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Abstract

When it comes to traditional 2D video editing, there are many video manipulation
techniques to choose from, but all of them suffer from the limited amount of infor-
mation that is present in the video itself. When more information about the scene is
available, more powerful video manipulation methods become possible.

In this dissertation, we examine what extra information about a scene might be use-
ful and how this information can be used to develop powerful yet easy-to-use video
manipulation techniques. We present a number of novel video manipulation methods
that improve on the way the scene information is captured and the way this informa-
tion is used.

First we show how a 2D video can be manipulated if the scene is captured using
multiple video cameras. We present an interactive setup that calculates collisions
between virtual objects and a real scene. It is a purely image based approach, so no
time is wasted computing an explicit 3D geometry for the real objects in the scene,
all calculations are performed on the input images directly. We demonstrate our
approach by building a setup where a human can interact with a rigid body simulation
in real-time.

Secondly, we investigate which manipulation techniques become possible if we track
a number of points in the scene. For this purpose, we created two novel motion
capture systems. Both are low cost optical systems that use imperceptible electronic
markers. The first is a camera based location tracking system. A marker is attached
to each point that needs to be tracked. A bright IR LED on the marker emits a specific
light pattern that is captured by the cameras and decoded by a computer to locate and
identify each marker. The second system projects a number of light patterns into the
scene. Electronic markers attached to points in the scene decode these patterns to
obtain their position and orientation. Each marker also senses the color and intensity
of the ambient light. We show this information can be used in many applications,
such as augmented reality and motion capture.
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Many existing video manipulation methods require images of a scene under multi-
ple lighting conditions. We present a new light multiplexing method to capture a
dynamic scene under multiple lighting conditions. A general method is presented
that uses both time and color multiplexing. We show how our approach can improve
existing methods to relight or obtain depth and normal information of a scene. This
information can be used to render the scene from novel viewpoints or to change ma-
terial properties.
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Chapter 1

Introduction
Contents
[.L1 Problem Statemenf . ............. ... 0..... 1
1.2 Contributiond ......... .. 4

1.1 Problem Statement

Traditional video editing packages offer a wide range of techniques to manipulate
footage. Most of these methods only use the input video and user interaction to steer
the manipulation. However, if additional information about the scene is available,
more advanced manipulation techniques become possible. For example, when the 3D
geometry of the scene is known, one can visualize the video from new viewpoints.
Or if the position, orientation and incident illumination is known for a number of
points in the scene, the scene can be augmented with virtual objects which can be
lit by the same light that is present in the real scene. In this thesis, we investigate
several methods to capture and use extra information about a dynamic scene in order
to manipulate a video.

Until a short while ago, manipulating videos on a computer was not feasible, because
the computers were not fast enough and did not have enough memory. In the early
days, video editing was done by physically cutting the film into pieces and attaching
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the pieces back together in a different order. When magnetic tapes came into play
and electronics became more powerful, dedicated hardware became available to edit
video. But this was only for VHS, high quality movies were still on film and had to
be edited by hand. Greenkey also came into play, a specialized hardware box that
was able to replace the background of a scene where a person is standing in front
of a green cloth. As they steadily grew in power, computers were used more and
more, first only for editing movies, later for all kinds of video manipulations and
special effects. These days, more and more film makers are making the transition to
a completely digital pipeline. From the cameras, to the processing, to the projectors
in the cinemas that finally show the movie to a wide audience, everything is becoming
digital.

Not only has this trend made more and more special effects feasible, they have also
become significantly cheaper. Because digital copying is lossless, the quality of the fi-
nal product has increased. Advanced manipulation techniques which only the largest
studios could afford a few years ago, have now become available for everyone with a
personal computer.

Video manipulation is used in a very wide range of applications:

e Motion Pictures Video manipulation plays a very important role in many mo-
tion pictures as special effects are used to convey the story.

e Commercials Commercials need to catch the attention of the audience and
deliver a message in a very small amount of time. Stunning special effects are
a good way to achieve this goal.

e Music Videos Music video clips are used as a marketing device for the music
industry. The budget of many of these clips is very large, and no effort is too
great to make them look as impressive as possible. Video manipulation and
special effects clearly have a place here.

o Augmented Reality Augmented reality applications mix videos of the real
world with virtual objects.

