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Abstract. There exists no perpetuum mobile of the second kind. We review
the implications of this observation on the second law, on the efficiency of
thermal machines, on Onsager symmetry, on Brownian motors and Brownian
refrigerators, and on the universality of efficiency of thermal machines at
maximum power. We derive a microscopic expression for the stochastic entropy
production, and obtain from it the detailed and integral fluctuation theorem. We
close with the remarkable observation that the second law can be split in two:
the total entropy production is the sum of two contributions each of which is
growing independently in time.
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1. Introduction: the perpetuum mobile of the second kind

The alchemists’ search for the philosopher’s stone is legendary. This magic object was
supposed to make possible the transmutation of the elements. It would provide an elixir
of life. But these ‘early scientists’ were also obsessed with the search for a perpetuum
mobile. They proposed all kinds of devices, mechanical, magnetic, chemical and other [1].
Since radioactive decay and the structure of the atom have become understood, it has been
known that the transmutation of elements is possible (but usually very difficult and costly).
Also the elixir of life has been identified1. Concerning the perpetuum mobile, the search
for such engines continues up to this very day. But (alas) so far to no avail. We now believe
that two very basic principles of physics prevent the construction of perpetuum mobiles.
One is the conservation of energy, making impossible the so-called perpetuum mobile of
the first kind. This conservation principle derives from the translational invariance in
time of the laws of physics. The other principle is more subtle and is still the subject
of debate. It is, as we will explain in some detail below, related to the time-reversal
symmetry of the physical laws. It touches on the foundations of statistical mechanics
and thermodynamics, but it has also been related to the expansion of the universe, the
collapse of the wavefunction in quantum mechanics, the role of chaos in making trajectories
effectively unpredictable, and even to the physics of computation.

To make a start, we will assume that a perpetuum mobile of the second kind is not
possible, and investigate its consequences. More precisely, we suppose (stated somewhat
vaguely) that it is impossible to extract work out of a single heat bath at equilibrium.
By heat bath we understand a confined system that has been allowed to relax to an
equilibrium state, and is only allowed to exchange energy with its surrounding via heat.
A direct consequence is that the famous Escher waterfall [2] cannot occur in the physical

1 According to an undisclosed source, it is called ‘Belgian beer’.
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world. In this purposefully misleading drawing it looks as if water is running around
while ‘falling down all the time’. Either it is indeed falling down and we extract energy
out of the gravitational field, which is fine, but the center of gravity of the device then
has to be going down. If this is not the case, energy is conserved, so there is no conflict
with the concept of a perpetuum mobile of the first kind, but the flow can, according
to our assumption, not be an equilibrium situation2. Otherwise, we have a perpetuum
mobile of the second kind since we can extract work by using a watermill. From very early
on [3], it has been the matter of passionate discussions whether this restriction could be
circumvented when operating on a small scale. Indeed, even in a system at equilibrium at
a finite temperature (and even at zero temperature in an ‘empty system’ if one takes into
account vacuum fluctuations), there is a ongoing dynamical activity at small scale, and it
is tempting to assume that one can extract energy out of these small scale fluctuations.
A device that would perform such a task was first proposed by Maxwell, and is nowadays
referred to as a Maxwell demon [3]. The debate raged on for a long time including a
discussion about the thermodynamic cost of measurement and computation [4]. The
consensus today is that there are no Maxwell demons, and the basic impossibility of a
perpetuum mobile of the second kind prevails (see [5] for a further discussion). As a
consequence, a ratchet device like the one conceived by Smoluchowski [6] and discussed
further by Feynman [7] will indeed fail to rectify fluctuations. In conclusion, there are
no macroscopic currents in a heat bath at equilibrium, and even at the microscopic scale,
there are no net-currents (see footnote 2). In other words, even though time is present at
the small scale, in the sense that the state of the system changes, there is no directionality
of time: statistically speaking, any transition and its time-reverse are equally probable.
There is no way to distinguish the past from the future. What we have enunciated here
corresponds to the famous principle of detailed balance [8]. Together with a corollary result
discussed below, the symmetry of Onsager coefficients, it earned Lars Onsager his Nobel
prize. This principle has been the basis for several fundamental advances in statistical
mechanics including the fluctuation dissipation theorem and Green–Kubo relations for
transport coefficients. Much of what will be discussed below, and in particular the by
now famous fluctuation theorem (see below), can be considered as a continuation and
extension of this pioneering work.

2. Efficiency of thermal engines

The progress in design and construction of the steam engine by James Watt and others
promoted the industrial revolution in the 19th century. There was an obvious interest in
the efficiency of such machines. The impossibility of a perpetuum mobile of the second
kind stipulates that the efficiency of a thermal engine operating with a single heat bath
has to be zero, since no work can be extracted. Starting from this premise, the French
engineer Sadi Carnot made a momentous observation. In his book ‘Réflexions sur la
puissance motrice du feu et sur les machines propres a développer cette puissance’, he
showed that the efficiency of a thermal machine, operating between two heat reservoirs

2 The discussion given here is slightly misleading. Due to conservation of angular momentum, an overall circular
flow can exist in a system in equilibrium. In the quantum mechanical context, one can also refer to superfluidity
and superconductivity, corresponding to the existence of a non-dissipative flow. It is however customary to
consider the frame of reference in which the overall flows, both momentum and angular momentum, are zero.
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at temperatures Th and Tc respectively, is at most given by

η =
W

Qh
≤ ηC = 1 − Tc

Th
. (1)

Here W and Qh stand for the work and amount of heat coming from the hot reservoir,
respectively. In view of the simplicity of the premise compared to the enormous impact of
this result as the founding stone of thermodynamics, Carnot’s derivation can be considered
as one of the most impressive in the history of physics. It proceeds in two steps. First
Carnot constructs a machine that achieves Carnot efficiency ηC. It consists of an ideal gas
undergoing a cycle of isothermal expansion in contact with the hot reservoir, adiabatic
expansion while disconnected from the reservoirs, isothermal compression in contact with
the cold reservoir, and adiabatic compression while disconnected from the reservoirs. This
cycle is performed such that the system is asymptotically close to equilibrium during the
entire process. Since the equation of state is known for an ideal gas, the heat and work
can be evaluated in each of the steps. By such an explicit calculation, Carnot finds that
the efficiency is indeed equal to ηC. The fact that the cycle runs essentially at equilibrium
provides a crucial by-product: the engine can also be operated in the other direction. It
then functions as a heat pump delivering an amount of heat Qh to the hot reservoir upon
input of an amount of work W , again with their ratio given by the efficiency ηC, cf (1). The
second step of the derivation is a proof ex absurdo: suppose there is another engine that
can deliver work at a higher efficiency than Carnot efficiency, i.e., for a certain amount of
heat Qh it produces more work than specified by (1). Using the Carnot machine, one can
however re-conduct to the hot reservoir all the heat Qh extracted by the former engine,
by using an amount of work specified by (1), i.e., by using less work than the first engine
has produced. The net result is a remaining amount of work, obviously extracted from
the cold reservoir alone, which is in contradiction with the premise.

