general mechanisms are then termed missing not at random (MNAR). Apart

from classifying the missingness mechanisms, one often employs a taxonomy for joint models that

simultaneously describe the measurement and missingness mechanisms: (1) In a selection model

(SeM), the joint distribution of the ith subject’s outcomes, denoted Y i, and vector of missing-

ness indicators, written Ri, is factored as the marginal outcome distribution and the conditional

distribution of Ri given Y i; (2) A pattern-mixture model (PMM) approach starts from the reverse

factorization; (3) In a shared-parameter model (SPM), a set of latent variables, latent classes, and/or

random effects is posited, that are then assumed to drive both the Y i and Ri processes, in the sense

that conditional on the latent variables, Y i and Ri exhibit no further dependence.

Especially during the last decade, work has been done to increase understanding of the issues arising
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from coarsening with incomplete data. This has led to a vast body of so-called sensitivity analyses

(Molenberghs and Kenward, 2007). Moreover, Molenberghs et al (2008) and Creemers et al (2008)

have established that for any MNAR model, there exists a counterpart of MAR type, with exactly the

same fit to the observed data. Whereas the former authors presented the result in generic incomplete-

data terms and then focused on SeM and PMM, the latter paper is dedicated to the SPM setting.

Obviously, such work needs a characterization of MAR in each of the three frameworks. The original

definition of MAR (Rubin, 1976) had been given in SeM terms and Molenberghs et al (1998) had

provided a characterization for PMM. The SPM characterization of MAR can be found in Creemers

et al (2008).

In this paper, we focus on to the general enriched-data case and establish that always a part of

the model is fully unidentifiable from the observed data. The evident consequence is that the

identification of such a part can come from assumptions only and points at the same time to the

considerable risk for conclusions to be sensitive to such assumptions, and ultimately to the need for

conducting sensitivity analyses. It implies that such non-identified parts can be replaced arbitrarily,

without altering the fit to the observed data but with potentially grave consequences for inferences

and substantive conclusions. Put simply, one’s inferential conclusions may strongly depend on such

unverifiable portions of the model. The result is also presented in full generality. Two specific cases

are treated in more detail. First, we bring together and unify results from Beunckens et al (2007b)

and Creemers et al (2008), dealing with missing data and, in particular, shared-parameter models.

Second, we study in detail the linear mixed model as a key paradigm within the mixed-model family.

The remainder of the paper is organized as follows. Two sets of data, a clinical trial and a de-

velopmental toxicity study, are introduced in Section 2, and analyzed in Section 7. Notation and

basic concepts are introduced in Section 3. Our general result, regarding data-enriched structures

is given in Section 4. In Section 5, the focus is on incomplete data, with particular emphasis on

so-called shared-parameter results, bringing together and unifying earlier results (Beunckens et al,

2007b; Creemers et al, 2008). Section 6 focuses on the specific but insightful and ubiquitous linear

mixed-effects model (Verbeke and Molenberghs 2000), with particular attention to exchangeable,

compound-symmetric data.
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2 Motiving Data Sets

2.1 A Clinical Trial in Onychomycosis

The data introduced in this section were obtained from a randomized, double-blind, parallel group,

multicenter study for the comparison of two oral treatments (in the sequel coded as A and B) for

toenail dermatophyte onychomycosis (TDO), described in full detail by De Backer et al (1996). TDO

is a common toenail infection, difficult to treat, affecting more than 2 out of 100 persons (Roberts,

1992). Anti-fungal compounds, classically used for treatment of TDO, need to be taken until the

whole nail has grown out healthy. The development of new such compounds, however, has reduced

the treatment duration to 3 months. The aim of the present study was to compare the efficacy and

safety of 12 weeks of continuous therapy with treatment A or with treatment B.

In total, 2 × 189 patients, distributed over 36 centers, were randomized. Subjects were followed

during 12 weeks (3 months) of treatment and followed further, up to a total of 48 weeks (12

months). Measurements were taken at baseline, every month during treatment, and every 3 months

afterwards, resulting in a maximum of 7 measurements per subject. At the first occasion, the treating

physician indicates one of the affected toenails as the target nail, the nail which will be followed over

time. We will restrict our analyses to only those patients for which the target nail was one of the

two big toenails. This reduces our sample under consideration to 146 and 148 subjects, in group A

and group B, respectively. One of the responses of interest was the unaffected nail length, measured

from the nail bed to the infected part of the nail, which is always at the free end of the nail, expressed

in mm. This outcome has been studied extensively in Verbeke and Molenberghs (2000). Figure 1

shows the observed profiles of 30 randomly selected subjects from treatment group A and treatment

group B, respectively. In Table 1, the amount of missingness is brought to the forefront, by listing the

number of repeated measures available per subject, for each of the two treatment arms separately.

A linear mixed model will be considered, in which enrichment arises through the inclusion of random

effects.
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2.2 A Developmental Toxicity Study

This developmental toxicity study investigates the dose-response relationship in mice of the potentially

hazardous chemical compound di(2-ethylhexyl)phthalate (DEHP), used in vacuum pumps (Windholz,

1983) and as plasticizers for numerous plastic devices made of polyvinyl chloride. DEHP provides the

finished plastic products with desirable flexibility and clarity (Shiota, Chou, and Nishimura, 1980).

It has been well documented that small quantities of phthalic acid esters, of which DEHP is an

instance, may leak out of polyvinyl chloride plastic containers in the presence of food, milk, blood,

or various solvents. Due to their ubiquitous distribution and presence in human and animal tissues,

considerable concern has developed as to the possible toxic effects of the phthalic acid esters (Autian,

1973). The developmental toxicity study, conducted in timed-pregnant mice during the period of

major organogenesis and described by Tyl et al (1988), has attracted much interest in the toxicity

of DEHP. The doses selected for the study were 0, 0.025, 0.05, 0.1, and 0.15%, corresponding to a

DEHP consumption of 0, 44, 91, 191, and 292 mg/kg/day, respectively. The dams were sacrificed,

slightly prior to normal delivery, and the status of uterine implantation sites recorded. A total of

1082 live fetuses were dissected from the uterus, anesthetized, and examined for external, visceral,

and skeletal malformations, as well as for body weight. Our focus will be on the continuous weight

outcome. Evidently, fetuses are clustered within mothers; hence the implied association needs to

be accommodated in the analysis. When done through random effects, data enrichment arises.

Summary data are presented in Table 2. Table 2 makes clear, when the number of viable fetuses

(litter size) is compared to the number of implants, that there is a substantial amount of depletion

and that it, not surprisingly, increases with dose.

