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Abstract. In this paper we present a novel decolorization strategy,
based on image fusion principles. We show that by defining proper in-
puts and weight maps, our fusion-based strategy can yield accurate
decolorized images, in which the original discriminability and appear-
ance of the color images are well preserved. Aside from the independent
R,G,B channels, we also employ an additional input channel that con-
serves color contrast, based on the Helmholtz-Kohlrausch effect. We use
three different weight maps in order to control saliency, exposure and
saturation. In order to prevent potential artifacts that could be intro-
duced by applying the weight maps in a per pixel fashion, our algorithm
is designed as a multi-scale approach. The potential of the new operator
has been tested on a large dataset of both natural and synthetic images.
We demonstrate the effectiveness of our technique, based on an extensive
evaluation against the state-of-the-art grayscale methods, and its ability
to decolorize videos in a consistent manner.

1 Introduction

Although color plays an important role in images, applications such as com-
pression, visualization of medical imaging, aesthetical stylization, and printings
require reliable decolorized image versions. The widely-used standard color-to-
grayscale conversion employs the luminance channel only, disregarding the im-
portant loss of color information. In many cases, a decolorized image obtained
in this way will not fulfill our expectations, as the global appearance is not well
preserved (illustrated in Figure 1). This limitation of the standard transforma-
tion is due to the fact that isoluminant regions are mapped onto the same output
intensity.

In this paper we present a novel decolorization method, built on the princi-
ple of image fusion. This well-studied topic of computational imaging has found
many useful applications, such as single image dehazing [1], interactive pho-
tomontage [2], image editing [3], image compositing [4, 5] and HDR imaging [6,
7]. The main idea is to combine several images into a single one, retaining only
the most significant features.

The main difference between fusion methods that makes them application-
specific, is the choice of inputs and weights. Our algorithm employs the three
independent RGB channels and an additional image that conserves the color
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Color image Standard (luminance) Our result

Fig. 1. In contrast with the standard color-grayscale approach, our method seeks to
preserve the global appearance.

contrast, based on Helmholtz-Kohlrausch effect, as image inputs. This fourth
input better preserves the global appearance of the image, as it enforces a more
consistent gray-shades ordering. The weights used by our algorithm are based on
three different forms of local contrast: (a) a saliency map which helps us preserve
the saliency of the original color image; (b) a second weight map that advantages
well-exposed regions; and (c) a chromatic weight map which enhances the color
contrast in addition to the effect of H −K input. In order to minimize artifacts
introduced by the weight maps, our approach is designed in a multi-scale fashion,
using a Laplacian pyramid representation of the inputs combined with Gaussian
pyramids of normalized weights.

To the best of our knowledge we are the first that introduce a fusion-based
decolorization technique. Our method performs faster than existing color-to-gray
methods since it does not employ color quantization [8], that tends to introduce
artifacts, or cost function optimization, which commonly is computationally ex-
pensive (e.g. Gooch et al. [9] approach) and risks not converging to a global
extremum. Our new operator has been tested on a large dataset of both natu-
ral and synthetic images. In addition, we demonstrate that our operator is able
to decolorize videos. Our multi-scale fusion approach demonstrates consistency
over varying palettes, and is able to maintain temporal coherence within videos.
Furthermore, we have performed a comparative evaluation of the contrast en-
hancement qualities of the recent state-of-the-art color-to-grayscale techniques.

2 Related Work

Recently, grayscale image conversion has received an increasing amount of at-
tention in the computer vision and graphics communities. There have been at-
tempts to solve dimensionality reduction problem by both local [10, 8, 9, 11] and
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Fig. 2. An overview of our fusion-based approach. Based on the original input image,
we derive four input images (R, G, B and H − K lightness) and three weight maps
that blended by a multi-scale image fusion strategy yields the decolorized output.

global [12–14] mapping strategies, using different linear but also non-linear map-
ping techniques.