— Maintenance During machine maintenance, virtual labels with informa-
tion and instructions can be shown in crucial places to help the technician.

— Sports During television broadcasts of sports games, information can be
shown on the field. In soccer for instance, the offside position can be
displayed.
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— Architecture In a street video, the design of a future building can be
superimposed over the old house it is going to replace. This gives a feel
of how the new building will fit into its environment.

e Home Videos Because video manipulation is becoming affordable for a wide
audience, more and more people are using their pc to edit their home videos.

e Teleconferencing Until a short while ago, in teleconferencing, a video of the
people in the meeting was just sent without any video manipulation. Now
more and more techniques become available to enhance the teleconferencing
experience. 3D geometry is used to correct eye-gaze and relighting techniques
are used to illuminate the participants.

o Computer Games Computer games have also started focusing on video. A
good example is the playstation eyetoy where a camera is used as an input
device by the player.

In this thesis, we focus on video manipulation methods, so all the scene data needs
to be captured in real time. But processing the data in real-time is only needed for
some applications. We will investigate applications that need to generate results in
real-time as well as applications that can process their data off-line.

The following is a short non-exhaustive overview of manipulation techniques that
become possible when extra information about a scene is captured.

e Relighting In relighting applications, it is possible to change how a scene is
lit, even after it is captured. The decision on how to light a scene can be
postponed from the filming phase to post-processing. This is especially useful
when combining real and cg-elements in the same shot because it becomes
easier to match the lighting of the real and virtual objects.

e Changing Material Properties It is possible to change the material properties
of filmed surfaces. For example making a surface more specular or changing
the albedo of materials. To do this, extra information such as incident illumi-
nation or surface geometry is needed.

o Augmented Reality To add virtual objects to a scene, some 3D information is
needed to handle occlusions. An extension to this is to calculate interactions
between the virtual objects and the real filmed scene. If a number of real ob-
jects in the scene is tracked, it is possible to attach virtual objects to them. This
way virtual labels can be attached to real objects or real objects can be replaced
by virtual ones.
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e Novel Viewpoints If some 3D geometry of a scene is known, the scene can
be visualized from novel viewpoints. There are many ways to capture this 3D
information, such as depth cameras, multi-camera systems and structured light
approaches.

e Fog and Depth of Field If depth information of the scene is known, we can
add fog to a scene or change the depth of field and point of focus of the lens in
post-production.

e Matting The foreground of a video can be segmented out and composited on a
new background. This can be used to place a person in a virtual environment.

1.2 Contributions

We present a number of contributions to the type of extra information that can be
captured, the way this extra information is captured and how this information is used
to manipulate a video.

e We present a real-time technique to calculate collisions between virtual ob-
jects and objects in the real world without calculating an explicit proxy for the
geometry of the real objects.

e A camera based location tracking system is presented. An electronic marker is
attached to a number of points in the scene and a LED on each marker emits
a strobe pattern that is used by a pc attached to a number of cameras to locate
and identify each marker.

e We describe a method to capture position, orientation and incident illumination
for a number of scene points. By projecting well chosen light patterns onto the
scene, electronic markers with optical sensors can calculate their own posi-
tion and orientation. The markers are also able to sense the incident ambient
illumination.

e A generic method to multiplex light patterns is presented. Both time and color
multiplexing is used and a way to handle dynamic scenes is described.