3 Concepts and Notation

Let the random variable Yij denote the response of interest, for the ith study subject, designed to

be measured at occasions tij , i = 1, . . . , N , j = 1, . . . , ni. Independence across subjects is assumed.

The outcomes can conveniently be grouped into a vector Y i = (Yi1, . . . , Yini
)′. In addition, define

a vector of missingness indicators Ri = (Ri1, . . . , Rini
)′ with Rij = 1 if Yij is observed and 0

otherwise.
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In principle, one would like to consider the density of the full data f(yi, ri|θ,ψ), where the parameter

vectors θ and ψ describe the measurement and missingness processes, respectively. Covariates are

assumed to be measured and grouped in a vector xi but, throughout, are suppressed from notation.

We will now sketch the modeling frameworks (Section 3), present the definition of MAR in each one

of them (Section 5.1), and then establish that every MNAR model can be doubled up with a MAR

counterpart that preserves the fit to the observed data (Section 5.2).

The full density function can be factored in different ways, each leading to a different framework,

already briefly mentioned in the introduction.

The selection model (SeM) framework is based on the following factorization (Rubin, 1976; Little

and Rubin, 2002):

f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (1)

The first factor is the marginal density of the measurement process and the second one is the density

of the missingness process, conditional on the outcomes. As an alternative, one can consider so-called

pattern-mixture models (PMM) (Little, 1993, 1994) using the reversed factorization

f(yi, ri|θ,ψ) = f(yi|ri, θ)f(ri|ψ). (2)

The shared-parameter model (Wu, and Carroll, 1988; Wu, and Bailey, 1988, 1989; TenHave et al,

1998; Follmann, and Wu, 1995; Little, 1995) assumes a vector of random effects bi, shared between

both processes, conditional upon which the measurement and missingness processes are independent,

and often taking the form of random effects with a specific parametric distribution. This shared-

parameter model (SPM) is formulated by way of the following factorization

f(yi, ri|bi, θ,ψ) = f(yi|bi, θ)f(ri|bi,ψ), (3)

and hence

f(yi, ri|θ,ψ) =

∫
f(yi|bi, θ)f(ri|bi,ψ)f(bi) dbi. (4)

For our purposes, we will need a slightly more general SPM formulation, as presented by Creemers

et al (2008). Indeed, while most formulations assume that a single, common set bi drives the entire

process, one can expand bi to a set of latent structures.
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4 General Result About Counterparts in Enriched-data Structures

Let us state our general result. We need slightly more general notation. Assume data Zi for an

independent unit i = 1, . . . , N are augmented with ci. The ci can take any conventional enriched-

data form. For example, the vector can refer to missing measurements, random effects, or perhaps

a combination of both. An example of a setting where the latter situation arises naturally is the

shared-parameter framework, that will be considered in the next section.

Assume a joint model of the generic form f(zi, ci|θ,ψ), where covariates have been suppressed for

notational simplicity. Consider the factorizations:

f(zi, ci|θ,ψ) = f(zi|ci, θ)f(ci|ψ), (5)

= f(zi|θ,ψ)f(ci|zi, θ,ψ). (6)

Borrowing terminology from the hierarchical-models context, such as mixed models, which are further

given specific consideration in Section 6, every factor in both (5) and (6) can usefully be given a

name. The left hand side is the joint model. Let us turn to the right hand sides. The first factor in

(5) is the hierarchical model and the second one is the prior density for the enriched data. The first

factor in (6) may be termed the marginal model , whereas the second one is the posterior density of

the enriched data.

The above terminology makes clear the obvious link between (5)–(6) and the mixed-model setting.

The link with incomplete data follows by setting ci ≡ ym
i and zi = (yo

i , ri). Hence, again, we

are naturally led to the PMM framework. In PMM factorization (16) the marginal model is further

factored, but this is immaterial. The key is the third factor on the right hand side of (16), i.e., the

second factor in (6).

These considerations immediately establish the following theorem.

Theorem 1 (A Family of Counterparts to a Given Model for Enriched Data.) Let us assume

that data zi are enriched with ci. Then, any model (5) formulated for and fitted to such data, can

be replaced by an infinite family of models, all retaining the fit to the observed data as achieved

by the original model. This is done by preserving the marginal model f(zi|θ̂, ψ̂) and replacing the
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posterior density f(ci|zi, θ̂, ψ̂) by an arbitrary conditional density

f(di|zi, γ). (7)

Here, di rather than ci is used to indicate that there need not be any connection between the original

and substituted enriched data. Also, the new density (7) can be parameterized by a completely new

parameter γ.

5 Incomplete Data

In Section 3, we introduced standard concepts regarding incomplete data. We will now move beyond

this by enlarging the family of shared-parameter models, then zoom in on missingness at random

and study the impact of our general result for this particular case.

Definition 1 (A General Shared-parameter Model Family.) A general shared-parameter model

is defined as one of the form

f(yo
i |gi,hi, ji, `i)f(ym

i |yo
i , gi,hi, ki,mi)f(ri|gi, ji, ki ni), (8)

where gi, hi, ji, ki, `i, mi, and ni are independent random-effects vectors, vectors of latent

variables, etc.

Here, yo
i (ym

i ) refers to the observed (missing) components for subject i. While fixed effects are

allowed to accompany each of the random effects, they are suppressed from notation.

Several remarks are in place. First, this is the most general random-effects model that can be

considered in the sense that gi is common to all three factors in (8), hi, ji, and ki are shared

between pairs of factors, and `i, mi, and ni are restricted to a single factor. Depending on the

application, one may choose to either retain all random effects or to omit some. For example, ji is

present in the first factor but not in the second, with the reverse holding for ki. Retaining these is

useful when it is deemed plausible that, at the time of dropout, the process governing the outcome

is sufficiently altered so as to modulate the effects of gi and hi, which are common to both. Note

also that mi is never identifiable from data but is introduced as the basis for sensitivity analysis. It
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will then be useful to have a perspective on the implications of such simplifications, preferably also

in terms of the missing-data mechanism operating. This is why it is useful to establish conditions

under which MAR operates on the one hand, and missingness does not depend on future, unobserved

measurements in a longitudinal context on the other hand. Second, in full generality, model (8) may

come across as somewhat contrived. The objective of formulating Definition 1 is not to postulate (8)

as a model for use in every possible application of SPM, but rather as the most general SPM from

which substantively appropriate models follow as sub-classes. Related to this, it may seem that (8)

assumes two completely different distributions for the outcome vector, i.e., divorcing the observed

from the missing components. This is not entirely the case because gi and hi still tie both factors

together. The impact of ji, ki, `i, and mi is to modify one’s latent process in terms of missingness.

