
������������	

����������	��
�������
����
� �����
����
��������������������

�����������������
�����������
��� !�"��
�#$

�������������������������
������������

%����������
���������"
���
���
&������
���
"�
����"
���
�����
��
"�
��������''��(
�����������
��
���"�"����
"���(



)���
�*
�*#�*+









%�������(
'���,
"�,
%����''�
)� ����



Abstract

When it comes to traditional 2D video editing, there are many video manipulation

techniques to choose from, but all of them suffer from the limited amount of infor-

mation that is present in the video itself. When more information about the scene is

available, more powerful video manipulation methods become possible.

In this dissertation, we examine what extra information about a scene might be use-

ful and how this information can be used to develop powerful yet easy-to-use video

manipulation techniques. We present a number of novel video manipulation methods

that improve on the way the scene information is captured and the way this informa-

tion is used.

First we show how a 2D video can be manipulated if the scene is captured using

multiple video cameras. We present an interactive setup that calculates collisions

between virtual objects and a real scene. It is a purely image based approach, so no

time is wasted computing an explicit 3D geometry for the real objects in the scene,

all calculations are performed on the input images directly. We demonstrate our

approach by building a setup where a human can interact with a rigid body simulation

in real-time.

Secondly, we investigate which manipulation techniques become possible if we track

a number of points in the scene. For this purpose, we created two novel motion

capture systems. Both are low cost optical systems that use imperceptible electronic

markers. The first is a camera based location tracking system. A marker is attached

to each point that needs to be tracked. A bright IR LED on the marker emits a specific

light pattern that is captured by the cameras and decoded by a computer to locate and

identify each marker. The second system projects a number of light patterns into the

scene. Electronic markers attached to points in the scene decode these patterns to

obtain their position and orientation. Each marker also senses the color and intensity

of the ambient light. We show this information can be used in many applications,

such as augmented reality and motion capture.
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Many existing video manipulation methods require images of a scene under multi-

ple lighting conditions. We present a new light multiplexing method to capture a

dynamic scene under multiple lighting conditions. A general method is presented

that uses both time and color multiplexing. We show how our approach can improve

existing methods to relight or obtain depth and normal information of a scene. This

information can be used to render the scene from novel viewpoints or to change ma-

terial properties.
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Chapter 1

Introduction

Contents

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Problem Statement

Traditional video editing packages offer a wide range of techniques to manipulate

footage. Most of these methods only use the input video and user interaction to steer

the manipulation. However, if additional information about the scene is available,

more advanced manipulation techniques become possible. For example, when the 3D

geometry of the scene is known, one can visualize the video from new viewpoints.

Or if the position, orientation and incident illumination is known for a number of

points in the scene, the scene can be augmented with virtual objects which can be

lit by the same light that is present in the real scene. In this thesis, we investigate

several methods to capture and use extra information about a dynamic scene in order

to manipulate a video.

Until a short while ago, manipulating videos on a computer was not feasible, because

the computers were not fast enough and did not have enough memory. In the early

days, video editing was done by physically cutting the film into pieces and attaching
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the pieces back together in a different order. When magnetic tapes came into play

and electronics became more powerful, dedicated hardware became available to edit

video. But this was only for VHS, high quality movies were still on film and had to

be edited by hand. Greenkey also came into play, a specialized hardware box that

was able to replace the background of a scene where a person is standing in front

of a green cloth. As they steadily grew in power, computers were used more and

more, first only for editing movies, later for all kinds of video manipulations and

special effects. These days, more and more film makers are making the transition to

a completely digital pipeline. From the cameras, to the processing, to the projectors

in the cinemas that finally show the movie to a wide audience, everything is becoming

digital.

Not only has this trend made more and more special effects feasible, they have also

become significantly cheaper. Because digital copying is lossless, the quality of the fi-

nal product has increased. Advanced manipulation techniques which only the largest

studios could afford a few years ago, have now become available for everyone with a

personal computer.

Video manipulation is used in a very wide range of applications:

• Motion Pictures Video manipulation plays a very important role in many mo-

tion pictures as special effects are used to convey the story.

• Commercials Commercials need to catch the attention of the audience and

deliver a message in a very small amount of time. Stunning special effects are

a good way to achieve this goal.

• Music Videos Music video clips are used as a marketing device for the music

industry. The budget of many of these clips is very large, and no effort is too

great to make them look as impressive as possible. Video manipulation and

special effects clearly have a place here.

• Augmented Reality Augmented reality applications mix videos of the real

world with virtual objects.

– Maintenance During machine maintenance, virtual labels with informa-

tion and instructions can be shown in crucial places to help the technician.

– Sports During television broadcasts of sports games, information can be

shown on the field. In soccer for instance, the offside position can be

displayed.
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– Architecture In a street video, the design of a future building can be

superimposed over the old house it is going to replace. This gives a feel

of how the new building will fit into its environment.

• Home Videos Because video manipulation is becoming affordable for a wide

audience, more and more people are using their pc to edit their home videos.

• Teleconferencing Until a short while ago, in teleconferencing, a video of the

people in the meeting was just sent without any video manipulation. Now

more and more techniques become available to enhance the teleconferencing

experience. 3D geometry is used to correct eye-gaze and relighting techniques

are used to illuminate the participants.

• Computer Games Computer games have also started focusing on video. A

good example is the playstation eyetoy where a camera is used as an input

device by the player.

In this thesis, we focus on video manipulation methods, so all the scene data needs

to be captured in real time. But processing the data in real-time is only needed for

some applications. We will investigate applications that need to generate results in

real-time as well as applications that can process their data off-line.

The following is a short non-exhaustive overview of manipulation techniques that

become possible when extra information about a scene is captured.

• Relighting In relighting applications, it is possible to change how a scene is

lit, even after it is captured. The decision on how to light a scene can be

postponed from the filming phase to post-processing. This is especially useful

when combining real and cg-elements in the same shot because it becomes

easier to match the lighting of the real and virtual objects.

• Changing Material Properties It is possible to change the material properties

of filmed surfaces. For example making a surface more specular or changing

the albedo of materials. To do this, extra information such as incident illumi-

nation or surface geometry is needed.

• Augmented Reality To add virtual objects to a scene, some 3D information is

needed to handle occlusions. An extension to this is to calculate interactions

between the virtual objects and the real filmed scene. If a number of real ob-

jects in the scene is tracked, it is possible to attach virtual objects to them. This

way virtual labels can be attached to real objects or real objects can be replaced

by virtual ones.



4 Introduction

• Novel Viewpoints If some 3D geometry of a scene is known, the scene can

be visualized from novel viewpoints. There are many ways to capture this 3D

information, such as depth cameras, multi-camera systems and structured light

approaches.

• Fog and Depth of Field If depth information of the scene is known, we can

add fog to a scene or change the depth of field and point of focus of the lens in

post-production.

• Matting The foreground of a video can be segmented out and composited on a

new background. This can be used to place a person in a virtual environment.

1.2 Contributions

We present a number of contributions to the type of extra information that can be

captured, the way this extra information is captured and how this information is used

to manipulate a video.

• We present a real-time technique to calculate collisions between virtual ob-

jects and objects in the real world without calculating an explicit proxy for the

geometry of the real objects.

• A camera based location tracking system is presented. An electronic marker is

attached to a number of points in the scene and a LED on each marker emits

a strobe pattern that is used by a pc attached to a number of cameras to locate

and identify each marker.

• We describe a method to capture position, orientation and incident illumination

for a number of scene points. By projecting well chosen light patterns onto the

scene, electronic markers with optical sensors can calculate their own posi-

tion and orientation. The markers are also able to sense the incident ambient

illumination.

• A generic method to multiplex light patterns is presented. Both time and color

multiplexing is used and a way to handle dynamic scenes is described.

1.3 Overview

In this section we give a short overview of the matter that will be covered in this

thesis.
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• Chapter 2 presents a method to calculate collisions between real and virtual

objects. These collisions are calculated using the input images directly, so we

do not need to obtain an explicit proxy of the geometry of the real objects and

therefore save computation time. As a proof of concept, we implemented a

system where a person, filmed in a multi-camera setup, is able to interact with

a rigid body simulation in real time.

• In Chapter 3 we discuss two motion capture systems. The first is a camera

based tracking system that locates and identifies markers in the scene. The

second system captures the position, orientation and incident illumination for

a number of points in the scene. The scene is lit by multiple imperceptible

infrared light patterns, from which markers attached to points in the scene can

calculate the desired information. We show experiments to determine the ac-

curacy of the system and show applications such as motion capturing and aug-

mented reality.

• Chapter 4 presents a method to capture a dynamic scene for a number of light-

ing conditions using time and color multiplexed illumination. This is a generic

method that can be used to improve many existing video manipulation tech-

niques. As a proof of concept we apply our method to relighting, depth from

structured light and photometric stereo.
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Chapter 2

Image Based Collision Detection
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Many applications require a user to interact with virtual 3D objects. Most 3D in-

teraction techniques require some training, eg. using a mouse to interact with a 3D

environment is not always very easy. Some applications require a more intuitive

interface. In the real world, we interact with objects by touching and grasping them

with our hands and body. The most intuitive interaction method is therefore a method

that allows the users to interact with virtual objects in the same way.

In this chapter we show how this can be achieved. We present an algorithm to cal-
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Figure 2.1: A person, captured by multiple calibrated digital video cameras, interacts

with a rigid body simulation at interactive speeds.

culate collisions between real and virtual objects in real time using a multi-camera

setup. We perform collision computations directly on the image data, as opposed

to reconstructing the full geometry of the real objects. This reduces implementation

complexity, and moreover, yields interactive performance. We demonstrate the ef-

fectiveness of our technique by incorporating it in a rigid body simulation. A person

can interact with virtual objects and observe his or her actions, all in real-time. We

render both the person and the virtual objects in a single view.

This is an example of a video manipulation technique that would have been very hard

to achieve when only a single 2D video of the scene is captured. Occlusions have to

be handled and intersections between the real and the virtual objects have to be dealt

with. If no extra information about the scene is known, lots of user interaction would

be required to obtain the desired result.

A first example is shown in figure 2.1. It shows a person interacting with a large

number of virtual rigid bodies at interactive speeds.
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2.1 Introduction

We present a collision detection system that calculates collisions between real and

virtual objects in real time. A straightforward approach to tackle this problem would

be to apply your favorite 3D reconstruction technique to obtain a triangle mesh of

the scene, to which standard collision detection schemes can be applied. However,

it would be better to avoid this intermediate reconstruction step, for the sake of sim-

plicity and computational efficiency. Our technique is therefore designed to work

directly on the information in the video frames.

In the classic collision detection problem, contact is determined from a full 3D de-

scription of the participating shapes (i.e. a triangle mesh). In our case, each camera

only provides a discrete, 2D description of the real-world shapes. First, the informa-

tion of the set of 2D frames acquired from each camera has to be aggregated to derive

a collision test in 3 dimensions. We implement this based on the concept of a visual

hull, i.e. the volume extruded from the silhouette of an object or subject. This in-

formation is readily available as a result of fast and simple foreground segmentation.

The visual hull allows us to omit a costly 3D reconstruction step. Since camera regis-

tration is inherently a discrete process (granularity = one pixel), we have to be careful

to avoid aliasing artifacts when determining the exact collision location. Finally, the

analysis has to process data at a high bandwidth, since frames from multiple cam-

eras have to be processed at each instant, while maintaining interactive performance.

We therefore introduce a simple acceleration scheme to efficiently test the visual hull

data. These issues will be explored in the remainder of this chapter.

We set out to make a collision detection method that conformed with the following

goals

• faster than real time

• able to handle many types of virtual objects (meshes, point clouds, isosurfaces,

...)

• easy to incorporate into existing physically based simulation systems.
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Figure 2.2: The concept of the visual hull [Matusik 00]. The visual hull as the

intersection between the silhouette cones.

2.2 Related Work

2.2.1 Image Based Modeling and Rendering

Because the geometry of the real objects is unknown, it will have to be approximated

when calculating collisions with virtual objects. For this purpose, we chose to use the

visual hull, because very little computation time is needed to verify whether or not a

point is inside a visual hull. Thus the collision detection is not performed between

the virtual objects and the real objects, but is instead done between the virtual objects

and the visual hull of the real objects.

The Visual Hull [Laurentini 94] describes the maximal volume compatible with a set

of silhouettes. This shape can be used to obtain an approximate geometry of a real

object, when a number of silhouettes of the object is available (See figure 2.2). It is

a bounding volume of this object that is compatible with its silhouettes, so the real

object is always smaller or of equal size than its visual hull.

There are a number of approaches to calculate the visual hull. Hasenfratz et

al. [Hasenfratz 03] present a technique to calculate a voxel representation of the vi-

sual hull in real time. Another approach to calculate the visual hull is presented by

Matusik et al. [Matusik 01]. They calculate a mesh of the visual hull from a number

of silhouettes in real time.
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2.2.2 Collision Detection between Virtual Objects

Many techniques have been developed to detect collisions between virtual ob-

jects such as rigid bodies, [Guendelman 03, Baraff 92, Pauly 04, Heidelberger 04]

, cloth [Bridson 02, Govindaraju 05] , deformable objects [Debunne 01, Teschner 05,

Dewaele 04] , articulated objects [Redon 04] and fluids [Losasso 06] .

2.2.3 Interaction Techniques

The technique presented in this chapter can be seen as a way to interact with a vir-

tual environment [Hand 97, Bowman 97, Grossman 04]. The system by Kitamura et

al. [Kitamura 03] calculates interactions between real and virtual objects by defining

a constrained set of physical laws. Xiyong et al. [Wang 05] present a system where

users can manipulate scanned, articulated virtual representations of real objects.

2.2.4 Force Feedback

In our work, we perform a one way interaction: the real world can interact with

the virtual world, but not vice versa. There are also some techniques that provide

interaction in 2 directions. An example of such a technique is presented by Lindeman

et al. [Lindeman 04]. They describe a system that gives haptic feedback to a user who

walks around in a virtual environment.

2.2.5 Collision Detection between Real and Virtual Objects

Allard et al. [Allard 06b, Allard 06a] present a physically-based animation system

in which users can interact with objects in a scene using a visual hull (See figure

2.3). First a system is presented where a polygonal visual hull is calculated in real

time [Allard 06b]. The visual hull was calculated using 6 camera’s. To obtain real-

time frame rates, a distributed approach was used. In another paper by the same

authors, a software framework for developing distributed physically based simula-

tions in a VR-environment is presented[Allard 06a]. In this system they show how

multiple physically based simulation systems can work together using a modular de-

sign, and how a polygonal visual hull of a person can interact with it in real-time on

a cluster of machines.

Hasenfratz et al. [Hasenfratz 04] describe a system where a voxel visual hull of a real

scene is calculated. To visualize this voxel visual hull, marching cubes is used to

generate a smooth surface. 3D virtual buttons can be pressed by checking how many
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(a) (b)

Figure 2.3: Allard et al. [Allard 06b, Allard 06a] present a system that calculates

collisions between real objects and the visual hull of a person.

voxels are penetrating the 3D shape of the button and virtual objects can bounce

off the visual hull using standard collision detection because a mesh representation

is present. Breen et al. [Breen 96] model part of a real static scene manually or

using computer vision techniques. Standard collision detection can now be used

to calculate collisions between real and virtual objects. Stam [Stam 00] presents a

method where a depth map is calculated by filming a person with a special camera.

Using this depth map a person can interact with a fluid simulation.

In contrast to all the methods we discussed so far, we bypass the mesh generation

and work directly on the images which results in higher performance. Most related

to our work is the system by Lok et al. [Lok 03] (See figure 2.4). Instead of using

an intermediate mesh representation of the real world, they rasterize every virtual

triangle to all the input cameras to determine collisions using graphics hardware.

They assume there is at most one collision between one virtual object and the visual

hull of the real object at a time. This is true in some cases (for example a virtual ball

bouncing off a wall). However, when a virtual box lies on a real table, for instance,

this assumption breaks down. The main advantage of our algorithm , is that we take

into account multiple simultaneous collisions.

2.3 Overview

Our collision detection algorithm is based on the visual hull. We define a collision

when a virtual object intersects the visual hull of the real object. This is only an

approximation, since the shape of the visual hull is not exactly the same as the shape

of the real object. But we found that it is a good compromise between speed and
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Figure 2.4: Lok et al. [Lok 03] present a system that calculates interactions between

real and virtual objects without calculating an explicit 3D geometry of the real ob-

jects. A sequence of images is shown where a real person opens the virtual curtains

of a virtual window.
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accuracy. We obtain convincing simulations and need only little computation time.

A naive way to calculate collisions between virtual objects and the visual hull of the

real object, would be to explicitly calculate the visual hull with for example the polyg-

onal visual hull algorithm [Matusik 01]. We will show that we do not need to do this

to perform our collision detection. We do not even have to segment our input images.