It is revealing to rewrite (1) in another way, using conservation of energy, W =
Qh − Qc, where Qc is the heat delivered to the cold reservoir:

ΔStot =
Qh

Th
− Qc

Tc
≥ 0. (2)

Since Qh/Th and −Qc/Tc are the entropy changes in the hot and cold reservoirs, and
the entropy of the gas is unchanged since it returns to the same state after a cycle,
the upper bound of Carnot efficiency is nothing but a statement of the second law of
thermodynamics, stipulating the increase of the (total) entropy [9]3. Carnot efficiency is
reached for zero overall entropy production, i.e., when all processes take place reversibly.
As a corollary, we conclude that such a device can always be operated in both directions:
reaching Carnot efficiency implies that it can function either as a thermal engine or as a
refrigerator and a heat pump.

3. Onsager symmetry

The machine considered by Carnot operates in a cyclic manner. But the upper limit
applies to any thermal engine, and in particular to a machine operating in a steady state

3 Note that Clausius first derives from Carnot efficiency the fact that entropy is a state function, followed by a
proof of the increase of total entropy.
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rather than cyclical manner. A simple model for such a construction involves two applied
forces. One is the thermal gradient ΔT inducing the powering heat flux. The other is a
load force F which produces the work, by for example lifting a weight over a distance x.
There are also two fluxes, J1 = Q̇h, the heat flux leaving the hot reservoir, and J2 = ẋ,
the speed at which the force lifts the (appropriate) load. We will be concerned with the
case of a small (but finite) T -gradient so that one can define a base temperature T . One
identifies the thermodynamic forces X1 = ΔT/T 2 and X2 = F/T ,4 which are driving the
fluxes. Since the fluxes vanish in the absence of forces, one finds by a Taylor expansion
of fluxes in terms of the forces to linear order:

J1 = L11X1 + L12X2 J2 = L21X1 + L22X2. (3)

The coefficients L form a matrix of linear response, also called the Onsager matrix. The
diagonal elements correspond to known material constants: L11 is essentially the heat
conductivity and L22 the mobility. There is however no a priori reason why the off-
diagonal elements would be zero5. In fact, they precisely correspond to the phenomena
we are interested in: L21 describes motion in response to a heat flux, i.e., it is the thermal
engine; L12 corresponds to a heat flux induced by a force, hence we are talking about a
heat pump or a refrigerator.

Returning to the issue of efficiency, we recall that Carnot efficiency can only be
approached when working in the vicinity of equilibrium. Hence both fluxes should become
vanishingly small. If the determinant of the Onsager matrix is not zero this can only
happen in the limit X1 → 0, X2 → 0, which is not the case we want to consider.
There is, however, an alternative, namely to consider the limit of a zero determinant,
L11L22 = L12L21. This is equivalent to saying that both fluxes become proportional to
each other: J1 = εJ2, with ε the unit of energy linking both fluxes. In particular one has
that ε = L11/L21 = L12/L22. In this case, the application of a stopping force to the flux
J2, namely Xstop

2 = −L21X1/L22, will result in a vanishing heat flux J1. An engine with
fluxes proportional to each other is called strongly coupled. Note that such a situation is
by no means exceptional. It can be easily realized in nano- and bio-technology, and it is
a natural constraint in chemical reactions, see also further examples given below.

Turning to the calculation of the efficiency for such a strongly coupled steady state
engine, one finds:

η =
W

Qh

=
Ẇ

Q̇h

=
−F ẋ

Q̇h

=
−TX2J2

J1

= −TX2/ε. (4)

Note furthermore that ηc = ΔT/T = TX1. Upon applying a stopping force X2 = Xstop
2 =

−X1L21/L22, we find that reproducing Carnot efficiency η = ηc implies the equality
L21/(L22ε) = 1, leading to the famous symmetry of the Onsager coefficients:

L12 = L21. (5)

We conclude that the impossibility of a perpetuum mobile of the second kind implies
Carnot efficiency, which in turn implies Onsager symmetry (in strongly coupled systems).

4 With these definitions one can show that the rate of total entropy production is given by Ṡtot = J1X1 + J2X2,
cf [10].
5 As is well known, coefficients can be zero for symmetry reasons such as Curie’s principle stating that scalar and
vectorial properties in isotropic systems do not couple. In the present case, we consider a one-dimensional setting
so that both the temperature gradient and the force are scalar variables.
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Onsager in fact proved that this symmetry prevails even when the two fluxes are not
proportional. The simplest way to derive this result today is by invoking the fluctuation
theorem which will be presented below. Onsager symmetry in the context of thermal
engines can be seen as an extension to the regime of linear response of the duality between
the engine and refrigerator that we mentioned before for a reversible Carnot engine. A
thermal engine and a mechanical refrigerator always appear in tandem also outside of the
regime of reversible operation (but limited to linear response), and with equal intensity if
the proper definitions of thermodynamic forces and fluxes are used.

There are many examples and applications of Onsager symmetry. We mention a
surprising recent illustration, which is relevant in the realm of nanotechnology. While
we are now able, not only to observe and measure at the very small scale, but also to
design and assemble, the next crucial step is to add functionality. One problem is that
fluctuations (and quantum effects) have to be taken into account at such a small scale.
Copying the mode of operation from a macroscopic counterpart may not be the best way
to go. A well documented example concerns the so-called Brownian motors [11]. Such
motors have no macroscopic counterpart: they cease functioning in the macroscopic limit.
Of specific interest to us is the thermal Brownian motor arising from the discussion of
the Maxwell demon mentioned before. Feynman shows that this device, while it cannot
rectify thermal fluctuations from a single heat bath, does function as a thermal engine
when two reservoirs at different temperature are available. Feynman’s mesoscopic analysis
is however flawed: his construction cannot operate reversibly and hence does not reach
Carnot efficiency [12] (there is a way around this difficulty which interestingly relies on
the use of strongly coupled engines as discussed above, cf [13] for a further discussion).
He neglected the thermal conduction that appears via the degree of freedom that couples
both heat baths. This issue is also the basis of a debate on the foundations of macroscopic
thermodynamics, as illustrated by the analysis of the so-called adiabatic piston [14]. In
order to clarify the origin of these difficulties, an exact calculation from first principles
calculation is welcome. This was achieved for a simplified version of the Feynman–
Smoluchowski device [15]. Subsequently is was realized that due to Onsager symmetry,
a thermal Brownian motor implies the existence of a Brownian refrigerator [16]. Making
efficient small scale refrigerators appears to be a technological challenge. The Brownian
refrigerator has the great advantage that it operates better as the device becomes smaller,
justifying its name as the smallest refrigerator in the world [17].

