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Abstract

The reliability of multi-item scales has received a lot of attention in the psy-

chometric literature, where a myriad of measures like the Conbrach’s α or the

Spearman-Brown formula have been proposed. Most of these measures, however,

are based on very restrictive models that account only for unidimensional instru-

ments. In this paper we introduce two measures to quantify the reliability of multi-

item scales based on a more general model. We show that they capture two different

aspects of the reliability problem and satisfy a minimum set of intuitive properties.

The relevance and complementary value of the measures is studied and earlier ap-

proaches are placed in a broader theoretical framework. Finally, we apply them to

investigate the reliability of the Positive And Negative Syndrome Scale, a rating

scale for the assessment of the severity of schizophrenia.

Keywords: Reliability, Multi-item Rating Scales, Factor Analysis.

1 Introduction

Rating scales play a prominent role in psychology and psychiatry where they are fre-

quently used to make precise diagnostics and to evaluate the efficacy of new treatments
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or therapeutic procedures. They are also prevalent in health-related quality of life studies

and studies for the clinical evaluation of pain, among others.

The intrinsic uncertainties of measurements obtained with rating scales are related to the

concepts of validity and reliability. In general, validity tells whether a measurement scale

measures what it is supposed to measure in the context it is applied and, hence, validity

should always be a primary concern when evaluating an instrument. Another important

aspect is the precision of the measurements, that is, their reliability.

The study of the reliability of multi-item scales has received a large amount of attention

in the psychometric literature. The Spearman-Brown formula, the Kuder-Richardson

formulas, including the well-known KR-20, its slight and famous variation known as

Cronbach’s α, the five lower bounds introduced by Guttman, and the measure proposed

by Mosier are some of the proposals to quantify reliability in this context (Tarkkonen

and Vehkalahti 2005). It has been extensively shown, however, that these measures equal

reliability only under rather stringent assumptions (Novick and Lewis 1967, Green and

Yang 2009). When these assumptions are not met, the previous measures can not be con-

sidered a proper quantification of reliability but merely a lower bound for it (Novick and

Lewis 1967, Green and Yang 2009, Sijtsma 2009). Therefore, they are nowadays mainly

considered as measures for the internal consistency of an instrument, which indicates the

homogeneity of the items, or, equivalently said, how much they measure a unidimensional

underlying construct. Nevertheless, the appropriateness of these coefficients to evaluate

internal consistency has also been questioned (Sijtsma 2009). Even though their suitabil-

ity is severely restricted by the assumptions they need, some of the previous measures

have been routinely used and misused in many practical situations (Sijtsma 2009).

Based on a more general modelling framework, we will introduce two measures to quantify

the reliability of multi-item scales. These measures satisfy a pre-defined minimum set of

intuitive and appealing properties and, when the necessary modelling assumptions are

met, they permit to recover some of the previous proposals as special cases. Along this

line we will also illustrate the relevance and complementary value of our approach and
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place earlier approaches in a broader theoretical framework.

Section 2 explains the methodological framework and introduces two new measures for

multi-item scale reliability. We study these measures under some specific unidimensional

models in Section 3 as well as under more general, multidimensional models in Section 4.

In this section we further elaborate on the difference between sum-scores and multivariate

outcomes for reliability estimation. Sections 5 and 6 attend to the concepts of correlation

and prediction and their relations to reliability. Finally, in Section 7 the previously

introduced methods are illustrated on a real case study.

2 Methodology

Let us start by introducing the general measurement model on which all the measures

will be based. We assume that we have a multi-item scale, formed by p items. Further,

we assume that for the ith subject the following measurement model holds

X i = µ + Bτ i + εi, (1)

where X i = (Xi1, Xi2, . . . , Xip)
′ denotes the p-dimensional vector of observed scores,

τ i = (τi1, τi2, . . . , τiq)
′ denotes a q-dimensional vector of true scores with q ≤ p, εi =

(εi1, εi2, . . . , εip)
′ is a p-dimensional vector of measurement errors, B is a p×q full column

rank matrix that describes the functional relationship between the observed and true

scores and µ = (µ1, µ2, . . . , µp)
′ is a vector describing the mean of the observed scores.

Additionally, we assume that: i) E(εi) = 0 with Cov(εi) = Σ, ii) E(τ i) = 0 with

Cov(τ i) = D, and finally that iii) τ i and εi are independent.