In fact, we will show that when only a few virtual objects are present in the scene,

running our collision detection is faster than segmenting the input images. Since seg-

menting the input images is only the first step in calculating an explicit visual hull,

our algorithm clearly is a lot faster than the naive way to calculate collisions.

Determining whether an arbitrary virtual object intersects the visual hull of the real

object is not a straightforward task. Especially since one of our goals was to make

a faster than real time collision detection algorithm. On the other hand, determining

whether a single point is inside the visual hull is a very cheap test and can be per-

formed thousands of times a second. This is why we convert our problem of finding

collisions between arbitrary virtual objects and the visual hull to a problem where we

only need to calculate point-visual hull intersection tests. We do this by point sam-

pling our virtual objects. Now, the virtual object intersects the real object, if one of

the sample points intersects the real object. One advantage of this is that our method

works with any virtual object that can be point sampled, such as meshes, point clouds,

isosurfaces and NURBS. A disadvantage is that if we sample the virtual objects too

sparsely, thin features of the visual hull can intersect the virtual object without touch-

ing any of the sample points. But since the point collision tests are very cheap, we

can sample the virtual objects very densely, so this is not an issue in practice.

We also want to make sure our collision detection system can be easily incorporated

into existing physically based simulation systems such as a rigid body system. Our

collision detection algorithm calculates the collisions between the virtual and the real

objects and the physically based simulation system calculates the required collision

responses to make sure the virtual objects bounce off the real objects in a realistic

way.

Most rigid body systems for virtual objects do not allow objects to intersect. When

an intersection is found, the system searches the exact moment the collision occurred,

and prevents the intersection. In order to do this, they assume they can calculate the

state of the system at any time. In our case however, this is not possible. We only

know the shape of the real objects at discrete time steps — the moments when the

images are captured. We could approximate the shape of the real object in between

these discrete time steps using for example optical flow techniques, but those are too

time consuming for our purposes. So we have no choice but to let these intersections
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Figure 2.5: For each collision, we calculate the collision information. This consists

of the surface normal n and the position of the collision on the real and on the virtual

object.

happen. Luckily, modern physically based simulation systems are robust against this.

They can recover from the intersections if the penetration depth is not too large.

Our collision detection system calculates the position of the collision and the surface

normal at the collision and we let the physically based simulation system handle the

rest. Since we let the virtual and the real objects intersect, we have two positions for

each collision, one on the virtual object and one on the visual hull (see figure 2.5).

From now on we will call these two positions and the surface normal the collision

information.

When calculating the collision information, we need to be careful since at a small

level, each pixel generates a sharp corner in the visual hull. When we look at the

visual hull at a small scale, it is quite rough. When using the visual hull directly, we

do not obtain smooth animations because of this. To alleviate this problem, when a

collision is detected, we locally approximate the visual hull by a plane and calculate

the collision between this plane and the virtual object instead. This way the visual

hull is locally smoothed out and we obtain more realistic animations.

2.4 Detecting Collisions

In this section we will show how we find collisions between the real and the virtual

world. First we explain how we find collisions and later in this section we will show

how we obtain the collision information once a collision is found.
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2.4.1 Identifying Collisions

As explained in the overview section, finding collisions between real objects and

arbitrary virtual objects is not easy, so we first point sample the virtual objects. A

virtual object collides with the real world if one or more of its sampled points are

inside the visual hull.

There is no special requirement on how the point sampling has to be done. The only

requirement is that it has to be dense enough so that no collisions are missed and it

should be sparse enough so that the system remains interactive.

Once the virtual objects are point sampled, we iterate over all the points and check if

they intersect the real object. To check if a point intersects the visual hull of the real

object, we project it to all the input cameras. If it projects inside the silhouette for all

the cameras, it intersects the visual hull. To check if a projected point is inside the

silhouette for a given camera, we use simple background subtraction for this single

pixel. To make this more robust, we cover the walls with green cloth.

2.4.2 Point - Real World Collisions

Once a collision is identified, we need to calculate its collision information : the

collision normal (N) and the position of the collision on the virtual object (PV ) and

on the visual hull of the real object (PR) (see figure 2.5).

Find the relevant camera Note that if a point lies on the surface of the visual hull

it projects to the border of the silhouette for one camera and inside the silhouette for

all the other cameras (e.g. point Psur f ace in figure 2.6 is a point on the surface of the

visual hull and it projects to the border of the silhouette for camera C1 and inside the

silhouette for camera C2). If a point lies on an edge or on a corner of the surface of

the visual hull, it projects to the border of the silhouette for multiple cameras. (e.g.

point Pcorner in figure 2.6 is a point on a corner of the surface of the visual hull and

it projects to the border of the silhouette for both camera C1 and camera C2). In the

case that the point does not lie on an edge or on a corner of the visual hull, there is

only one camera that provides information about the surface of the visual hull near

that point. When we want to calculate the collision information for a virtual point

that is intersecting the visual hull, we only need one camera — the camera for which

the virtual point projects the closest to the border of the silhouette. By doing this,

we assume the virtual point is not near a corner or an edge of the visual hull. If it

is near an edge or a corner of the visual hull, we pick the first camera for which it
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Figure 2.6: The grey quadrangle represents the visual hull defined by the silhouettes

of two cameras C1 and C2. For a given virtual point PV , we look for the nearest point

PB on the surface of the visual hull.

projects to a point close to the border of the silhouette to keep the computations fast.

We found that we still generate convincing simulations, even though we make this

approximation.

The grey quadrangle in figure 2.6, represents the visual hull defined by the silhouettes

for cameras C1 and C2. Point PV is a point that is intersecting the visual hull for which

we want to calculate the collision information. We would like to find the point PB on

the surface of the visual hull that is the closest to PV .To find PB, we first calculate,

for each camera Ci, the nearest point PCi that is the closest to PV and that lies on the

surface of the cone defined by the camera and its corresponding silhouette. Once PCi

is calculated for each camera, PB can be found by looking for the point PCi that is

the closest to PV (see figure 2.6). The corresponding camera Ci is the one relevant

camera that will be used to calculate the collision information.

To calculate the point PCi for camera i, we look at points in a growing region around

PV until we find a point that does not project inside the silhouette for camera Ci. This

point will be PCi. We define di as the distance between camera Ci and PV . In the first
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iteration, we construct all points that are at a distance di away from Ci and project

one pixel away from the projection of PV in camera Ci. In figure 2.6, these points are

represented by P1,1 and P2,1 for the first and the second camera respectively. If one

of these points project outside the silhouette,we found the border of the cone and we

stop searching, otherwise we keep iterating. For the second iteration, we construct

all points that are at a distance di away from Ci and project two pixels away from

the projection of PV in camera Ci (P1,2 and P2,2 in the figure). Then we check if any

of these points project outside the silhouette for camera Ci. We keep iterating until

we find a point that projects outside the silhouette. So we look at a growing window

around PV until we find a point that projects outside the silhouette. This way we can

find the point PCi for each camera Ci. In figure 2.6, P1,1, P1,2 and P1,3 depict the points

that were generated when looking for PC1 during the first, second and third iteration

respectively. P2,1 and P2,2 depict the points that were generated when looking for PC2

during the first and second iteration respectively.

By first calculating PCi for each camera Ci and then finding which of these points

is the closest to PV , we lose a lot of time. Typically there is one camera for which

PCi lies very close to the PV while in the other cameras, there is a large distance

between PV and PCi. So instead of first calculating PCi for each camera separately, we

can calculate PCi for all cameras simultaneously. For each iteration of this improved

algorithm, we select a couple (i, j) that has not been selected before and for which

Pi, j lies the closest to PV . We check whether this point projects inside the silhouette

for camera i. If it does project inside the silhouette, we keep iterating. Otherwise, we

found the surface of the visual hull. Since for each iteration, the point Pi, j is further

away from PV than the point selected during the previous iteration, we know that the

first point we find that projects outside the silhouette, will be PB, the point we were

looking for.

Plane fitting Once PB and the relevant camera is found, we can calculate the colli-

sion information using this camera. We now have the situation shown in image (b) of

figure 2.7.

We have the projection P′
V of our virtual point PV and the projection P′

B of the closest

point PB on the surface of the visual hull. As can be seen in this image, the surface of

the visual hull is quite rough, each pixel introduces a sharp corner. Using this rough

surface directly does not generate a smooth simulation as will be shown in the results

section. To alleviate this problem, we locally approximate the visual hull by a plane

Q, as shown in image (b). To obtain this plane, we first fit a line Q′ through the border

of the silhouette. To fit this line, we only consider a window of 4x5 pixels around P′
B,

shown in image (b) as the black rectangle. The position of the line is the average of
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Figure 2.7: Once the relevant camera is identified, the collision information is calcu-

lated by fitting a plane through the visual hull.

all the points on the silhouette border and the normal of the plane is the average of all

the normals of the points on the silhouette border. The plane Q is now defined by this

line Q′ and the centre of the camera. The normal of the collision surface is the normal

of this plane Q. The position of the collision on the surface of the virtual object is PV

and the position on the real object is the point PR on the plane Q the closest to PV .

2.4.3 Bounding Volumes

The point - real world collision test is very fast, but using bounding volumes, we

can prune the number of tests that need to be performed and increase the total per-

formance. Finding bounding volumes for the virtual objects can easily be done with

standard computer graphics algorithms. Defining a bounding volume for the real ob-

jects on the other hand is more difficult, especially since we do not know anything

about them — we did not even segment the input images.

Constructing bounding volumes

To calculate a bounding volume for the real objects, we need to make some assump-

tions and/or we need to do some extra calculations to find out a bit more about their

shape.

Here we present two possible ways to calculate a bounding volume.
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Assume all cameras see the entire object If we assume the real object is always

inside the view frustum of each camera, we can use the intersection of all these frus-

tums as a bounding volume of the real object. This bounding volume might be a lot

bigger than the real object, but it only has to be calculated once and can provide a big

speedup if the real object only represents a small portion of the virtual world. This

bounding volume has only a little overhead, but it might be a lot bigger than the real

object.

Segmenting the input images To construct a smaller bounding volume more in-

formation about the real scene has to be calculated. One way to do this would be to

segment the input images and calculate in image space, a 2D bounding rectangle of

the silhouette for each input image. For each camera, such a 2D bounding rectangle

defines a frustum than encloses the real object. The intersection of these frustums

defines a bounding volume for the real object. The disadvantage of this method is

that it requires quite a lot of overhead — all the input images need to be segmented.

But if there are a lot of virtual points in the scene, this extra work might pay off.

Note that creating a bounding volume is only valuable if there are a lot of virtual

points that need to be tested. If we only have a few virtual objects in the scene, the

overhead of calculating the bounding volumes does not outweigh the speedup we get

from using them. In the results section we show the impact of the bounding volumes

on the performance of our algorithm in a number of scenarios.

Using bounding volumes

Until now, we explained how the bounding volumes can be calculated. In this para-

graph we describe how the bounding volumes are used to speed up the collision tests.

For each virtual object we construct a kdtree containing its sample points. For each

node of this kdtree we calculate the axis aligned bounding box of its children. This

can all be done during a preprocessing step. This kdtree and the bounding boxes are

in the local coordinate system of the virtual object and rotate when the virtual object

rotates. To calculate the intersection between this virtual object and the real object,

we traverse the kdtree and prune away the nodes for which the bounding box does

not overlap with the bounding volume of the real object. To reduce the overhead of

this pruning, we do not use the bounding volume of the real objects from the previous

section directly. Instead we calculate an axis aligned bounding box of this volume in

the local coordinate system of the virtual object. This way we only have to perform

very fast intersection tests between axis aligned bounding boxes when pruning.
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(a) input (b) without fitting a plane (c) with fitting a plane

Figure 2.8: Experiment that shows that a plane has to be fitted to obtain a smooth

animation.

scene few many close many far

no bounding volume 0.47ms 375 76.0ms 229918 9.66ms 54396

bounding frustum of cameras 0.51ms 375 76.7ms 180427 6.24ms 10793

bounding frustum of silhouettes 36.1ms 275 52.1ms 23230 42.4ms 2015

Table 2.1: The effect of the use of bounding volumes on the performance of our

system. The three columns correspond to the three experiments shown in figure 2.9.

The total time it takes to calculate the collisions and perform the rigid body simulation

is shown, along with the number of points for which a visual hull intersection test was

performed.

2.5 Results

As explained in section 2.3, we locally approximate the visual hull by a plane to cal-

culate good collision information. Figure 2.8 shows an experiment where we demon-

strate that fitting this plane is really necessary. In this experiment we used an artificial

static scene that consists of a single slope. The four input images are shown in image

(a). We drop a number of virtual objects (toruses) onto this plane and they should

slide smoothly down the slope. Image (b) shows a frame of the resulting animation

when we do not fit a plane but use the visual hull directly. In this case the animation

is not smooth and the virtual object bounces up and down. In these still frames, this

effect is not very obvious, but in the accompanying video it is very clear. Image (c)

shows our plane based approach. Now the collision information is more accurate

which results in a better simulation.

We tested the effect of the use of bounding volumes on the performance of the system.

An artificial static scene of a rabbit is used for this experiment. The input images are

shown in figure (a). We used the three different situations shown in figure 2.9 to test

the performance. The first scene contains only a few virtual objects, the second scene
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(a) input (b) few virtual objects

(c) many virtual objects close to the real

object

(d) many virtual objects at a larger dis-

tance from the real object

Figure 2.9: Three experiments to test the effect of the use of bounding volumes on

the performance of our system.
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contains many virtual objects that are close to the visual hull, the third scene contains

many virtual objects that are spread out over a large distance. Table 2.1 shows the

effect of using bounding volumes on the performance in the situations shown in figure

2.9. It is clear that whether and which bounding volumes should be used depends on

the situation. Using the silhouettes to construct a bounding volume generates lots of

overhead because segmenting the images is computationally intensive, but when a lot

of virtual objects are near the visual hull, it pays off. When only a few virtual objects

are present, using no bounding volume is the best choice, because of the overhead

when using bounding volumes. When many virtual objects are present in the scene,

but the virtual objects are far away from the visual hull, using a bounding frustum of

the cameras is the best choice.

As can be seen in table 2.1, when only a few virtual objects are present in the scene,

calculating the collisions is very fast, a lot faster than segmenting the input images.

As said in the introduction, a naive way to calculate intersections between real and

virtual objects is to first calculate a polygonal visual hull of the real objects and then

use traditional collision detection algorithms to obtain the intersection between the

visual hull and the virtual objects. Since segmenting the input images is only the

first step in the naive method, our collision detection algorithm is a lot faster than the

naive one.

Figure 2.10 and figure 2.11 show experiments where a person moves a real box and

the virtual boxes on top of it move accordingly. In this experiment we show we can

handle virtual objects that are lying in rest on top of real ones.

The experiment in figure 2.12 and figure 2.13 shows we can handle non-convex ob-

jects. A number of non-convex objects fall on a dancer. Figure 2.1 shows we have no

problem handling many objects in real time.

2.6 Conclusions and Future Work

We presented a visual hull based real-time system for detecting collisions between

real and virtual objects in a multicamera setting. We demonstrated the collision de-

tection system could be coupled to a physically based simulation system. We had

to locally approximate the real object by a plane to calculate accurate collision in-

formation for each collision. We also analysed the effect of bounding boxes on the

performance of the algorithm.

Currently, the system can not handle objects that move very fast. If at one instant,

the visual hull is in front of a rigid body and at the next frame, it is behind the rigid
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Figure 2.10: A stack of virtual boxes on top of a real box is tipped over by lifting

the real box. This demonstrates how our technique is capable of modeling virtual

objects that are lying in rest on top of real ones, due to correct treatment of multiple

simultaneous collisions.

Figure 2.11: A virtual box on top of a real box. When the real box is lifted, the

virtual box stays on top of the virtual box. When the real box is tilted, the virtual box

falls from the real one.
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(a) (b) (c)

(d) (e)

Figure 2.12: A dancer interacts with concave objects.

(a) (b) (c) (d)

Figure 2.13: A dancer interacts with concave objects.
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body, the contact that should have been detected is missed. To solve this, we have to

be able to query the visual hull in between two frames. For each camera, we would

need some kind of optical flow between two consecutive frames of this camera to

approximate the shape of the visual hull between these two frames. Since one of our

goals is interactivity, calculating an approximation of the visual hull in between two

frames is not an easy task.
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In this chapter we present two new motion capture systems. They can be used to

obtain information for a sparse set of scene points. We show how this information

can be used in the context of video manipulation. Both systems are low cost optical



28 Motion Capture

tracking systems that use imperceptible markers.

The first is a camera based system that locates and identifies a number of electronic

markers that contain blinking LEDs.

The second system is called Prakash. In this system, light patterns are projected into

the scene and electronic markers in the scene decode these patterns to calculate their

position, orientation and incident illumination.

3.1 Related Work

3.1.1 Why Optical Tracking ?

The surveys by Welch and Foxlin [Welch 02] and Hightower and Borriello

[Hightower 01] describe a large number of approaches to build a motion tracking

system using magnetic, acoustic, optical, inertial or radio frequency signals.