4. Efficiency at maximum power

We stressed that reaching Carnot efficiency requires reversible, i.e., infinitely slow,
operation. The power, work over time, for such a machine is therefore zero. Such a
machine has limited technological interest. It is more natural to search for engines working
at high power. This raises the question of the corresponding efficiency. After several
earlier contributions [18], the issue was taken up by Curzon and Ahlborn in an influential
paper [19]. They modified the Carnot cycle by assuming a difference of temperature
between the reservoirs and the gas, while neglecting the dissipation associated to the
adiabatic phases. They obtained the following remarkable result for the efficiency of
this engine at maximum power (maximizing with respect to the gradients of temperature

doi:10.1088/1742-5468/2010/10/P10009 6
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between gas and reservoirs):

ηCA = 1 −
√

Tc

Th
. (6)

The beauty of this result and the fact that it can be found in a number of other model
systems raises the question of its universality. It turns out however that ηCA is neither
a lower nor an upper bound of efficiency at maximum power. Furthermore, one needs
to specify more precisely with respect to which variables the maximum is taken, and the
latter may even not be unique. It is however revealing to study efficiency at maximum
power when operating close to equilibrium. Considering a small temperature difference
between hot and cold reservoir, it follows that ηC = 1− Tc/Th is a small quantity and we
can consider the expansion of ηCA in terms of ηC:

ηCA = 1 −
√

1 − ηC =
ηC

2
+

η2
C

8
+

η3
C

16
+ · · · . (7)

In the region of linear response, i.e. to linear order in ηC, one can prove that there is a
unique maximum of the power, and that the efficiency at this maximum is at most half of
the Carnot efficiency [21]. The limit is achieved for strongly coupled systems, which was,
as discussed above, also the prerequisite for achieving Carnot efficiency itself. The proof
for the steady state engine described before, cf (3), goes as follows. In the regime of linear
response, the power X2J2 = X2(L21X1 + L22X2) has a maximum at half the stopping
force X2 = Xstop

2 /2 = −L21X1/(2L22). The corresponding efficiency, cf (4), is given by:

η = −TX2/ε = ηC
L21L12

2L11L22

=
ηC

2
. (8)

The basic ingredient for the derivation is Onsager symmetry, which follows from Carnot
efficiency which derives from the impossibility of a perpetuum mobile of the second kind.
We conclude that the universal coefficient 1/2 is a consequence of the impossibility of a
perpetuum mobile of the second kind.

We next consider the coefficient 1/8 of the quadratic term in (7). It turns out that one
can again prove its universality under the additional assumption of a left/right symmetry
in the system [22]. This result is very surprising because all the traditional ‘universal’
results in nonequilibrium statistical mechanics are limited to the region of linear response.
The above universality refers to the coefficient of the quadratic nonlinearity. To bridge
the gap to the nonlinear regime, one needs to invoke the recent spectacular advances
in our understanding of the second law, which we will regroup under the common
name of the fluctuation theorem. Paradoxically, while the second law was originally
intended for the description of macroscopically large systems, it is its application to
small scale systems that is providing the essential breakthrough. The fluctuation theorem
allows the above result to be derived, but more importantly it incorporates fully the
impact of micro-reversibility, it clarifies the deeper meaning of entropy production, and
it naturally extends thermodynamics into a new field ‘stochastic thermodynamics’ which
deals with the thermodynamics of single trajectories. The new developments concerning
the efficiency at maximum power in thermal engines have stimulated the study of several
exactly solvable models [23]. They are all found to be consistent with the predicted
universality.
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5. Dissipated work

The fluctuation theorem is most easily derived from microscopic theory in one of the
traditional scenarios of thermodynamics: the work performed on a system in contact with
a heat bath. We first reproduce the result of macroscopic thermodynamics. A system
is initially at equilibrium in contact with a heat bath at temperature T . It undergoes a
transformation towards a new equilibrium state ending again in contact with the same
heat bath. Note that the heat bath need not stay connected with the system during the
process. It is sufficient that it is so at initial and final times. Let us call U and S the
energy and entropy of the system, which are well defined for the system at equilibrium, in
particular in the initial and final equilibrium states. One also introduces the corresponding
free energy F = U − TS. When applied to small scale systems, we include the energetic
terms coming from the interaction with the heat bath in the definition of these quantities.
During the transformation, a certain amount of external work W is performed. This
is an algebraic quantity with a positive sign if work is performed on the system. We
further call Qm the amount of heat dumped into the heat bath (or medium). The latter
is supposed to be and remain at equilibrium at temperature T throughout the entire
process. The change in its entropy is therefore ΔSm = Qm/T . We stress that while
this result is in agreement with equilibrium statistical mechanics, in the sense that this
relation is obtained if the heat bath is described by an equilibrium ensemble at all times,
there is no microscopic foundation for this result. In particular the fact that the heat
bath remains in its equilibrium distribution, while in contact with a system perturbed far
from equilibrium, is strictly speaking not compatible with Hamiltonian dynamics except
if the perturbation is infinitely small. The use of an idealized heat bath or an equivalent
substitute can, as far as I know, not be avoided and forms the basis of any entropy
calculation, see however [24]–[26] for some interesting new ideas. Conservation of energy
implies that ΔU = W − Qm. Furthermore since both the final and initial temperature of
the system are equal to the temperature T of the heat bath, one has ΔF = ΔU − TΔS.
One concludes that for the total entropy production ΔStot = ΔS + ΔSm:

TΔStot = W − ΔF. (9)