Based on the previous assumptions, if we define G = BDB′, the variance-covariance

matrix of the measured items V = Cov(X i) can be written as

V = G + Σ. (2)

Model (1) comprises many model families. For instance, if one assumes that D = I and

Σ is a diagonal matrix, then it reduces to the classical orthogonal factor analytic model.
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It is also related to the modeling framework used in Generalizability Theory (Cronbach,

Gleser, Nanda and Rajaratnam 1972) and contains as a special cases three models that

have played a prominent role in the quantification of reliability. These can be defined

as: (i) Parallel tests obtained when µ and τi are scalars, B = β = 1 = (1, 1, . . . , 1)′,

and Cov(εi) = σ2I; (ii) Essentially tau-equivalent tests obtained when B = β = 1, τi is

a scalar and Cov(εi) = diag(σ2
j ), with j = 1, . . . , p; and (iii) Congeneric tests obtained

when B = β = (β1, β2, . . . , βp)
′, τi is a scalar and Cov(εi) = diag(σ2

j ). Importantly, the

parallel test model forms the basis for the definition of reliability in the Classical Test

Theory (CTT) (Lord and Novick 1968).

While these models all assume a unidimensional true score, Model (1) allows a multi-

dimensional vector of random effects and correlated error components. Stemming from

identifiability issues, some restrictions may be needed to estimate the parameters, how-

ever, in what follows we will work with Model (1) in its most general form.

In order to extend the concept of reliability to the more general scenario implied by

Model (1), we will introduce a minimum set of properties one would expect any meaningful

measure of reliability should satisfy. Essentially, if R denotes a measure of reliability

then: 1) 0 ≤ R ≤ 1; 2) if R = 0 then X i does not convey any information about the

true scores τ i, i.e, B = 0; 3) if R = 1 then there exist linear functions ψ1 and ψ2 so that

P (ψ1(X i) = ψ2(τ i)) = 1, i.e, the true and observed scores are deterministically related;

and 4) under parallel tests R =
σ2

τ

σ2
τ + σ2

.

A new measure of reliability that fulfills properties (1)–(4) is given by

RT = 1− tr(Σ)

tr(V )
. (3)

Note that the previous expression closely resembles the formula of reliability used in CTT,

but now one summarizes the variability of the observed scores and the error terms using

the trace of the variance-covariance matrices V and Σ, respectively. The RT coefficient

can be rewritten as

RT =

p∑
j=1

νjRj,
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where νj = Vjj/Σ
p
k=1Vkk is a weight associated with the jth item and Rj = Gjj/Vjj denotes

its reliability. The previous expression clearly shows that RT is just a weighted average of

the items’ reliability, where the weight associated with item j is the proportion of the total

variability of the scale this item accounts for. The rationale behind this set of weights

becomes clear from the fact that, in general, variability is information. Essentially, an

item with no variability will stay constant over all subjects in the population and will

be useless. However, variability alone is not enough to evaluate the utility of an item.

In fact, an item with a high variability can also be useless if most of this variability is

due to measurement error. Therefore, the RT coefficient looks for a compromise between

these two important factors, i.e., the informational value of the item and the quality of

that information captured by its reliability. The term νjRj could then be interpreted

as the relevant information conveyed by item j and the RT coefficient as the relevant

information conveyed by the entire scale.

Further, it is possible to show that RT forms part of a more general family, based on the

generalized eigenvalues associated with the matrices Σ and V . Indeed, RT ∈ Ω, where

Ω is defined as

Ω =

{
θ : θ = 1−

p∑
j=1

wjλj, wj > 0 and

p∑
j=1

wj = 1

}
, (4)

and the λjs are the roots of q(λ) = |Σ − λV | = 0. Associated with the generalized

eigenvalue λj we have the so-called generalized eigenvectors cjs, which are the non-zero

solutions of the linear equations (Σ − λjV )cj = 0. It is useful to note that the λjs

could be equivalently defined as the eigenvalues of the matrix H = V −1/2ΣV −1/2, where

V 1/2 denotes the symmetric square root of V . Note that H is a symmetric matrix and,

therefore, it can can be rewritten as H = PΛP ′ where P is an orthogonal matrix and

Λ = diag(λj). If we call M = P ′V P then it can be shown that RT is obtained by setting

wj =
mjj

tr(M)
, where mjj denotes the jth element in the diagonal of M . All members of

Ω satisfy properties (1)–(4) and we refer the reader to the web appendix for a proof.

In multivariate analysis, the generalized variance of a random vector can be defined
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using either the trace or the determinant of the corresponding variance-covariance matrix.

Replacing the trace in the definition of RT by the determinant leads to

RΛ = 1− |Σ|
|V | = 1− |ΣV −1|. (5)

This measure also satisfies properties (1)–(4) and it is possible to show that RΛ =

1 −
p∏

j=1

λj, i.e, this new coefficient is also based on the generalized eigenvalues used to

construct the Ω family. In the following sections we will further argue that, unlike RT

which is a measure of average item reliability, RΛ quantifies the reliability of the entire

vector of items.

As previously stated, parallel, essentially tau-equivalent and congeneric tests have played

a prominent role in the evaluation of reliability of multi-item scales. In the next section,

we will apply the two newly introduced reliability coefficients in the scenarios defined by

these models. It is important to point out that these measures are valid in more general

settings than those defined by (i)–(iii). However, their performance in these special cases

will help to increase our understanding of their properties and interpretation.