We chose to create optical systems, because of the advantages over other approaches.

Optical systems are typically able to achieve a high accuracy and low latency. The

major disadvantage of optical systems is their need for line of sight. Ambient light

can also interfere with such systems.

A typical optical system consists of a number of light sources and light sensors.

Optical systems can be subdivided into two groups. Outside-in tracking systems

have light sensors outside the scene and light sources in the scene. Inside-out tracking

systems are the opposite, they have light sources outside the scene and light sensors

in the scene.

3.1.2 Outside-in Tracking

In outside-in tracking systems, the light sensors are located outside the scene, and

the markers that are being tracked emit or reflect light to the sensors. Most outside-

in optical tracking systems film a number of markers with high-speed cameras. To

each interesting point in the scene, a marker is attached. The 2D position of the

markers is determined by each camera. Because the cameras are calibrated, a 3D

position can be obtained from the multiple 2D positions captured by the cameras.

The markers can reflect light from their environment onto the cameras or they can

emit light themselves.

In most systems that use reflecting markers, retroreflective materials are used. These

materials have the special property that they reflect most of the incident light back
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Figure 3.1: In the PhaseSpace system [inc 07], a number of LEDs are attached to

points of interest. These points are tracked using multiple high speed cameras to

obtain their 3D position.

to the light source it was emitted from. To maximally profit from the retroreflec-

tive effect of the markers, a light source is placed near each camera[Viconpeak 06,

Corporation 06].

In systems that use markers that emit light themselves, each marker has to

be equipped with a power source and a light source [inc 06, Optotrak 07,

Codamotion 07, inc 07]. LEDs are mostly used as light sources because of their small

size and energy efficiency. Using markers with LEDs instead of reflective markers

has one big advantage. If each marker is given a unique ID, the LEDs can be turned

on and off in a pattern corresponding to this ID. The cameras capturing these LEDs

can determine the iID of each LED from the way it turns on and off. This way two

markers will never get swapped — even after occlusions the system will be able to

identify each marker.

Because high frame rates are desirable in a tracking system, high speed cameras are

often used. The disadvantage of high speed cameras is their cost and their high band-

width requirements. To alleviate these problems, the PhaseSpace motion tracking

system [inc 07] uses two 1D line sensors instead of a normal 2D camera (See figure

3.1). In their system, the LED of only one of the markers is turned on while the

others are turned off. When the scene is captured using two 1D line sensors that are

orthogonal to each other, the 2D position of the marker can be obtained. The 3D

position can be obtained if even more 1D line sensors are used.

The disadvantage of outside-in tracking is that the contrast between the markers and
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Figure 3.2: Using the HiBall system [Welch 97], a marker which contains multiple

light sensors senses the amount of light arriving from a number of LEDs attached to

the ceiling to calculate its position.

the rest of the scene has to be high. Otherwise the markers can not be found in

the camera images, and the tracking fails. When tracking a human actor using such

systems, the person has to wear dark clothes.

3.1.3 Inside-out Tracking

The opposite of outside-in tracking systems are Inside-out Tracking systems. In these

systems, the light sources are placed outside the scene while the light sensors are

located on the markers that are being tracked.

One way to construct an inside-out tracking system is to sweep the scene with a

fast rotating beam of light. The markers that are being tracked contain a cheap light

sensor. By sensing the moment in time when the sensor is lit by the beam of light,

its position can be obtained. Multiple rotating light sources are needed to obtain a

3D position. Examples of such methods are Indoor GPS [Kang 04, Sorensen 89],

Spatiotrack [Iltanen 98] and Shadow Track [Palovuori 00].

In the UNC HiBall system [Welch 97], multiple light sensors are placed on the marker

(See figure 3.2). Each of these sensors faces in a different direction. The ceiling is

covered with LEDs that are turned on one after the other. The amount of light arriving

at the light sensors from each of the LEDs depends on, among other things, the angle

and the distance between the sensor and the light source. When the amount of light



3.1 Related Work 31

(a) sketch of the system (b) a person using the system

Figure 3.3: Using the RFIG system [Raskar 04] a person can find out information

about boxes in a warehouse by aiming a projector at them.

arriving at the sensor is known for a number of LEDs, it becomes possible to calculate

the position and orientation of the sensor.

The performance of most inside-out tracking systems does not depend on the number

of markers. This is an advantage over outside-in tracking systems, where it becomes

increasingly difficult to identify each marker when more markers are added to the

system. With inside-out systems, the markers calculate their own position and identi-

fying markers is trivial. However, in outside-in tracking systems all the markers can

be very simple devices consisting of a retroreflective patch or a single LED, whereas

in inside-out tracking systems, the markers are more complex because they have to

sense light and process their measurements.

3.1.4 Projecting Data

A video projector can be used to project more than just images. Extra information,

invisible to the human eye, can be embedded in the projected images. Or by project-

ing special patterns instead of normal images onto a scene, a light sensor attached to

a marker in the scene can calculate its position.

Raskar et al. [Raskar 04] present a system where a hand-held projector illuminates

a scene containing a number of objects which have markers attached to them (See

figure 3.3). The markers are RFID markers that contain a light sensor. When the

markers are lit by a number of binary light patterns, they can calculate their own

position. Their position is sent back to electronics attached to the projector. The

projector can then project additional information onto the objects because their posi-

tions are now known. This is useful in a warehouse where a person with a portable
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projector can find out information about boxes by aiming a projector at them.

Nii et al. [NII 05] present a system where a projector is used to send position depen-

dent information (e.g. audio) to receivers in a scene. They do this in such a way that it

seems to a human observer that the projector is projecting a normal image. They use

the observation that the human visual system averages out patterns that are projected

onto a scene at a very high speed. The projected patterns are chosen in such a way

that they are averaged out by the human visual system to produce a normal image,

while special devices with optical sensors are able to decode the invisible high fre-

quency data that is embedded in these patterns. Cotting et al. [Cotting 04] present

a similar system where they use a DLP projector to project the patterns at a high

speed. Lee et al. [Lee 05] transmit low-perception grey code patterns encoded in an

image with a projector onto a scene containing markers with light sensors attached to

them. The markers that receive this light can calculate their positions while a human

observer sees a normal image. The least significant bits of the projected patterns are

used to transmit data to the markers, while the most significant bits of the projected

patterns are used to let a user view a normal image.

3.1.5 Projectors for Tracking

One could use projectors designed to project video images for the purpose of trans-

mitting (location) information to optical sensors in the scene, as explained in the

previous section. Because the amount of information that can be sent depends on

the speed of the projector, high speed projectors are desired. High speed projectors

designed for projecting video images rely on Digital Light Processing (DLP) or on

Gated Light Valves (GLV) [Machines 06]. Instead of using a general purpose projec-

tor to project data onto the scene, one could devise projectors that are only able to

project patterns for location tracking. With only this application in mind, choices can

be made that result in a low cost and a high frame rate as we will show in section 3.3.

3.2 Locating And Identifying Active Markers using a

Multi-Camera Setup

In this section we describe a camera based tracking system that can identify and

locate a number of electronic markers. Each marker contains an IR LED that emits

a unique time coded light pattern. The 3D position of each marker can be calculated

using images of the scene captured by multiple calibrated cameras. The time coded
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Figure 3.4: A sketch of the hardware components of our system.

light pattern is used to uniquely identify each marker so there are no reacquisition

problems after occlusions.

3.2.1 Introduction

Figure 3.4 shows a sketch of the system. The light emitted by a LED on the marker

is captured by the cameras. The captured images are sent to a PC that identifies

the marker and calculates the 3D position of the marker. The PC is responsible to

keep everything synchronised. To synchronise the cameras to the PC, the PC sends a

trigger signal to the cameras. To synchronise the markers to the PC, synchronisation

data is optically send to the markers using the synchronisation LEDs. To capture this

synchronisation data, the markers contain a binary light sensor.

The system is applicable in a wide range of situations, because its accuracy and work-

ing volume depend entirely on the cameras and the lenses used. Simply by changing

the cameras or lenses, the system can fit specific budget and accuracy constraints.

Because the cost of cameras is dropping, the presented system is not expensive. Be-

cause it is an optical system, occlusions can cause the system to fail. We address this

issue by the use of a redundant set of cameras. The light emitted by the markers is

invisible to the human observer because infra red LEDs are used.

In figure 3.5, we show how the system is used to create peephole displays. Robots

with laptops on top of them drive around on a stage during a theatre play. Because the

robots are being tracked using our system, the laptops can display images to create

the illusion of a peephole display.
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(a) (b)

Figure 3.5: Laptops attached to robots are tracked by our system to create peephole

displays during a theatre play.

3.2.2 Strobe Pattern

Because the cameras are calibrated, calculating the 3D position of a marker is easy

once its 2D position is found for each camera. When multiple markers are being

tracked, the hard part is to find the corresponding LED in an image captured by one

camera given the 2D position of this LED for another camera. To solve this problem,

each marker is given a unique ID. This is a number that uniquely identifies each

marker. This ID is embedded in a time coded light pattern emitted by the LED on the

marker. By decoding this pattern, the PC can identify each marker using the images

captured by the cameras. For each frame the cameras capture, the LED is turned

on/off according to this pattern.

Figure 3.6 shows a light pattern that can be used to identify 8 markers. The even

frames of the pattern are used to locate the markers and to determine occlusions. For

these frames, the LED of all markers are turned on. The odd frames are used to

identify the markers. During each odd frame, the LED emits a single bit of the ID of

the corresponding marker. In the example pattern shown in the figure, the ID consists

of 3 bits and one parity bit for error detection, thus 23 = 8 markers can be identified

using this pattern. In our prototype setup we used 64 markers, in that case the marker

ID consists of 6 bits and the strobe pattern is 14 frames long.
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frame nr 1 2 3 4 5 6 7 8

LED on/off bit1 on bit2 on bit3 on parity on

Figure 3.6: The strobe pattern of a LED is used to find the position and the ID of the

corresponding marker. In this example, the ID of the marker consists of three bits.

These three bits are encoded in the strobe pattern.

3.2.3 Tracking Algorithm

Overview

In this section we give an overview of the algorithm to locate and identify the markers

using the images captured by the cameras. In the next sections each step of the

algorithm will be described in detail.

To find the 3D position and ID of a marker, we first find its 2D pixel position and ID

for each camera. From this we can calculate its 3D position

To find the 2D position in image space and the ID for each marker for a given camera

we perform a number of steps. Note that we need multiple frames to decode the ID of

the markers visible in these frames (see figure 3.6). First we use simple thresholding

to find the 2D position of the markers in these camera images. Image (a) of figure 3.7

shows an example where two markers are filmed by a single camera. It shows the 2D

pixel positions where a LED was located for 8 consecutive frames, each position is

labeled by the frame number where the LED was found. Note that for most frames,

we found more than one LED. Next we find correspondences between the marker

positions over time. For each marker that is visible in the camera images, we find

its trajectory (See figure 3.7 (b)). This way we know, for a given marker position

and frame, what the position of this marker was for the other frames. To find the

trajectories, we only use the even frames, the moments for which we know all the

LEDs are turned on (see figure 3.6). Once the trajectory of each marker is known,

its corresponding ID can be calculated. To find the ID, we need to determine for

which odd frames the LED of the marker was turned on (see figure 3.6). Because

we calculated the trajectory of the markers for the even frames, we can estimate

their positions for the odd frames. To determine whether the LED is turned on for a

given odd frame, we simply check if we found a LED in the camera image near the

estimated position.

So in summary

• Find 2D positions of LEDs for each camera image using thresholding.
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(a) All the LEDs we found over 8 frames

for a single camera. Each point is labeled

with the frame number it was found in. The
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circles depict the estimated position of the

marker for odd frames where the LED was

turned off.

Figure 3.7: Finding the position and ID of multiple markers for multiple frames of a

single camera.

• Find trajectory of each LED over a small number of even frames.

• Find the corresponding ID for each trajectory using the odd frames.

• For each camera, we now have the 2D position and the ID for each marker.

Now we combine the information from multiple cameras to obtain the 3D po-

sitions.

Now we will describe each step in detail.

Segment images

Given a single image of a camera, we need to find the 2D position of each LED in this

image. We use two observations to do so. The LEDs are brighter than most objects in

the scene and they are very small, so the gradient of the image is large near a LED. To

find the LEDs, we segment out each pixel that is brighter than a given threshold and
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for which the image gradient is larger than another threshold. Now we have multiple

image segments where a LED might be. For each segment we calculate the size. If

it is too big to be a LED, it is removed. We calculate the centre of the remaining

segments and these are passed on to the next step of the algorithm as the potential 2D

positions of the markers.

Find trajectory

The input of this step of the algorithm is a number of potential marker positions for a

number of even frames. An example of such a dataset is shown in image (a) of figure

3.7. For each point in the current even frame, we need to determine which point

in the previous even frame corresponds to it. We only use the even frames for this,

because we know all LEDs are turned on for these frames (see figure 3.6). We also

have to make sure this step is robust against errors made during the previous step.

The previous step might have found false positives.

We use the observation that we are designing a tracking system for a large working

volume. So in between two even frames, the markers will not have moved many

pixels. If we want to know, for example, which point in frame 4 corresponds to a

given point in frame 2, we simply look for the point in frame 4 that is the closest

to the given point of frame 2. If this distance is not too large, we assume these two

points correspond to the same marker. If the distance is larger that a given threshold,

we assume there is no point in frame 4 that corresponds to the given point. This could

be due to occlusions or the given point might be a false positive from the previous

step of the algorithm.

Find ID

Once the trajectories are found, we know the position of each marker for a number

of even frames. But we do not know the ID of each marker yet. To find the ID for

a given marker, we need to know for a number of odd frames whether its LED was

turned on or off (See figure 3.6). To do this, we estimate the position of the marker

for each odd frame by interpolating the position of the marker at the even frames. For

a given odd frame, we assume the LED of the marker is turned off if no LED is found

near the estimated position. If a LED is found in the camera image near this position,

we assume the LED of the marker was turned on. We use linear interpolation to

estimate the position.

Once all the bits of the ID and the parity bit are obtained this way, we check the

ID against the parity bit to determine whether an error has occurred. One reason for
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errors might be occlusions We found that one parity bit was enough to obtain a robust

system, but more rigid error detection can be incorporated if needed.

Find 3D position

Now we know the 2D position and ID of each marker for each camera and frame.

Because the cameras are calibrated, we can find the 3D position of a marker for a

given frame, using the 2D positions if the marker is visible in at least 2 cameras.

3.2.4 Hardware Details

Overview

Figure 3.4 shows the different hardware components of our system. The cameras that

capture the scene are connected to a PC. This PC processes the images and broadcasts

the position of each marker. The marker contains a microcontroller and a LED to

signal its position to the cameras. Because the markers are battery powered, we want

them to use as little power as possible. That is why we turn on the LEDs only for the

very short time the shutter of the cameras is open. This is why the markers have to

be synchronised to the cameras. The PC also needs to know which bit of the strobe

pattern (see figure 3.6) the markers are sending for a given frame, so the markers

also have to be synchronised to the PC. For this purpose, the PC is responsible to

send trigger signals to the cameras and synchronisation signals to the markers. The

PC sends a trigger signal to the cameras using an external trigger cable. To send a

synchronisation signal to the markers, a number of synchronisation LEDs are placed

above the scene. The PC sends a synchronisation signal to the synchronisation LEDs

over a synchronisation cable, these LEDs optically send this signal to the markers

that contain a light sensor to capture the signal. The technology used to optically

send this signal is the same as that used in the remote control for a television. In

the synchronisation signal the PC sends to the LEDs, the current frame number is

encoded. This way, the markers know which bit of their strobe pattern they need to

send to the cameras.

Figure 3.8 shows a block diagram of the hardware components of our tracking sys-

tem. Each rectangle with a dashed border represents a component of our system.

Each subcomponent is represented by a solid rectangle. The arrows represent the

flow of data. Solid arrows represent wires and dashed arrows represent wireless con-

nections. In the following sections, we will describe each component in detail.
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Figure 3.8: Block diagram of the hardware components of the system.

PC

The PC runs the tracking software that interprets the images from the cameras.

Firewire is used to connect the cameras to the PC. The tracking software has to be

synchronised to the markers and the cameras. To this end the PC is connected to

the Control board. This is a custom designed printed circuit board responsible for

keeping all the components in the system synchronised.

Each time the tracking software receives a frame from the cameras, it tells the Con-

trol board a new image has to be captured while the tracking software processes the

current one. To do this, the PC sends the current frame number to the Control board

(also see figure 3.6). The Control board will make sure that when the cameras capture

the next image, the LED of each marker is turned on or off according to this frame

number and the strobe pattern of the marker. This way the PC stays synchronised

with the other components in the system.