This result is very interesting for the following reasons. First it allows us to identify
the total entropy production in terms of a mechanical quantity, the amount of work W .
Note that ΔF is completely specified since it is the change in free energy of the system
between its well-defined final and initial equilibrium states. Second this identification is
valid independent of the size of the considered system. For a small system, we stress that
the properties of the ‘small’ system, its energy, entropy and free energy, include the term
related to the interaction of the system with the reservoir. Indeed, the crucial ingredient
for the identification of the entropy production is the formula ΔSm = Q/T , which applies
to the degrees of freedom specific to the reservoir, and not for the interaction energy.
Alternatively, one can consider the limit of infinitely weak coupling between system and
reservoir, so that the interaction energy can be neglected (but this also implies that the
actual relaxation towards equilibrium via this very weak coupling will take a very long
time). The case of a small system has a particular interest since the work will in general
differ from one run to another. As a result the amount of energy evacuated to the reservoir
and the concomitant entropy production given by (9) is also a fluctuating quantity. This
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opens the door to the calculation of the probability distribution for the total entropy
produced upon perturbing a small system in contact with a heat reservoir. Third, the
above result is valid for any procedure in which the state of the system is changed from
its initial to final equilibrium. One can expect that the amount of work will, even for a
macroscopically large system, depend on the way this transformation is performed. For
example, it is expected that the work will be larger for brutal transitions. In fact, returning
to macroscopic thermodynamics (entailing the consideration of a macroscopically large
system) we can invoke the second law of thermodynamics, stipulating the increase in
total entropy ΔStot = W −ΔF ≥ 0. This leads to the familiar statement that the amount
of work performed on a system in contact with a heat bath, needed to switch between an
initial and final equilibrium state, is at least equal to the difference in free energy. When
the latter is negative, one can in principle extract work (i.e. W is then negative) from this
decrease of free energy. The equality sign is reached for reversible transformations. One
can wonder how this result relates to the entropy production for a small system. Both
W and ΔStot are then random variables and there is no reason why the above inequality
would persist. The macroscopic limit is recovered by putting a large number of such
systems in parallel, which is tantamount to repeating the experiment many times. By the
law of large numbers, we conclude that the second law applies to the averages of entropy
production or work

〈ΔStot〉 = 〈W 〉 − ΔF ≥ 0. (10)

We now present a microscopic calculation, providing an explicit expression for W and
hence for ΔStot = W − ΔF . This result is consistent with the above inequality, but
provides a deeper formulation of the second law, and will lead to the replacement of its
usual formulation as an inequality for the average entropy production by equalities known
as the integral and detailed fluctuation theorem for the stochastic entropy production.

6. Fluctuation theorem

We set out to derive an exact microscopic expression for the work upon bringing a system
from one canonical equilibrium state into another one [27]. The system is described by
the Hamiltonian H(q, p; λ), where q, p denote all microscopic degrees of freedom (position
and momenta) and λ is a control parameter, that describes the energy exchange with an
external mechanical device. For simplicity, we will assume that the Hamiltonian is an
even function with respect to inversion of momenta. The system is initially assumed to
be in canonical equilibrium at temperature T at the value λA of the control parameter.
This can be achieved by putting it in contact with a heat bath at this temperature.
For simplicity of the argument we will be assume that the heat bath is subsequently
disconnected. At the end of the forward process, the system will be reconnected so that it
returns to canonical equilibrium. The disconnection and reconnection can be replaced by
an assumption of weak coupling. Note also that we can always include in the definition
of the system a large part of the heat bath such that the boundaries of the system are
during the time of the perturbation not affected by it and hence this boundary region is
and remains at equilibrium throughout the process. The disconnection and reconnection
should thus have no influence on the work performed nor the change in state of the system
during the transition. During the experiment, the control parameter is changed following
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a specific protocol λ(t) from λA to λB. Since the reservoir is disconnected no energy is
exchanged other than the work W performed by the external agent on the system. We
will furthermore consider the time-reversed scenario, with the system initially at canonical
equilibrium at the same temperature T , but at the value λB of the control parameter. The
latter is now changed according to the exact time-reversed protocol. We will indicate with
a superscript tilde all the variables that relate to this so-called reverse experiment.

We first set out to calculate the work W (q, p; t) done along the forward process,
for a specific microscopic trajectory, namely the one that passes through the phase
point (q, p) at time t. Since the dynamics are deterministic, there is precisely one
such trajectory. Let us call (q0, p0) and (q1, p1) the corresponding initial and final
phase points uniquely determined by (q, p) (for the specified scenario λ(t)). Note also
that there is a one-to-one correspondence with the time-reversed trajectory in the time-
reversed protocol which, starting from (q1,−p1), goes through (q,−p) and, finally, into
(q0,−p0). For simplicity of notation, we will use the forward time to express times in
both forward and backward scenarios. By conservation of total energy, one has that
W (q, p; t) = H(q1, p1; λB)−H(q0, p0; λA). Now, since the phase space density is conserved
along any Hamiltonian trajectory, one has, in both the forward and backward processes
that

ρ(q, p; t) = ρ(q0, p0; t0) =
exp[−βH(q0, p0; λA)]

ZA

(11)

ρ̃(q,−p; t) = ρ̃(q1,−p1; t1) =
exp[−βH(q1,−p1; λB)]

ZB
, (12)

where ZA and ZB are partition functions at the equilibrium states A and B, respectively,
and β = T−1 is the inverse temperature (for simplicity, we set Boltzmann’s constant equal
to 1). These expressions allow us to eliminate the Hamiltonian (which is supposed to be
even in the momenta) at initial and final times in favor of the phase space density at any
intermediate time point. We thus obtain the following basic expression for the work of
the change of the total entropy, associated to the specific trajectory under consideration:

TΔStot = W (q, p, t) − ΔF = T ln
ρ(q, p, t)

ρ̃(q,−p, t)
= T ln

Prob(path(q, p, t))
˜Prob( ˜path(q,−p, t))

. (13)

ΔF = T ln ZB/ZA is the free energy difference between the final and initial equilibrium
states. Note also that the (phase space) probability densities ρ(q, p, t) and ρ̃(q,−p, t)
for being in the microstates (q, p, t) and (q,−p, t) at the forward time in the forward
and reverse experiments are equal to the probability densities for observing the
corresponding paths, which we represented by Prob(path(q, p, t)) and ˜Prob( ˜path(q,−p, t)).
Equation (13) is the basic result which we are after: it gives the explicit expression for
the trajectory dependent work. The trajectory is specified by the microscopic state at
any intermediate time or, equivalently, by the entire trajectory itself (since there is a one-
to-one correspondence between both). The probability distribution for the work is also in
principle known since ρ(q, p, t) is the probability density to observe the corresponding
value. Let us first verify that the above expression is in agreement with the usual
formulation of the second law. By performing the average of W (q, p, t) with respect
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to ρ(q, p, t) over the entire phase space Γ, we find:

〈ΔStot〉 =
〈W (q, p, t)〉 − ΔF

T
=

∫
dΓ ρ(q, p, t) ln

ρ(q, p, t)