3 Reliability with Unidimensional True-score

Models

Let us start by considering the simplest of the three special cases: the parallel test. In

this setting, the decomposition of the variance-covariance matrix given in (2) takes the

form: V = σ2
τ11

′ + σ2I and from this expression easily follows that RT = σ2
τ/(σ

2
τ + σ2).

Basically, if we assume that the items of a scale form parallel tests, then each single item

satisfies the model used in CTT, i.e., Xij = µj +τi +εij, and the reliability of all the items

equals ρxx = σ2
τ/(σ

2
τ + σ2). Earlier, we have shown that RT is a weighted average of the

items’ reliability. It then follows logically that, under the assumptions of parallelism, RT

equals the common item reliability.

When applied to this specific setting, RΛ takes the form RΛ = pρxx/{(p− 1)ρxx + 1}.
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Interestingly, under these assumptions, RΛ equals the Spearman-Brown formula. The

expression indicates that the reliability of the instrument is an increasing function of the

number of items, which is an intuitive and appealing result. In fact, every new item

added to the scale will bring certain level of information about the true score τi, even if

this information is contaminated by measurement error. As a consequence, the expanded

scale will always contain more or at least the same amount information about τi than the

original scale. Intuitively, the reliability of a scale is the amount of information on the

true scores that the scale conveys. Therefore, it is reasonable that adding new items to

the instrument can only increase the reliability of the conclusions derived from it.

It is important to recall at this point that RΛ quantifies the reliability of the entire scale,

i.e., the multivariate vector X i. However, the Spearman-Brown formula was originally

obtained as the reliability of the scale Yi(1) = 1′X i under the parallel test assumptions.

We thus find that, under these assumptions, the reliability of the entire scale X i equals

the reliability of the simple sum score. Nevertheless, as we will illustrate later, in more

general settings Yi(1) no longer has the same reliability as the entire scale X i but, as

expected, the reliability of a summary statistic like Yi(1) is usually smaller than the one

of the entire instrument.

Essentially tau-equivalent tests relax the assumptions of parallel tests by allowing item-

specific error variances so that V = σ2
τ11

′ + Σ, where Σ = diag(σ2
j ). Under these

assumptions, RT takes the form RT = σ2
τ/(σ

2
τ + SE1), where SE1 = (

∑
j σ2

j )/p. Note that

RT is a decreasing function of SE1 and, therefore, if a new item (p + 1) is added to a

scale, then

RT (p) ≤ RT (p + 1) if and only if σ2
p+1 ≤

∑
j σ2

j

p
.

This implies that the expanded instrument will have a higher average reliability if and

only if the error variance of the new item is smaller than the average error variance of the

other items of the scale. Hence, the RT coefficient can either increase or decrease when

a new item is added, depending on the “quality” of such an item.

7



Turning to RΛ, we first need to compute the determinant of V . It is easy to show that

if V = σ2
τββ′ + Σ then

|V | = (1 + σ2
τβ

′Σ−1β) · |Σ|. (6)

For essentially tau-equivalent tests β = 1, Σ = diag(σ2
j ), and from (6) we obtain

RΛ = SE2/(1 + SE2), which is an increasing function of SE2, with SE2 =
∑p

j=1 σ2
τ/σ

2
j .

Obviously, adding a new item to the scale can only increase the value of SE2 and, there-

fore, RΛ is always an increasing function of the number of items. Note however that, if

the new item comes contaminated with a lot of measurement error then σ2
τ/σ

2
p+1 will be

negligible and RΛ will remain nearly constant.

Finally, congeneric convey the most general model among the three special cases. In this

scenario the variance-covariance matrix takes the more general form V = σ2
τββ′ + Σ

and RT = σ2
τ/(σ

2
τ + SC1), with SC1 =

∑
j σ2

j /
∑

j β2
j . Like before, adding a new item can

increase or decrease the value of RT depending on the impact of the new item on SC1.

Moreover, from (6) easily follows that RΛ = σ2
τSC2/(1 + σ2

τSC2), with SC2 =
∑

j β2
j /σ

2
j ,

and like for tau-equivalent tests, RΛ can only increase its value when a new item is added.

The above reflections are a useful aid in understanding the meaning and the complemen-

tarity of the two new measures. Whereas RT provides us with information on the quality

of the items in a scale, regardless of their number, the RΛ coefficient informs us on the

amount of information the total package of items contain on the underlying traits.