Cameras

The cameras send the images they capture to the PC. They are triggered when a signal

is applied to their trigger input. This input is connected to the Control board. So the
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Control board controls when the cameras capture an image. The cameras capture the

position and ID of each marker through their CCDs.

Control board

This is a custom designed printed circuit board. It is connected to the PC and is

responsible for synchronising the other components in the system. It contains a mi-

crocontroller with two USARTs (Universal Synchronous-Asynchronous Receiver/-

Transmitter) used for serial communication with the PC and the Trigger board.

One of these USARTs is used to communicate with the PC. This USART is directly

connected to a USB module. The USB module is connected to the PC and acts as

a virtual com port. Using this virtual com port, the tracking software on the PC can

communicate with the microcontroller.

The other USART is used to send synchronisation data to the markers. To this end,

it is connected to a Trigger board which optically sends data to the markers. Because

the distance between the Control board and the Trigger board can be quite large,

RS485 is used to connect them. The USART of the microcontroller is connected to a

RS485 Transceiver which in its turn is connected to the Trigger board.

To trigger the cameras, a general purpose IO pin of the microcontroller is connected

to the trigger input of the cameras.

Trigger board

The Trigger board is also a custom designed printed circuit board. It is responsible

for relaying synchronisation data from the Control board to the markers. This data

is optically transmitted to the markers using a number of LEDs. The light the LEDs

emit is modulated with a carrier frequency of 455 kHz to make the system more

robust against ambient light. The markers only sense light that is modulated by this

frequency. The ambient light, which is not modulated by this frequency, is ignored.

A microcontroller on the Trigger board receives synchronisation data from the Con-

trol board using a RS485 link. To this end, the USART of the microcontroller is

connected to a RS485 transceiver which in turn is connected to the PC Board.

The microcontroller receives synchronisation data from the Control board and checks

it for transmission errors. If the data is OK, it is transmitted to the markers using the

LEDs. A general purpose IO pin of the microcontroller is used to turn the LEDs on

and off.
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Figure 3.9: One of the markers that is tracked by our system.

The Control board is typically located near the PC while the Trigger board is located

above the scene where its LEDs can illuminate the markers below.

Marker

Each marker contains an IR receiver to receive the synchronisation signal from the

Trigger board, a microcontroller and a LED to signal its position and ID to the cam-

eras. The IR Receiver is a binary chip that filters out light that is not modulated by

a carrier frequency of 455 kHz It is connected to the USART of the microcontroller.

The microcontroller interprets the synchronisation data and turns the LED on or off

according to the strobe pattern of the marker. The ID of the marker is programmed

in the memory of the microcontroller together with the firmware.

Figure 3.9 shows a picture of one of the markers that is tracked by our system. Note

that this marker contains two LEDs that are being tracked, and consequently it also

has two IDs, one for each LED. The light sensor, used to capture the synchronisation

signal, and the microcontroller (MCU) are also visible in this picture.

Timings

Figure 3.10 shows the time it takes for the synchronisation signal to travel from the

PC to the markers. When the PC receives an image from the cameras, it sends a
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PC sends sync
PC board sends sync
Trigger board sends sync
Led on marker turns on
Shutter of cameras open

0.0 ms 2.5 ms 5.0 ms 7.5 ms 9.5 ms

Figure 3.10: The timings of the synchronisation signal.

synchronisation signal to the Control board. The Control board receives this, checks

for transmission errors and sends this signal to the Trigger board. The Trigger board

also checks for transmission errors and then sends the signal to the markers. The

markers then turn their LEDs on or off according to the synchronisation signal and

their ID. The Control board sends a synchronisation signal to the cameras at the

same moment that the markers turn on their LEDs. The time it takes to send the

synchronisation signal from the Control board to the markers is hard coded in the

firmware of the Control board, so the Control board knows how long it has to wait

after sending the synchronisation signal before triggering the cameras. The shutter of

the camera is opened for 2 ms and the LEDs of the markers are turned off once the

shutter of the camera closes. The LEDs are turned on a little longer than the camera

shutters are open to allow for a margin of error in the timings. The shutter time of the

cameras is hard coded in the firmware of the markers, so the markers know how long

their LEDs should be turned on. This way the LEDs of the markers are turned on for

only a very small amount of time and battery power is not wasted. Once the images

are captured, the cameras wait for the PC until it finishes processing the previous

image. Then the images are sent to the PC and the PC signals the Control board to

start capturing the next image.

3.2.5 Results

Peephole Display

We tracked a number of robots with laptops on top of them using our tracking system

to build peephole displays. In this setup we used four cameras with a resolution of

640x480. The area across which the robots are tracked is 10 by 8 meters, which

results in an accuracy of approximately 10 m / 640 ≈ 8 m / 480 ≈ 2 cm. The cameras

are calibrated using the calibration toolbox by Svoboda [Svoboda ]. In image (a)

of figure 3.11 we show a number of laptops that are being tracked. Each laptop

is equipped with one markers containing two LEDs (see figure 3.9) to estimate the
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(a) Robots being tracked (b) Estimated 3D position of the robots

along with a point cloud representation of

the scene.

Figure 3.11: Tracking robots to create peephole displays.

(a) Camera (b) The synchronisation LEDs

Figure 3.12: One of the IR Cameras and the LEDs which send the synchronisation

signal to the markers.
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position and 2D orientation of each robot. Because the camera used to capture image

(a) is sensitive to infrared light, the light emitted by the markers can be seen as the

white dots at the top of the laptop displays. Note that this IR light is invisible to the

human observer. Image (b) shows a 3D point cloud representation of the scene. The

squares represent the estimated positions of the robots.

Image (a) of figure 3.12 shows one of the IR cameras that are used to capture the light

from the LEDs on the markers. Image (b) shows the LEDs used to optically send the

synchronisation data to the markers.

Verification Experiments

In this section we perform a number of experiments to determine the accuracy of

our system. Four cameras with a resolution of 640x480 pixels are attached to the

ceiling (2.5m above the floor) of a square room that measures 4m x 5.5m. All the

experiments are performed near the floor, in the middle of the room. The distance

between this point and the cameras is 4.5m.

In the first experiment, two markers are attached to a stick, approximately 30 cm

apart from each other. The tracking system is used to measure the distance between

these two markers while the stick is moved around in a box of approximately 1m

x 1m x 1m. The variation in the calculated distance is a measure for the accuracy

of our system. The results of this test are shown in figure 3.13. Image (a) shows

the two markers (LEDs) attached to a stick. Image (b) shows the 3D position of

the first marker calculated by our system. The position looks jagged because it is

only updated during the even frames (see figure 3.6). Image (c) shows the distance

between the markers calculated by our system for each frame. The average distance

is 30.94 cm. For each frame, the difference between the calculated distance and the

average distance is shown in image (d). The average difference is 0.17 cm and the

maximum difference is 0.51 cm.

In the second experiment we move a marker along a line and capture its position every

10 cm. The results of this test are shown in figure 3.14. Image (a) shows a picture of

the setup used to perform this experiment. A marker is shown next to a ruler that is

used to move the marker exactly 10 cm between two measurements. Image (b) shows

the 3D position of the marker relative to its position at the first frame. Image (c) shows

the distance between the position of the marker and the position of the marker at the

first frame along with the ground truth. The difference between the ground truth and

the calculated distance is shown in figure (d). The average difference is 0.53 cm and

the maximum difference is 1.24 cm.
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(b) XYZ position of the first marker
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Figure 3.13: The tracking system is used to calculate the distance between two

markers attached to a stick that is moved around. The error is the difference between

the average distance and the distance for a single frame.
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Figure 3.14: The position of a marker is calculated every 10 cm.
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Figure 3.15: The position of a marker is calculated every millimeter.
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In the final experiment we measured the spatial resolution of the system by sliding

a marker along a line and capturing its position every millimeter. The results of this

test are shown in figure 3.15. Image (a) shows a marker next to a measure. Image

(b) shows the 2D pixel coordinate of the marker for each of the four cameras. The

coordinate is relative to the coordinate of the marker at the first frame. The coor-

dinates are calculated with subpixel accuracy. This is possible because the marker

is larger than one pixel in the camera images, the larger the marker in the camera

image, the higher the accuracy. This can be seen in the graph, camera 4 is closer to

the marker and therefore the marker is larger in the images it captures and thus the

subpixel accuracy of camera 4 is higher than that of, for example, camera 3 which is

further away. Image (c) shows the 3D position of the marker and image (d) shows

the distance traveled along with the ground truth. The average difference between the

distance measured by our system and the ground truth is 0.13 cm and the maximum

difference is 0.31 cm.

Conclusions

From these experiments, we can conclude that our tracking system is able to accu-

rately measure both small local movements and the absolute marker position. This is

an advantage over many other methods that are only able to determine local move-

ments (such as inertia based systems) or global movements (such as GPS based sys-

tems). Our system is able to determine the absolute position of each marker accu-

rately because current camera calibration methods are very accurate. Because the

markers are larger than one pixel in the images, we are able to determine their posi-

tion with subpixel accuracy. This way our system is able to accurately measure very

small movements.

When we assume a 2D accuracy of one pixel (no subpixel accuracy), the theoretical

spatial resolution of the setup is approximately 5.50 m / 640 pixels ≈ 4 m / 480 pixels

≈ 0.8 cm. This matches the results from our experiments because we can conclude

from the first two experiments that the spatial accuracy of this setup is between 0.5

cm en 1 cm.

3.2.6 Conclusions

We presented a real time camera based system to locate and identify a number of

electronic markers. Because the price of cameras and computational power is quickly

decreasing, the hardware cost of the system is low. Because the accuracy and working

volume of the system completely depends on the cameras and lenses used, one can
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easily adjust the system to comply with certain cost and performance requirements.

To demonstrate the usefulness of our system, we build peephole displays by tracking

robots with laptops attached to them. In this setup, a large working volume (10m by

8m) was used with an accuracy of approximately 2 cm.

The system could be improved by combining multiple steps of our algorithm using

probabilistic methods. One could devise a system that finds the 3D positions, trajec-

tories and IDs all at once. By doing this, more prior information will be available to

each step of the algorithm resulting in a more robust system. The system could be

made more robust against ambient light by placing an IR bandpass filter in front of

the cameras to filter out light with a different wavelength than that of the IR LEDs.

3.3 Prakash

In this section we describe Prakash, a high speed motion tracking system that cap-

tures, not only the position, but also the orientation and incident illumination for a

number of scene points. In contrast to the system presented in the previous section,

this is not a camera based system. Instead, multiple patterns of light are projected

onto the scene and electronic markers calculate their own position and orientation by

sensing this light. The result is a highly scalable system which is not bound by the

number of markers being tracked.

3.3.1 Introduction

Many high speed motion tracking systems rely on high speed cameras to obtain the

position for a number of scene points that are marked by special reflective markers

[Robertson 06]. A disadvantage of this approach is the need for a large amount of

bandwidth and computational power to handle the vast amount of data generated by

the high speed cameras.

In contrast to camera based systems (such as the one presented in the previous sec-

tion), the method presented in this section is an inside-out tracking system. An elec-

tronic marker containing a number of light sensors is attached to each scene point

we want to track. Time multiplexed light sources project well chosen illumination

patterns onto the scene. By sensing these illumination patterns, the markers can cal-

culate their position, orientation and incident illumination.

Unlike with camera based approaches, decoding the light patterns is not computa-

tionally intensive, nor are there any high bandwidth requirements. The system can
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Figure 3.16: A marker is attached to each scene point of interest. It consists of

a microcontroller and a number of sensors to calculate its position, orientation and

incident illumination.

be built using off the shelf components, resulting in a low cost system. Because we

use an optical system, interreflections of light and very bright ambient illumination

can cause the system to fail. Later in this section we will describe which measures

were taken to make the system more robust against ambient light. We show this by

tracking a person outside in daylight.

The main contributions of our system are:

• High speed location and orientation tracking by decoding multiplexed light

patterns.

• Capturing incident illumination.

• The used markers are imperceptible under clothing and work in normal lighting

environments.

• New video manipulation methods that use the measured properties.

3.3.2 Estimating Scene Parameters

In this section, we describe how each property — position, orientation and incident

illumination — is captured and we analyse the accuracy of the system.

An electronic marker is attached to each point in the scene we need to track. As

is shown in figure 3.16, such a marker consists of a printed circuit board, a micro-

controller and a number of optical sensors. For each property we capture (position,
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orientation
light beacons

space label
projectors

camera

(a)

Figure 3.17: This is an image of the light sources that optically label the scene.

The marker uses the light from the projectors for position tracking, the intensity of

the light from the orientation beacons for orientation tracking. A camera is added to

show tracking results on top of a video of the scene.

orientation and incident illumination), a sensor is present on the marker. The micro-

controller processes the information from the sensors and transmits the result via an

RF system.

Figure 3.17 shows the light sources that label the scene. Three one dimensional

projectors are used to label the 3D space, more details will be given in the section

about location sensing. Four light beacons are used for the orientation tracking. And

also a camera is present so the tracking results can be used to augment a video of the

scene.

Position

First we will describe 1D position tracking, later we show how we can extend this to

2D and 3D tracking.

For 1D position tracking, a number of binary patterns are projected onto the scene.

These patterns are shown in figure 3.18. The patterns are projected onto the scene

one after the other using our custom projector. A sketch of a 4-bit projector is shown

in figure 3.19. It consists of a number of LEDs, and in front of each LED is a mask.
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Figure 3.18: The light patterns that are projected onto the scene for 10-bit position

tracking.

Figure 3.19: A 4-bit high speed pattern projector for location tracking. By turning

the 4 LEDs on one after the other, the patterns in front of each LED is projected.

When a LED is turned on, the corresponding pattern is projected onto the scene.

When the LEDs are turned on one after the other, a marker in the scene can calculate

its position from the sequence by which it is illuminated by the light patterns. The

first (leftmost in figure 3.19) pattern is used to obtain the most significant bit of the

coordinate of the marker, it decides whether the marker is in the left or in the right

side of the scene. The second pattern is used to obtain the next bit of the coordinate.

The last pattern is used to obtain the least significant bit of the coordinate. So, each

mask that is projected improves the accuracy of the system by one bit. In our setup

we used projectors with 8 LEDs, so the coordinates have a precision of 8 bits. To

decode the light patterns, the marker has a binary light sensor that senses whether or

not it is illuminated. Infrared LEDs were used to make the system invisible to the

human observer.

To make sure the system is robust against ambient illumination, the projectors emit

light modulated with a carrier frequency of 455 kHz. The binary light sensor only

responds to light with this carrier frequency. Ambient infrared light (e.g. from the

sun) is not modulated with this frequency and is thus ignored. The technology used

is the same as that in a remote control for a television.

Because we use LEDs as light sources we are able to switch them on and off very
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(a) 2D setup (b) 3D setup

Figure 3.20: The setups of the projectors for 2D and 3D position tracking are shown.

rapidly and thus are able track the markers at high sample rates. Our 1D location

tracker works at 1000 Hz.

To extend this approach to 2D, we simply put two 1D projectors orthogonal to each

other and operate them one after the other. One projector is used to obtain the X-

coordinates and the other one is used for the Y-coordinates. For 3D location tracking,

the 2D system is extended by a third 1D projector in stereo with the first one. Using

the first and the third projector, the distance between the marker and the projectors

can be calculated using triangularization. Figure 3.20 shows a sketch of the setup for

2D and 3D location tracking.

The field of view of the system is 1.5m x 1.5m at a distance of 3m from the pro-

jectors, or 27 degrees. So, in theory, the X-Y resolution of our 8-bit system is

1.5m/255=5.8mm at 3 meters.

The resolution in de Z-direction depends on the distance between the first and the

third projector, and it also depends on the distance between the marker and the pro-

jectors. If d is the distance between the projectors, p is the distance between the

projectors and the marker and α is the angular resolution of the projector, then the

theoretical Z-resolution of the system is equal to

α
d2 + p2

d −αp

We have a baseline of d = 1.3m and an angular resolution of α = 0.0017 rad = 0.1
degrees, so at a distance of p = 3m from the projectors, the theoretical resolution in

the Z-direction is 22mm.
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Figure 3.21: When moving a single marker in front of a measure, we show that in

practice the accuracy of 2D the position tracking is as high as predicted in theory. In

the top left corner of each frame, we show the x-coordinate that was calculated by

our system.

Verification Experiments To verify the accuracy of the position tracking system,

we performed three tests.

In the first test, we moved a marker along the x-axis in front of a measure as can

be seen in figure 3.21. The purpose of this test is to verify whether the actual X-

Y resolution of the system is the same as we predicted in theory. We positioned the

marker 3m away from the projectors, so the resolution should in theory be 5.8 mm. In

figure 3.21 we see the marker in front of the measure, and in each successive image,

the marker is moved to the right over a distance of approximately 5.8 mm. From

the figure, it is apparent that our system is indeed precise enough to measure these

movements, so the 2D position tracking is as accurate as we predicted in theory.