In other words, the most general model assumes that observed and missing components are governed

in part by common processes and partly by separate processes. Third, in principle, we could expand

(8) with the densities of the random effects. This is generally not necessary for our purposes, though.

Fourth, the assumption of independent random-effects vectors is not restrictive, because association

is captured through the sets common to at least two factors. Fifth, a conventional SPM formulation

follows by removing all random effects but gi. For convenience, write

bi = (gi,hi, ji, ki, `i,mi,ni). (9)

5.1 Defining Missing at Random

The taxonomy of missing-data mechanisms, introduced by Rubin (1976) and informally described in

the introduction, is customarily formalized using the second factor on the right hand side of (1): A

mechanism is MAR if

f(ri|yi,ψ) = f(ri|y
o
i ,ψ), (10)

i.e., the missing-data mechanism depends on the observed outcomes but, given these, not further

on the unobserved ones. In the MNAR case, missingness depends on the unobserved outcomes ym
i ,

regardless of the observed outcomes and the covariates.

Molenberghs et al (1998, 2008), among others, formulated MAR in the PMM setting:
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Theorem 2 (Missingness at Random in the Pattern-mixture Framework.) In the PMM frame-

work, the missing-data mechanism is MAR if and only if

f(ym
i |yo

i , ri, θ) = f(ym
i |yo

i , θ). (11)

This means that, in a given pattern, the conditional distribution of the unobserved components

given the observed ones equals the corresponding distribution marginalized over the patterns. Put

differently, prediction of the unobserved outcomes can be done merely using the observed ones with

no further information coming from the missing-data mechanism. Note that, owing to this result,

MAR can be formulated in terms of R given Y , but also in terms of Y given R.

Creemers et al (2008) characterized MAR in the SPM framework:

Theorem 3 (Characterization of MAR in the General Shared-parameter Family.) A member

of the general SPM family (8) is MAR if and only if

∫
f(yo

i |gi,hi, ji)f(ym
i |yo

i , gi,hi, ki)f(ri|gi, ji, ki)f(bi) dbi∫
f(yo

i |gi, ji)f(ri|gi, ji)f(bi) dbi

=

∫
f(yo

i |gi,hi)f(ym
i |yo

i , gi,hi)f(bi) dbi

f(yo
i )

. (12)

Note that the random effects `i, mi, and ni, pertaining to a single factor only, are suppressed

from notation but are allowed to be present. Clearly, this result is not as intuitive as the SeM and

PMM versions and, as such, the above result has little immediate data-analytic value. Therefore,

fortunately, these authors also showed that the following family satisfies the MAR property:

Definition 2 (A Sub-class of SPM Models.) Define a sub-class of shared-parameter model (8):

f(yo
i |ji, `i)f(ym

i |yo
i ,mi)f(ri|ji,ni), (13)

where ji, `i, mi, and ni are independent random-effects vectors.

At the same time, they established that there are members of the SPM family satisfying Theorem 3

but that are not of the (13) type.
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5.2 Every MNAR Model Has Got an MAR Counterpart

In this section, based on the argument of Molenberghs et al (2008), we restate that for every MNAR

model fitted to a set of data, there is a unique MAR counterpart providing exactly the same fit to

the data. Whereas these authors confined attention to the missing-data setting, in the next section

we will provide a much more general result, pertaining to all data-enriched structures.

The concept of model fit should be understood as being measured using such conventional methods

as deviance measures and, of course, in as far as the observed data are concerned. The following

steps are involved: (1) fitting an MNAR model to the data; (2) reformulating the fitted model

in PMM form; (3) replacing the density or distribution of the unobserved measurements given the

observed ones and given a particular response pattern by its MAR counterpart; (4) establishing that

such an MAR counterpart uniquely exists.

In the first step, we fit an MNAR model to the observed set of data. The observed data likelihood

equals

L =
∏

i

∫
f(yi

o, yi
m, ri|θ,ψ)dyi

m. (14)

Upon denoting the obtained parameter estimates by θ̂ and ψ̂ respectively, the fit to the hypothetical

full data is

f(yi
o, yi

m, ri|θ̂, ψ̂) = f(yi
o, yi

m|θ̂)f(ri|yi
o, yi

m, ψ̂). (15)

To undertake the second step, full density (15) can be re-expressed in PMM form as:

f(yi
o, yi

m|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂) = f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi

m|yi
o, ri, θ̂, ψ̂). (16)

Note that the final term on the right hand side of (16), f(yi
m|yi

o, ri, θ̂, ψ̂), is not identified from

the observed data. In this case, it is determined solely from modeling assumptions. Within the PMM

framework, identifying restrictions have to be considered (Little, 1994; Molenberghs et al , 1998;

Kenward, Molenberghs, and Thijs, 2003).

The third step requires replacing this factor by the appropriate MAR counterpart. Now, using

Theorem 2, it is clear that f(yi
m|yi

o, ri, θ̂, ψ̂) needs to be replaced with

f∗(yi
m|yi

o, ri) = f∗(yi
m|yi

o) = f(yi
m|yi

o, θ̂, ψ̂), (17)
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where the f∗(·) notation is used for shorthand purposes. Note that the density in (17) follows from

the SeM-type marginal density of the complete data vector. Sometimes, therefore, it may be more

convenient to replace the notation yi
o and yi

m by one that explicitly indicates which components

are observed and missing in pattern ri under consideration:

f∗(yi
m|yi

o, ri) = f∗(yi
m|yi

o) = f [(yij)rj=0|(yij)rj=1, θ̂, ψ̂]. (18)

Thus, (18) provides a unique way of extending the model fit to the observed data, belonging to the

MAR family. As stated before, the above construction does not lead to a member of a conventional

parametric family. While this obviously implies limitations on its use, such is not dissimilar to the

construction of some semi- and non-parametric estimators. Also, it helps to understand that an

overall, definitive conclusion about the nature of the missing-data mechanism, solely based on the

observed outcomes, is not possible, even though one can make progress if attention is confined to a

given parametric family, in which one puts sufficiently strong prior belief (Jansen et al , 2006). To

show formally that the fit remains the same, Molenberghs et al (2008) considered the observed-data

likelihood based on (14) and (16):

L̂ =
∏

i

∫
f(yi

o, yi
m|θ̂)f(ri|yi

o, yi
m, ψ̂)dyi

m (19)

=
∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi
m|yi

o, ri, θ̂, ψ̂)dyi
m

=
∏

i

f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)

=
∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f∗(yi
m|yi

o)dyi
m. (20)

The above results show the following theorem:

Theorem 4 (MAR Counterpart to MNAR Models.) Every fit to the observed data, obtained

from fitting an MNAR model to a set of incomplete data, is exactly reproducible from an MAR

decomposition.