However, due to the strong assumptions on which they are based, the applicability of the

modelling frameworks analyzed in this section is very limited (Green and Yang 2009). In

the next section we will apply the new measures in the more general scenario defined by

Model (1). The weaker assumptions that this model requires enhance its practical value

and, as a consequence, the newly proposed measures will also allow us to approach the

reliability problem in more general settings.
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4 Reliability with Multidimensional True-score

Models

In models (i)–(iii), τi is a scalar, which means that unidimensionality of the instrument

is assumed. Although ideally scales aim to assess primarily a single construct for inter-

pretability (McDonald 1981, Hattie 1985), they frequently include additional factors and

are not unidimensional (Reise, Waller, and Comrey 2000). Actually, many psychometri-

cians argue that it is preferable that the structure underlying the items is more consistent

with a complex hierarchical model than with a unidimensional model (e.g., McDonald

1999, Reise et al 2000).

Werts et al (1978) extended the measurement models (i)–(iii) by assuming a factor model

for the true scores, thence allowing multiple dimensions in the measurement instrument.

The specific factors in their model are considered as part of the true scores, so that

the model contains specific factors as well as an error component. Such a model might,

however, lead to identifiability problems. In their data example, Werts et al (1978) assume

the specific factors to be zero. Tarkkonen and Vehkalahti (2005) suggested considering

the specific factors as measurement errors.

In general, these authors do not directly study the reliability of the multivariate instru-

ment X i but the reliability of a new scale Yi(a) = a′X i formed as a weighted sum of the

items’ score. When Model (1) holds and a ∈ Rp, Yi(a) can be written as

Yi(a) = a′X i = a′µ + a′Bτ i + a′εi.

If σ2
Y = Var [Yi(a)], then (1) implies σ2

Y = a′Ga + a′Σa = a′V a. Tarkkonen and

Vehkalahti (2005) proposed to quantify the reliability of Yi(a) as

ρ(a) =
a′Ga

a′V a
= 1− a′Σa

a′V a
. (7)

Notice that expression (7) is just the classical definition (CTT) of reliability applied to

the measure Yi(a). In Section 2 we introduced the matrix H = PΛP ′, with P an

orthogonal matrix and Λ = diag(λj). Using this decomposition of H one can show that
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Σ = Q′ΛQ, and V = Q′Q, with Q = P ′V 1/2. Finally, we can rewrite ρ(a) as

ρ(a) = 1− a′Q′ΛQa

a′Q′Qa
. (8)

This new expression for ρ(a) will play an important role in subsequent developments.

Werts et al (1978) proposed a quantification of reliability very similar to (7), actually,

their proposal equals (7) when the specific factors, included in their model, are assumed

to be zero. Tarkkonen and Vehkalahti (2005) further proved that ρ(1) ≥ α, where α

denotes the value of Cronbach’s alpha coefficient, with equality if and only if G = σ2
τ11

′

(σ2
τ > 0) and Σ diagonal, i.e., exactly the conditions defined by (ii).

Interestingly, if we apply the measures RT and RΛ to quantify the reliability of the

previous weighted sum Yi(a), we find that RT (a) = RΛ(a) = ρ(a). Obviously, in this

univariate scenario, the average and total reliability coincide and, as a consequence, RT

and RΛ are equal.

In the remainder of this section we will explore the relationship between the reliability of

the unidimensional scale Yi(a) and the reliability of the original instrument X i.

4.1 The Ω Family

As stated before, a considerable part of the psychometric literature has focussed on study-

ing the reliability of the family of scales Ψ∗ = {Yi(a) = a′X i : a ∈ Rp}. Moving from a

high-dimensional instrument X i to a univariate version Yi(a) can considerably facilitate

the practical use of the scale and the clinical interpretation of its results. Therefore, in

clinical practice, psychiatrists and psychologists frequently work with weighted sums of

multivariate scales.

Also from a psychometric perspective working with the univariate version Yi(a) represents

an important simplification. Basically, such a reduction in the dimensionality of the

instrument allows the direct application of the classical definition of reliability, as it was

shown in (7). A relevant question that then arises is to which extend the reliability of

the new scale Yi(a) reflects the reliability of the original instrument X i. We will try to
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address this issue by studying the relationship between the scales in Ψ∗ and the reliability

measures contained in Ω.

Recall that, in Section 2, Ω was introduced as general family of plausible reliability

measures for X i. Different measures were formed by assigning different weights to the

generalized eigenvalues λ1, . . . , λp in (4). The following two theorems will shed light on

the relationship between the family of scales Ψ∗ and the family of measures Ω.

Theorem 1 If Model (1) holds and θ ∈ Ω then there exists a vector a ∈ Rp so that the

reliability of the weighted scale Yi(a) = a′X i equals θ, i.e., ρ(a) = θ.

Given a member of the Ω family θ = 1−∑
j wjλj, one can construct the vector δ which

jth component equals δj =
√

wj. The result then immediately follows from expression

(8) with a = Q−1δ. Theorem 1 shows that any reliability measure for X i, contained in

Ω, can also be interpreted as the reliability of certain univariate scale in Ψ∗. The reverse

relationship is also of interest, i.e., one would like to know whether for each a ∈ Rp we

can find a corresponding measure θ within Ω so that ρ(a) = θ. The following theorem will

address this question, but let us first define the p× p matrix Γ = (γij), where γij = 1 if

λi = λj and zero otherwise. Further, let us define the set C = {a ∈ Rp : T (a)j 6= 0 ∀j}
where T (a) = Γ (δ ◦ δ), δ = Qa and ◦ denotes the Hadamard product (entrywise). Note

that if all the generalized eigenvalues are different then Γ = I and T (a)j 6= 0 is equivalent

to the simpler equation (Qa)j 6= 0.