1.3 Overview

In this section we give a short overview of the matter that will be covered in this
thesis.
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e Chapter [2| presents a method to calculate collisions between real and virtual
objects. These collisions are calculated using the input images directly, so we
do not need to obtain an explicit proxy of the geometry of the real objects and
therefore save computation time. As a proof of concept, we implemented a
system where a person, filmed in a multi-camera setup, is able to interact with
arigid body simulation in real time.

e In Chapter 3] we discuss two motion capture systems. The first is a camera
based tracking system that locates and identifies markers in the scene. The
second system captures the position, orientation and incident illumination for
a number of points in the scene. The scene is lit by multiple imperceptible
infrared light patterns, from which markers attached to points in the scene can
calculate the desired information. We show experiments to determine the ac-
curacy of the system and show applications such as motion capturing and aug-
mented reality.

e Chapter [ presents a method to capture a dynamic scene for a number of light-
ing conditions using time and color multiplexed illumination. This is a generic
method that can be used to improve many existing video manipulation tech-
niques. As a proof of concept we apply our method to relighting, depth from
structured light and photometric stereo.
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Chapter 2

Image Based Collision Detection

Contents
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Many applications require a user to interact with virtual 3D objects. Most 3D in-
teraction techniques require some training, eg. using a mouse to interact with a 3D
environment is not always very easy. Some applications require a more intuitive
interface. In the real world, we interact with objects by touching and grasping them
with our hands and body. The most intuitive interaction method is therefore a method
that allows the users to interact with virtual objects in the same way.

In this chapter we show how this can be achieved. We present an algorithm to cal-
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Figure 2.1: A person, captured by multiple calibrated digital video cameras, interacts
with a rigid body simulation at interactive speeds.

culate collisions between real and virtual objects in real time using a multi-camera
setup. We perform collision computations directly on the image data, as opposed
to reconstructing the full geometry of the real objects. This reduces implementation
complexity, and moreover, yields interactive performance. We demonstrate the ef-
fectiveness of our technique by incorporating it in a rigid body simulation. A person
can interact with virtual objects and observe his or her actions, all in real-time. We
render both the person and the virtual objects in a single view.

This is an example of a video manipulation technique that would have been very hard
to achieve when only a single 2D video of the scene is captured. Occlusions have to
be handled and intersections between the real and the virtual objects have to be dealt
with. If no extra information about the scene is known, lots of user interaction would
be required to obtain the desired result.

A first example is shown in figure 2.1l It shows a person interacting with a large
number of virtual rigid bodies at interactive speeds.
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2.1 Introduction

We present a collision detection system that calculates collisions between real and
virtual objects in real time. A straightforward approach to tackle this problem would
be to apply your favorite 3D reconstruction technique to obtain a triangle mesh of
the scene, to which standard collision detection schemes can be applied. However,
it would be better to avoid this intermediate reconstruction step, for the sake of sim-
plicity and computational efficiency. Our technique is therefore designed to work
directly on the information in the video frames.

In the classic collision detection problem, contact is determined from a full 3D de-
scription of the participating shapes (i.e. a triangle mesh). In our case, each camera
only provides a discrete, 2D description of the real-world shapes. First, the informa-
tion of the set of 2D frames acquired from each camera has to be aggregated to derive
a collision test in 3 dimensions. We implement this based on the concept of a visual
hull, i.e. the volume extruded from the silhouette of an object or subject. This in-
formation is readily available as a result of fast and simple foreground segmentation.
The visual hull allows us to omit a costly 3D reconstruction step. Since camera regis-
tration is inherently a discrete process (granularity = one pixel), we have to be careful
to avoid aliasing artifacts when determining the exact collision location. Finally, the
analysis has to process data at a high bandwidth, since frames from multiple cam-
eras have to be processed at each instant, while maintaining interactive performance.
We therefore introduce a simple acceleration scheme to efficiently test the visual hull
data. These issues will be explored in the remainder of this chapter.

We set out to make a collision detection method that conformed with the following
goals

e faster than real time

e able to handle many types of virtual objects (meshes, point clouds, isosurfaces,

)

e casy to incorporate into existing physically based simulation systems.
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R

Figure 2.2: The concept of the visual hull ]. The visual hull as the
intersection between the silhouette cones.

2.2 Related Work

2.2.1 Image Based Modeling and Rendering

Because the geometry of the real objects is unknown, it will have to be approximated
when calculating collisions with virtual objects. For this purpose, we chose to use the
visual hull, because very little computation time is needed to verify whether or not a
point is inside a visual hull. Thus the collision detection is not performed between
the virtual objects and the real objects, but is instead done between the virtual objects
and the visual hull of the real objects.

