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ABSTRACT 
 

We study the dependence of the shape of the rank-frequency distribution g  on the shape 

of the size-frequency distribution f  and vice versa. We show mathematically that g  is 

convexly decreasing if and only if f  is monotonically decreasing and that g  has an S-

shape (i.e., g  is first convexly decreasing and then concavely decreasing) if and only if 

f  is first increasing and then decreasing. 

 

To illustrate our mathematical results, we empirically analyze size- and rank-frequency 

distributions of the number of articles and of the impact factor of journals in various 

scientific fields. We find that most of the size-frequency distributions that we examine 

are first increasing and then decreasing. Most of the rank-frequency distributions that we 

examine have an S-shape. However, the concave part of the S-shape is sometimes very 

small. 

 

 

I. INTRODUCTION 
 

An important topic in informetric research is the study of informetric distributions, such 

as distributions of authors, citations, or publications. In empirical work, there are two 

ways in which informetric distributions are commonly presented, namely as size-

frequency distributions and as rank-frequency distributions. Both approaches to 

presenting informetric distributions convey the same information. As is well known, 

many informetric distributions approximately follow Lotka’s law. For these distributions, 

the size- and rank-frequency presentations look similar, that is, they both show a 

decreasing power law. However, there are also informetric distributions that do not 

follow Lotka’s law, and for these distributions the size- and rank-frequency presentations 

may look quite different. In this paper, we study this phenomenon. More specifically, we 

study, both mathematically and empirically, how size- and rank-frequency distributions 
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are related to each other. We also briefly touch upon the modeling of non-Lotkaian 

informetric distributions. We do so by presenting a mathematical analysis of a 

generalization of Zipf’s law recently proposed by Mansilla et al. (2007). 

 

The definitions of size- and rank-frequency distributions can be given in the context of 

information production processes (IPPs) (e.g., Egghe (2005a)). IPPs are systems 

consisting of sources that have, or produce, items. An example is given by journals that 

have (publish) articles. Another example is given by journals that have (receive) citations. 

Many more examples can be found in Chapter 1 in Egghe (2005a). 

 

The size-frequency distribution f  is defined as  f n  being the number ( 0 ) of sources 

with n  items ( 1,2,...n  ). If we rank the sources in decreasing order of their number of 

items and if we denote by r  their ranks ( 1,2,...r  ), then the rank-frequency distribution 

g  is defined as  g r  being the number of items in the source on rank r . So in the first 

example  f n  is the number of journals with n  articles. If we rank the journals in 

decreasing order r  of their number of articles, then  g r  is the number of articles in the 

journal on rank r . Replacing “articles” by “citations” yields the definitions of  f n  and 

 g r  in the second example. 

 

It is clear that there is a general relation between the size-frequency distribution f  and 

the rank-frequency distribution g . Denoting by 1g   the inverse function of g , we have 

by definition of f  and g  

 

    1

'

'
n n

r f n g n






   (1) 

 

where  n g r . Note that (1) defines a strictly decreasing function in n , which means 

that g , the inverse function of 1g  , indeed exists. 

 

In the above examples (and in the examples in Chapter 1 in Egghe (2005a)), n  is a 

positive whole number (a so-called natural number, i.e., n N ). However, we can 

generalize the IPP framework to cases where n  need not be a whole number. This is 

needed for the following case, which we study in this paper. If we take the two examples 

of IPPs given above (i.e., journals and their number of articles and journals and their 

number of citations) and we divide the number of citations of a journal by the number of 

articles of a journal, then we obtain the impact factor (IF) of a journal. (Hence, journals 

and their IFs can be seen as an IPP derived from two other IPPs.) 

 

In general IFs are not whole numbers. Hence, in the case of IFs, the definitions of the 

size-frequency distribution f  and the rank-frequency distribution g  cannot be given as 

above and (1) also cannot be used. Indeed, it does not make much sense to define f  as 
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the number of journals with a certain IF. This is because IFs range in Q , the set of 

positive rational numbers. The solution to this problem is well known. We have to adopt 

the framework of continuous variables and treat f  and g  as density functions (in the 

same way as density functions of continuous variables are used in probability theory). 