The second test is also designed to test the accuracy of the system in the X-Y di-

rection. The setup of the experiment is shown in figure 3.22 (a). It consists of two

markers that are attached to the two ends of a stick, facing in the direction of the pro-

jectors parallel to each other. This way the two markers will not move with respect to
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(a) A photo of the position veri-

fication experiment

19.0

19.5

20.0

20.5

1 101 201 301 401 501 601 701 801 901 1001

frame num ber

x
d

if
fe

re
n

c
e

in
c
m
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(c) Distance measured by our system between two markers that are attached to a rigid body along the

Z-axis

Figure 3.22: The results of the tests to verify the accuracy of the position tracking.
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each other. In this experiment, we will wave this stick around in a plane parallel to the

X-Y plane without rotating it at a distance of 3m from the projectors. The distance

measured by our system between the two markers should remain nearly constant.

The variation of the measured distance between the two markers is a measure of the

accuracy of the system. In figure 3.22 (b) we show the results of this experiment.

The average distance between the markers is 199.01 mm, the standard deviation is

3.70 mm and the maximum deviation is 7.01 mm. As in the previous test, this test

also confirms that the actual accuracy of the 2D tracking system corresponds to the

theoretical accuracy, which is, as said before, 5.8 mm at a distance of 3m using our

8-bit system.

The third experiment is very similar to the second one. But instead of the accuracy

in the X-Y direction, we test the accuracy in the Z direction. As in the previous

experiment, we once again attach two markers at the ends of a stick, but this time we

hold the stick in the direction of the Z-axis. Now we move the stick back and forth

and once again we look at the relative distance between the markers as calculated

by our system. Figure 3.22 (c) shows the results of this experiment. The average

distance between the markers is, 205.58 mm, the standard deviation is 18.33 mm and

the maximum deviation is 64.29 mm.

Orientation

For the orientation tracking, we have a number of infrared light sources (orientation

beacons) that light up one after the other. These light sources are shown in figure

3.17. For each of these light sources, the marker measures the amount of incident

illumination. The orientation of the marker can be calculated from these measure-

ments using the fact that the amount of incident illumination depends on the angle

between the sensor and the light source.

We assume the location and the brightness of each light source is known. We also

assume the position of the marker is captured using the method described in the

previous section. Each light source Li is turned on one after the other, and for each

light source, the sensor on the marker measures the amount of incident illumination

Ii from this light source. We can estimate the normal N of the marker by solving the

following set of equations:

Ii = k(Vi ·N)
Pi

d2
i

for i = 1 to #light sources (3.1)

With k the gain of the sensor, di the distance between the marker and the i-th light

source, Pi the power of the i-th light source and Vi = [Vix,Viy,Viz] the normalized
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Figure 3.23: A photo of and a graph with the results of the orientation verification

experiment. It shows the angle between two markers that are attached parallel to each

other on a rigid box that is being rotated.

vector from the marker to the i-th light source. At least three light sources are needed

to obtain the normal N, but to increase the accuracy, more light sources are used in

our setup.

Verification Experiments To verify the orientation tracking, we performed the ex-

periment shown in figure 3.23. Image (a) shows the setup used to perform the exper-

iment. Three markers are shown that are attached to a plank approximately parallel

to each other. When the plank is tilted, the angle between the markers stays the same.

The variation of the angle between two markers measured by our system is an indica-

tion of the accuracy of our system. In this experiment we used 8 orientation beacons,

and the beacons were spread over 2.5m. The graph in figure 3.23 (b) shows the dif-

ference of the angle between two markers while the plank is rotated. As is visible in

the graph, the box was rotated from 10 to 30 degrees and the angle between the two

markers has a mean of 1.32 degrees with a standard deviation of 0.46 and a maximum

variation of 1.49 degrees. So the accuracy of the orientation of the system is within 1

degree.
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Incident Illumination

A sensor on the marker measures the incident visible light. It returns the color of

the light that illuminates the marker. This information can be used in two ways. A

first application is to color virtual objects as if they were lit by light present in the

real scene. The information can also be used to calculate the reflectance of a surface

in the scene. The irradience near the surface can be captured by placing a marker

nearby and the light reflected by the surface can be captured using a camera. From

this irradiance Eλ and radiance Bλ, the lambertian reflection ρλ can be calculated.

ρλ ≈
Bλ

Eλ
≈

CameraReadingλ

Γ(TagReadingλ/dA)
(3.2)

Γ(.) represents the function that maps colors from the marker color space to the

camera color space.

3.3.3 Applications

In this section we show a number of video manipulation techniques that use the mo-

tion capture system presented in this chapter.

Virtual Objects

In figure 3.24 we show an example where a virtual label is added to a piece of cloth.

The scene consists of a person holding a piece of cloth illuminated by a video pro-

jector projecting a red-green-blue rainbow pattern. To track the cloth, twelve imper-

ceptible markers are attached to it. We fit an openGL NURBS through the position

and normal information of the markers as shown in image (c) of figure 3.24. But as

we did not use the illumination information of the markers for this image, the cloth

is lit in a different way than the rest of the scene. As shown in image (d), realism can

be added by coloring the virtual label using the incident illumination captured by the

markers. The illusion is created that the rainbow pattern projected onto the real scene

also illuminates the virtual label.

With camera based tracking systems, similar results can be obtained. But for such

systems the markers will no longer be imperceptible. In applications where transpar-

ent labels have to be shown on top of the real objects, this might be intolerable.
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(a) input with marker locations (b) marker orientations

(c) virtual label (d) virtual label with incident illumination

Figure 3.24: A virtual label is added to a piece of cloth using the position, orientation

and incident illumination of twelve markers attached to a piece of cloth.
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(a) Input (b) Input with marker positions

(c) With virtual sword (d) With motion blur

Figure 3.25: A stick, with three markers attached, is replaced by a virtual sword. The

scene is lit by a rainbow pattern, and the virtual sword is lit accordingly. Because we

have a high speed tracking system, realistic motion blur can be added.
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Motion Blur In figure 3.25 we show an example where a tracked real object is

replaced by a virtual object. The scene consists of a person holding a plastic stick.

The performance is filmed by a camera that is calibrated with respect to the tracking

system. Three markers are attached to the stick in order to track it. Using the position

and orientation information we obtain from the markers, we can render a virtual

model of a sword on top of the stick in the input video. This example shows another

application of capturing the incident illumination. The scene is lit by a LCD projector

that projects a red-blue-green rainbow pattern. If we did not capture the incident

illumination, the rendered sword would be uniformly lit, while the other objects in

the video would be lit by the rainbow pattern, which reduces the realism of the final

result. The markers attached to the stick capture the local lighting information, and

by using this information while rendering the sword, we create the illusion that the

sword was lit by the rainbow pattern. The top images of figure 3.25 show a frame of

the input video. The white squares shown in image (b) indicate the position of each

marker as calculated by our system. The bottom images shows the virtual sword

composited with the input video.

The tracking system runs at a much higher frame rate than the input video. We can

use this to add realistic motion blur effects to the final rendering result. Instead of

rendering the sword once for each video frame, we render it once for each sample

we obtain from the tracking system and blend the results together. This way we get

correct motion blur.

Achieving this result using a pure video based approach is not very easy. Tracking the

stick using a pure video based approach can be quite hard for a number of reasons. If

the sword moves fast, a lot of motion blur is generated, which makes tracking it using

video based approaches very difficult. The material of the stick the markers are at-

tached to, is not important in our approach. Video based techniques will have trouble

handling specular or transparent materials. Because the scene is lit by light sources

with arbitrary colors, video based approaches can not easily use color information to

track the stick. Estimating the motion blur using video based approaches is also not

very straightforward.

Orientation Tracking

In figure 3.26 we show the strength of our single point orientation tracking method.

Many tracking systems only obtain position information, orientation is derived from

the position of multiple tracked points. In order to obtain an accurate estimate of the

orientation of a surface, it has to be large enough to attach multiple markers to it and

the further away the markers are from each other, the higher the accuracy. It is not
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(a) (b)

Figure 3.26: A stick, with markers attached to it, is rotated. Our system is able to

track this movement as is shown by rendering a virtual sword in place of the tracked

stick. Motion tracking systems that calculate the orientation of surfaces from position

information have problems to track this kind of motion of thin objects, because there

is not enough space to place the required markers.

possible to obtain the orientation of a single point or of a very thin stick using such

an approach.

In figure 3.26 we show an example where the orientation of a stick is required. It

shows a person holding a stick that is being tracked. The position and orientation

information of this stick is used to replace the stick by a virtual model of a sword.

Using only position tracking, the subtle rotation of the sword would be hard to capture

— the multiple markers needed to derive the orientation, would have to be placed very

close to each other resulting in a low accuracy.

In our system however we can track the orientation of a single marker directly. We

do not have to place multiple markers to obtain the orientation of a surface. This

is why our system has no problems with tracking the motions and objects shown in

figure 3.26.

Robust Tracking

In this section we will describe experiments to test the robustness of our system. We

show it works in daylight and has no problem handling specular objects.

A first experiment is shown in figure 3.27. It shows a person who is being tracked

outside in daylight. The person is wearing a jacket equipped with a number of mark-

ers. The position of the markers is tracked using a portable version of our 2D tracking

system. The 2D system consists of two perpendicular 1D projectors and a camera to

film the scene that is being tracked. A person in a car uses this hand held 2D system
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(a) setup (b) tracking a running person

Figure 3.27: An experiment that shows our system is able to work in daylight con-

ditions using imperceptible markers. A person who runs on a street is tracked from a

car using a portable version of our tracking system.

to track a person wearing the jacket with the markers attached to it.

As shown in the top left image, the markers are hidden under clothing with only

the small sensors exposed. This demonstrates the markers are imperceptible under

clothing.

In contrast to camera or vision based tracking methods, our system is insensitive to

specular objects in the scene. Figure 3.28 shows how three markers behind a sheet

of tin foil are tracked without a problem. In this figure we also show that we are able

to track markers behind materials that are opaque for visible light but transparent for

infrared light such as coke.

3.3.4 Conclusions

In this section, we presented Prakash, a high speed tracking system that obtains the

position, the orientation and the incident illumination for a number of points. Using a

number of verification experiments, we analysed the accuracy and robustness of this

system. We also demonstrated how this system can be used to manipulate footage

and augment it with virtual objects.
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Figure 3.28: We can track markers behind highly specular surfaces and behind ma-

terials that are opaque for visible light but transparent for infrared light such as coke.

3.4 Conclusions

In this chapter we presented two tracking systems and demonstrated their use in video

manipulation tasks. The first system is a camera based position tracking system. It

is a flexible system because its field of view and accuracy can easily be changed by

using different cameras or lenses. The second system tracks position, orientation and

incident illumination at high speeds. It is a little less flexible because changing its

field of view is less straightforward, but there are no theoretical limitations to the field

of view.

Both systems are low cost optical systems that are quite robust against ambient light

and both use imperceptible electronic markers. Line of sight is needed in both sys-

tems and they are both able to uniquely identify each marker. In the camera based

tracker, a PC calculates the position of each marker, so this information is easily

broadcast to other devices using ethernet. In the Prakash system, the markers them-

selves calculate their position and orientation. If another device needs this informa-

tion, it has to be transmitted by the markers using an RF channel which might cause

problems due to limited bandwidth.

Because the markers calculate their own position and orientation in the Prakash sys-

tem, it supports an unlimited number of markers. The camera based tracker is less

scalable because the PC calculates the position of each marker, which means that if

more markers are added, more computational power is needed.

In the camera based tracking system, we currently use cameras of 640x480 pixels,
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so the accuracy of the position tracking in this system is about 9 bits. The posi-

tion tracking in the Prakash system is 8 bit because we use 8 LEDs in the position

projectors.

Prakash uses LEDs to project the patterns into the scene which results in very high

frame rates, the position tracking system works at 1000Hz for 1D tracking and at

300Hz for the 3D tracking while the camera based tracking system only runs at

30Hz.
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Multiplexing light is important for many video manipulation techniques. By project-

ing patterns of light onto a scene, depth information can be acquired. Normals of

surfaces in a scene can be obtained by turning a number of point light sources on and

off. Relighting techniques also rely on multiplexing light. In this chapter we present
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a new method to multiplex light and show this can be used for a wide range of video

manipulation methods.

4.1 Introduction

Many vision and graphics problems such as relighting, structured light scanning and

photometric stereo, need images of a scene under a number of different illumination

conditions. It is typically assumed that the scene is static. To extend such methods to

dynamic scenes, dense optical flow can be used to register adjacent frames. This reg-

istration becomes inaccurate if the frame rate is too low with respect to the degree of

movement in the scenes. We present a general method that extends time multiplexing

with color multiplexing in order to better handle dynamic scenes. Our method allows

for packing more illumination information into a single frame, thereby reducing the

number of required frames over which optical flow must be computed. Moreover,

color-multiplexed frames lend themselves better to reliably computing optical flow.

We show that our method produces better results compared to time-multiplexing

alone. We demonstrate its application to relighting, structured light scanning and

photometric stereo in dynamic scenes.

There is a wide variety of algorithms that need images of a scene under a number

of different lighting conditions. Structured light scanning computes a depth map

by illuminating the scene with different coded patterns [Scharstein 03]. Photometric

stereo [Barsky 03, Woodham 80] obtains a per pixel normal of a scene by captur-

ing the scene under a number of different point light source positions. In computer

graphics, image-based relighting is performed by recording a scene under a number

of basis illumination patterns [Debevec 00].

In all of these methods, each illumination condition requires a separate image, and

it is assumed the scene remains static. Specific methods have been developed in

order to deal with dynamic scenes [Zhang 02, Zhang 03, Davis 03, Hernandez 07,

Wenger 05]. In this paper, we seek a general technique which is applicable to all

methods requiring multiple illumination conditions.

An obvious way to extend the aforementioned methods to handle dynamic scenes,

is to use a dense optical flow to register dynamic content between frames. Even for

high frame rates, this registration is required. This registration becomes inaccurate

if scene elements move too fast, or equivalently, if the frame rate is too low. Also,

as more illumination conditions are needed, optical flow must be computed over a

longer span of frames. The results will therefore be more prone to occlusion errors.
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#1 #8#7#6#5#4#3#2 #9

Figure 4.1: Demultiplexing illumination using our method. Top row: 9 input frames

of a dynamic scene. A person is lit by only 2 different colored illumination patterns

using 4 differently colored light sources (indicated by the squares). Bottom row: The

output images show the demultiplexed lighting. I.e., each image contains the result

of having illuminated the scene by each source separately.

In this paper, we propose to extend time multiplexing with color multiplexing. With

color multiplexing we can encode more illumination conditions per frame, which

reduces the number of required input images over which optical flow must be com-

puted. This relaxes the requirement of having a sufficiently high frame rate, making

it possible for using (cheaper) cameras with a lower frame rate. Estimating optical

flow under varying illumination conditions is hard. Even though state-of-the art opti-

cal flow algorithms can deal with varying illumination, the aforementioned methods

typically employ significantly different illumination patterns from frame to frame.

This causes wildly varying intensities and even image features (e.g., due to moving

shadow boundaries). An additional benefit of color-multiplexing is that optical flow

can be computed more reliably, because all light sources are enabled in every frame

and only their color varies.

Figure 4.1 shows a typical use of our light multiplexing approach in the context of

relighting. In the top row, 9 frames of the input sequence are shown. They depict a

dynamic scene consisting of a face and the scene is lit by four colored light sources.

The colors of these light sources change each frame and the four squares on top of

each input frame depict the color of each of the four light sources for this frame. In

the bottom row of Figure 4.1 there are four output images that show our algorithm

is able to demultiplex the lighting. For each of the 4 light sources, there is an output

image that shows the scene as lit by only this light source.
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Our contributions are as follows:

• We demonstrate the use of both color and time multiplexing to capture a scene

under a number of lighting conditions.

• We show how we can compensate for the motion in a dynamic scene even when

each frame is lit differently.

• We demonstrate that our light multiplexing scheme is generic and can be used

to improve many existing algorithms.

4.2 Related Work

There is a wide range of techniques that need images of a scene under varying lighting

conditions. In this section we will give a short overview of these algorithms. Many

of them only use time multiplexing to obtain the needed information. Using the

algorithm described in this chapter, it becomes possible to alter these techniques so

they use both time and color multiplexing.

4.2.1 Relighting

Model Based There are a number of model based relighting techniques that are spe-

cialized in relighting a subset of scenes, for example they can only relight faces. Peers

et al. [Peers 07] capture a reference reflectance field of the face of an actor and they

transfer it to a dynamic performance of someone else. Hawkins et al. [Hawkins 04]

capture the face of a person for different facial expressions, head poses, view direc-

tions, and lighting conditions. From these images, they can render the face under

new poses and new lighting conditions by warping, scaling, and blending data from

the original images. Wen et al. [Wen 03] show a method to approximate the radi-

ance environment map for any given image of a face using spherical harmonics. By

changing the spherical harmonics coefficients they are able to change the lighting.