The Visual Hull [m] describes the maximal volume compatible with a set
of silhouettes. This shape can be used to obtain an approximate geometry of a real
object, when a number of silhouettes of the object is available (See figure 2.2). It is
a bounding volume of this object that is compatible with its silhouettes, so the real
object is always smaller or of equal size than its visual hull.

There are a number of approaches to calculate the visual hull. Hasenfratz et
al. M] present a technique to calculate a voxel representation of the vi-
sual hull in real time. Another approach to calculate the visual hull is presented by
Matusik et al. ]. They calculate a mesh of the visual hull from a number
of silhouettes in real time.
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2.2.2 Collision Detection between Virtual Objects

Many techniques have been developed to detect collisions between virtual ob-

jects such as rigid bodies, [Guendelman 03, Baraff 92, Pauly 04, Heidelberger 04]
, cloth [Bridson 02, |Govi dam;u(ﬂ deformable objects [Debun e{! Teschner 05,
Dewaele 04

], articulated objects | and fluids

2.2.3 Interaction Techniques

The technique presented in this chapter can be seen as a way to interact with a vir-
tual environment [[H_and_ﬂ Bowman 97, |Qmssmanl)_4|] The system by Kitamura et
al. ] calculates interactions between real and V1rtual objects by defining
a constramed set of physical laws. Xiyong et al. present a system where
users can manipulate scanned, articulated virtual representatlons of real objects.

2.2.4 Force Feedback

In our work, we perform a one way interaction: the real world can interact with
the virtual world, but not vice versa. There are also some techniques that provide
interaction in 2 directions. An example of such a technique is presented by Lindeman
etal. [W]. They describe a system that gives haptic feedback to a user who
walks around in a virtual environment.

2.2.5 Collision Detection between Real and Virtual Objects

Allard et al. [Allard 06b, |Allard 06d] present a physically-based animation system
in which users can interact with objects in a scene using a visual hull (See figure
2.3). First a system is presented where a polygonal visual hull is calculated in real
time ]. The visual hull was calculated using 6 camera’s. To obtain real-
time frame rates, a distributed approach was used. In another paper by the same
authors, a software framework for developing distributed physically based simula-
tions in a VR-environment is presented]. In this system they show how
multiple physically based simulation systems can work together using a modular de-
sign, and how a polygonal visual hull of a person can interact with it in real-time on
a cluster of machines.

Hasenfratz et al. [Hasenfratz 04] describe a system where a voxel visual hull of a real
scene is calculated. To visualize this voxel visual hull, marching cubes is used to
generate a smooth surface. 3D virtual buttons can be pressed by checking how many
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(a) (b)

Figure 2.3: Allard et al. [Allard 06H, |Allard 06a] present a system that calculates

collisions between real objects and the visual hull of a person.

voxels are penetrating the 3D shape of the button and virtual objects can bounce
off the visual hull using standard collision detection because a mesh representation
is present. Breen et al. M] model part of a real static scene manually or
using computer vision techniques. Standard collision detection can now be used
to calculate collisions between real and virtual objects. Stam [M] presents a
method where a depth map is calculated by filming a person with a special camera.
Using this depth map a person can interact with a fluid simulation.

In contrast to all the methods we discussed so far, we bypass the mesh generation
and work directly on the images which results in higher performance. Most related
to our work is the system by Lok et al. ] (See figure 2.4). Instead of using
an intermediate mesh representation of the real world, they rasterize every virtual
triangle to all the input cameras to determine collisions using graphics hardware.
They assume there is at most one collision between one virtual object and the visual
hull of the real object at a time. This is true in some cases (for example a virtual ball
bouncing off a wall). However, when a virtual box lies on a real table, for instance,
this assumption breaks down. The main advantage of our algorithm , is that we take
into account multiple simultaneous collisions.