The gamut-mapping method of Bala et al. [10] combines the luminance chan-
nel with a high-pass filtered chroma channel. Gooch et al. [9] attempt to preserve
the sensitivity of the human visual system by iteratively comparing each color
pixel value with the average of its surrounding region. Since, in their experi-
ments, small neighborhoods appear to introduce artifacts, the entire image has
been used as neighbor region by default. Similarly, the method of Rasche et
al. [8] computes the distribution of all the image colors previously quantized in
a number of landmark points. The main drawback of these methods [9, 8] is that
they are computationally expensive, as their computation time depends heavily
on the number of colors within the image.

Queiroz et al. [15] generate grayscale images that encode color information
in the output image. The colors are mapped onto low-visibility high-frequency
texture, which can be identified by a decoder, and finally recovered. Their work
has proven to be a practical solution for office documents. Neumann et al. [12]
compute the gradient field in both the CIEL*a*b and Coloroid [16] color space.
Based on an extensive user-study, the indices of relative luminance are deter-
mined. The global mapping technique of Grundland and Dodgson [13] performs a
dimensionality reduction using predominant component analysis, which is similar
to principal component analysis (PCA). This technique reduces the processing
cost substantially, compared to previous approaches. The multi-spectral method
of Alsam and Drew [17] improves the approach of Socolinsky and Wolff [18] in
terms of computation efficiency. Both approaches aim to preserve the maximum
local contrast.

Smith et al. [11] developed a decolorization algorithm that exploits the-
Helmholtz-Kohlrausch effect, by applying the lightness measure of Fairchild and
Pirrotta [19]. The algorithm uses a multi-scale chromatic filter to enhance the
discriminability over the salient color features. Additionally, the authors have
proven the applicability of their method to decolorizing videos. The recent tech-
nique of Kim et al. [14] optimizes a nonlinear global mapping function. The
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a. b. c. d.

Fig. 3. a. The four image fusion inputs (R, G, B and H −KLightness) and the cor-
responding Gaussian pyramids of the image fusion weights (b. saliency; c. exposedness
; d. chromatic ).

method is built on the Gooch at al. [9] approach, but is computationally more
effective.

In contrast with the existing techniques, our decolorization algorithm em-
ploys a multi-scale fusion strategy. The method is straightforward to implement,
and only uses classical concepts. By selecting the appropriate weights and in-
puts, our approach has demonstrated robustness and consistency in decolorizing
both images and videos.

3 Fusion-based Decolorization Approach

The standard grayscale transformation tends to reduce the amount of variations
and sharpness within an image. Qualitatively, the dull appearance is due to
the loss of contrast that is more visually noticeable on dimmed highlights and
shadows. In order to obtain pleasing decolorized images, photographers might
compensate these limitations by tedious work in the darkroom, applying elabo-
rate lighting techniques or using photo-editor programs to manually adjust the
contrast, luminance or histogram distribution.

We argue that the image appearance in black-and-white is tightly connected
with models of color appearance, and that measurable values like salient features
and color contrast are difficult to integrate by simple per pixel blending, without



Image and Video Decolorization by Fusion 5

introducing artifacts into the image structure. For this reason, we have opted for
the multi-scale approach of image fusion, combining the Helmholtz-Kohlrausch
lightness predictor [19] with a set of pixel weights depending on important image
qualities. This will ensure that regions with superior gain are well depicted in the
decolorized image. Practically, the resulted grayscale image is obtained by fusing
four input images (a lightness image that incorporates the H−K effect, and the
R, G, B color channels), weighted by normalized coefficients maps determined
by saliency, pixel exposure, and chromatic weights. An overview of our approach
is given in Figure 2.

3.1 H − K Chromatic Adapted Lightness

Our algorithm requires four input images to be used in the fusion process. Besides
the color channels R, G, B , we define an additional input that preserves the
global contrast, based on Helmholtz-Kohlrausch effect. As observed by Smith et
al. [11], the H −K effect can be used to resolve potential ambiguities regarding
the difference between the isoluminant colors. Therefore, given two isoluminant
patches, the most colorful one will be mapped onto a brighter output intensity.
For this fusion input channel, we used Fairchild’s chromatic lightness metric [19],
which predicts the H −K effect, defined in the CIEL∗c∗h∗ color space by the
expression:

LH−K = L∗ + (2.5− 0.025L∗)(0.116

∣
∣
∣
∣
sin

(
h∗ − 90

2

)∣
∣
∣
∣
+ 0.085)c∗ (1)

This LH−K predictor has also been used in the work of Smith et al. [11], in which
it was demonstrated to be more appropriate for the task of image decolorization
than the chromatic lightness metric of Nayatani [20]. Nayatani [20] predictor
often tends to map bright colors to white, which makes it harder to discrim-
inate between images that contain bright isoluminant colors. However, as can
be observed in the comparative results (see the image but as well video results
of Smith et al. [11]), relying only to the Helmholtz-Kohlrausch effect the decol-
orized outputs might not preserve accurately the original saliency (this feature
is mostly ensured in our operator by integrating the saliency weight map).

3.2 Weight Maps Assignment

In the following section, we present how the weight maps are defined in our
fusion-based decolorization algorithm. Our approach is based on the principle
that the output decolorized image needs be both visually pleasing and meet
the application requirements. In the case of grayscale conversion, aside from
the luminance which is the main contributor to the perceived lightness, there
are also several other image qualities that guide our visual system during its
analysis of the incoming light. Practically, the attention of an observer tends
to be focused on the salient regions that stand-out within their neighborhood.
In order to maintain this focus, it is desirable that these predominant regions
are well preserved by the grayscale version. Therefore, in order to meet this
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Inputs of our fusion algorithm

Corresponding normalized weight maps

Color image

Our result

Fig. 4. From color to gray: from the original color image (a), we obtain our decolorized
result (b) by applying an image fusion approach, using the four inputs (c), weighted
by the corresponding normalized weight maps (d).

requirement, we first introduce a saliency weight map. Furthermore, as commonly
the over- and underexposed regions are advantaged by the saliency map, we
also define an exposedness weight map that overcomes perception degradation in
these regions. Finally, we assign a third weight map, the chromatic weight map,
which has the main goal of balancing the influence of chromatic stimuli into
the perception of lightness. Practically, by smoothly fusing the input channels
weighted by these weight maps, the original consistency of the image is well
preserved, while ghosting and haloing artifacts are reduced. Moreover, we believe
that these weight maps are intuitive concepts for the users.

Saliency weight map (WS) reveals the degree of conspicuousness with re-
spect to the neighborhood regions. For this measurement, our algorithm employs
the recent saliency algorithm of Achanta et al. [21]. Their strategy is inspired by
the biological concept of center-surround contrast. The saliency weight at pixel
position (x, y) of input Ik is defined as:

WS(x, y) =
∥
∥Ikμ − Ikωhc

∥
∥ (2)

where Ikμ represents the arithmetic mean pixel value of the input Ik while Ikωhc

is the blurred version of the same input that aims to remove high frequency
noise and textures. Ikωhc

is obtained by employing a small 5× 5 ( 1
16 [1, 4, 6, 4, 1])

separable binomial kernel with the high frequency cut-off value ωhc = π/2.75.
For small kernels the binomial kernel is a good approximation of its Gaussian
counterpart, but it can be computed more effectively. The approach of Achanta
et al. [21] is very fast, and has the additional advantage of the extracted maps
being characterized by well-defined boundaries and uniformly highlighted salient
regions, even at high resolution scales. Based on extensive experiments, we found
that this saliency map tends to favor highlighted areas. In order to increase the
accuracy of results, we introduce the exposedness map to protect the mid tones
that might be altered in some specific cases.

Exposedness weight map (WE) estimates the degree to which a pixel is
exposed. The function of this weight map is to maintain a constant appearance of
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the local contrast, neither exaggerated nor understated. Practically, this weight
avoids an over- or underexposed look by constraining the result to match the
average luminance. Pixels are commonly better exposed when they have nor-
malized values close to the average value of 0.5. Inspired by the approach of
Mertens et al. [7], who employ a similar weight in the context of tone mapping,
the exposedness weight map is expressed as a Gaussian-modeled distance to the
average normalized range value (0.5):

WE(x, y) = exp

(

− (Ik(x, y)− 0.5)2

2σ2

)

(3)

where Ik(x, y) represents the value of the pixel location (x, y) of the input im-
age Ik, while the standard deviation is set to σ = 0.25. This mapping conserves
those tones that are characterized by distance close to zero, while larger distance
values are related with the over- and underexposed regions. As a result, the im-
pact of over- and underexposed regions filtered by the saliency map is tempered,
keeping the original image appearance well preserved.