ρ̃(q,−p, t)
= D(ρ(q, p, t)||ρ̃(q,−p, t))

(14)

which features the relative entropy of Kullback–Leibler distance D(ρ(q, p, t)||ρ̃(q,−p, t))
between the probability distributions ρ(q, p, t) and ρ̃(q,−p, t) [28, 29]. As is well known, it
is a positive quantity. The expression (13) however allows us to derive a stronger result:

〈e−ΔStot〉 =

∫
dΓ ρ(q, p, t)

ρ̃(q,−p, t)

ρ(q, p, t)
=

∫
dΓ ρ̃(q,−p, t) = 1. (15)

This is called the integral fluctuation theorem. This equality implies the ‘traditional
second law’ 〈ΔStot〉 ≥ 0 by application of Jensen’s inequality. We now proceed to argue
that whenever we have a integral fluctuation theorem, we also have a detailed fluctuation
theorem. Indeed one can write:

〈e−ΔStot〉 =

∫
dΔ StotP (ΔStot)e

−ΔStot =

∫
dΔ StotP̃ (−ΔStot) = 1, (16)

where we introduced the function P̃ defined by the relation:

P (ΔStot)

P̃ (−ΔStot)
= eΔStot. (17)

This relation is called the detailed fluctuation theorem. Note that P̃ is a probability
distribution: it is positive and normalized. Note that the detailed fluctuation theorem in
turn implies the integral fluctuation theorem (which in fact expresses the normalization of
P̃ ), so they are equivalent statements. Without further specification, one cannot expect
that P̃ is related in a simple way to the probability distribution P , other than via its
‘definition’ (17). However, the random variable under consideration, ΔStot, is equal to
the logarithm of the ratio of two probabilities ρ and ρ̃, the latter being related via an
involution (˜̃ρ = ρ), namely time-reversal. It is then easy to prove that P̃ is indeed
the probability distribution when the entropy production is sampled with respect to the
time-reversed experiment, as we anticipated by using the same superscript tilde notation,
see [30] for more details.

Some additional comments are in order, identifying the integral or detailed fluctuation
theorem as the basic and consistent formulation of the second law. First (14) states that
the average entropy production is the amount of time-symmetry breaking, i.e. the level of
difficulty in distinguishing snapshots of forward and backward experiments. In the case
of a system of large size N , the time-symmetry breaking can become very prominent.
The probability distribution in the forward experiment ρ will be dominated by typical
configurations. When the system in far out of equilibrium, it will be exponentially unlikely
(exponentially in N) to observe the same micro-configuration (with inverted momenta)
in the backward experiment, leading to an extensive entropy (proportional to N). In this
case, one will need to perform exponentially many experiments to identify the entropy
production via the above formula, and other approaches (involving reduced description
via elimination of fast variables) are more appropriate. As a somewhat paradoxical
consequence, we note that entropy production as the breaking of time-symmetry can be
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readily measured in small systems, where the arrow of time is less pronounced, but not in
large systems where the arrow of time is ‘exceedingly’ dominant. Note also that the usual
wording in macroscopic thermodynamics that entropy cannot decrease is strictly speaking
incompatible with the above formula, since it would imply an infinitely large entropy
production. The correct formulation is that decreases of total entropy are exponentially
unlikely, as stipulated by the detailed fluctuation theorem.

Second we consider the limit of a reversible transformation, with the system being
at equilibrium at all times. We can still follow single trajectories. Even at equilibrium
there will be energy exchanges with the thermal bath and we can wonder about the
corresponding total entropy change. Because of reversibility, the probability for a
transition between two states with difference ΔStot in entropy is as large as the probability
for the inverse transition −ΔStot: P (ΔStot) = P (−ΔStot). In combination with the
detailed fluctuation theorem this implies that the entropy production has to be essentially
zero (with probability one) for all trajectories ΔStot ≡ 0 or P (ΔStot) = δ(ΔStot). It is
revealing to show how this property follows from energy conservation. We split the total
entropy change for a given trajectory into a medium contribution ΔSm plus a system
contribution ΔS: ΔStot = ΔSm + ΔS. Let Q and ΔH be the heat evacuated to the
medium and energy change of the system. By energy conservation ΔH = −Q. Obviously
ΔSm = Q/T . We now define the entropy of the system while being in a specific state
(q, p) following Seifert [43]: S(q, p) = − ln P (q, p). Since the system is at equilibrium one
has P (q, p) = P eq(q, p) ∼ e−βH(q,p) and consequently ΔS = βΔH . We conclude that total
entropy being constant along the trajectories is tantamount to energy conservation. This
should be contrasted with the heuristic discussion in macroscopic thermodynamics where
one argues that there are fluctuations away from the state of maximum entropy.

Third, we note that since we know the work associated to every specific trajectory,
we can also evaluate the average work of trajectories that behave in a specified manner,
for example they pass through a specific subpart of phase space. This allows us to make
the connection with the thermodynamics of computation and information processing and
connect to the issues of Maxwell demons, etc [27, 31, 32].

Fourth, the expression for the stochastic trajectory dependent entropy given in (13)
remains valid and is consistent with the one obtained in the context of a stochastic
description. We briefly comment on the relationship between the two approaches, see
also section 7 for a short derivation. First we mention an essential difference between the
stochastic and Hamiltonian description. A Markovian stochastic description is irreversible
from the start. So the relaxation of the system back to equilibrium, which we realize in the
Hamiltonian context via the idealized heat bath, is built into the stochastic description.
While relaxation is automatically taken care of in the stochastic approach, it is not obvious
how the physics of the problem, and in particular fundamental physical properties, such
as the underlying reversibility, is properly incorporated. After some early attempts [33]
a procedure was proposed for the average entropy production for chemical models in [34]
and for general Markov processes in [35]. The proper macroscopic entropy is recovered,
but the bonus of the stochastic description is that the expression for the average entropy
production includes the effect of the fluctuations. It could for example be shown that
the fluctuations reinforce the minimum entropy production by adding a non-extensive
negative contribution for steady states in the linear regime close to equilibrium [35].
We introduced at that time the term ‘stochastic thermodynamics’ to refer to this new
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approach [36]. The real breakthrough came with the discovery of the work and fluctuation
theorems, in which one studies the trajectory dependent quantities instead of the usual
thermodynamic averages. The results obtained in this context deal with many different
types of descriptions, ranging from Hamiltonian over thermostated system to stochastic
processes, and involve a large number of significant contributions [37]. These separate
results have created the impression that there are several fluctuation theorems, depending
on which system, initial and final conditions, state or description are being used. We
disagree with this opinion. The central and crucial observation is that the total stochastic
entropy production is given by the logarithm of the ratio of two probabilities, one for
a forward and another for the proper time-reversed experiment, as in (13), see also the
next paragraph. It is also gratifying to realize that the stochastic analog can be derived
directly from the above microscopic result by assuming that the stochastic description is
for the physical system under consideration correct (i.e. that it is an exact consequence,
in a limit which needs not to be specified, of the microscopic laws), cf [5, 38] for more
details.