In contrast to these methods, in this chapter we will focus on a technique to relight

arbitrary scenes.

Lightstage Of course we are not the first to present a relighting method for arbi-

trary scenes. Debevec et al. [Debevec 00] show a system that is able to relight static

scenes. They capture images of a scene under a large number of lighting conditions,

and by blending the images, they can relight the scene. This system is extended to
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Figure 4.2: A lighting pattern used by Wenger et al. [Wenger 05] to relight a human

actor.

dynamic scenes by Wenger et al. [Wenger 05]. They use a high speed camera and

LEDs to capture the scene under different lighting conditions at a very high frame

rate. Their setup consists of a camera that is able to capture 2160 images a second

and 156 LEDs positioned in a sphere around a person. LEDs are used as light sources

for their ability to switch on and off almost instantly. Different LEDS are turned on

for each frame, this way they obtain the scene for a large number of lighting con-

ditions. If they assumed the scene was static, they could relight simply by blending

the different input images. But since they consider dynamic scenes, they have to

compensate for the motion. To do this, a tracking frame is added to their lighting

pattern 120 times a second. This tracking frame is an image of the scene lit under

uniform lighting. The optical flow is calculated between these tracking frames. Us-

ing this optical flow, the displacements between consecutive frames is known and the

motion can be compensated for. They also added matting frames to allow for easy

foreground-background subtraction. For these frames a backdrop is lit, but the actor

is kept in the dark. Figure 4.2 shows an actor lit by one sequence of the lighting

pattern. The tracking and matting frames are shown in the two left columns.

Another extension of this idea is presented by Wang et al. [Wang 08]. They relight a

person that is lit by ambient light and time multiplexed IR light patterns. They show

how to transfer the information from the IR domain to the visible domain. Until now,

we described techniques that only use time multiplexing to obtain the scene under a

number of lighting conditions. In this chapter we present a technique to use both time

and color multiplexing to obtain this information.
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CameraProjector

Scene point

Figure 4.3: If correspondences between the projector and the camera are established

using the structured light approach, the 3D position of the corresponding scene point

can be calculated.

White balancing Hsu et al. [Hsu 08] show they can relight a scene from a single

image using their white balancing technique. They are able to change the colors

of the light sources in the scene under the assumption that there are only two light

sources present in the scene. Our method can work with any number of light sources.

4.2.2 Light Patterns

Depth from Structured Light Depth from structured light [Scharstein 03,

Sato 85] is an example of a method where images of a scene are needed under a

number of lighting conditions. It is a method where binary patterns are projected

onto a scene and from images of the scene, lit by these patterns, the depth of the

scene can be obtained.

In its simplest form it works as follows. An LCD projector and a camera are cali-

brated with respect to each other and are aimed at a scene. The scene is completely

dark, the only light source present is the LCD projector. The LCD projector turns on

each of its pixels one at a time, this way a single point in the scene is illuminated.

When the camera takes an image of the scene, only a single pixel of this image will be

illuminated. This way, a stereo correspondence between the projector and the camera

is found and the 3D position of the illuminated scene point can be obtained as shown

in figure 4.3.

This is a robust way to obtain a depthmap of a scene, but it is also very tedious since

the scene is scanned, one pixel at a time. Fortunately the speed can be increased

using a simple extension to this approach. Instead of turning on only one pixel of

the projector at a time, the patterns shown in figure 4.4 are projected onto the scene.
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Figure 4.4: When these patterns are projected onto a scene one after the other, each

point in the scene is labeled with a unique code that corresponds to a given column

in the projector. This can be used to establish camera-projector correspondences.

(a) Single input image (b) Resulting 3D model

Figure 4.5: Zhang et al. [Zhang 02] is able to acquire the 3D geometry of a scene

from a single image using structured light patterns.

When these patterns are projected onto a scene one after the other, each point in the

scene is labeled with a unique code that corresponds to a given column in the pro-

jector. This can be used to establish camera-projector correspondences. From these

correspondence, we can calculate the 3D shape of the scene using triangularization.

This approach uses only time multiplexing to project the black-white patterns onto

the scene. Using our approach, we can extend this method so it uses both time and

color multiplexing. We are not the first to use colored light in the context of depth

from structured light. Caspi et al. [Caspi 98] project a number of colored stripe pat-

terns onto a static scene, and for each pattern an image is taken. This way each pixel

is given a unique label over time and from this a depthmap can be calculated. They

also need images of the scene under ambient illumination and uniform white illumi-

nation to decode the patterns. The system calculates the colors of the stripes in such

a way that the resulting depthmap has as much accuracy for as little input images

and projected patterns as possible, taking into account the noise of the projector and

the camera. But since they need multiple images of the scene, they can not handle

dynamic scenes.

The method presented by Zhang et al. [Zhang 02] can calculate the depth of a scene

from a single image. They also project one or more colored stripe patterns onto the
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scene, but they use the color transitions between stripes to label the space. This way

they can encode a lot more depth information in one single image. This allows them

to generate a good depth map from a single image as shown in figure 4.5. The R, G

and B patterns were generated using de Bruijn sequences. A k-ary de Bruijn pattern

is a pattern d0,d1, ...,dkn−1 for which each n consecutive elements appear only once.

In this case, k was 7 and n was 3, so each three consecutive color transitions in the

lighting pattern is unique. The correspondences are calculated using a multi-pass

dynamic programming algorithm.

Lee et al. [Lee 07] proposed a method to address some problems that arise when us-

ing colored stripes to obtain a depthmap from a scene. The first problem they address

is that the color of the objects in the scene can interfere with the color of the stripes.

Especially high frequency components of the texture of an object can have a harmful

effect on the final result. Lee et al. [Lee 07] solve this by using a log-gradient filter to

diminish the effect of the surface color. Artefacts can occur near depth discontinuities

when using color transitions to label space since the pattern of consecutive colors is

broken by the discontinuity. This is solved by using multiple colored stripe patterns

with different orientations. They present a method to combine multiple patterns in

one image and they are able to restore the different patterns afterwards.

Chen et al. [Chen 97] use colored structured light patterns to diminish the ambiguity

when calculating depth from stereo. They do not calculate correspondences between

camera image and the projected pattern as the other methods discussed here do. In-

stead they use two or more cameras to capture the scene, and correspondences be-

tween these cameras are calculated. The sole purpose of the projected pattern is to

diminish the ambiguity and to ease the calculation of the correspondences between

the camera images.

Note that these methods that can calculate the geometry of a dynamic scene using

structured light patterns are not able to estimate the surface color at the same time as

the geometry.

Photometric Stereo Another method that can be improved using the method pre-

sented in this chapter is Photometric Stereo [Barsky 03, Woodham 89]. It is a tech-

nique that is able to calculate a dense normal map of a scene. It works by taking a

number of pictures of a static scene that is lit by a single point light source. The only

thing that differs between these pictures is the position of the point light source. If

the camera and the point light sources are calibrated, a normal can be calculated for

each pixel independently, see figure 4.6. The surface normal for a single pixel can be

calculated by solving the following system of equations:
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Lightsources
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Figure 4.6: The normal N of a surface point can be calculated if it is lit by a number

of point light sources and captured by a camera. Given the amount of the light from

the point light sources that is reflected off the surface towards the camera, the normal

N can be calculated if the positions of the camera and the light sources are known.

I = ρLi(Di ·N) (4.1)

with I the intensity captured by the camera, ρ the albedo of the material, Di the

direction of the i-th light source, Li the intensity of the i-th light source and N the

surface normal.

Since multiple images are needed to perform photometric stereo, it is not straight-

forward to apply it to dynamic surfaces. Hernandez et al. [Hernandez 07] present a

method that performs photometric stereo using colored lights (see figure 4.7). By

using a red, green and blue light source, they can multiplex the lighting of three light

sources using color multiplexing. So they can perform photometric stereo with three

light sources using a single frame and are able to handle dynamic surfaces. The draw-

back of their approach is that they assume the material of the surface is known. They

can not handle arbitrary scenes, with multiple surfaces with different materials. We

will show our method is able to perform photometric stereo on dynamic scenes while

we do not constrain the number of materials present in the scene.

4.2.3 General Light Multiplexing

Schechner et al. [Schechner 07, Schechner 03] present a general technique to mul-

tiplex light without the use of color multiplexing. The lights are turned on/off us-

ing Hadamard-based patterns. For each frame they turn on multiple lights at once.
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(a) Setup (b) Input image (c) Result

Figure 4.7: Hernandez et al. [Hernandez 07] present a method to use photometric

stereo with colored light sources to estimate a normal map of a dynamic surface.

This way they can capture low intensity lighting, without the need for long exposure

times. Also the technique of Wenger et al. [Wenger 05] can be seen as a general

light multiplexing technique. They compare multiple light bases, among which the

Hadamard-based patterns.

4.2.4 Discussion

While there are specific extensions to some of the basic structured light and

photometric stereo algorithms that use both color and time multiplexed light

[Woodham 80, Lee 07, Chen 97], these extensions are not as general and have

their own advantages and disadvantages. Existing photometric stereo algorithms

[Woodham 80, Hernandez 07, Hernandez 08] suppose the scene is static or that all

the objects in the scene have the same albedo. Our method on the other hand is

able to handle dynamic scenes without constraining the number of albedos. When

our method is applied to depth from structured light, we obtain the depth map

and the scene colors simultaneously. Existing depth from structured light algo-

rithms for dynamic scenes are unable to do this, they only obtain a depth map

[Caspi 98, Zhang 02, Hall-Holt 01, Lee 07, Chen 97].

4.3 Time and Color Multiplexing

In this section, we present our light multiplexing algorithm for static scenes. The

extension to dynamic scenes will be described in section 4.5.
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Camera

Scene

Lightsources

Figure 4.8: Our setup consists of the scene to be captured, filmed by one camera and

lit by a number of light sources with changing colors.

4.3.1 Model

The aforementioned applications all require that an object be captured under varying

illumination. We address the common scenario in which illumination is varied by

changing the color of otherwise fixed light sources (Figure 4.8).

We make the following assumptions:

• Only the color of the light sources varies from captured frame to frame. Posi-

tion and directional emission distribution remain constant during the capture,

but are otherwise free to choose. In particular, the light sources are not assumed

to be diffuse, neither need they be point sources;

• Surfaces are Lambertian;

• Indirect illumination (reflections, refractions and color bleeding effects) is neg-

ligible;

• Negligible motion blur;

• Object motion relative to light sources affects only reflected light intensity, not

its color.

Since we only deal with static scenes in this section, for now we also assume the

position of the camera and the objects is fixed. In the next section we will show how

we can get rid of this extra constraint.

It will be shown in the results section 4.6, that our time and color multiplexing scheme

still yields acceptable results, even if these assumptions are violated to some (practi-

cal) extent.
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If only a single light source illuminates the object, the RGB color Ci = (Ci
r,C

i
g,C

i
b) of

a pixel in any captured image i, i = 0 . . .n with n the number of illumination scenarios,

will be the product

Ci = A�LiI

of three factors:

• The RGB color A = (Ar,Ag,Ab) of the object seen in the pixel. A is indepen-

dent of illumination;

• The RGB light source color Li = (Li
r,L

i
g,L

i
b) in frame i;

• A scalar form factor I that indicates how intensely the object at the pixel would

be lit by a unit strength monochrome light source. I depends on object and

light source relative position, orientation and visibility. Since neither move (in

this section), it is constant. (It is allowed to vary in the next section.)

The symbol � stands for component-wise multiplication of RGB color vectors. For

clarity, we do not index pixels: We use the same symbol C for the color of any single

pixel and for a complete RGB image. We use the same symbol I for the form factor of

a single pixel, and for the set of form factors corresponding to all pixels in an image.

We will refer to the latter as “intensity images” in the sequel.

Since only the product counts, any of these factors can be scaled to wish, provided

the scaling is compensated in the other factors. In our multiplexing scheme, we

normalize material colors A such that the sum of square components is unity. Our

choice of Euclidean metric is convenient, but otherwise arbitrary: any normalization

metric would do. Compensation is in the intensity value I.

When m light sources j, j = 0 . . .m, with colors Li
j are used, pixel colors Ci will

satisfy the following matrix equation:

C = M I, with (4.2)
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input 1 ( )C1 input 2 ( )C2 Normalized Material
Color ( )A

intensity images ( )I

Figure 4.9: Given images C1 and C2 of an object captured under varying illumina-

tion, and assuming the normalized material color image A is known, our algorithm

calculates intensity images I j for each light source j = 1 . . .4. The colored squares on

top of the input images indicate the (user chosen) color of the (otherwise fixed) light

sources during capture.

4.3.2 Algorithm outline

Capturing an object under n illumination scenarios i, i = 1 . . .n, realized with m light

sources j, j = 1 . . .m, as explained above, comes down to measuring Ci as a function

of Li
j. If the normalized material colors A are known, and provided the rank of M

is greater or equal than the number of light sources m, the intensity image I j of each

light source j can be computed by solving the linear system of equations (4.2). Since

this system is in general over-determined, least squares techniques are used. The

normalized material colors are usually not a priori known, however. We explain in

4.3.3 how to obtain them.

Example Application: Relighting Given the normalized material colors A and the

intensity images I j for all light sources j, a relighted image C′ corresponding to freely

chosen light source colors L′
j can be obtained directly from (4.2) as

C′ =
m

∑
j=1

A�L′
jI j. (4.3)

Selection of Light Source Colors The light source colors L are chosen using grid
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search techniques, as to ensure good conditioning of the system (4.2). The ideal light

source colors depend on the normalized material colors A. For dynamic scenes, the

normalized material color images vary from frame to frame, as will be explained in

section 4.5. Non-optimal, but still good, choices for the light colors are obtained by

assuming that all material colors are white.

4.3.3 Acquisition of Normalized Material Colors

The normalized material color image A corresponds to the normalized RGB image

that would be captured if all light sources are set to unit strength white color. Colors

are normalized by scaling them such that the sum of squared components is unity in

our implementation, but any other normalization metric would do as well. We now

present two ways to obtain A.

Dedicated Image Method One way to obtain the normalized material colors, is to

actually capture, and normalize, an image W with all light source colors set to full

intensity white. The disadvantage of this approach is the need to capture an extra

image only to calculate A.

Given m = 3 coloured light sources, a single image (n = 1) yields M as a 3×3 matrix,

and it is trivial to see that it is possible to choose the colors of our light sources in

such a way that this matrix becomes rank 3 as needed to solve (4.2). A second image

is needed in order to obtain A.

Complementary Colors Method Another way of calculating the normalized ma-

terial color is by choosing the colors of each light source for each frame in such a

way that these colors add up to white. So for example if we only take 2 images,

the color of one light source for the first frame is the complement of the color of

this light source for the second frame. Or in general ∀ j : ∑i(L
i
jr,L

i
jg,L

i
jb) = (1,1,1)

Normalizing the average of these images also yields A.

If we have n frames, for which the colors of each light source add up to white, one

would expect that it is possible to demultiplex 3n light sources since M has 3n rows,

but as shown below, in this case it is only possible to demultiplex (3n − 2) light

sources. This is because we constrained the colors of our light sources to add up

to white, and M is not of full rank. The advantage of this method compared to the

Dedicated Image Method is that we can demultiplex one extra light source for the

same number of images, but this is at the cost of some extra noise.

In the case where we take 2 images, 6 light sources and take no extra image to calcu-

late the normalized material color, so the colors of one light source for each frame add

up to white, M in equation (4.2) is a 6×6-matrix but the rank of M is only 4, so it is
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impossible to calculate the light intensity image of 6 light sources, only 4. The rank is

only 4 instead of 6 for the following reason. For simplicity assume that A = (1,1,1).
Define V 1 the first row of M, V 2 the second row and V 3 the third row. Because the

colors of the first frame are the complement of the colors of the second frame, we have

that the fourth row is V 4 = k−V 1, with k some number. The fifth row is V 5 = k−V 2,

and the sixth row is V 6 = k−V 3. Now we have that the fifth row is a linear combi-

nation of the other rows: V 5 = k−V 2 = (k−V 1)+ (V1)− (V 2) = V 4 +V 1−V 2.

And in the same way is V 6 also a linear combination of the first 4 rows, so the matrix

M is rank 4.

In general, if we have n frames, M is rank (3∗m−2). If we have m light sources in

our scene, we need to take (m+2)/3 images.

For example, if one needs to demultiplex seven light sources, there are two options.

If one uses the Dedicated Image Method, we need to take 1 dedicated image to obtain

the normalized material color and 3 images for estimating the light intensities of the

seven light sources. If the Complementary Colors Method is used we only need

(m+2)/3 = (7+2)/3 = 3 images. In that case the colors of the seven different light

sources have to be chosen in such a way that the color of one light source adds up to

white for all three frames. In this case it is also possible to combine the Dedicated

Image Method and the Complementary Colors Method. You can choose the colors in

such a way that the colors of one light source add up to white for the first two images.