 

We now define f  to be the size-frequency distribution where for every n R ,  f n  is 

the density ( 0 ) of sources with n  items, that is, for every ,m n R , m n , 

 

  ' '

n

m

f n dn  (2) 

 

denotes the number of sources with between m  and n  items (e.g., the number of journals 

with an IF between m  and n ). 

 

The corresponding rank-frequency distribution g  is defined as 

 

    1' '
n

r f n dn g n



   (3) 

 

where  n g r . Equation (3) is a continuous version of (1). If n  is a whole number, 

then the use of (3) rather than (1) can be convenient for calculatory reasons. In the case of 

“derived item values”, such as IFs, we have to use (3). Note that (3) implies that 1g   is 

strictly decreasing and hence that g , the inverse function of 1g  , indeed exists. Equation 

(3) defines g  given f , but it also determines f  given g , since (3) is equivalent with 

 

  
  1

1

'
f n

g g n
   (4) 

 

given that  0g   . 

 

In earlier work by the first author (Egghe (2005a)), Lotkaian models for size-frequency 

distributions were studied as the basic functions in informetric research. In a Lotkaian 

framework, size- and rank-frequency distributions are both decreasing power laws. 

Although a Lotkaian framework is highly useful in many areas of informetric research, 

empirical data sometimes shows significant deviations from Lotkaian models. The 

empirical data studied in this paper illustrates this phenomenon. The data yields size-

frequency distributions that in many cases do not approximate decreasing power laws. 

Instead, the distributions tend to be first increasing and then decreasing.
1
 For such data, 

the use of Lotkaian models is not appropriate and a more general approach is needed. In 

                                                 
1
 Other examples of this phenomenon are books and their number of circulations and articles and their 

number of authors (oral communication by R. Rousseau). 



4 

 

this paper, we explore such an approach by studying the relation between size- and rank-

frequency distributions without assuming a Lotkaian framework. 

 

The paper is organized as follows. In the next section, we present a mathematical analysis 

of the relation between the shape of the size-frequency distribution f  and the shape of 

the rank-frequency distribution g . We show that g  is convexly decreasing if and only if 

f  is monotonically decreasing and that g  has an S-shape (i.e., g  is first convexly 

decreasing and then concavely decreasing) if and only if f  is first increasing and then 

decreasing. In the third section, we empirically analyze size- and rank-frequency 

distributions of the number of articles and of the IF of journals in various scientific fields. 

We show examples of size-frequency distributions that are monotonically decreasing as 

well as of size-frequency distributions that are first increasing and then decreasing. We 

also show the corresponding rank-frequency distributions. Some rank-frequency 

distributions are convexly decreasing, while others have an S-shape. In the fourth section, 

we briefly consider the modeling of non-Lotkaian informetric distributions. We 

mathematically study a generalization of Zipf’s law recently proposed by Mansilla et al. 

(2007), and we show how, depending on a parameter, this generalized Zipf’s law yields 

either a convexly decreasing rank-frequency distribution or an S-shaped rank-frequency 

distribution. 

 

 

II. MATHEMATICAL ANALYSIS 
 

We first need some lemmas on general injective functions g  (i.e., for which 1g   exists). 

 

Lemma II.1 

 

g  is strictly decreasing if and only if 1g   is strictly decreasing. 

 

Proof : 

 

g  is strictly decreasing if and only if, for all values 1 2,r r :    1 2 1 2r r g r g r   . 

Denoting  1 1g r n  and  2 2g r n , this is equivalent with    1 1

1 2 1 2g n g n n n    . 

Hence, 1g   is strictly decreasing. ⁬ 

 

A similar proof can be given for strictly increasing functions g  and with the word 

“strictly” omitted. 

 

Lemma II.2 
 

Let g  be decreasing. Then g  is convex if and only if 1g   is convex. Also, g  is concave 

if and only if 1g   is concave. 
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Proof : 

 

g  is convex if and only if, for all values 1 2,r r  and all values  0,1 : 

        1 2 1 21 1g r r g r g r        . Since g  is decreasing, we have by Lemma 

II.1 that 1g   is decreasing. Hence, the above inequality is equivalent with 

          1 1

1 2 1 21 1g g r r g g r g r         . Denoting  1 1g r n  and 

 2 2g r n , we obtain         1 1 1

1 2 1 21 1g n g n g n n          , which proves 

that 1g   is convex. The proof of the second assertion is similar. ⁬ 

 

The above lemma is not true if g  is not decreasing. Indeed, a similar proof as the one 

above shows that if g  is increasing and convex, then 1g   is concave and, similarly, that 

if g  is increasing and concave, then 1g   is convex. 