The key computational consequence is the need to determine f∗(yi
m|yi

o) in (17) or (18). This

means that, for each pattern, the conditional density of the unobserved measurements given the

observed ones needs to be extracted from the marginal distribution of the complete set of measure-

ments. Molenberghs et al (1998) have shown that, for the special case of dropout (i.e., monotone

12



Arbitrariness in Enriched Data

missingness), the so-called available case missing value restrictions (ACMV) provide a practical com-

putational scheme.

The characterization of Theorem 3 allows us to construct an MAR counterpart to an arbitrary SPM of

the form (8). It is necessary to (a) retain the fit of the model to the observed data, while (b) ensuring

that (12) holds. This is easily done by a-posteriori integrating over the shared random effects in the

densities describing the unobserved measurements, given the observed ones. Practically, integration

takes place over the densities of gi, hi, and ki, where fitted parameters are plugged into the densities.

Theorem 5 (An MAR Counterpart to a General SPM.) The MAR counterpart, to an arbitrary

general SPM of the type (8) is found by replacing f(ym
i |yo

i , gi,hi, ki,mi) with

f∗(ym
i |yo

i ,mi) =

∫

gi

∫

hi

∫

ki

f(ym
i |yo

i , gi,hi, ki,mi)f(gi,hi, ki)dgidhidki. (21)

First, it is clear that this marginalization is merely describing the model-based prediction of the

unobserved outcomes, given the observed ones. Hence, the choice for f∗(·) does not alter the fit.

Second, observe that using f∗(·) in (12), instead of f(ym
i |yo

i , gi,hi, ki,mi), of Theorem 3, reduces

the equation to a trivial identity, and hence the MAR condition is also satisfied. The importance of

this result is that (21) provides an MAR scenario for the missing-data mechanism, consistent with

the previously achieved model fit.

Some comments are in place. Note that our general result follows quite easily in this case by observing

that any missing-data model can be recast as a full PMM, as in (16). This framework readily allows

the construction of an MAR substitute (17), which renders Theorem 4 almost trivial, as verified

in (19)–(20). Indeed, the key feature of PMM, distinguishing it from SeM, is that it happens to

factor the joint distribution of observed measurements and missing-data indicators on the one hand

and unobserved measurements on the other hand, in such a way that the conditional distribution of

what is unobserved, given what is observed, is an explicit factor in the model. It is this particular

conditional distribution that can be changed arbitrarily.

Note that the same feature is employed in Theorem 5, relative to the SPM. Indeed, also here the

distribution of what is unobserved, given what is observed, is used. Three remarks are worth making.

13
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First, the right hand side of (21) does not condition on ri, in spite of it being observed. Now, this

absence is a key characteristic of SPM and therefore entirely logical.

Second, f∗(·) contains conditioning on random effects mi, in spite of them being unobserved.

It is important to understand that the set of distributions that can be changed have to be of

unobserved outcomes or structures, given other structures that can be an amalgamation of observed

and unobserved structures. The only requirement is that such a factor needs to be placed into a

chain of factors that properly factors the entire joint distribution.

Third, uniqueness results in the missing-data case come from the requirement that the counterpart

is of MAR type. This can be relaxed by observing that, in (16), the factor f(yi
m|yi

o, ri, θ̂, ψ̂) may

be replaced by any valid density. This well-known result is: (1) placed in the broader context of

enriched data; (2) also phrased in a shared-parameter context; (3) is illustrated in an insightful way.

6 Linear Mixed-effects Models

In Section 6.1, the linear mixed model will be considered for illustration. In Section 6.2, the special

but important case of clustered data will be considered, with constant mean within clusters and

compound-symmetry variance-covariance structure.

6.1 The Standard Linear Mixed-effects Model

Let us consider the linear mixed-effects model, in all components featuring in (5)–(6), and then apply

Theorem 1 to replace the posterior density of the random effects, ordinarily normal, by two versions

of the exponential density.

6.1.1 Standard Formulation of the Linear Mixed Model

Using notation as in Section 3, the fully hierarchically specified linear mixed-effects model takes the

form (Verbeke and Molenberghs, 2000):

Y i|bi ∼ N (Xiβ + Zibi, Σi), (22)

bi ∼ N (0, D), (23)

14
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where β is a vector of fixed effects, and Xi and Zi are design matrices.

Based on (22) and (23), the marginal model and posterior distribution of the random effects can be

derived (Searle, Casella, and McCulloch, 1996):

Y i ∼ N (Xiβ, Vi = ZiDZ ′
i + Σi), (24)

bi|Y i ∼ N [DZ ′
iV

−1
i (Y i − Xiβ), (Z ′

iΣ
−1
i Zi + D−1)−1]. (25)

It is useful to also present the empirical Bayes predictions (Carlin and Louis, 1996; Verbeke and

Molenberghs, 2000). For the random effects, these follow in a straightforward fashion as the mean

of (25), i.e.,

b̂i = E(bi|Y i) = DZ ′
iV

−1
i (Y i − Xiβ). (26)

For the prediction of outcome Y i, the value in (26) is plugged into the mean of the hierarchical

model (22):

Ŷ i = (ZiDZ ′
i) · V

−1
i yi + (Σi) · V

−1
i Xiβ, (27)

the familiar “weighted average” of the observed outcomes yi and the marginal mean Xiβ.

6.1.2 A First Normal-exponential Version of the Linear Mixed Model

To illustrate the arbitrariness of the posterior density, brought forward by Theorem 1 and in this case

referring to the posterior density of the random effects, let us replace the normally distributed random

effects by a vector of ni independent gamma random effects, where each outcome component Yij is

paired with a gamma random effect gij. The conventional density for a gamma variable φ is

f(φ) = [βα∗

∗ Γ(α∗)]
−1 φα∗−1e−φ/β∗ , (28)

with α∗, β∗ ≥ 0 parameters. For convenience, let us set α∗ = 1 and δ = 1/β∗ in (28), producing

f(φ) = δe−φδ , (29)

which is the exponential density special case of the gamma family. Clearly, the mean of φ then is

E(φ) = δ−1. Note that the choice for an exponential distribution here is not aimed at proposing

a viable model for data analysis. The choice is made to conveniently illustrate Theorem 1, in such
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a way that reasonably tractable closed-form solutions can be obtained, at the same time allowing

for choice within the exponential framework. Indeed, the choice to be made next can be juxtaposed

with the one of Section 6.1.3.