This way the Complementary Colors Method is used for the first two frames. From

the first two images, we now know what the scene looks like under white illumination,

and now we can freely choose the colors for last frame. Which of these techniques

is the best suited, depends on the application. The results of these methods will be

the same, but they are not equally robust to noise and it is future work to determine

which method generates the least amount of noise.

Dealing with Sensor Noise

By using color multiplexing, each pixel of our input images contains more informa-

tion than when using only time multiplexing. So our algorithm trades color depth for

fewer input frames. When using a normal digital video camera, the input images are

only low dynamic range images and also contain some noise. If we used our input

images directly, the noise in the input images would be amplified, which would result

in noisy output images as shown in Figure 4.10 (a).

In order to reduce noise, we can blur the input images when calculating the intensity

images I; or in other words, we trade resolution for dynamic range. The disadvantage



82 Time and Color Multiplexed Illumination

(a) Without noise re-

duction

(b) Post-process bi-

lateral blur

(c) Our noise reduc-

tion method

Figure 4.10: Noise reduction is needed to generate high quality results. Blurring the

noisy result during a post processing step generates less good results than our noise

reduction method.

of this approach is that we remove the high frequency components of the image.

However, it is possible to add these high frequency components back to the final

result as follows:

Ires = Iblur W/Wblur, (4.4)

where Iblur is the blurred light intensity image using a usual Gaussian blur kernel,

Ires is the resulting light intensity image with the high frequencies put back in, W

is the lightness of the RGB image W of the object under white light, introduced in

the previous section. Wblur is W blurred with the same kernel as Iblur. The main

approximation here, is that the high frequencies of W , which contains little noise as

it is fully lit (W it is derived from W), should also be present in the resulting intensity

image Ires. Multiplication with W/Wblur puts some of these frequencies back into

Iblur.

This way at least the high frequency components of the texture of the input images

are preserved, even though the high frequency components of the lighting are lost.

As a consequence we cannot reproduce very hard shadows. We demonstrate in the

results section that this effect is not very significant.

4.4 Automatic Calculation of Light Sources Colors

The algorithm presented in the previous section assumes that the color of each light

source is known. As discussed previously, the best results are obtained if the colors of

the light sources can be chosen according to a number of constraints. In this section

we show that if we are not able to manually set the color of each light source to the

exact color we want and we are unable to measure the color of the light sources during
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a preprocessing step, we can calculate the color of the light sources from the input

images if we have at least one light source less than the strict maximum as derived in

section 4.3. Or in other words if rank(M) is larger than the number of light sources.

From equation (4.2) follows that if the normalized material color A and the input

images C are known, and the rank of M is one less that the number of light sources,

we can calculate the color of the light sources and the intensity images, by solving

this non-linear set of equations for at least 3 ∗ n pixels at the same time, with n the

number of light sources. We use the interior-reflective Newton method [Coleman 94]

for this purpose and use 1000 randomly selected pixels of the image. This non-linear

system of equations is well defined if the chosen pixels have different normalized

material colors and different colors in the input images. It is not guaranteed that the

global optimum of the problem is obtained. We need an initial estimate of the colors

of the light sources, and if this estimate is not chosen correctly, the solver will return

a local optimum instead of the solution we are looking for. But as we will show next,

the initial guess can be very crude while still converging to a good solution.

In figure 4.11 we show an example where we calculate both the intensity images and

the color of the light sources. The scene consists of a house lit by two light sources.

Image a shows the first input image, for this image the color of each light source

was white. Image b shows the second input image, for this image the color of each

light source was unknown. The top right corners of images c and d show the initial

user defined guess of the colors of the two light sources we use to start the non-

linear solver. Images c and d show the result of our demultiplexing algorithm when

using these bad initial color estimates directly. Images e and f show the result of our

algorithm after automatically calculating the colors of the light sources. The colors

of the light sources estimated by our algorithm are show in the top right corners of

images e and f. Images g and h show the ground truth and the real colors of the light

sources. As we can see, even though the initial color estimates were not good, the

solver can calculate the color of the light sources quite well. However, note that the

intensity is not completely correct. According to equation (4.2), this is due to the fact

that we can multiply M with any value, as long as we divide I by this same value. So

we can calculate M up to a scale factor.

4.5 Dynamic Scenes

So far we have shown how time and color multiplexing works in the case of a static

scene. In this section, we show how we can extend this method to dynamic scenes.

In dynamic scenes, the objects in the scene will have moved in two consecutive im-
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(a) input white light (b) input colored light (c) demultiplex light 1 (d) demultiplex light 2

(e) demultiplex light 1 (f) demultiplex light 2 (g) ground truth light 1 (h) ground truth light 2

Figure 4.11: a,b: input images of a scene lit by two light sources with unknown

colors. c,d: result of our algorithm when the wrong colors are used, the square in

the top right corner represents the color of the light source used to demultiplex the

image. e,f: result of our algorithm after the colors of the light sources were calculated

automatically. g,h: ground truth.
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(a) (b) (c)

Figure 4.12: Calculating the optical flow with and without removing lighting from

the image. (a) Input images and filtered input images. (b) Result when calculating the

optical flow from the input images directly. (c) Result when calculating the optical

flow from the filtered input images. When comparing the left eye and the nose in

images b and c, it is apparent that calculating the optical flow from the input images

directly does not work very well.

ages and we cannot directly apply our proposed algorithm. To compensate for this

motion, we calculate the optical flow between the images and warp the images to a

reference image, for which we use the optical flow algorithm by Brox et al. [Brox 04]

with improvements by Sand et al. [Sand 06].

Since the color of the light sources are not the same for the each image, naïvely

applying optical flow on the images does not work very well as shown in Figure 4.12.

Instead we first apply a filter to the images that removes the lighting, but keeps the

texture [Sand 04]. For each pixel we calculate the local brightness and the local

contrast of a small neighborhood, and the filtered pixel value is the original pixel

value subtracted by the local brightness and divided by the local contrast. We perform

the optical flow on these filtered images. We also choose the color of the light sources

in such a way that no dark shadows are created in any of the color channels. By doing

this, all the texture information of the scene is visible in every image, and nothing gets

fully obscured by shadows. As can be seen in Figure 4.13, the use of the filter does

not degrade the quality of the optical flow, even when we calculate the optical flow

between two images that are lit in the same way.

If we want to demultiplex the light for a given frame, we warp the required number

of nearby frames to this frame. This way, we can assume we have a static scene for

the other steps of the algorithm.
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(a) (b) (c)

Figure 4.13: Calculating the optical flow with and without filtering when the scene is

lit identically for two consecutive frames. (a) Input images and filtered input images.

(b) Result when calculating the optical flow from the input images directly. (c) Result

when calculating the optical flow from the filtered input images. The quality of the

optical flow does not degrade when we use the filtered input images instead of the

unfiltered input images.

4.6 Results

In our experimental setup we use projectors as light sources as they are easy to control

and it is possible to switch their colors rapidly. In a practical setup, using LEDs as

light sources might be a better option, since they are cheap and can switch on and off

rapidly. PointGrey Flea and Grasshopper cameras have been used to capture video

sequences at 20 fps.

Computation times are in the order of 25 minutes for the calculation of the optical

flow between two images and approximately 5 minutes for the rest of the calculations

using our Matlab implementation on a 3 GHz CPU.

4.6.1 Relighting

We first apply our method to relighting, see Figure 4.14. The scene consists of a house

on a rotating platform and it is lit by six light sources. The house rotates 5 degrees

between two consecutive images, or in other words, it completes one entire turn in 72

images. Images of 1024x768 pixels were used in this example. We used stop motion

to capture this sequence in order to capture additional ground truth images and to

compare our results with those of Wenger at al. [Wenger 05]. From this large set of

captured frames, we generate image sequences that are given to the algorithms we

are comparing. To these algorithms, the input looks as if it was captured in real time

using a video camera. Images (a)-(c) in Figure 4.14 show the input images for our
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(a) Input (b) Input (c) Input

(d) Output (e) Output (f) Output

(g) Output (h) Output (i) Output

Figure 4.14: Top row: input images of a dynamic (rotating) scene lit by six light

sources with changing colors, the squares on top of each image depict the colors of

each of the six light sources for this frame. Two bottom rows: the output images

show the scene lit under new lighting conditions, each image shows the scene as lit

by only one of the six light sources.
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Scene

Camera
Projector

Mirrors

Mirrors

Projectors

Figure 4.15: The setup used to capture the house example.

(a) Reference (b) Wenger et al. (c) Wenger et al. (d) Our method

Figure 4.16: From left to right: ground truth, output of Wenger et al. with a tracking

frame every 7 frames, output of Wenger et al. with a tracking frame every 3 frames,

our result.
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tracking
frame

tracking
frame

tracking
frame

tracking
frame

(a) Optical flow for Wenger at al.

(b) Optical flow for our algorithm

Figure 4.17: The top row shows the input for Wenger et al. The bottom row shows

the input for our algorithm. The solid arrows show the images between which the

optical flow has to be calculated. The dashed arrows show the distance between two

frames with identical lighting conditions.

algorithm. The squares on top of each input image depict the colors of each of the

six light sources for the frame. Images (d)-(i) show the output of our algorithm, the

scene is shown under a number of new lighting conditions. In this example we used

the Dedicated Image Method to obtain the normalized material color A, for which

we use image (b). To demultiplex the illumination, we run our algorithm twice. First

we demultiplex the three light sources that were not grey in image (a). Image (a) is

influenced by all 6 light sources, the 3 colored ones and the 3 grey ones. We remove

the influence of the three grey light sources by subtracting a scaled version of image

(b) from image (a). The resulting image now only depends on the three colored light

sources we are trying to demultiplex. Using this image and the normalized material

color A we are now able to demultiplex the three light sources. Since we need to solve

for 3 light sources, M is a full rank 3× 3 matrix, so equation (4.2) is easy to solve.

To demultiplex the other three light sources, the ones that are not grey in image (c),

we use a similar approach. We also could have demultiplexed the six light sources

at once, but those results would be less robust against errors in the optical flow. To

relight the scene, we use all six light sources. In the accompanying video, some

small artifacts are visible, this is because of occlusion problems when calculating the

optical flow.
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Figure 4.15 shows the setup that was used to obtain the example shown in figure

4.14. The scene consists of a house on a rotating platform. There are markings

on the rotating platform to make it possible to rotate the platform exactly 5 degrees

between two images. We used three LCD projectors and six mirrors to simulate six

light sources. In front of each LCD projector, two mirrors are placed to simulate two

different light sources. This way, using three projectors with two mirrors in front

of each, we can simulate six light sources. The camera at the bottom of figure 4.15

captures the images.

In Figure 4.16 we show a comparison between our method and the relighting method

of Wenger et al. [Wenger 05]. Note that the method of Wenger et al. is a high quality

relighting system that generates very good results but only uses time multiplexing.

I.e., one light source is turned on in each frame and optical flow is used to merge the

information from several frames. In this particular example we push their method

and our algorithm to the limit by running it on a scene that has a lot of movement

between two successive frames. Image (a) shows the ground truth, only one of the

light sources is turned on in this image; (b) and (c) show the same image, but obtained

by the method of Wenger et al.; (d) shows the same image obtained by our method.

To deal with dynamic scenes, Wenger et al. inserts tracking frames. These are frames

for which the scene is uniformly lit with white light. For image (b) a tracking frame

was inserted every seven and for (c) every three frames. In (b) it is clear that the

optical flow breaks down. This is because the house rotated 35 degrees between

two consecutive tracking frames, which results in occlusion problems. For very fast

moving scenes our algorithm suffers from the same problem. In (c) the house rotates

only 15 degrees between two tracking frames, so the optical flow works quite well,

but the lighting information still needs to be warped over a distance of 8 frames (6

light sources and 2 tracking frames). So shadows will not move over the object as

they should. Our algorithm has the same problem, but since the lighting information

only has to be warped over 2 frames, this problem is far less pronounced. These

artifacts are most visible when comparing the door of the house.

In figure 4.17 we compare the optical flow between our method and the method of

Wenger et al. when using a tracking frame every three frames. Solid arrows show

the images between which the optical flow has to be calculated. As can be seen, in

our method the optical flow has to be calculated between frames that are very close

to each other, and thus very similar. In the method of Wenger et al., the optical flow

needs to be calculated between the tracking frames which are farther apart from each

other and thus less similar, which results in a worse optical flow. The dashed arrows

show the distance between two frames with identical lighting conditions. For the

method of Wenger et al., the lighting information needs to be warped over a large
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(a) Ground truth (b) Our result

Figure 4.18: Comparing ground truth and our method when relighting a static scene.

Our approach generates convincing results, even though the assumption that surfaces

are Lambertian, is slightly broken. The results might not be physically correct, yet

they are very convincing. Our method generates high quality results, indicating that

our noise reduction works effectively.

distance. This means that the optical flow needs to be very accurate. This distance

can also become so large, that the lighting information is no longer valid, as we saw

on the door in the previous example. In our method the lighting information needs

to be warped over a much smaller distance. For that reason the optical flow does not

have to be as good as compared to Wenger et al. and the effect of invalid lighting

information is less pronounced.

Since we use the three color channels, one might expect that our system has a speedup

of 3 compared to the method of Wenger et al. [Wenger 05], but it is more nuanced

than that. For example, if we have 10 lights, we need 4 frames to capture all the

information. Wenger et al. needs 15 frames, if a tracking frame has to be inserted

every 2 lighting frames. In this case, our method has a speedup of 3.75.

For the example shown in Figure 4.1 on page 69, we used four light sources. The top

row shows the input images. The result of our algorithm is shown in the bottom row,

they show the scene lit under new lighting conditions. In this example we used the

Complementary Colors Method to obtain the normalized material color. As explained

in section 4.3, we need to have at least 2 frames to do this so AL is a 6×4 matrix of

rank 4.

To test the robustness of our algorithm, we ran it on two scenes that break our as-

sumptions. A first scene consists of a person that is being relit, see Figure 4.18. In

this scene, the objects are not perfectly Lambertian, there is a small amount of motion
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(a) Input (b) Ground truth (c) Our result

Figure 4.19: A test case where our scene assumptions are violated. False color

bleeding is visible (e.g., on the wall) and artifacts appear near specularities.

blur since it is a dynamic scene and some interreflections are present. When com-

paring the ground truth with our result, we can conclude that our algorithm delivers

convincing results, even though scene assumptions are violated slightly. In a second

scene, which consists of yellow transparent soda in a glass and a specular apple, we

clearly break our assumptions, see Figure 4.19. As expected, some artifacts appear.

A false specularity is visible on the apple, near the bottom left of the apple there is

false color bleeding, and the wall on the right of the glass obtains the yellow color of

the soda. Our method also breaks down when applied to a scene with considerable

motion blur.

4.6.2 Depth from Structured Light

In Figure 4.20 we show how we can calculate depth from structured light

[Scharstein 03, Sato 85] using both time and color multiplexing. We want to acquire

a depth map with 6-bit precision, so we need to project 6 structured light patterns.

We use the Dedicated Image Method in this example, so since we need to multiplex

6 light sources, we need to capture 3 images. One under white illumination to obtain

the material colors, and two for the lighting conditions. In figure 4.21 we show how

the 6 binary patterns of figure 4.4 are color multiplexed. The images at the bottom

row are the ones that are projected. In figure 4.20, image (a) shows the scene lit by

three light sources, the red one is the most significant structured light pattern, the

green one the second and the blue one the third most significant pattern. Image (b) is

used to obtain the normalized material color A. And image (c) shows the scene lit by

the three least significant structured light patterns. Extracted structured light patterns

are shown in (d) and the resulting depth map along with images of the scene under

novel viewpoints is shown in (e). In contrast to previous methods for dynamic scenes
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(a) input: three MSB (b) input: albedo image (c) input: three LSB

(d) Extracted structured light patterns

(e) Extracted depth map and novel viewpoints

Figure 4.20: Depth from structured light using time and color multiplexing.

Figure 4.21: Constructing the patterns for depth from structured light using time

and color multiplexing. The tree most significant patterns are combined using color

multiplexing as can be seen on he left. Similarly, the three least significant patterns

are multiplexed to form the pattern shown on the right.
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[Caspi 98, Zhang 02, Hall-Holt 01, Lee 07, Chen 97], scene colors do not interfere in

the process and we can capture the scene colors and depth map simultaneously.

4.6.3 Photometric Stereo

Figure 4.22 shows how our technique can be used to reduce the number of images

needed to perform photometric stereo [Barsky 03, Woodham 80] for acquiring nor-

mal maps. With few exceptions (below), previous photometric stereo algorithms are

restricted to static objects. We can handle dynamic scenes. Photometric stereo algo-

rithms usually need three images, one for every light source. We need only two. With

more light sources, the reduction in images would even be bigger.