 

Lemma II.3 

 

Let g  be decreasing. Then g  has an S-shape, first convex and then concave, if and only 

if 1g   has an S-shape, first concave and then convex. 

 

Proof : 

 

Let g  be defined on the interval  0,T  (we can even take  0,  if T  ). Suppose that 

g  has an S-shape, first convex and then concave. Then there exists a number  1 0,r T  

such that the restriction of g  to the interval  10, r , denoted  10,r
g , is convex and such 

that the restriction of g  to the interval  1,r T , denoted  1 ,r T
g , is concave. Since  10,r

g  is 

decreasing and convex, we have by Lemma II.2 that   
1

1

0,r
g



 is convex on the interval 

   1 , 0g r g   . Since  1 ,r T
g  is decreasing and concave, we have by Lemma II.2 that 

  
1

1

,r T
g



 is concave on the interval    1,g T g r   . Hence we have that 1g   has an S-

shape, first concave and then convex. The proof of the reverse assertion is similar. ⁬ 

 

We now prove two theorems on shape relations between the size-frequency distribution 

f  and the rank-frequency distribution g . 

 

Theorem II.4 

 

f  is decreasing if and only if g  is convex. 

 

Proof : 
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From (3) we have 

 

      1 'g n f n    (5) 

 

and hence 

 

      1 " 'g n f n    (6) 

 

From (6) it follows that f  is decreasing if and only if 1g   is convex. Since 1g   is 

decreasing (by (3)), we have by Lemma II.1 that g  is decreasing. By Lemma II.2, 1g   is 

convex if and only if g  is convex. ⁬ 

 

Theorem II.5 

 

f  is first increasing and then decreasing if and only if g  has an S-shape, first convex 

and then concave. 

 

Proof : 

 

By (6), f  is first increasing and then decreasing if and only if 1g   has an S-shape, first 

concave and then convex. Since g  is decreasing, we have by Lemma II.3 that 1g   has an 

S-shape, first concave and then convex, if and only if g  has an S-shape, first convex and 

then concave. ⁬ 

 

Without making additional assumptions, we cannot say more about the dependence of the 

shape of the rank-frequency distribution g  on the shape of the size-frequency 

distribution f  and vice versa (e.g., if g  has an S-shape, then what is the location of the 

inflection point of g ?). We also cannot say more about the shape of ln g  based on the 

shape of g  (e.g., a convex function g  can lead to a convex function ln g  or to a function 

ln g  that has an S-shape). 

 

 

III. EMPIRICAL ILLUSTRATION 
 

In this section, we provide an empirical illustration of our mathematical results on shape 

relations between size- and rank-frequency distributions. We use data from Thomson 

Reuters’ Journal Citation Reports (JCR) for 2008. We focus on the number of articles 

that a journal has published and on the IF of a journal. This data allows us to examine 

different types of distributions. We also looked at the number of citations that a journal 

has received. However, the resulting size-frequency distributions all turned out to be 
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monotonically decreasing, which is not very interesting for the purpose of illustrating our 

mathematical results. 

 

We analyze data for nine scientific fields. A field is defined by a JCR subject category or, 

in the case of chemistry, computer science, physics, and psychology, by a number of JCR 

subject categories taken together. Some summary statistics for the nine fields that we 

consider are reported in Table 1. As can be seen in the table, both the distribution of the 

number of articles that a journal has published and the distribution of the IF vary widely 

among fields. Of course, it is well known that on average IFs are much higher in, for 

example, biochemistry & molecular biology than in mathematics. However, even if we 

correct for such scale differences, different fields are still characterized by quite different 

distributions. This is indicated by the coefficient of variation and the skewness in Table 1. 

(The coefficient of variation, defined as the standard deviation divided by the mean, is a 

scale-invariant measure of the dispersion of a distribution. The coefficient of variation 

can also be interpreted as a measure of concentration (e.g., Chapter 4 in Egghe (2005a)). 

The skewness is a measure of the asymmetry of a distribution and is scale-invariant as 

well.) 