Theorem 2 Let us assume that Model (1) holds. If a ∈ Rp, a 6= 0, and there exists a

θ ∈ Ω so that ρ(a) = θ then a ∈ C. Similarly, if a ∈ C then there exists a θ ∈ Ω so that

ρ(a) = θ.

A proof of this result can be found in the web appendix. Theorem 2 shows that not all

the scales in Ψ∗ will properly reflect the reliability of X i, at least not in the sense the

members of Ω do it. Essentially, Ω is not equivalent to Ψ∗ but to the family Ψ = {Yi(a) =

a′X i : a ∈ C}. Formally, Ψ∗ will be equivalent to a more general family Ω∗ which can
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be defined as

Ω∗ =

{
θ : θ = 1−

p∑
j=1

wjλj, wj ≥ 0 and

p∑
j=1

wj = 1

}
.

Note, however, that the elements of Ω∗ do not necessarily satisfy properties (1)–(4).

Additionally, the reliability of some members of Ψ∗ can dramatically differ from the

reliability of the original instrument X i and this difference can have an important impact

on the conclusions these scales produce. To illustrate this, let us denote by C(B) the

column space associated with B. Further, we will consider a ∈ C(B)⊥, where C(B)⊥

denotes the orthogonal complement of C(B). Obviously, Yi(a) ∈ Ψ∗ and assuming that

Model (1) holds, we have

Yi(a) = a′X i = a′(µ + Bτ i + εi) = a′µ + a′Bτ i + a′εi = a′µ + a′εi.

Clearly, this scale does not contain any information about the true scores τ i and ρ(a) = 0

irrespectively of the reliability of the original scale X i. It is possible to show that

this scale does not belong to Ψ. Indeed, denoting δ = Qa, from (2) we have that

Qa = P ′V −1/2Σa. Moreover, from H = PΛP ′ one gets that P ′V −1/2Σa = ΛQa and

this implies δ = Λδ or, equivalently, δj = λjδj for all j. If V 6= Σ there will be at least a

k so that λk 6= 1. It then easily follows that T (a)k = 0. Only when V = Σ, i.e, when the

reliability of X i is equal to zero, Yi(a) will have the reliability of the original instrument.

As stated at the beginning of this section, working with unidimensional versions of X i,

like Yi(a), can considerably simplify the clinical use and interpretation of the scale. Fre-

quently, one would like the new scale Yi(a) to reflect as much as possible the characteris-

tics of the original and more complex instrument X i. However, the previous results show

that these unidimensional versions do not always mimic the psychometric properties of

the original scale. This can be specially important if Yi(a) is used to gain information

about the performance of X i. The previous finding can be a useful guideline to construct

a unidimensional version of X i that preserves its reliability.
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4.2 Weighted Score versus Multivariate Score

In Section 3 we found that, for parallel tests, the reliability of the simple sum score

equals the reliability of the entire scale X i. Since parallel tests contain only one latent

true-score, it is intuitively logical that a single well-chosen linear combination can fully

capture all the information in the data. The following theorem states that such a linear

combination can only be found when the true scores are unidimensional, otherwise, the

reliability of a weighted sum will always be smaller than or equal to the reliability of the

entire scale.

Theorem 3 Let us assume that Model (1) holds and V 6= Σ with Σ not singular. If

a ∈ Rp, then the reliability of the scale Yi(a) = a′X i is always smaller than or equal to the

reliability of X i, i.e., ρ(a) ≤ RΛ. The equality is obtained if and only if rank(B) = 1 and

a is proportional to c(1), a generalized eigenvector associated with the smallest generalized

eigenvalue λ(1).

For a detailed proof we refer the reader to the web appendix. Note that if rank(B) = 1

then the full column rank assumption implies that q = 1 and, therefore, τ i is a scalar.

The theorem also establishes RΛ as an upper bound for the reliability of an entire family

of instruments constructed from the original set of items. Notice that if the value of this

measure is low, then any instrument derived as a weighted sum of the original items will

have an even lower reliability and will be basically useless.

Furthermore, in the special cases considered in Section 3, we showed that RΛ is an

increasing function of the number of items. The following theorem extends this result to

the more general scenario implied by Model (1).