Chromatic weight map (WC) controls the saturation contribution of the
inputs in the decolorized image. This is expressed as the standard deviation
between every input and the saturation S (in HSL color space) of the original
image. Due to the fact that in general humans prefer increased saturation, it
is desirable that more saturated areas are mapped onto brighter tones. This
balances the chromatic contrast loss with the desired amount of enhancement.
We have observed that the impact of this gain is reduced for the H−K chromatic
adapted lightness input.

In our framework these weight maps (saliency, exposedness and chroma)
have the same contribution to the resulted decolorized images. As an example,
Figure 3 shows the computed weights for the considered inputs.

3.3 Multi-scale Fusion of the Inputs

Having defined the inputs (R, G, B color channels and H−K chromatic adapted
lightness) and the weight maps, in the following section we present how this
information is blended by our fusion strategy. As previously mentioned, during
the fusion process the inputs are weighted by specific maps in order to conserve
the most significant features, and finally combined into a single output image:

F(x, y) =

K∑

k=1

W̄k(x, y)Ik(x, y) (4)

where the value of every pixel location (x, y) of the fused result F is obtained by
taking the sum of the corresponding locations of the inputs Ik (k is the input
index), weighted by the normalized weight maps W̄k. The number of the inputs
is counted by the index k (in our case K = 4). The normalized weights W̄ are
obtained by normalizing over the M weight maps W (M = 3) in order that the
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value of each pixel (x, y) weights to sum up to unity (
∑Wk = 1 for each pixel

location) (see Figure 4).
Unfortunately, applying eq. 4 directly sometimes introduces haloing artifacts,

mainly in locations close to strong transitions between weight maps. In order to
solve this problem, a more effective strategy needs to be devised. Generally, this
task is solved by multi-scale decomposition strategies that use linear [22, 23] or
non-linear filters [24–26]. While the class of non-linear filters has shown to be
better at preserving edges, the linear filters are computationally more effective.
Even though more refined multi-scale solutions might be applied as well, we have
opted for the classical multi-scale Laplacian pyramid decomposition [22]. In this
linear decomposition, every input image is represented as a sum of patterns
computed at different scales based on the Laplacian operator. The inputs are
convolved by a Gaussian kernel, yielding a low pass filtered versions of the origi-
nal. In order to control the cut-off frequency, the standard deviation is increased
monotonically. To obtain the different levels of the pyramid, initially we need to
compute the difference between the original image and the low pass filtered im-
age. From then on, the process is iterated by computing the difference between
two adjacent levels of the Gaussian pyramid. The resulting representation, the
Laplacian pyramid, is a set of quasi-bandpass versions of the image.

In our case, each input is decomposed into a pyramid by applying Laplacian
operator to different scales. Similarly, for each normalized weight map W̄ a Gaus-
sian pyramid is computed. Considering that both the Gaussian and Laplacian
pyramids have the same number of levels, the mixing between the Laplacian in-
puts and Gaussian normalized weights is performed at each level independently
yielding finally the fused pyramid:

F l(x, y) =

K∑

k=1

Gl
{W̄k(x, y)

}

Ll
{Ik(x, y)

}

(5)

where l represents the number of the pyramid levels (determined by the im-
age dimensions), L {I} is the Laplacian version of the input I, and G

{W̄}

represents the Gaussian version of the normalized weight map W̄. This step is
performed successively for each pyramid layer, in a bottom-up manner. Basically,
this approach solves the cut and paste problem among the inputs with respect
to the normalized masks. A similar adjustment of the Laplacian pyramid, but in
the context of exposure fusion has been applied in other contexts [6]. The final
decolorized image is obtained by summing the fused contribution of all inputs.