 

 

Table 1. Summary statistics for nine scientific fields. N denotes the number of journals, 

CV denotes the coefficient of variation, and Skew. denotes the skewness. 

 
Field N Number of articles Impact factor 

  Mean Median CV Skew. Mean Median CV Skew. 

Biochemistry 

& molec. biol. 

266 180.6 108 1.7 7.4 3.7 2.6 1.1 3.9 

Chemistry 441 283.0 153 1.4 3.5 2.2 1.4 1.2 4.2 

Computer 

science 

391 75.8 48 1.1 2.9 1.4 1.1 0.8 2.5 

Economics 207 51.8 36 1.0 3.4 1.0 0.8 0.8 2.2 

Mathematics 206 83.4 53 1.5 5.7 0.7 0.6 0.7 3.1 

Neurosciences 213 138.1 80 1.3 3.9 3.4 2.7 1.3 3.9 

Pharmacology 

& pharmacy 

213 137.5 94 0.9 2.3 2.9 2.3 1.1 4.9 

Physics 311 356.7 144 1.9 4.8 2.2 1.3 1.5 5.4 

Psychology 453 52.0 36 0.9 2.4 1.7 1.2 1.0 4.0 

 

 

In the rest of this section, we focus on three fields in particular, namely chemistry, 

economics, and mathematics. The distributions characterizing these three fields are quite 

different. Together, the three fields can be regarded as representative for the nine fields 

listed in Table 1. 

 

We first look at the way in which the number of articles that a journal has published is 

distributed in each of the three fields. The size-frequency distributions and the 

corresponding rank-frequency distributions are shown in Figure 1. As can be seen in the 

figure, the size-frequency distribution is monotonically decreasing in the case of 

chemistry, while it is first increasing and then decreasing in the case of economics and 

mathematics. Hence, based on Theorems II.4 and II.5, the rank-frequency distribution 
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should be convex in the case of chemistry and first convex and then concave in the case 

of economics and mathematics. The rank-frequency distributions shown in Figure 1 

indeed have these shapes. However, in the case of mathematics, the concave part of the 

rank-frequency distribution is rather difficult to see. This is an example of a more general 

observation that we made by examining the distributions obtained for all nine fields listed 

in Table 1. It turns out that the concave part of a rank-frequency distribution is sometimes 

very small. Because of this, it can be difficult to distinguish between rank-frequency 

distributions that have an S-shape and rank-frequency distributions that do not have an S-

shape. 

 

 

 
 

Figure 1. Size- and rank-frequency distributions of the number of articles that a journal 

has published. 

 

 

We now turn to the distribution of the IF (see also Mansilla et al. (2007); Waltman and 

van Eck (2009)). The size-frequency distributions and the corresponding rank-frequency 

distributions for chemistry, economics, and mathematics are shown in Figure 2. IF size-

frequency distributions generally seem to be first increasing and then decreasing. For 

some fields, however, the increasing part of the size-frequency distribution is almost 

negligible. This is for example the case for chemistry. (If we had used somewhat wider 

histogram bins, the increasing part of the size-frequency distribution for chemistry would 
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not even have been visible in Figure 2.) It follows from Theorem II.5 that the rank-

frequency distributions for chemistry, economics, and mathematics should all have an S-

shape. The rank-frequency distributions for economics and mathematics shown in Figure 

2 clearly have an S-shape. In the case of chemistry, the S-shape of the rank-frequency 

distribution is much more difficult to see. However, this makes perfect sense. Since the 

increasing part of the size-frequency distribution for chemistry is very small, one would 

expect (based on Theorem II.4) that the rank-frequency distribution for chemistry is 

almost completely convex. This is indeed what we see in Figure 2. 

 

 

 
 

Figure 2. Size- and rank-frequency distributions of the IF of a journal. 

 

 

IV. MODELING S-SHAPED RANK-FREQUENCY 

DISTRIBUTIONS 
 

In the previous section, we have shown examples of size-frequency distributions that are 

first increasing and then decreasing. The corresponding rank-frequency distributions have 

an S-shape. Clearly, a size-frequency distribution that is first increasing and then 

decreasing does not follow Lotka’s law. Similarly, an S-shaped rank-frequency 

distribution does not follow Zipf’s law. Hence, to model such size- and rank-frequency 
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distributions in a satisfactory way, one needs a framework that is more flexible than the 

framework offered by the laws of Lotka and Zipf. 