Our first choice is completed by choosing a conditional density of the form (29) for φ = gij, with

δ = γjyij, where γj is an unspecified parameter. The marginal model (24) is retained and coupled

with the posterior:

f(gi|yi) =
ni∏

j=1

γjyije
−gijγjyij . (30)

The joint density of yi and gi obviously follows as the product of the density corresponding to (24)

and density (30), and hence, after some algebra, the hierarchical model and prior can be seen to take

the forms:

f(gi) =




ni∏

j=1

γj



 eµ
′

iθi+
1
2
θ

′

iViθiMni
(µi + Viθi, Vi), (31)

f(yi|gi) =

(∏ni

j=1 yij

)
eθ

′

i(yi−µi)e−
1
2

[
(yi−µi)

′V −1
i

(yi−µi)+θ
′

iViθi

]

(2π)ni/2|Vi|1/2Mni
(µi + Viθi, Vi)

, (32)

where µi = Xiβ, θi has components θij = −gijγj, and Mn(k, V ) = E(Y1 . . . Yn; k, V ), i.e., the

sole nth order moment, relative to a normal distribution with mean k and variance V , where each

component occurs exactly once. From Willink (2005) it follows that a simple recursive relationship

can be used, based on the concept of Hermite polynomials, to calculate such moments:

Mn(k, V ) = knMn−1(k, V ) +
n−1∑

j=1

vjnM1...j−1,j+1...n−1(k, V ),

where the last term is an (n − 2)th order moment, with both the jth and nth components left out;

kj is the jth element of the vector k and vjn is the (j, n)th entry of the matrix V .

The empirical Bayes predictions take the form:

ĝij = 1/(γjyij), (33)

ŷi =
P ni

(µi − Vizi, Vi)

Mni
(µi − Vizi, Vi)

, (34)

where P ni
(µi − Vizi, Vi) is an ni-dimensional vector with components defined by:

Pnj(k, Vi) = E(Y1 . . .Yi,j−1Y
2
ijYi,j+1 . . .Yn; k, V ). (35)
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Also here, the following recursive relationship is useful to calculate the components of (35) (Willink,

2005):

Pnj(k, V ) = kjMn(k, V ) +
∑

k 6=j

vjkE(Y1 . . . Yi,j−1Y
2
ijYi,j+1 . . . Yi,k−1Yi,k+1 . . .Yn)

+vjjE(Y1 . . .Yi,j−1Yi,j+1 . . . Yn).

Finally, zi is a vector with components zij = 1/yij.

There is an obvious consequence resulting from these developments regarding the meaning of model

parameters. In specifying the original hierarchical model (22)–(23), the parameters β, Σi, and D in

general, but D in particular, are part of a hierarchical specification. Since (24)–(25) taken together

are equivalent to the original pair of equations, one might argue that there still is the hierarchical

interpretation. The difference now is that all three sets of parameters occur in each of the two

models, whereas in the original specification (22)–(23) there is a separation between β and Σi on

the one hand and D on the other hand. However, it has been argued (Verbeke and Molenberghs,

2000, 2003; Molenberghs and Verbeke, 2007) that there is a fundamental difference in parameter

interpretation, even to the point of bearing on the inferences made, when one solely considers the

marginal model (24). This is clear when considering the model composed of (24) and, for example,

either (30) or (36). Indeed, now all three parameters β, Σi, and D feature in the marginal model

only. The hierarchical parameters, γj in our particular instance, are completely separated from

the marginal ones. This further implies that the so-called hierarchical parameter is estimable only

because it also occurs in marginal model (24) for which, by definition, there is information in the

data. Put differently, in the conventional hierarchical marginal model, all parameters are identifiable

from marginal model (24), which is the only channel by which the data convey information. The

model merely appears interpretable at a hierarchical, or enriched, level since (25) contains these, and

only these parameters.

Note that the choice δ = γjyij is pragmatic, in the sense that δ should be non-negative. This is fine

for a data set where the outcomes are sufficiently bounded away from zero, such as body length.

However, it may be deemed less elegant, in which case it may make sense to square or exponentiate

yij , motivating the following, alternative formulation.
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Should one adhere to a Bayesian interpretation of the original model then bi ∼ N (0, D) is a conven-

tional prior distribution, and arbitrariness pertains to the posterior distribution. While conventionally

uncommon to specify the posterior first and then work back to the prior, it does help to understand

that there is an observable and an unobservable part of the joint distribution. Also, it opens avenues

for sensitivity analysis, as we will discuss further in Section 8.

6.1.3 A Second Normal-exponential Version of the Linear Mixed Model

Let us consider an alternative choice for (29): δ = eγjyij . Straightforward algebra, thereby making

use of the identity:

ni∏

j=1

e−qijeγj yj
=

∞∑

m1=0

· · ·
∞∑

mni
=0

(−qi1)
m1 · · · (−qini

)mni

m1! · · ·mni
!

em1γ1yi1+···+mni
γni

yini ,

leads to the following model equations, that are in the same order and with the same notation as in

the first normal-exponential case:

f(qi|yi) =
ni∏

j=1

eγjyij e−qije
γj yij

, (36)

f(qi) =
∑

m




ni∏

j=1

(−qij)
mj

mj !



 eµ
′

i
λm+ 1

2
λ

′

mViλm, (37)

f(yi|qi) =

∏ni

j=1 eγjyij e−qije
γj yij

e−µ
′

iλm− 1
2

[
(yi−µi)

′V −1
i (yi−µi)+λ

′

mViλm)
]

(2π)ni/2|Vi|1/2
∑
m

(∏ni

j=1
(−qij)

mj

mj !

) , (38)

q̂ij = e−γjyij , (39)

ŷi =

∑
m

[∏ni

j=1
(−e

−γj yij )
mj

mj !

]
eµ

′

iλm+ 1
2
λ

′

mViλm(µi + Viλm)

∑
m

[∏ni

j=1
(−e−γj yij )mj

mj !

]
eµ

′

i
λm+ 1

2
λ

′

mViλm

, (40)

where m ranges over all non-negative integer vectors m = (m1, . . . , mni
), and λm has components

λmj = (mj + 1)γj.