2.3 Overview

Our collision detection algorithm is based on the visual hull. We define a collision
when a virtual object intersects the visual hull of the real object. This is only an
approximation, since the shape of the visual hull is not exactly the same as the shape
of the real object. But we found that it is a good compromise between speed and
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Figure 2.4: Lok et al. ] present a system that calculates interactions between
real and virtual objects without calculating an explicit 3D geometry of the real ob-
jects. A sequence of images is shown where a real person opens the virtual curtains
of a virtual window.
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accuracy. We obtain convincing simulations and need only little computation time.

A naive way to calculate collisions between virtual objects and the visual hull of the
real object, would be to explicitly calculate the visual hull with for example the polyg-
onal visual hull algorithm ]. ‘We will show that we do not need to do this
to perform our collision detection. We do not even have to segment our input images.
In fact, we will show that when only a few virtual objects are present in the scene,
running our collision detection is faster than segmenting the input images. Since seg-
menting the input images is only the first step in calculating an explicit visual hull,
our algorithm clearly is a lot faster than the naive way to calculate collisions.

Determining whether an arbitrary virtual object intersects the visual hull of the real
object is not a straightforward task. Especially since one of our goals was to make
a faster than real time collision detection algorithm. On the other hand, determining
whether a single point is inside the visual hull is a very cheap test and can be per-
formed thousands of times a second. This is why we convert our problem of finding
collisions between arbitrary virtual objects and the visual hull to a problem where we
only need to calculate point-visual hull intersection tests. We do this by point sam-
pling our virtual objects. Now, the virtual object intersects the real object, if one of
the sample points intersects the real object. One advantage of this is that our method
works with any virtual object that can be point sampled, such as meshes, point clouds,
isosurfaces and NURBS. A disadvantage is that if we sample the virtual objects too
sparsely, thin features of the visual hull can intersect the virtual object without touch-
ing any of the sample points. But since the point collision tests are very cheap, we
can sample the virtual objects very densely, so this is not an issue in practice.

We also want to make sure our collision detection system can be easily incorporated
into existing physically based simulation systems such as a rigid body system. Our
collision detection algorithm calculates the collisions between the virtual and the real
objects and the physically based simulation system calculates the required collision
responses to make sure the virtual objects bounce off the real objects in a realistic
way.

Most rigid body systems for virtual objects do not allow objects to intersect. When
an intersection is found, the system searches the exact moment the collision occurred,
and prevents the intersection. In order to do this, they assume they can calculate the
state of the system at any time. In our case however, this is not possible. We only
know the shape of the real objects at discrete time steps — the moments when the
images are captured. We could approximate the shape of the real object in between
these discrete time steps using for example optical flow techniques, but those are too
time consuming for our purposes. So we have no choice but to let these intersections
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virtual
object V'

visual
hull R

Figure 2.5: For each collision, we calculate the collision information. This consists
of the surface normal n and the position of the collision on the real and on the virtual
object.

happen. Luckily, modern physically based simulation systems are robust against this.
They can recover from the intersections if the penetration depth is not too large.

Our collision detection system calculates the position of the collision and the surface
normal at the collision and we let the physically based simulation system handle the
rest. Since we let the virtual and the real objects intersect, we have two positions for
each collision, one on the virtual object and one on the visual hull (see figure 2.3).
From now on we will call these two positions and the surface normal the collision
information.

When calculating the collision information, we need to be careful since at a small
level, each pixel generates a sharp corner in the visual hull. When we look at the
visual hull at a small scale, it is quite rough. When using the visual hull directly, we
do not obtain smooth animations because of this. To alleviate this problem, when a
collision is detected, we locally approximate the visual hull by a plane and calculate
the collision between this plane and the virtual object instead. This way the visual
hull is locally smoothed out and we obtain more realistic animations.

2.4 Detecting Collisions

In this section we will show how we find collisions between the real and the virtual
world. First we explain how we find collisions and later in this section we will show
how we obtain the collision information once a collision is found.
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2.4.1 Identifying Collisions

As explained in the overview section, finding collisions between real objects and
arbitrary virtual objects is not easy, so we first point sample the virtual objects. A
virtual object collides with the real world if one or more of its sampled points are
inside the visual hull.

There is no special requirement on how the point sampling has to be done. The only
requirement is that it has to be dense enough so that no collisions are missed and it
should be sparse enough so that the system remains interactive.