 

In this section, we study a recent proposal by Mansilla et al. (2007). Mansilla et al. are 

concerned with the modeling of rank-frequency distributions of IFs. They propose to use 

a generalization of Zipf’s law given by 

 

 
a

b

r

rN
Krg

)1(
)(


  (7) 

 

where 0a , 0b , and 0K  are parameters, N  is the total number of sources, and 

Nr ,,1 . If 0b , (7) reduces to Zipf’s law (and hence the corresponding size-

frequency distribution is Lotkaian, see Egghe (2005a)). If ba  , (7) reduces to a function 

proposed by Lavalette (1996). Hence, (7) generalizes not only Zipf’s law but also the 

function proposed by Lavalette. We note that (7) is also used by Campanario (in press-a, 

in press-b) and Martínez-Mekler et al. (2009). 

 

We study (7) in a continuous setting. The following theorem states that, depending on b , 

(7) is either convex or S-shaped. 

 

Theorem IV.1 

 

Let )(rg  denote the function in (7) with domain [1,0] N  and with 0a , 0b , and 

0K . Then, 

(i) )(rg  is strictly decreasing; 

(ii) )(rg  has an S-shape, first convex and then concave, if 10  b ; 

(iii) )(rg  is convex if either 0b  or 1b . 

 

A proof of the theorem is provided in the appendix. 

 

When fitting (7) to empirical IF data for various scientific fields, Mansilla et al. (2007) 

find for most fields that 10  b . For a few fields they find that 1b . Based on 

Theorem IV.1, this means that most of the fields studied by Mansilla et al. are 

characterized by an S-shaped IF rank-frequency distribution. This is in agreement with 

our empirical findings reported in the previous section. 

 

A disadvantage of the rank-frequency distribution g  in (7) is that there does not seem to 

exist a closed-form expression for the corresponding size-frequency distribution f . 

However, using Theorems II.4, II.5, and IV.1, we can at least derive some properties of 

f . It follows from Theorems II.4 and IV.1 that f  is monotonically decreasing if either 

0b  or 1b , and it follows from Theorems II.5 and IV.1 that f  is first increasing and 

then decreasing if 10  b . 
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V. CONCLUSION 
 

We have mathematically analyzed the dependence of the shape of the rank-frequency 

distribution g  on the shape of the size-frequency distribution f  and vice versa. It turns 

out that g  is convexly decreasing if and only if f  is monotonically decreasing and that 

g  has an S-shape (i.e., g  is first convexly decreasing and then concavely decreasing) if 

and only if f  is first increasing and then decreasing. 

 

Most size-frequency distributions in informetric research are monotonically decreasing. 

In this paper, however, we have empirically studied two exceptions to this rule, namely 

size-frequency distributions of the number of articles and of the IF of journals. For some 

fields these distributions are monotonically decreasing, but for most fields they are first 

increasing and then decreasing. (In the case of IFs, the increasing part of the distribution 

is sometimes quite small and may therefore not be visible in histograms with wide bins, 

such as in Beirlant et al. (2007) and Schwartz and Lopez Hellin (1996).) As one would 

expect based on our mathematical results, for most fields rank-frequency distributions of 

the number of articles and of the IF of journals have an S-shape. However, the concave 

part of the S-shape is sometimes very small. 

 

We have also studied a generalization of Zipf’s law recently proposed by Mansilla et al. 

(2007). It turns out that, depending on a parameter, this generalized Zipf’s law yields 

either a convexly decreasing rank-frequency distribution or an S-shaped rank-frequency 

distribution. This flexibility explains why the proposal of Mansilla et al. is well suited for 

modeling rank-frequency distributions of IFs. 

 

A question that remains is why some size-frequency distributions are monotonically 

decreasing while others are first increasing and then decreasing. Answering this question 

requires more insight into the underlying process that determines the shape of a size-

frequency distribution. In the case of a Lotkaian (and hence monotonically decreasing) 

size-frequency distribution, it is sometimes suggested that a “success breeds success” 

mechanism or a mechanism based on exponential growth could be responsible for the 

shape of the distribution (e.g., Egghe (2005a, 2005b), Naranan (1970)). In a similar way, 

one could try to come up with a plausible mechanism that causes size-frequency 

distributions to be first increasing and then decreasing.
2
 Related to this, one could try to 

build a model that explains functions such as the one proposed by Mansilla et al. (2007). 