This linear multi-scale strategy performs relatively fast (takes approximately
1.4 seconds per image in our unoptimized MATLAB implementation) represent-
ing a good trade off between speed and accuracy. By employing independently a
fusion process at every scale level the potential artifacts due to the sharp transi-
tions of the weight maps are minimized. Multi-scale techniques are broadly used
due to their efficiency in image compression, analysis and manipulation. This op-
eration has the advantage that it respects the perceptual system of the human
eye, which is known to be more sensitive to modifications into high frequencies
than changes in low frequencies.
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Fig. 5. Coherence of color-to-gray methods. Note how differently the methods map
the background (e.g. leaves) and the flower. Compared with the methods of [8, 13] our
operator maps into the same grayscale level the leaves while the flower is converted
into different grayscale levels.

4 Results and Discussion

Our fusion-based approach addresses the preservation of several important image
features: saliency, well-exposedness and chromatic contrast. One major benefit
of fusing the inputs guided by weight maps is that this principle allows for a
direct transfer of the important characteristics of the color image to the decol-
orized version. We believe that strong perceptual similarity between colorized
and decolorized images can be obtained by algorithms that consider both global
and local impressions. In our approach, the global appearance of the image is
preserved by imposing a gray-shades order that respect the H−K color appear-
ance model. The weight maps contribute to the local preservation of the original
relations between neighbor patches. A similar idea has been experimented with,
using Poisson solvers [27] in a related approach of Gooch at al. [9]. However,
their approach performs poorly for images with extended disconnected regions
that represent isoluminant features. The main reason for this is that the Poisson
solver ignores differences in gradients over distances larger than one pixels. Our
fusion technique proves that by employing well defined quality measures and
inputs, consistent results can be produced even for these difficult cases.

The new operator has been tested extensively for a large set of images. Fig-
ure 7 presents several comparative results against recent grayscale operators (for
additional results the reader is referred to the supplementary material).
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4.1 Evaluation of Grayscale Operators

In order to measure the quality of the conversions, we performed a contrast-based
evaluation of the recent state-of-the-art operators. For this task we adapted the
recent technique of Aydin et al. [28], which is used to compare a pair of images
with significantly different dynamic ranges. Instead of detecting only contrast
changes, this metric is sensitive to three types of structural changes: loss of
visible contrast (green) - a contrast that was visible in the reference image
becomes invisible in the transformed version, amplification of invisible contrast
(blue) - a contrast that was invisible in the reference image becomes visible
in the transformed version and reversal of visible contrast (red) - a contrast
is visible in both images, but has different polarity. They observed that the
contrast loss (green) is related with blurring, while contrast amplification (blue)
and reversal (red) with sharpening. An online implementation1 of this metric is
made available by the authors.

We tested several grayscale operators for a set of 24 images that have also
been used in the perceptual evaluation of Cadik [29]. Besides the CIEY , Bala
and Eschbach [10], Gooch et al. [9], Rasche et al. [8] , Grundland and Dodg-
son [13], Coloroid [12], Smith et al. [11] methods, we also reviewed the recent
technique of Kim et al. [14] and our fusion-based decolorization operator. The
measure of Aydin et al. [28] is applied using the default parameter set of the
authors, and considering the original color image as a reference. The results of
applying the IQA measure are shown in Figure 8. The graphics in the figure
display the average ratio over the 24 IQA images of the pixels with the contrast
changed after applying the corresponding transformation. Only the pixels with
a probability higher than 70% have been counted.

Based on these graphics, we can observe that our operator, together with
Smith et al. [11] and Kim et al. [14], shows the minimal amount of produced
blurring artifacts (rendered with the green after applying IQA). Regarding the
sharpening effects (blue and red pixels), in general all methods, except the one
of Smith et al. [11] and CIEY , perform in a relative similar range of values.