6.2 Exchangeable Data With Compound-symmetry Covariance

Let us now consider the special but enlightening case of exchangeable, compound-symmetry data, in

the sense that all members of a cluster have the same mean µi and the variance-covariance matrix
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is of a compound symmetry structure Vi = σ2Ini
+ dJni

, where Ini
is an ni-dimensional identity

matrix and Jni
is an ni × ni matrix consisting of ones. We will simply refer to this setting as the

“exchangeable” one.

Let us, for each of the three model formulations in Section 6, present the six model equations

considered there, for the special case of interest here.

6.2.1 The Standard Linear Mixed-effects Model

Let 1ni
be a length ni vector of ones and denote by yi the average of the components of the outcome

vector yi. Further, the following expressions are useful:

V −1
i =

1

σ2

(
Ini

−
d

dni + σ2
Jni

)
, |Vi| = σ2ni + niσ

2(ni−1)d.

The exchangeable versions of (23)–(27) are:

Y i|bi ∼ N (1ni
µi + 1ni

bi, σ
2Ini

), (41)

bi ∼ N (0, d), (42)

Y i ∼ N (1ni
µi, Vi = σ2Ini

+ dJni
), (43)

bi|Y i ∼ N

[
nid

σ2 + nid
(yi − µi),

σ2

σ2 + nid
d

]
, (44)

b̂i =
nid

σ2 + nid
(yi − µi), (45)

Ŷ i =
nidyi + σ2µi

σ2 + nid
· 1ni

. (46)

6.2.2 A First Normal-exponential Version of the Linear Mixed Model

It now makes sense to assume, like in Section 6.1.2, that there is a single, exponentially distributed,

random effect. This alters the model from Section 6.2.1 a bit, in addition to obvious simplification.

This means that (43) will be coupled with

f(gi|yi) = γyie
−giγyi . (47)
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We obtain the following sequence of model equations:

f(gi) = γe
−giµiγ+ 1

2

g2
i

γ2

ni
(σ2+nid)

[
niµi − giγ(σ2 + nid)

ni

]
, (48)

f(yi|gi) =
niyie

− 1
2

[
1

σ2 (yi−1ni
yi)

′(yi−1ni
yi)+

ni
σ2+nid

(yi−µi)
2

]
−giγ(yi−µi)

(2π)ni/2|Vi|1/2e
1
2

g2
i

γ2

ni
(σ2+nid)

[niµi − giγ(σ2 + nid)]

(49)

ĝi = 1/(γyi), (50)

ŷi =

{[
niµi −

1
yi

(σ2 + nid)
]2

+ ni(σ
2 + nid)

}
1ni

ni

[
niµi −

1
yi

(σ2 + nid)
] . (51)

6.2.3 A Second Normal-exponential Version of the Linear Mixed Model

Now, (42) will be coupled with

f(qi|yi) = eγyie−qie
γyi

. (52)

This then produces the following sequence of model equations:

f(qi) =
∞∑

m=0

(−qi)
m

m!
e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

, (53)

f(yi|qi) =
e
− 1

2

[
1

σ2 (yi−1ni
yi)

′(yi−1ni
yi)+

ni
σ2+nid

(yi−µi)
2

]
+γyi−qie

γyi

(2π)ni/2|Vi|1/2
∑∞

m=0
(−qi)m

m! e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

, (54)

q̂i = e−γyi , (55)

ŷi =

∑∞
m=0

(e−γyi)m

m! e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

[
µi + γ(m+1)

ni
(σ2 + nid)

]
1ni

∑∞
m=0

(e−γyi)m

m! e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

. (56)

7 Data Analysis

7.1 Analysis of the Toenail Data

7.1.1 Focus on Random Effects

For the unaffected nail length, let us specify a linear mixed-effects model (22)–(23):

Yij|(bi0, bi1) ∼ N (β0 + bi0 + (β1 + bi1)tj + β2Ti + β3Titj , σ
2), (57)
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 , (58)

where Ti = 0 if patient i received standard treatment and 1 for experimental therapy (i = 1, . . . , 298).

Further, tj is the time at which the jth measurement is taken (j = 1, . . . , 7). Parameter estimates

and standard errors, obtained through maximum likelihood (Verbeke and Molenberghs, 2000), are

presented in Table 3.

We are now able to partially replace the model specified by (57)–(58) with the exponential-defined

models. Let us choose, for illustration, the second exponential model of Section 6.1.3. This implies

that the marginal model resulting from (57)–(58) is retained:

Y i ∼ N [Xi(β0, β1, β2, β3)
′, σ2Ini

+ Z ′
iDZi], (59)

and coupled with (36). Here, Xi and Zi are the obvious ni×4 and ni×2 design matrices, respectively.

Then, we can calculate empirical Bayes predictions under both the normal and the second exponential

model. These produce two different subject-specific profiles, in addition to the observed-data and

marginal mean profiles. Note that, for the posterior density (36), we have the freedom of specifying

the parameters γj, because there is no information contained in the data. Indeed, they can be

identified by additional assumptions only; they play the role of sensitivity parameters. We set them

equal to γj = 0.05. Figure 2 presents these four profiles for four selected subjects, two from each

treatment arm, respectively. It is clear that the exponential choice produces predictions that lie much

closer to the marginal mean profile and further away from the observed profile, than is the case with

the normal random effects.

Of course, in theory, one could estimate the parameters γj, but the whole point here is that one

can freely vary the parameters specific to the posterior distribution of the random effects, without

affecting the marginal fit, i.e., without affecting what is verifiable directly from the data.

7.1.2 Focus on Missingness

Consider a general model of the form (8), with random effects confined to gi, i.e., common to

all three components. For the measurement model, assume a linear mixed model (Verbeke and
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Molenberghs, 2000), with general form:

Y i|gi ∼ N (Xiβ + Zigi, Σi), (60)

gi ∼ N (0, D). (61)

Based on (60) and (61), the so-called marginal model can be derived

Y i ∼ N (Xiβ, ZiDZ ′
i + Σi). (62)

To compute the model’s prediction for the unobserved data, given the observed measurements, the

corresponding density needs to be derived. To this end, first decompose the mean and variance in

(60) as 


Y o
i

Y m
i




∣∣∣∣∣∣∣∣∣

gi ∼ N







Xo
i

Xm
i


β +




Zo
i

Zm
i


 gi,




Σoo
i Σom

i

Σmo
i Σmm

i





 .