Once the virtual objects are point sampled, we iterate over all the points and check if
they intersect the real object. To check if a point intersects the visual hull of the real
object, we project it to all the input cameras. If it projects inside the silhouette for all
the cameras, it intersects the visual hull. To check if a projected point is inside the
silhouette for a given camera, we use simple background subtraction for this single
pixel. To make this more robust, we cover the walls with green cloth.

2.4.2 Point - Real World Collisions

Once a collision is identified, we need to calculate its collision information : the
collision normal (N) and the position of the collision on the virtual object (Py) and
on the visual hull of the real object (Pg) (see figure 2.3).

Find the relevant camera Note that if a point lies on the surface of the visual hull
it projects to the border of the silhouette for one camera and inside the silhouette for
all the other cameras (e.g. point Py, fqc. in figure R.6lis a point on the surface of the
visual hull and it projects to the border of the silhouette for camera C; and inside the
silhouette for camera (). If a point lies on an edge or on a corner of the surface of
the visual hull, it projects to the border of the silhouette for multiple cameras. (e.g.
point P,yer in figure is a point on a corner of the surface of the visual hull and
it projects to the border of the silhouette for both camera C; and camera C,). In the
case that the point does not lie on an edge or on a corner of the visual hull, there is
only one camera that provides information about the surface of the visual hull near
that point. When we want to calculate the collision information for a virtual point
that is intersecting the visual hull, we only need one camera — the camera for which
the virtual point projects the closest to the border of the silhouette. By doing this,
we assume the virtual point is not near a corner or an edge of the visual hull. If it
is near an edge or a corner of the visual hull, we pick the first camera for which it
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Figure 2.6: The grey quadrangle represents the visual hull defined by the silhouettes
of two cameras C; and C;. For a given virtual point Py, we look for the nearest point
Pg on the surface of the visual hull.

projects to a point close to the border of the silhouette to keep the computations fast.
We found that we still generate convincing simulations, even though we make this
approximation.

The grey quadrangle in figure 2.6 represents the visual hull defined by the silhouettes
for cameras C| and C;. Point Py is a point that is intersecting the visual hull for which
we want to calculate the collision information. We would like to find the point Pz on
the surface of the visual hull that is the closest to Py.To find Pg, we first calculate,
for each camera C;, the nearest point Pc; that is the closest to Py and that lies on the
surface of the cone defined by the camera and its corresponding silhouette. Once Pc;
is calculated for each camera, Pg can be found by looking for the point P; that is
the closest to Py (see figure 2.6). The corresponding camera C; is the one relevant
camera that will be used to calculate the collision information.

To calculate the point Pg; for camera i, we look at points in a growing region around
Py until we find a point that does not project inside the silhouette for camera C;. This
point will be Pr;. We define d; as the distance between camera C; and Py. In the first



18 Image Based Collision Detection

iteration, we construct all points that are at a distance d; away from C; and project
one pixel away from the projection of Py in camera C;. In figure 2.6] these points are
represented by Py ; and P, ; for the first and the second camera respectively. If one
of these points project outside the silhouette,we found the border of the cone and we
stop searching, otherwise we keep iterating. For the second iteration, we construct
all points that are at a distance d; away from C; and project two pixels away from
the projection of Py in camera C; (P; > and P, in the figure). Then we check if any
of these points project outside the silhouette for camera C;. We keep iterating until
we find a point that projects outside the silhouette. So we look at a growing window
around Py until we find a point that projects outside the silhouette. This way we can
find the point P¢; for each camera C;. In figure 2.6 Py1, P15 and Py 3 depict the points
that were generated when looking for Pr; during the first, second and third iteration
respectively. P> 1 and P> > depict the points that were generated when looking for P>
during the first and second iteration respectively.