4.2 Video Decolorization

Video decolorization adds an other dimension to the problem of image decol-
orization, as temporal coherence needs to be guaranteed for the entire video
sequence. In order to speak of consistency, an algorithm has to map similar re-
gions from the color input onto similar areas in the decolorized output. Recently
Smith et al. [11] have shown that local approaches are suitable for this task. As
our strategy retains both global and local characteristics, it is able to maintain
consistency over varying palettes (see Figure 5), yielding temporal coherence for
videos (see as well Figure 6). Figure 5 shows several versions of the same image,
in which the flower is colored differently at each instance. Global pallet mapping
techniques like the one of Grundland and Dodgson [13] generate dissimilar gray

1 http://www.mpi-inf.mpg.de/resources/hdr/vis metric/
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Original color sequence

Grundland & Dodgson

Smith et al.

Our fusion-based result

Fig. 6. Isoluminant video test. For a well consistency the same color patch needs to
be converted into a similar gray level in all images. Notice the artifacts introduced
by Smith et al. [11] approach but also the different grayscale mapping of the same
colored patch yielded by Grundland and Dodgson method [13] (please refer to the
supplementary material for the entire sequence).

levels for the same region on different instances (note the leaves and the back-
ground mapping). Our operator and the method of Smith et al. [11] yield more
consistent outputs.

A similar limitation can be observed by analyzing Figure 6 that displays the
frames of a synthetically generated footage with isoluminant color patches. By a
close inspection it might be seen that even thought the technique of Grundland
and Dodgson [13] decolorizes each frame perceptually accurate, this technique
is not able to preserve the same grayscale level corresponding to the same color
patch along the entire sequence of the frames. On the other hand, the method of
Smith et al. [11] introduces some non-homogeneity artifacts along edges (please
refer to the supplementary material for the comparative videos).

In our extensive experiments, the fusion-based operator performed generally
well. However, we observed that in some situation due to the inexact selection
of the saliency map, our technique is unable to improve substantially the results
yielded by standard conversion. In general, the chosen weights can yield proper
results. As well, the algorithm shares a weight map related problem in common
with other fusion algorithms. As noticed by previous methods [7], the exposed-
ness map may generate an artificial appearance of the image when its gain is
exaggerated.

Our algorithm is computationally effective (our unoptimized implementation
takes approximately 2.5 seconds for a 800x600 image), having a processing time
comparable to recent CPU approaches (e.g. Smith et al. [11] method takes 6.7 -
10.8 seconds for 570x593 image, Decolorize [13] -unoptimized code - 3.5 seconds
for a 800x600 image and the (extremely) optimized code of Kim et al. [14]
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Grundland
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Eschbach Coloroid Our resultsKim et al.

Fig. 7. Comparative results. From left to right the grayscale results obtained by ap-
plying CIEY , Bala and Eschbach [10], Gooch et al. [9], Rasche et al. [8] , Grundland
and Dodgson [13], Coloroid [12], Smith et al. [11], Kim et al. [14] methods and our
fusion-based operator.

decolorizes a 800x600 image in 1-2 seconds). However, even relatively fast since
it employs an effective nonlinear global mapping optimization, the method of
Kim et al. [14] did not solve the rendering limitations of the related technique of
Gooch et al [9], tending to diminish the global contrast and to loose the original
saliency (please refer to their image results and the rose video in the additional
material). In addition, we believe that an optimized CPU implementation would
make our operator suitable for real-time applications.

5 Conclusion

In this paper we have introduced a new color-to-grayscale conversion strategy, in
which we employ a multi-scale fusion algorithm. We have shown that by choosing
the appropriate weight maps and inputs, an image fusion strategy can be used
to effectively decolorize images. We performed an extensive evaluation against
the recent decolorization operators. Moreover, our operator is able to transform
color videos into a decolorized version that preserve the original saliency and
appearance in a consistent manner.
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Gooch et al.

Grundland
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Eschbach Coloroid Kim et al.CIE Y Our results

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fig. 8. IQA evaluation of operators. In the top are shown the results obtained by
applying the contrast-based measure of Aydin et al. [28] between the original color
and decolorized images. In the bottom part are displayed the graphics that plot the
average ratio (over the complete set of images) of the pixels with the contrast changed
after applying the corresponding transformation. Note that the green is related with
blurring while blue and red are related with sharpening.

To future work, we would like to experiment the potential of our operator
for several other applications but also to perform a perceptual evaluation of the
recent color-to-grayscale techniques.
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