This expression can easily be used to construct the conditional density:

Y m
i |yo

i , gi ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i + (Zm

i − Σmo
i {Σoo

i }−1 Zo
i )gi,

Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (63)

Now, (63) corresponds to the model as formulated, and will typically be of the MNAR type. To

derive the MAR counterpart, we need to integrate over the random effect. With similar logic that

leads to (62), now applied to (63), we obtain:

Y m
i |yo

i ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i ,

(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )D(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )′

+Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (64)

Hence, (64) is the MAR counterpart to (63). For the unaffected nail length, we choose for (60)–(61):

E(Yij|gi, Ti, tj,β) = β0 + gi + β1Ti + β2tj + β3Titj , (65)

gi ∼ N (0, d), and Σi = σ2I7, where I7 is a 7×7 identity matrix. Further, Ti = 0 if patient i received

standard treatment and 1 for experimental therapy (i = 1, . . . , 298). Finally, tj is the time at which

the jth measurement is taken (j = 1, . . . , 7).
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Given these choices, (63) and (64) simplify to

Y m
i |yo

i , gi ∼ N (Xiβ + Zm
i gi, σ

2Ii), (66)

Y m
i |yo

i ∼ N (Xiβ, dJi + σ2Ii), (67)

with Ii an identity matrix and Ji a matrix of ones, with dimensions equal to the number of missing

measurements for subject i. Especially owing to the conditional independence assumption, the

simplification is dramatic.

Next, let us formulate a model for the missingness mechanism in (8). The sequence ri can take one

of two forms in our case. Either, it is a length-7 vector of ones, for a completely observed subject,

or it is a sequence of k ones followed by a sole zero 1 ≤ k ≤ 6, for someone dropping out. Note

that k is 1 at least, since for everyone the initial measurement has been observed. It is convenient

to assume a logistic regression of the form:

logit [P (Rij = 1|Ri,j−1 = 0, gi, Ti, tj, γ)] = γ0 + γ01gi + γ1Ti + γ2tj + γ3Titj, (68)

(j > 1), where γ01 is a scale factor for the shared random effect in the missingness model; forcing

the variance in the measurement and dropout indicator sequences to be equal would make no sense.

As a result, γ01gi ∼ N (0, γ2
01d).

The model specified by (65) and (68) can easily be fitted using, for example, the SAS procedure

NLMIXED.

Parameter estimates and standard errors are displayed in Table 4. It is noteworthy that the scale

factor γ01 is estimated to be negative, even though it is not significant. While we should not overly

stress its importance, there is some indication that a higher subject-specific profile of unaffected nail

length corresponds with a lower dropout probability, which is not surprising. The magnitude of the

scale factor allows us to ‘translate’ the subject-specific effect from the continuous outcome scale,

expressed in mm, to the unitless logit scale on which the probability of missingness is described. Note

that the random-intercept variance is highly significant among unaffected nail length outcomes; the

same is not true for the dropout model, with p = 0.2487, using a 50 : 50 mixture of a χ2
0 and χ2

1

distribution (Verbeke and Molenberghs, 2000).
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Figure 3 displays the incomplete profiles, extended beyond the time of dropout, using prediction

based on: (1) the original model (dashed lines); (2) the MAR counterpart (solid lines). Within each

of the treatment arms, three profiles are highlighted. The MAR counterpart reduces all predictions

to the same profile, whereas the MNAR model predicts different evolutions for different subjects,

implied by the presence of the random effect. The simple MAR-based prediction structure follows

directly from the conditional independence assumption, present in (66). When deemed less plausible,

the fully general structure (63) can be implemented.

7.2 Analysis of the Developmental Toxicity Study

Let us consider the following hierarchically specified, exchangeable model for the DEHP data, intro-

duced in Section 2.2:

Yij|bi ∼ N (β0 + bi + β1xi, σ
2), (69)

coupled with (42). Here xi is rescaled dose, in the sense that the DEHP consumption doses of 0,

44, 91, 191, and 292 mg/kg/day are replaced by unit-interval standardized values 0.0000, 0.1507,

0.3116, 0.6541, and 1.0000, respectively. Parameter estimates and standard errors are presented in

Table 5.

Following the developments in Section 6.2, Model (69)–(42), can be replaced by, for example, the

models with exponential posterior distributions, described in Sections 6.1.2 and 6.1.3, respectively.

This implies that the marginal model is retained, with

Yij ∼ N (β0 + β1xi, σ
2 + d), (70)

but with alternative posterior distributions, and hence EB estimates for the random effects and

predictions, as presented by (55) and (56), respectively. The results are graphically depicted in

Figure 4. For 11 selected clusters, spread over the various dose groups, the figure shows (1):

observed average weight per cluster (2): the estimated marginal mean as given by (70); (3), (4),

and (5): predictions following the normal, first, and second exponential models, respectively. We

observe that, in line with the analysis of the toenail data, the exponential predictions lie closer to

the marginal averages than is the case with the normal model.
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8 Concluding Remarks

In this paper, we have unified the frameworks of coarse and augmented data. This brings together

settings where the observed data are a less refined version of what might ideally be observed (incom-

plete, censored, and grouped data among others) and situations where the modeler posits fictitious

structures (random effects, latent variables, latent classes, mixture components, etc.), for conve-

nience and simplicity, for interpretation, because it is plausible from a substantive point of view, or a

combination of these and other reasons. We have referred to this broad family of settings as enriched

data.

The use of bringing out the commonality of otherwise quite dispersed models, designs, and data

structures is that it allows to study, in a unified fashion, the impact of such structures, which extend

beyond the available data. As we made clear, depending on the particular situation, there has been

knowledge about such impacts, in particular also on ensuing inferences. For example, work has been

done for decades in the incomplete data field to assess the sensitivity of, for example, deviations

from the MAR assumption. Here, we reviewed and brought together results for the incomplete-data

field. Precisely, we first defined MAR in all three commonly used modeling frameworks: selection

models, pattern-mixture models, and shared-parameter models. We then showed that every posited

MNAR model, regardless of the framework, can be paired with an MAR model that exhibits exactly

the same fit to the observed data as the original, making them indistinguishable in terms of observed

data alone. This work is based on results by Molenberghs et al (1998), Beunckens et al (2007b),

and Creemers et al (2008).

Beyond the mere incomplete data setting, we have shown that every model for enriched-data settings

can be factored as a product of two components: the first one, termed the marginal model, fully

identifiable from the observed data; the second one, the conditional distribution of the enriched given

the observed data, entirely arbitrary. In the missing data case, one could identify the second factor

by requiring, for example, that it is of the MAR type. In the context of a conventional linear mixed

model, we have illustrated the implications of the result by replacing the conditional distribution of

the random effects given the data, i.e., the random effects’ posterior, by two families of exponential

distributions, special cases of the gamma family. The choice for exponential random effects was
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made only for computational and illustrative convenience, rather than as a viable model for practice.