Fifth, one may wonder whether a formula like (13) or (14), even if they are exact and
have a wide range of application, is useful and has, aside from its purely theoretical
value, practical applications. Considering the formula (14) for the average entropy
production, one can make the following observation. The integral is dominated by the
typical realizations of the forward process, i.e. by the phase space points (q, p), or the
paths passing through these points, for which ρ(q, p; t) is large. The probability for these
points or their corresponding trajectories has to be compared with the probability for the
time-reversed trajectory in the backward process. When such a trajectory is atypical in
the backward process, i.e., when it has a low probability, then there is significant entropy
production. Let us turn the argument around. Entropy is an extensive quantity. Hence,
in the case where one is not at equilibrium, the entropy is typically proportional to the
number of degrees of freedom. To reproduce this result via (14) we conclude that the
time-reversed versions of the typical forward trajectory have to be exponentially unlikely
in the backward process. This is just another way of saying that entropy production is
associated to the arrow of time. Playing the movie backward will look very different when
the entropy is significant. The drawback is that, because of the extensivity of entropy
and the corresponding exponential dependence of probabilities, the observation of the
backward trajectories dominating the relative entropy in (14) is only feasible when we are
either very close to equilibrium or when we are dealing with small systems (more precisely,
with systems that have only a few degrees of freedom that are not at equilibrium). The
situation is, not surprisingly, similar to that for the application of the work, see below [42].
This however is not the end of the story: there is one specific property that makes our
formula quite useful, namely the chain rule of relative entropy. It states that the relative
entropy of two probability distributions can only become smaller upon coarse-graining,
i.e. upon considering reduced distributions. Hence

0 ≤ D(P, P̃ ) ≤ D(ρ‖ρ̃) = 〈ΔStot〉, (18)

for any coarse-grained distributions P and P̃ of ρ and ρ̃. In other words, any observed
arrow of time, i.e., statistical distinction between forward and backward processes, gives
rise to a lower bound for the entropy production. In the absence of any information
on time-asymmetry, the lower bound is zero and one recovers the ‘minimal’ statement
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incorporated in the second law, namely that the total average entropy cannot decrease.
The above results also suggest that the choice of variables, which strongly display time-
asymmetry, can capture most or all of the entropy production. For example, upon
quenching an external potential for a Brownian particle in a heat bath, the only variable
that is not at equilibrium at the instant of the quench is the position of this particle [27].
The full entropy production is reproduced by the time-asymmetry of this single variable.
As one measures at later times after the quench, the signature of irreversibility moves
into other variables, in particular the heat bath variables, and one needs to include
their time-arrow to reproduce the total entropy production. These features can be nicely
illustrated in more detail in exactly solvable harmonic models [39]. The fact that there
are ‘macroscopic expressions’ for entropy production is also related to this observation.
We are referring to situations in which the arrow of time is only present at the level
of the observed macro-variables and all the other microscopic degrees of freedom are at
equilibrium (this is sometimes referred to as the situation of local equilibrium).

Sixth, we focus on a specific version of the fluctuation theorem, namely the work
theorem discovered by Jarzynski and refined by Crooks [40, 41]. To obtain this result,
we just need to rewrite the detailed fluctuation theorem (15) in terms of the work rather
than the stochastic entropy production:

P (W )

P̃ (−W )
= eβ(W−ΔF ). (19)

This result was first derived in the context of a stochastic description by Crooks [41]. It
implies the famous Jarzynksi equality [40], the analog of the integral fluctuation theorem,
derived originally in a Hamiltonian context very similar to ours:

〈e−βW 〉 = e−βΔF . (20)

Both the fluctuation theorem and its variant the above work theorem have been
discussed, illustrated and verified in a large number of situations. We mention three
of them. The first is a real experiment, namely the opening (forward experiment) and
closing (backward experiment) of a hairpin RNA [44]. This can be achieved by using
optical tweezers and the force versus displacement curves can be recorded. The surface
under these curves represents the amount of work. By repeating the experiment many
times, a histogram can be constructed. The histogram will depend on the protocol (speed
of opening/closing). If the above relation (19) applies, the various histograms of P (W )
and P̃ (−W ) should cross at the same point, namely W = ΔF . The authors considered
three different protocols (slow, medium and fast speed of operation) and it was found that
the histograms indeed cross at approximately the same value of the work, a value which
moreover is in good agreement with other estimates of the free energy difference between
the open and closed hairpins.

As a second example we mention a computer experiment [45] in which an object of
arrow-like shape is moved at constant speed between a given initial and final location.
In the forward experiment the arrow is moving with its sharp angle pointing forward. In
the backward experiment, it moves with its flat face pointing in the direction of motion.
For a motion in an ideal gas the probability distributions for the work can be calculated
analytically, and the Crooks’ relation (19) is verified. The same relation is also verified
when carrying out molecular dynamics simulations with the arrow moving through a gas
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of hard discs. When the density is sufficiently dilute the ideal gas distributions for the
work are recovered. Note however that the forward and backward distributions can differ
very much in scale and shape. This is for instance the case when the motion of the arrow
is supersonic (faster than the thermal speed of the gas particles). The forward work
distribution still has a somewhat Gaussian shape, while the backward distribution has
several extrema and is concentrated on much higher values of work. Yet the logarithm of
the ratio of the two distributions is a linear function of the work, i.e., it is a straight line
going furthermore nicely through the origin (corresponding to ΔF = 0 in this case).