Theorem 4 Let us assume that Model (1) holds and Σ is not singular. Further, denote

by RΛ(Xp) the value of RΛ for the p-dimensional scale Xp. If r additional items are

added to Xp, then the value of RΛ for this new (p + r)-dimensional scale Xp+r satisfies

RΛ(Xp+r) ≥ RΛ(Xp).
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A detailed proof can also been seen in the web appendix. All the previous findings

indicate that the RΛ coefficient can be interpreted as a generalization of the Spearman-

Brown formula. Finally, in the following two sections we will study the relationship

between these newly proposed measures and two other important concepts: correlation

and prediction.

5 Reliability and Correlation

In CTT reliability equals the squared correlation between the observed and true scores.

Actually, in CTT one can alternatively define reliability by using the previous property

as its definition. In this section, we will study the relationship between the measures of

reliability previously introduced and the squared association between X i and τ i. Let us

start by denoting Si =


X i

τ i


. If one further assumes that the true scores and the error

terms are normally distributed then the following result follows

Theorem 5 If Model (1) holds, τ i ∼ N(0, D) and εi ∼ N(0,Σ) then: Si ∼ N(µ0,Σ0)

where

µ0 =


µ

0


 and Σ0 =


 V BD

(BD)′ D


 .

A natural way to quantify the association between X i and τ i in this context is through

the use of canonical correlations. The squared canonical correlations of Si are then the

eigenvalues of the matrix V −1/2ZDD−1DZ ′V −1/2 = I −H . It is easy to show that if

λ is an eigenvalue of the matrix H then 1−λ is an eigenvalue of the matrix I −H . The

implications of these results are very appealing. In fact, they show that if θ ∈ Ω then

θ =
∑p

j=1 wjρ
2
j where the elements ρ2

j = 1−λj are just the squared canonical correlations

of the observed and true scores. Similarly, it is easy to show that RΛ = 1−∏p
j=1(1− ρ2

j).

It is appealing to see that two equivalent classical definitions of reliability also concur in

this extended setting. Notice that any extension of the classical definition of reliability

should necessarily be based on the ρ2
j , if it wants to retain its interpretation as the
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squared correlation between the observed and true scores. However, a high-dimensional

vector of squared canonical correlations may be difficult to interpret and difficult to

use when comparing two scales regarding their reliabilities. Therefore, aiming at an

easier interpretation, the new measures summarize the information about the reliability,

contained in the vector of squared canonical correlations, by using meaningful functions

of its elements.

6 Reliability and Prediction of the True Scores

The prediction of the true scores has been at the center of many developments in CTT

and item response theory (IRT). In the present section we will study the relationship

between this problem and the concept of reliability.

Theorem 5 implies that τ i|X i ∼ N (µ(X i),Σ
p), where µ(X i) = DB′V −1 (X i − µ) and

Σp = D − DB′V −1BD. If one uses µ(X i) as a predictor for τ i then it is possible

to show that the generalized variance of this prediction satisfies |Σp| = |D|(1 − RΛ).

The previous expression illustrates that the generalized variance of the prediction is di-

rectly proportional to the variability of the true scores and inversely proportional to the

reliability of the scale. As a consequence, more reliable scales will produce more ac-

curate predictions of the true scores, a very intuitive and appealing result. Using the

trace instead of the determinant to quantify the variability of the prediction, leads to the

analogous expression tr(Σp) = tr(D)(1−RPT ) where

RPT =
tr(DB′V −1BD)

tr(D)
.

It can be easily shown that RPT satisfies the properties (1)–(4) introduced in Section 2.

Observe also that Cov (µ(X i)) = DB′V −1BD and, therefore, RPT can be interpreted

as the proportion of the total variability of τ i that X i explains. If we assume that D = I

then RPT = (p/q)Rp where Rp = 1− 1

p
tr(ΣV −1) is a member of the Ω family. For paral-

lel, congeneric and essentially tau equivalent tests RPT coincides with RΛ and, after some

algebraic transformations, one can show that, in general, RΛ ≈ 1 − e−qRPT . Obviously,
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more research is necessary to fully understand the connection between reliability and the

prediction of the true scores and between the measures of reliability introduced in the

previous sections and the predictive measure of reliability introduced here.

7 A Case Study in Schizophrenia

Schizophrenia is a complex and heterogeneous disorder with variable symptoms. To im-

prove research clarifying the diversity in the disorder, Kay, Fiszbein and Opler (1987) de-

veloped a standardized instrument; the Positive And Negative Syndrome Scale (PANSS).

The instrument contains 30 items (symptoms), which are all scored on a 7-grade scale

ranging from “absent” to “extreme.” As reflected by the name of the scale, schizophrenia

is often described in terms of positive and negative symptoms. Positive symptoms include

hallucinations and delusions and are typically regarded as manifestations of psychosis.

Negative symptoms are so-named because they are considered to be the loss or absence of

normal traits or abilities, and include features such as blunted affect, apathy, and social

withdrawal. Besides these two dimensions, general psychopathology was included as a

third a priori factor in the PANSS (Kay et al 1987). However, empirical research sug-

gests the existence of five factors, which can be described as: negative syndrome, positive

syndrome, excitement, depressive symptoms, and cognitive dysfunction (Lindemayer et

al 1995). Many other studies have confirmed a five-factor structure for this scale (e.g.