Rather to the contrary, the developments underscore arbitrariness of part of the model’s specification.

For the specific case of exchangeable, compound-symmetric data, specific, useful expressions were

derived.

While our results are predominantly of a conceptual nature, they have been illustrated, for enhanced

insight, using longitudinal data from both a two-armed clinical trial in toenail dermatophyte ony-

chomycosis and clustered data from a developmental toxicity study in mice. In the first case, a

conventional linear mixed model was used as the basic model, whereas in the second case the spe-

cific clustered compound-symmetry version was considered. In both situations, the standard models

were supplemented with the normal-exponential model. Evidently, similar illustrations could be given

for all enriched-data settings. The specific case of incomplete data illustrated in Molenberghs et al

(2008) and Creemers et al (2008).

The results of this paper open avenues for (1) better understanding of the dependence of one’s

inferences on non-verifiable model components and (2) developing sensitivity analysis tools regarding

substantive conclusions with respect to data enrichment (Molenberghs and Kenward, 2007). Gen-

erally speaking, inferences relative to observed data only, such as fixed-effects parameter estimates

(e.g., those in Tables 3–5, are unaffected by the choice of enrichment model. However, such aspects

as empirical Bayes predictions in linear mixed models, or predictive distributions of unobserved mea-

surements given observed ones, strongly rest on unverifiable modeling assumptions. This points to

the need for sensitivity analysis. Rather than fitting a single model and putting blind belief in it, it

is more reasonable to consider a discrete or continuous set of alternative model formulations, and

assess how key inferences are vulnerable to choices made.

Without being exhaustive, we can point out several avenues for sensitivity analysis, some of which

come from the incomplete-data literature (Molenberghs and Kenward, 2007). First, because it is

clear in general for which component of the enriched-data model there is no information in the

data, one could apply a number of operations to the posterior distribution, i.e., the model for the

enriched data given the observed data. For example, one could let the posterior vary over a finite

or infinite number of reasonable choices for the posterior, similar to the interval of ignorance ideas
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of Molenberghs, Kenward, and Goetghebeur (2001) and Vansteelandt et al (2006). Second, one

could identify the posterior using unverifiable, i.e., not driven by the data, but nevertheless explicit

assumptions. One such route is in choosing the posterior of the MAR type in the incomplete-data

setting. For different enriched-data settings, it has to be judged what is a reasonable identification.

The advantage of making explicit such assumptions is that they then can be critiqued on substantive

and/or mathematical grounds. For example, with random effects or other latent structures, one could

express a preference for conjugate priors (Lee and Nelder, 1996, 2001, 2003) since, in the absence of

identification, the convenience and appeal of conjugacy may be invoked. Third, one could focus on

the impact of one or a few influential subjects on model-based conclusions, especially these pertaining

to (almost) unidentified parameters.

Data sets and programs are available from the authors and through the journal’s web pages.
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Table 1: Toenail Data. Number of available repeated measurements per subject, for each treatment

arm separately.

Group A Group B

# Obs. N % N %

1 4 2.74% 1 0.68%

2 2 1.37% 1 0.68%

3 4 2.74% 3 2.03%

4 2 1.37% 4 2.70%

5 2 1.37% 8 5.41%

6 25 17.12% 14 9.46%

7 107 73.29% 117 79.05%

Total: 146 100% 148 100%

Table 2: Developmental Toxicity Study (DEHP). Summary data by dose group.

# dams with # live average

dose implants viable implants fetuses litter size weight

0 mg/kg/day 30 30 330 13.2 0.9483

44 mg/kg/day 26 26 288 11.1 0.9592

91 mg/kg/day 26 26 277 10.7 0.8977

191 mg/kg/day 24 17 137 8.1 0.8509

292 mg/kg/day 25 9 50 5.6 0.6906
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Table 3: Toenail Data. (Unaffected nail length outcome). Parameter estimates (standard errors)

for the model specified by (57) and (58).

Effect Parameter Estimate (Standard error)

Fixed effects:

Intercept β0 2.46 (0.24)

Dose effect β1 0.59 (0.05)

Time effect β2 0.28 (0.34)

Dose by time interaction β3 0.04 (0.06)

Variance components:

Random intercept variance d00 7.32 (0.70)

Random slope variance d11 0.22 (0.02)

Random effects covariance d01 -0.50 (0.10)

Residual variance σ2 3.15 (0.13)

Table 4: Toenail Data. Continuous, longitudinal unaffected-nail-length outcome. Parameter esti-

mates (standard errors) for the model specified by (65) and (68).

Unaffected nail length Dropout

Effect Parameter Estimate (s.e.) Parameter Estimate (s.e.)

Mean structure parameters

Intercept β0 2.510 (0.247) γ0 -3.127 (0.282)

Treatment β1 0.255 (0.347) γ1 -0.538 (0.436)

Time β2 0.558 (0.023) γ2 0.035 (0.041)

Treatment-by-time β3 0.048 (0.031) γ3 0.040 (0.061)

Variance-covariance structure parameters

Residual variance σ2 6.937(0.248)

Scale factor γ01 -0.076 (0.057)

Rand. int. variance τ2 6.507 (0.630) γ2
01τ

2 0.038 (0.056)
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Table 5: Developmental Toxicity Study (DEHP). Parameter estimates (standard errors) for the

model specified by (69) and (42).

Effect Parameter Estimate (Standard error)

Fixed effects:

Intercept β0 0.9733 (0.0138)

Dose effect β1 -0.2563 (0.0327)

Variance components:

Random intercept variance d 0.0086 (0.0015)

Residual variance σ2 0.0195 (0.0009)
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Figure 1: Toenail Data. Individual profiles of 30 randomly selected subjects in each of the treatment

groups in the toenail experiment.

Figure 2: Toenail data. For 4 selected subjects, two per treatment arm: (1): observed profile; (2)

marginal mean profile (which solely depends on treatment); (3) prediction from the normal model

(27); (4) prediction from the second exponential model (40).
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Figure 3: Toenail Data. Individual profiles of subjects with incomplete data, for each treatment

arm, extended using MNAR Model (65) (dashed line) and using the model’s MAR counterpart (solid

line). In each group, three subjects are highlighted.

Figure 4: Developmental Toxicity Study (DEHP). For 12 selected clusters from the control group

(for which the size is shown in the x-axis): (1): observed average weight per cluster (2): the estimated

marginal mean as given by (70); (3) prediction from the normal model (46); (4) prediction from the

first exponential model (51); and (5): prediction from the second exponential model (56).
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