We finally turn to a thought experiment not unlike the one used by Einstein in
his discovery of stimulated emission. We consider two black bodies at equilibrium at
temperatures T1 and T2, respectively. At time t = 0 we open a window allowing photons
of a specific frequency ω0 to be exchanged. After a time t we close the window again.
Let ΔN be the net number of photons that have moved from 1 to 2. After both
reservoirs have returned to equilibrium (we assume they are large enough so that their
final and initial temperatures are the same), their respective entropy changes are given
by ΔS1 = −ΔN�ω0/T1 and ΔS2 = ΔN�ω0/T1, resulting in a total entropy change

ΔStot = ΔN�ω0

(
1

T2
− 1

T1

)
. (21)

We conclude that the probability distribution for ΔStot is essentially that for the photon
count. At first one is tempted to assume that the photon arrival statistics is Poissonian,
with the rate proportional to the density of photons, which is given by Planck’s law. With
this assumption, the total entropy production (21) does not, however, obey the fluctuation
theorem. The point is that the arrival of photons is not independent. Photon bunching
was first experimentally observed in the famous Hanbury Twiss experiment [46]. The
intuitive explanation is that due to stimulated emission, photons have a certain tendency
to bunch and arrive in pairs at a detector. The correct photon count distribution was
first calculated from quantum field theory by Glauber [47], and is found to be a negative
binomial (for large enough times). Upon inserting this distribution, one easily checks that
the fluctuation theorem is indeed satisfied [48].

7. The three faces of the second law

It is revealing to reproduce the formula for the total entropy production (13) for a system,
whose dynamics is described by a Markovian stochastic process. This derivation also
illustrates that the formula remains valid for any initial probability distribution, and is
hence not limited to initial equilibrium distributions (such as the canonical one used
above) or to steady state transformations. For simplicity, we assume that the system
is described by a set of discrete non-degenerate states m with corresponding energy εm,
with internal entropy of each state equal to zero. The time evolution for the probability
distribution pm in the state m is described by a Markovian master equation:

dpm

dt
= Σm′Wm,m′pm′ , (22)

where Wm,m′ (m 
= m′) is the probability per unit time for a change in state from m′ to m.
Note that the diagonal element is negative and equal to minus the sum of the off-diagonal
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elements:

ΣmWm,m′ = 0. (23)

This property guarantees conservation (normalization) of total probability. To proceed we
need to introduce the basic elements relating the stochastic model to a physical system.
We have associated to every state a specific energy. In view of energy conservation, jumps
between states require energy exchange. Let us consider the case where this exchange
takes place via ideal thermal reservoirs ν at temperatures Tν . In principle, any reservoir
can lead to a transition. Since the reservoirs do not interfere with each other (otherwise
we would need to describe this interaction), one has Wm′,m =

∑
ν W ν

m′,m. Furthermore,
when all exchanges are switched off, except with a given reservoir ν, the system has to
relax to the corresponding canonical distribution peq,ν

m ∼ exp(−βνεm) and detailed balance
has to prevail. This implies:

ln
W ν

m,m′

W ν
m′,m

= ln
peq,ν

m

peq,ν
m′

= βν(ε′m − εm) = ΔSν (24)

where ΔSν is the entropy change in the reservoir ν upon absorbing the energy ε′m−εm from
the system in its jump from m′ to m. Note that these energy exchanges are modeled here
as instantaneous jumps, in accordance with the Markovian description of the system. The
simplest way to include an ideal frictionless device that exchanges work with the system
is to operate with time-dependent transition rates W ν

m,m′ = W ν
m,m′(t), while preserving

the validity of (24). This is for example achieved by the application of an external
work producing/absorbing device that shifts the energy levels εm = εm(t), implying a
corresponding time-dependence of the transition rates. In contrast to the heat exchanges,
which take place during the jumps, the work is exchanged continuously in time. It is easy
to verify that these assumptions lead to proper expressions for work and heat, and are in
agreement with overall energy conservation.

Turning to entropy considerations, we consider an experiment running from time t = 0
to a final time t = T . It is important to stress that an experiment is characterized not
only by the way that the transition probabilities are changing in time, but also by the
initial probability distribution pm(t = 0), corresponding to a specific preparation of the
system. We also consider the time-reversed experiment, which runs with the time-reversed
transition probabilities, and starts with the final probability distribution reached in the
forward experiment at time t = T , namely pm(T ). We stress that the initial distribution
pm(t = 0) is arbitrary, but the backward experiment has to be run with the specific
distribution pm(T ) as initial distribution. A large part of the literature deals with the
consideration of steady states, with pm(t = 0) = pm(T ) = pst

m and with time-independent
rates. This has the ‘advantage’ that forward and backward experiments are identical. In
this case one can drop the reference tilde for the time-reversed experiment so that the
fluctuation theorem implies a symmetry property for the distribution P̃ = P .

Let us now consider in the forward experiment the stochastic entropy change for a
specific realization, in which the system starts at time t = 0 from state m0, performs a
number of jumps to m1, . . . up to mN at times τ1, . . . up to τN , staying there until time
t = T . The sum over these jumps will be denoted by a sum over τ . We also need to
specify for each of the jumps which reservoir ν is providing the energy, but omit this
for simplicity of notation. The total entropy change consists of two contributions. We
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need to define the stochastic entropy for the system when being in a particular state,
say m(t), at time t. The actual probability distribution in the experiment is pm(t). The
stochastic entropy of the system is defined in accordance with information theory [28], as
first proposed by Seifert [43], as S = − ln pm(t)(t). The resulting entropy change of the
system—for the above specified trajectory and the experiment—between final and initial
state is thus ΔS = ln pmN

(T ) − ln pm0(0). This term is sometimes called the boundary
term. Its omission in earlier derivations of the fluctuation theorem leads to a version that
is only valid for asymptotic long times in systems with bounded energy. The entropy
change of the surrounding medium is the sum of all the contributions from the successive
jumps ΔSm = ΣτΔSν(τ), cf (24). The main point is now to show that the resulting total
entropy production is exactly given by (13), in its path-probability version, namely:

ΔStot = ΔS + ΔSm = ln
Prob(path)

˜Prob( ˜path)
. (25)

Note that contrary to the deterministic situation, the paths in (25) are no longer
determined by the state of the system at a given time but correspond to the complete
history of the variables. To verify the above result, we need to calculate the ratio of path
probabilities, for the forward versus backward path. This ratio is in fact easy to evaluate:
a path is characterized by its initial state, and by the jumps, their nature (i.e. which heat
bath provides the energy) and jump times. Let us first focus on sections of the path where
no jump takes place. The probability for not having a jump during the stretches of each
of these intervals is the same in the forward and backward experiments, since the system
is for the considered paths in the same state, and the transition rates W are identical.
Hence these probabilities drop out when calculating the ratio of the path probabilities.
The logratio of the probabilities for the starting probabilities in the backward versus
forward experiment is clearly ln(pmN

(T )/pm0(0)) (remember that we specified that the
backward experiment starts with the final probability of the forward experiment). This
quantity is precisely identical to the change in system entropy. Finally, the logratio of
the probabilities for any jump say from m to m′ forward and m′ to m backward, via
reservoir ν, ln W ν

m,m′/W ν
m′,m, is equal to the entropy change in the corresponding reservoir

ΔSν , cf (24). The sum of these contributions is equal to the entropy production in all
of the reservoirs (which we refer to as the surrounding medium): ΔSm = ΣτΔSν(τ).
We conclude that the logratio of the path probability does reproduce the total stochastic
entropy change for the specified trajectory.