Van der Gaag et al 2006a).

Even though the five-factor model is confirmed by several studies, differences are often

found in the exact allocation of the items to the factors. Such differences might be

related to the use of different statistical techniques or model assumptions, but also to

differences in the investigated populations. Dolfus and Petit (1995), for example, did not

observe a depression dimension in an acute population while it was observed in a chronic

population. A plausible explanation is that depressive symptoms cannot be expressed

when positive symptoms are very severe. In many of the studies investigating the factor
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structure of PANSS, models have been developed where each item loads only on one

factor. The underlying aim is to divide the scale in separate sub-scales composed of

clearly distinguished sets of items. Van der Gaag et al (2006b) showed, by means of a

cross-validation study, that allowing some items to load on more than one factor leads to

a better model fit.

7.1 Data Analysis

The case study data consist of clinical trial baseline measurements taken from 520 patients

with a diagnosis of chronic schizophrenia after a single-blind placebo washout period

(Chouinard et al 1993, Marder and Meibach 1994).

The first step is to find a well fitting model that provides us with the parameter estimates

necessary for the estimation of reliability. As expressed in (2), variability in the observa-

tions comes from two sources, the latent variables (random effects) and the measurement

errors. Since both are unobserved, model restrictions are inevitable to avoid identifiability

problems. A factor-analytic approach was applied to fit and compare different models.

As many studies of this scale have suggested a five-factor structure, we fitted an ex-

ploratory 5-factor model. Note that this model is a special case of Model (1), when

D = I, Σ is a diagonal matrix, and B unstructured. As a sensitivity analysis we also

considered an exploratory 7 factor model. Two confirmatory 5-factor models were also

fitted in which restrictions were mainly laid on the B matrix by allowing the items to

load only on pre-defined factors. In the first one, each item loaded on one factor only. Ba-

sically, the model followed the five sub-scales proposed by Marder, Dabis and Chouinard

(1997) with D an unstructured correlation matrix and Σ a diagonal matrix. The second

confirmatory model was the one proposed by Van der Gaag (2006b). In this model, sev-

eral items can load on more than one factor. Further, some factors were assumed to be

correlated and also some pre-specified measurement errors could be correlated.

All models were fitted using maximum likelihood and compared using the Consistent

Akaike’s Information Criterion (CAIC) and the Schwarz’s Bayesian Criterion (SBC).
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Both criteria showed that the model introduced by Van der Gaag (2006b) was the one

producing the best fit, as can be seen in Table 1.

Table 2 presents the reliability estimates for the four fitted models. Interestingly, all these

models produced relatively similar estimates suggesting certain degree of “robustness”

with respect to the model assumptions. Only for the poorest fitting model (CFA Marder)

the RT estimate is somewhat lower. The previous results show that while finding the

‘best’ model can be hard, it is sufficient to find a good fitting model in order to estimate

reliability.

The RT coefficient indicates the average item reliability and estimates are close to 0.50,

which is, for a single item, certainly an acceptable level. As stated before, RΛ quantifies

the information content when all items are considered jointly, i.e., it expresses the reli-

ability of the entire multivariate scale. The fact that individual items already achieve a

decent reliability level and that PANSS contains no less than 30 items, explains why we

obtain values for RΛ very close to one.

In practice, the sum score of the PANSS items is mostly used for clinical evaluation and

data analysis. We have already shown that working with the sum of the item scores always

leads to a certain amount of information loss. Table 2, however, shows that the reliability

of the sum score, expressed by ρ(1), although lower than RΛ still has a very high value.

The results thus illustrate that summing the PANSS items leads to a relatively small loss

of information. It is important to point out here that these two reliability measures are

valid at two different levels. Indeed, the RΛ quantifies the amount of information shared

by the vector of observed scores and the vector of true scores, whereas ρ(1) quantifies

the information shared by a well-chosen linear combination of the observed scores and a

corresponding linear combination of the true scores. At any rate, the high reliability of the

sum score obtained for this scale suggests that working with the sum for clinical evaluation

and data analysis may be a sensible strategy given the substantial simplification that it

brings.