Figure 4.22 (a) shows two input images of a scene lit by three light sources. Image (b)

shows the demultiplexed lights, these images are the input of the photometric stereo

algorithm. Image (c) shows the calculated normal map of the scene. Normals can

then be used for instance to add specular highlights using an environment map, as

seen in images (d) and (e). Images (f), (g), (h) and (i) show some more results where

specularities were added to a diffuse scene.

Previous photometric stereo algorithms for dynamic scenes are restricted to scenes

in which all objects have the same albedo [Hernandez 07, Hernandez 08]. As shown

in Figure 4.22, our method handles multi-coloured dynamic scenes. Apart from the

normal map, our method also recovers material colors.

4.6.4 Demultiplexing Moonlight

In figure 4.23 we show how our algorithm can demultiplex moonlight and street light.

The top left image was taken at night, it is lit by moonlight and street lights. Because

the moonlight has a different color than the street lights we can demultiplex them.

The top right image was taken on a cloudy day, we use this image to obtain the

normalized material color of the scene. The bottom row shows the demultiplexed

result, the bottom left is the scene with only moonlight, the bottom right with only

street light.

4.7 Conclusion and Future Work

We proposed a generic approach for capturing dynamic scenes under both color and

time multiplexed varying illumination. Our approach is well suited for a broad range
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(a) input (b) demultiplexed lights

(c) normal map (d) Output (e) Output

Figure 4.22: A normal map can be calculated using photometric stereo, which allows

us to add additional specular highlights for instance.
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(a) input night (b) input day

(c) demultiplexed moonlight (d) demultiplexed street lights

Figure 4.23: a,b: input images. a: scene illuminated with grey moonlight and orange

street lights. b: scene under cloudy conditions. c,d: output images. c: scene lit by

moonlight. d: scene lit by street light.
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of applications, and was demonstrated in the context of relighting, structured light

depth capturing and photometric stereo. Compared to previous light multiplexing

methods, our method allows to extract more information from fewer images. In con-

trast to previous photometric stereo methods, our technique is able to handle multi-

coloured dynamic scenes. Applied to structured light scanning, our method allows to

simultaneously acquire depth and scene colors.

Instead of using an RGB camera we might use a camera that is able to distinguish

many more light frequencies. This way we can trade fewer frames for resolution.

At present, the computation time with our implementation is rather high. We believe

there is plenty of room for improvement, perhaps up to near real time speed.

Some avenues for future research include the noise filtering explained in section

4.3.3, investigating the relation between noise in the input images and noise in the

output images. The here presented approach assumes direct-only illumination and

Lambertian surfaces. The core idea of this paper may also be applicable to other

multiplexing techniques.
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Chapter 5

Conclusions

5.1 Summary

In this dissertation, we investigated a number of new methods to manipulate an image

sequence in the presence of information about the recorded scene that can not be

deduced from the image sequence itself. We looked for new methods to capture

additional information about a scene and we searched for innovative ways to use this

information to manipulate a video.

5.1.1 Collision Detection

In the first part of this dissertation, we presented a system that allows a person to in-

teract with virtual rigid bodies in real time. A multi-camera setup was used to obtain

the 3D information needed to augment the image sequence of the person with the

rigid bodies. A method to calculate collisions between the real and the virtual objects

was presented. One could obtain these collisions by calculating an approximate ge-

ometry for the real objects and determining the collisions between this approximate

geometry and the virtual objects. We demonstrated that it is better to calculate the

collisions directly from the images themselves, eliminating the need for an approxi-

mate geometry of the real objects and thus saving computation time.
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5.1.2 Motion Capture

If some extra information is recorded for a number of points in the scene, a number of

powerful video manipulation techniques, such as augmented reality, become possible.

For this purpose, we presented two novel motion tracking systems.

The first system calculates the 3D position for a number of points in the scene. Elec-

tronic markers containing a LED are attached to interesting points in the scene. A

computer calculates the 3D position of each marker using the images from multiple

calibrated cameras that capture the light emitted by the LEDs. By letting each LED

emit a unique pattern, each marker can be uniquely identified. This way, markers

never get mixed up. Since the working volume and working precision of the system

can easily be adjusted simply by changing the resolution of the cameras or the field

of view of the lenses, it is a very flexible system and since we only use off the shelf

components and cameras are becoming cheap, the cost of the system is low. As an

example application, 3D peepholes were built using a number of robots with laptops

attached on top of them. These 3D peepholes were used during a live art performance

and our camera based tracking system was used to capture the position of each laptop

while the robots drove around on stage.

The second system captures, apart from the position, also the orientation and the

incident ambient illumination for a number of scene points. As in the previous sys-

tem, we attach electronic markers to interesting points in the scene. But unlike the

previous system, this system does not use cameras to locate the markers. Instead,

a number of binary light patterns are projected onto the scene one after the other

and light sensors on the markers decode these patterns to obtain the position of each

marker. Identifying the markers to make sure they never get mixed up is not an issue

in this system, since the markers calculate their own position. A sensor attached to

the marker measures the amount of light arriving from a number of calibrated light

sources. This can be used to estimate the orientation of the marker. A final sensor

measures the intensity and the color of the ambient illumination. This system can for

example be used to add virtual labels and virtual models to a filmed scene. We can

illuminate the virtual objects as if they were lit by the light sources present in the real

scene using the captured ambient illumination and we can render the virtual objects

with realistic motion blur since the system runs at a high frame rate.

5.1.3 Time and Color Multiplexed Illumination

As a final contribution, we presented a generic light multiplexing scheme for dy-

namic scenes. We show it can be used to improve many existing methods that require
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images of a scene under a number of lighting conditions. Examples of such methods

are depth from structured light, photometric stereo and relighting. For static scenes,

capturing images of a scene under a number of lighting conditions is very straight-

forward using time multiplexing. For dynamic scenes, this is less trivial, since the

objects in the scene move between two successive frames. Optical flow techniques

could be used to solve this problem, but since the illumination between successive

frames changes dramatically, calculating a good optical flow is not feasible. We

present a method that uses both color and time multiplexing to solve this problem.

For each frame the camera captures, the color of the light sources are changed. By

choosing these colors in a smart way, and by using a filter that removes the illumina-

tion from an image, we can use optical flow to warp the images to a reference frame.

This way we can obtain a single frame of a dynamic scene for a number of lighting

conditions.

5.2 Contributions

The main contributions of this thesis are

• Collision Detection

– A new image based algorithm to calculate collisions between real and

virtual objects.

– A method to calculate surface information for the real objects near the

collisions.

• Camera Based Motion Capture

– A new camera based system to capture the location of a number of elec-

tronic markers.

– A new method to identify each of the markers using a unique flashing

pattern for each LED on the markers.

• Prakash: Capturing Position, Orientation and Incident Illumination using

Lighting Aware Motion Capture

– A system to capture the position, orientation and incident illumination for

a number of electronic markers.

– New methods to use this captured information for video editing.
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• Time and Color Multiplexed Illumination

– An algorithm that uses both color and time multiplexing to capture a

scene under a number of lighting conditions. This algorithm is generic

and can be used to improve many existing algorithms.

– A method to compensate for the motion in a dynamic scene even when

each frame is lit differently.

5.3 Future Work

Some avenues for future work include

5.3.1 Collision Detection

We represent the virtual objects using point clouds, which has the advantage that our

method supports all types of virtual objects that can be represented by point clouds.

A disadvantage of this is that the objects may be sampled too sparsely. Especially

when thin features are present in the real scene, some collisions will not be found.

One avenue for future research is to solve this by using an adaptive approach that

samples the virtual objects more densely near potential collisions.

Currently our method cannot handle real objects that move very fast. This could be

solved using real time optical flow techniques to estimate the position and shape of

the real objects in between two frames.

Another avenue for future work is to eliminate the need for a multi-camera setup.

One might be able to estimate an approximate shape of the real scene from a single

view and use this to calculate the collisions.

5.3.2 Motion Capture

The robustness of the camera based motion tracking system could be further im-

proved by changing the way the strobe patterns of the LEDs are decoded. By cal-

culating the 3D position, identifying the markers and decoding the strobe pattern all

at once, more prior information can be used during each step of the algorithm. It

might also be possible to change the strobe pattern in such a way that a marker is

identified faster after a long occlusion or the pattern might be changed in a way that

short occlusions can be handled more robustly.
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Using smart cameras, the position of each LED in image space could be calculated by

the camera itself, freeing up resources on the computer and increasing the scalability

of the system.

The Prakash motion capture system that captures position, orientation and incident

illumination can also be improved in a number of ways. For position tracking, a line

of sight is needed between the markers and the light sources that project the binary

patterns. If one of the projectors is occluded, the position cannot be calculated. Using

a redundant set of projectors, this problem can be solved.

In order to further increase the accuracy and robustness, both systems can be im-

proved by extending them with additional sensors. For example, inertial sensors can

be used to increase the accuracy and to handle occlusion problems.

5.3.3 Time and Color Multiplexed Illumination

Some avenues for future research include the noise filtering and investigating the

relation between noise in the input images and noise in the output images. At present,

the computation time with our implementation is rather high. We believe there is

plenty of room for improvement, perhaps up to near real time speed. Instead of using

an RGB camera we might use a camera that is able to distinguish more than three

light frequencies. This way we can trade fewer frames for resolution.

Apart from color and time multiplexing, other light multiplexing techniques might be

used. One might investigate the possibility of using a different carrier frequency for

each light source and a special camera to decode these different frequencies. Or we

might be able to devise a method where each light source projects a specific spatial

pattern that can be demultiplexed afterwards.
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[Decker 09] Bert De Decker, Jan Kautz, Tom Mertens and Philippe Bekaert Captur-

ing Multiple Illumination Conditions using Time and Color Multiplexing To appear

in the proceedings of the 2009 IEEE Conference on Computer Vision and Pattern
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[Decker 07a] Bert De Decker, Tom Mertens, Philippe Bekaert Interactive Collision
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met, Dylan Moore, Yong Zhao, Jonathan Westhues, Paul Dietz, John Barnwell, Shree
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Bijlage B

Samenvatting (Dutch Summary)

Video manipulatie bestaat al zolang als er filmcamera’s bestaan. Zo worden verschil-

lende beeldsequenties in de juiste volgorde gemonteerd om tot een verhaal te komen

en worden speciale effecten gebruikt om acties te filmen die in realiteit moeilijk na

te spelen zijn. Voor de opkomst van computers werd film analoog voorgesteld met

behulp van pellicule of magneetband. Het nadeel hiervan is dat de kwaliteit achteruit-

gaat bij elke manipulatie. Om deze reden en doordat computers steeds krachtiger

worden, worden de analoge technieken hoe langer hoe meer verruild voor digitale.

Terwijl enkele jaren geleden de film camera’s, de projectoren in bioscopen en de

televisies in de huiskamers nog analoog waren, worden ze nu vervangen door digi-

tale technologie. Door een film digitaal voor te stellen en door gebruik te maken van

computers, wordt video manipulatie ook veel gemakkelijker en goedkoper.

Vele video manipulatie methodes gebruiken enkel input van de gebruiker en de video

zelf om de informatie te bekomen die nodig is om de video te manipuleren. Echter,

als er meer informatie over de gefilmde scène beschikbaar is, wordt het mogelijk

om de video te bewerken op een meer geavanceerde manier. Als de 3D geometrie

van de scène bekend is, wordt het bijvoorbeeld mogelijk om de scène vanuit nieuwe

standpunten te visualiseren. Of als de positie, oriëntatie en belichting bekend is voor

een aantal punten in de scène, wordt het mogelijk om virtuele objecten toe te voegen

aan een scène op een realistische manier. In deze thesis onderzoeken we wat voor

informatie over een scène kan gebruikt worden om een video te bewerken, we on-

twikkelen nieuwe methodes om deze informatie te bekomen en we bespreken nieuwe

algoritmes om deze informatie te gebruiken voor video manipulatie.
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Zo bespreken we een methode waarbij een persoon die gefilmd wordt door meerdere

video camera’s in reële tijd kan interageren met virtuele objecten. Om dit mogelijk

te maken, presenteren we een nieuwe methode om intersecties te detecteren tussen

echte en virtuele objecten. Een kortzichtige manier om deze intersecties te bekomen

is door eerst een expliciete 3D representatie van de echte objecten te berekenen en

vervolgens de intersecties tussen deze representatie en de virtuele objecten te de-

tecteren. Om rekentijd te sparen, doet de hier gepresenteerde methode dit echter niet,

ze berekent de intersecties rechtstreeks op de invoer beelden zelf. Om aliasing arte-

facten te vermijden, moet er wel rekening gehouden worden met het feit dat de invoer

beelden discreet worden voorgesteld, ze zijn opgebouwd uit pixels. Als toepassing

van deze techniek tonen we een systeem waarbij een gebruiker in reële tijd kan inter-

ageren met een simulator van onvervormbare objecten.

We onderzochten ook welke video manipulatie technieken mogelijk worden als extra

informatie wordt opgenomen voor een aantal punten in de scène. Deze informatie kan

gebruikt worden voor een heel aantal video manipulatie technieken, zoals het automa-

tisch berekenen van de witbalans, het toevoegen van virtuele objecten aan een scène

of het verwijderen van bewegingsonscherpte. Om deze extra informatie te bekomen

presenteren we twee nieuwe systemen. Het eerste is een camera gebaseerd systeem

dat de positie van een aantal punten in de scène berekend. Elk object in de scène

waarvoor we de positie willen weten, wordt voorzien van elektronische kentekens.

Op elk kenteken is er een infrarode lichtdiode aangebracht die knippert volgens een

bepaald patroon dat uniek is voor elk kenteken. Doordat er meerdere gekalibreerde

camera’s deze lichtdiodes filmen, kan de 3D positie van elk kenteken bepaald wor-

den. En doordat elke lichtdiode knippert volgens zijn eigen uniek patroon, worden

de kentekens nooit onderling verwisseld. Zo kan het systeem op elk moment bepalen

waar welk kenteken zich bevindt. We tonen de werking van dit systeem aan door de

positie van een aantal robotten te berekenen tijdens een theater voorstelling.

Het tweede systeem besproken in deze thesis berekent buiten de positie ook de oriën-

tatie en inkomende belichting voor een aantal punten in de scène. Ook in dit systeem

worden er elektronische kentekens aan bepaalde punten in de scène vastgemaakt.

Maar in tegenstelling tot het vorige systeem, bevatten de kentekens in dit systeem

geen lichtdiodes maar lichtsensoren. Een binaire lichtsensor op de kentekens wordt

gebruikt om de 3D positie te berekenen aan de hand van verschillende binaire licht-

patronen die op de scène worden geprojecteerd. De oriëntatie kan berekend worden

door de hoeveelheid licht te meten die invalt op een analoge sensor op het kenteken

voor aantal gekalibreerde lichtbronnen. Ten slotte is er ook nog een sensor op het

kenteken aangebracht die de kleur en intensiteit van het omgevingslicht meet. Dit

systeem kan bijvoorbeeld gebruikt worden om virtuele objecten aan een scène toe te
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voegen. Doordat het systeem aan een hoge snelheid werkt, kan het virtueel object met

realistische bewegingsonscherpte getekend worden en doordat het omgevingslicht

wordt gemeten, kan het virtueel object getekend worden alsof het werd belicht door

de lichtbronnen aanwezig in de gefilmde scène.

Er bestaan een heel aantal video manipulatie technieken die als invoer foto’s van een

scène nodig hebben onder verschillende belichtingen. Zo kan men een dieptemap

bekomen als men een aantal foto’s neemt van een scène die telkens wordt belicht

met een ander binair patroon. Als men de scène niet belicht met binaire patronen,

maar met een aantal puntlichtbronnen, dan kan men een normaalmap van de scène

berekenen gebruikmakende van de genomen foto’s. Als de scène statisch is, dan

is het zeer eenvoudig om deze verschillende foto’s te bekomen, je belicht de scène

telkens met een andere lichtbron en neemt een foto. Als de scène dynamisch is, dan

is dit minder evident. Tussen twee opeenvolgende foto’s is de inhoud van de scène

immers gewijzigd. Men zou kunnen proberen de beweging in de scène te schatten,

maar vermits de belichting tussen twee opeenvolgende foto’s zo drastisch anders is,

is dit niet voor de hand liggend. Wij presenteren een methode die gebruik maakt van

gekleurd licht om dit probleem op te lossen. We nemen verschillende foto’s van onze

dynamische scène, en voor elke foto wijzigen we de kleur van de lichtbronnen. We

gebruiken dus tijd en kleur om foto’s van de scène onder verschillende belichtingen

te bekomen. Doordat we geen van de lichtbronnen ooit volledig uit zetten, kunnen we

een filter gebruiken die de belichting uit de beelden verwijdert. Uit deze gefilterde

beelden kunnen we dan makkelijker de beweging in de scène schatten. Omdat we

met gekleurd licht werken, kunnen we meer belichtingsinformatie in een foto steken

en hebben we dus minder foto’s nodig. We tonen aan dat het een algemene methode

is die vele bestaande video manipulatie technieken kan verbeteren.
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