The stochastic total entropy production is the logratio of two probabilities, which
are related by an involution, namely time-reversal. Hence this stochastic total entropy
obeys a detailed and integral fluctuation theorem, cf (17) and (15). The constituting
subparts ΔS and ΔSm, however, are not the logratios of probabilities and do not satisfy
a fluctuation theorem. This is unfortunate especially for the case of the medium entropy
change ΔSm, since the latter is experimentally easily accessible. One can however consider
the accumulated stochastic entropy production produced over long stretches of times,
for example in nonequilibrium steady states. For a system with bounded entropy, one
expects that ΔStot ∼ ΔSm so that the medium stochastic entropy will satisfy a fluctuation
theorem, but only so for asymptotically long times. For systems with unbounded energy,
even the asymptotic fluctuation theorem has a limited range of validity, cf [49].
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We recently discovered that there is, however, another way to split the total stochastic
entropy into two contributions, with each part satisfying a separate fluctuation theorem
at all times [30] see also [50]:

ΔStot = ΔSa + ΔSna. (26)

The contributions ΔSa and ΔSna have a simple and clear physical meaning:
they correspond to contributions in the total entropy production associated to the
nonequilibrium boundary conditions and those related to the driving. This splitting
has been anticipated in special cases, with the adiabatic entropy production being a
generalization of the concept of the housekeeping heat and the non-adiabatic entropy
production related to system entropy and excess heat [51]. The crux of the derivation
is the introduction of another symmetry operator for Markov processes, called the dual
operator, which we will denote by a superscript +. Loosely speaking it neutralizes the
steady state time-symmetry breaking coming from the boundary conditions. To explain
this statement, we consider first the steady state regime of a Markov process with a time-
independent transition matrix W . This matrix will in general not satisfy detailed balance
with respect to the prevailing stationary probability distribution pst, because it describes a
nonequilibrium situation with ‘conflicting’ boundary constraints, for example the presence
of various heat baths at different temperatures. The dual W+ of the transition matrix W
is defined by the following relation:

Wm′,mpst
m = W+

m,m′p
st
m′ . (27)

One easily verifies that it defines another Markov process with the same stationary
probability distribution. More relevant is that this Markov process is statistically speaking
the original Markov process but with the time-axis reversed. In other words if one applies
the operations of duality and time-reversal in the steady state, they neutralize each other
P̃+ = P . Returning to the above case of a Markov process with time-dependent transition
rates, one can perform the dual operation at all times on the transition matrix thus
defining another Markov process. In general, however, this operation will not neutralize
time-reversal because there can be a remaining symmetry breaking due to the fact that
the system is actually not at the steady state. This will be the case when it did not
start in the steady state, or when the transition rates are time-dependent. We refer to
this other way of generating nonequilibrium states as the driving, and the corresponding
entropy production is called the non-adiabatic contribution. The difference between the
total and the non-adiabatic contributions will be called the adiabatic one.

Proceeding in a more mathematical way, one can reach the same separation of the
total entropy production by noting that with the combination of the dual operation
superscript + and the time-reversal superscript tilde, one can construct three symmetry
operations, which are all involutions. Consider an experiment, characterized by Markovian
stochastic dynamics, with specified initial probability distribution and a specified schedule
for changing the transition rates. In this setting, we consider the entropy production
associated to a realization or path. For simplicity of notation we will write P = Prob(path)
for the probability density for this path. We also consider three other experiments, one
with time-reversed transition rates starting with the final distribution of the forward
experiment, one in which in addition the Markovian process is switched to the dual, and
one in which the forward but dual dynamics is considered. The corresponding probabilities
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for the path under consideration are denoted as P̃ and P̃+ and P+. The tilde operation
also refers to a time-reversal of the path. We can thus introduce the following three
entropy differences:

ΔStot = ln
P

P̃
(28)

ΔSna = ln
P

P̃+
(29)

ΔSa = ln
P

P+
. (30)

Each of these quantities is the logratio of probabilities, being related to each other
via an involution. Hence they obey, each separately, an integral and detailed fluctuation
theorem:

P (ΔStot)

P̃ (−ΔStot)
= eΔStot (31)

P (ΔSna)

P̃+(−ΔSna)
= eΔSna ,

P (ΔSa)

P+(−ΔSa)
= eΔSa . (32)

A short calculation furthermore allows us to verify that:

ΔStot = ΔSna + ΔSa. (33)

We thus reach the remarkable conclusion that we have split the second law of
thermodynamics into two at its most fundamental level! We stress that we have done much
more than identifying positive contributions to the total entropy production 〈ΔStot〉 ≥ 0,
〈ΔSna〉 ≥ 0, and 〈ΔSa〉 ≥ 0: we are dealing here with the trajectory dependent stochastic
quantities ΔStot, ΔSa and ΔSna. They each obey a detailed (and integral) fluctuation
theorem.

8. Discussion

The second law was discovered and formulated about 150 years ago. While
thermodynamics has played a crucial role in many important advances in physics,
including the discovery of quantum mechanics, and while it is a field with an almost
unlimited range of application, it is nowadays often viewed as an old if not old-fashioned
field of research. Recent developments however show that this is not at all the case.
One can formulate stochastic thermodynamics, consistent with a microscopic analysis.
The second law inequality is thus replaced by an equality for a probability distribution
of the stochastic entropy change. This equality derives from basic symmetries of the
underlying physical laws. Carnot efficiency and Onsager symmetry are complemented
with new laws such as the universal value of the coefficients in the expansion of efficiency
at maximum power, and the symmetry for large deviation functions of currents. Last but
not least, the second law appears to have new offspring under the form of two constitutive
contributions, the adiabatic and non-adiabatic entropy productions, which each satisfy a
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fluctuation theorem of their own. The importance of this result is underscored by the
fact that it follows from the application of two symmetry operations: time-reversal of
the driving and a duality operation of the transition matrix (which amounts to a kind
of time-reversal of boundary conditions). It remains to be seen whether the implications
of this duality are as far reaching as those of the second law itself, and whether there
are alternative or supplementary divisions possible of the total entropy production into
constitutive parts that satisfy fluctuation theorems.
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