We leave these issues for future research. 

 

 

 

 

 

                                                 
2
 For IF distributions, such a mechanism is studied by Egghe (2009). Egghe first points out that IFs are 

averages and then claims that, as a consequence of the central limit theorem, size-frequency distributions of 

IFs approximate normal distributions (for a similar reasoning, see van Raan (2006, p. 413)). Waltman and 

van Eck (2009) argue that Egghe’s reasoning relies on unrealistic assumptions. 
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APPENDIX 
 

In this appendix, we provide a proof of Theorem IV.1. 

 

Let )(rg  denote the function in (7) with domain [1,0] N  and with 0a , 0b , and 

0K . The first derivative of )(rg  is given by 

 

 
1

1 )]1()[()1(
)('



 


a

b

r

NarbarN
Krg  (A1) 

 

In the domain [1,0] N , 0)(' rg  for all 0a , 0b , and 0K . Hence, )(rg  is 

strictly decreasing for all 0a , 0b , and 0K . This proves part (i) of Theorem IV.1. 

 

The second derivative of )(rg  is given by 

 

 )(
)1(

)(''
2

2

rT
r

rN
Krg

a

b




  (A2) 

 

where 

 

 22 )1)(1()1)(1(2)1)(()(  NaarNbaarbabarT  (A3) 

 

In the domain [1,0] N , )('' rg  has the same sign as )(rT . Notice that )(rT  is a 

quadratic equation (or a linear equation in case ab   or 1 ab ). )0(T  and )1( NT  

are given by 

 

 2)1)(1()0(  NaaT  (A4) 

 

and 

 

 2)1)(1()1(  NbbNT  (A5) 

 

Hence, 0)0( T  for all 0a  and all b . The sign of )1( NT  depends on b . 

 

We first consider the case in which 0a  and 10  b . In this case, it follows from (A5) 

that 0)1( NT . Hence, )(rT  is a quadratic (or linear) equation with 0)0( T  and 

0)1( NT . It is clear that )(rT  must have exactly one root in the interval [1,0] N . 

Let this root be denoted by 1r . For [,0] 1rr , 0)( rT  and consequently also 0)('' rg . 

For [1,] 1  Nrr , 0)( rT  and consequently also 0)('' rg . This means that )(rg  has 

an S-shape, first convex and then concave. This proves part (ii) of Theorem IV.1. 
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We now consider the case in which 0a  and either 0b  or 1b . In this case, it 

follows from (A5) that 0)1( NT . Hence, )(rT  is a quadratic (or linear) equation with 

0)0( T  and 0)1( NT . The discriminant of )(rT  equals 

 

 2)1)(1(4  NbaabD  (A6) 

 

)(rT  does not have a root in the interval [1,0] N . To show this, we distinguish the 

following four cases: 

(i) If ab   or 1 ab , )(rT  is a linear equation. Since 0)0( T  and 0)1( NT , 

)(rT  does not have a root in the interval [1,0] N . 

(ii) If 1 ab , (A6) yields 0D . Hence, )(rT  has no roots at all. 

(iii) If 0b , (A6) yields 0D . Hence, )(rT  has one root. It follows from (A5) that 

this root is given by 11  Nr . This means that )(rT  does not have a root in the 

interval [1,0] N . 

(iv) If 11  ab  and ab  , (A6) yields 0D . Hence, )(rT  has two roots. One 

root of )(rT  is given by 

 

 )1(
)1)((

)1()1(
1 




 N

baba

baabbaa
r  (A7) 

 

Let the other root of )(rT  be denoted by 2r . Based on (A7), it is not difficult to 

see that 01 r  or 11  Nr . Since 0)0( T  and 0)1( NT , it follows from 

this that 02 r  or 12  Nr . Hence, )(rT  does not have a root in the interval 

[1,0] N . 

We have now shown that )(rT  does not have a root in the interval [1,0] N . Hence, for 

[1,0]  Nr , 0)( rT  and consequently also 0)('' rg . This means that )(rg  is 

convex. This proves part (iii) of Theorem IV.1. 