Interest may also lie in estimating the patients’ scores on the PANSS sub-scales. For
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example, Marder et al (1997) investigated drug-effectiveness on the different dimensions

of schizophrenia. Reliability estimates for the separate sub-scales can be obtained by re-

placing the full matrices in (3), (5), and (7) by sub-matrices related to the variances and

covariances between the items in the sub-scale. Table 3 presents the point estimates of

the three reliability measures, for each of the five sub-scales. The estimates are based on

the five-factor exploratory factor-analytic model. The items in each of the different sub-

scales provide sufficient information on the respective underlying dimensions as indicated

by RΛs greater than 0.85. Additionally, the sum-score reliabilities are all above 0.75. In-

terestingly, the negative sub-scale clearly has a higher average (RT ) and sum-score [ρ(1)]

reliability than the positive sub-scale, however the RΛs are similar. This owes to the fact

that the positive sub-scale has 8 items whereas the negative sub-scale has 7. We can also

see that for the positive sub-scale, about 15% of information is lost due to summing the

item scores, for the negative sub-scale only 5% is lost. Finally, it is clearly illustrated

that both RΛ and ρ(1) are affected by the number of items, resulting in lower estimates

for the subscales compared to the total scale. This is clearly not the case for RT . The

latter is therefore more informative on the quality of the items, irrespective of the size of

the scale. Note that item-specific estimates could also be obtained.

Finally we also estimated the predictive measure of reliability RPT introduced in Section 6.

For the 5-factor EFA model RPT = 0.829. We have shown in Section 6 that RPT ,

like RΛ, is linked to the prediction of the true scores. The high values obtained for

these two measures hint then on the possibility of accurately predicting the true scores,

using the information conveyed by the observed scores. Remarkably, the approximation

RΛ ≈ 1 − e−qRPT obtained under the assumption D = I seems to hold under more

general models like the 5-factor CFA model proposed by Van der Gaag for which we

found R̂PT = 0.861.
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8 Discussion

In this paper we have introduced two measures of reliability, the so-called RT and RΛ

coefficients. Unlike many previously proposed measures, for example, the Spearman-

Brown formula or the Cronbach’s α, the RT and RΛ coefficients are valid under a more

general modelling framework that can include multivariate true-scores. As a consequence,

these coefficients will allow the assessment of reliability in practical situations where the

previous measures are not valid or can merely be considered as a lower bound for it.

We have seen that the RT coefficient expresses an average item reliability and it would

easily allow to compare the quality of the items between two scales of different length. Ad-

ditionally, we have shown that RT can be framed into a more general family of measures,

all of which satisfy a minimum set of intuitive properties.

The RΛ coefficient captures the reliability of the entire multivariate set of items. The

practical implications of such a measure are important. First, one has a tool that will

alow the assessment of the reliability of the entire scale. If such an assessment shows a low

value of reliability, then any simplified version of the instrument will be useless. Second,

it also allows to evaluate the loss of reliability implied by using a simplified version of

the instrument, constructed as a weighted sum of the item scores. This will be crucial,

for instance, to evaluate the trade-off between the gain in interpretability and the loss in

reliability implied by the use of this simpler univariate instrument.

We have also introduced a measure of predictive reliability, the so-called RPT , this mea-

sure in particular and the entire connection between reliability and prediction in general,

is a promising line of research that will certainly get attention in the future.

It is important to point out that the results obtained with general measures of reliability

always need to be embedded into a broader analysis, in order to get a clearer idea of

the properties and performance of the scale. For instance, the specific reliability of each

item should be calculated. Additionally, one could also calculate the values of the general

measures sequentially after adding one item at a time. This will help to understand the
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particular contribution of each item to the global and average reliability. For simplicity,

we have not carried out such a detailed analysis in our case study but it should certainly

be part of any real application.

Finally, we would like to remark that similar measures can also be applied in a longitudinal

framework (Laenen et al 2009a, 2009b). The fact that similar concepts can be applied

to evaluate reliability in two different and important scenarios brings some degree of

conceptual unity to the entire problem of estimating reliability.

Supplementary Materials

Web appendix is available under the Paper Information link at the Biometrics website

http://www.biometrics.tibs.org.
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Table 1: Fit statistics (CAIC and SBC) for two exploratory factor models (EFA) and two

confirmatory factor models (CFA).

model CAIC SBC

EFA 5 factors -1240 -945

EFA 7 factors -1213 -967

CFA Marder -796 -401

CFA Van der Gaag -1420 -1048
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Table 2: Point estimates [95% confidence intervals] for the reliability measures.

model RT RΛ ρ(1)

EFA 5 factors 0.479 [0.436; 0.522] 1.000 [0.999; 1.000] 0.911 [0.872; 0.939]

EFA 7 factors 0.521 [0.481; 0.562] 1.000 [1.000; 1.000] 0.918 [0.878; 0.946]

CFA Marder 0.414 [0.394; 0.435] 1.000 [0.999; 1.000] 0.895 [0.793; 0.951]

CFA Van der Gaag 0.446 [0.424; 0.468] 1.000 [1.000; 1.000] 0.888 [0.765; 0.952]
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Table 3: Reliability measures for selected sub-scales.

Positive Negative Cognitive Excitement Depression

RT 0.401 0.571 0.436 0.590 0.466

RΛ 0.949 0.942 0.914 0.902 0.858

ρ(1) 0.798 0.894 0.829 0.836 0.754
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