By first calculating Pr; for each camera C; and then finding which of these points
is the closest to Py, we lose a lot of time. Typically there is one camera for which
Pc; lies very close to the Py while in the other cameras, there is a large distance
between Py and Pr;. So instead of first calculating Pc; for each camera separately, we
can calculate Pg; for all cameras simultaneously. For each iteration of this improved
algorithm, we select a couple (i, j) that has not been selected before and for which
P, j lies the closest to Py,. We check whether this point projects inside the silhouette
for camera i. If it does project inside the silhouette, we keep iterating. Otherwise, we
found the surface of the visual hull. Since for each iteration, the point F; ; is further
away from Py than the point selected during the previous iteration, we know that the
first point we find that projects outside the silhouette, will be Pg, the point we were
looking for.

Plane fitting Once Pp and the relevant camera is found, we can calculate the colli-
sion information using this camera. We now have the situation shown in image (b) of

figure .71

We have the projection P}, of our virtual point Py and the projection Py of the closest
point Pg on the surface of the visual hull. As can be seen in this image, the surface of
the visual hull is quite rough, each pixel introduces a sharp corner. Using this rough
surface directly does not generate a smooth simulation as will be shown in the results
section. To alleviate this problem, we locally approximate the visual hull by a plane
0, as shown in image (b). To obtain this plane, we first fit a line Q' through the border
of the silhouette. To fit this line, we only consider a window of 4x5 pixels around Py,
shown in image (b) as the black rectangle. The position of the line is the average of
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(a) Silhouette for (b) A 5x5 zoomed in window of the sil- (c) The position and the normal of the
the relevant cam- houette. The surface of the visual hull is collision is calculated using this plane.
era smoothed by fitting a plane though it

Figure 2.7: Once the relevant camera is identified, the collision information is calcu-
lated by fitting a plane through the visual hull.

all the points on the silhouette border and the normal of the plane is the average of all
the normals of the points on the silhouette border. The plane Q is now defined by this
line Q' and the centre of the camera. The normal of the collision surface is the normal
of this plane Q. The position of the collision on the surface of the virtual object is Py
and the position on the real object is the point Pk on the plane Q the closest to Py.

2.4.3 Bounding Volumes

The point - real world collision test is very fast, but using bounding volumes, we
can prune the number of tests that need to be performed and increase the total per-
formance. Finding bounding volumes for the virtual objects can easily be done with
standard computer graphics algorithms. Defining a bounding volume for the real ob-
jects on the other hand is more difficult, especially since we do not know anything
about them — we did not even segment the input images.

Constructing bounding volumes

To calculate a bounding volume for the real objects, we need to make some assump-
tions and/or we need to do some extra calculations to find out a bit more about their
shape.

Here we present two possible ways to calculate a bounding volume.
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Assume all cameras see the entire object If we assume the real object is always
inside the view frustum of each camera, we can use the intersection of all these frus-
tums as a bounding volume of the real object. This bounding volume might be a lot
bigger than the real object, but it only has to be calculated once and can provide a big
speedup if the real object only represents a small portion of the virtual world. This
bounding volume has only a little overhead, but it might be a lot bigger than the real
object.

Segmenting the input images To construct a smaller bounding volume more in-
formation about the real scene has to be calculated. One way to do this would be to
segment the input images and calculate in image space, a 2D bounding rectangle of
the silhouette for each input image. For each camera, such a 2D bounding rectangle
defines a frustum than encloses the real object. The intersection of these frustums
defines a bounding volume for the real object. The disadvantage of this method is
that it requires quite a lot of overhead — all the input images need to be segmented.
But if there are a lot of virtual points in the scene, this extra work might pay off.

Note that creating a bounding volume is only valuable if there are a lot of virtual
points that need to be tested. If we only have a few virtual objects in the scene, the
overhead of calculating the bounding volumes does not outweigh the speedup we get
from using them. In the results section we show the impact of the bounding volumes
on the performance of our algorithm in a number of scenarios.

Using bounding volumes

Until now, we explained how the bounding volumes can be calculated. In this para-
graph we describe how the bounding volumes are used to speed up the collision tests.
For each virtual object we construct a kdtree containing its sample points. For each
node of this kdtree we calculate the axis aligned bounding box of its children. This
can all be done during a preprocessing step. This kdtree and the bounding boxes are
in the local coordinate system of the virtual object and rotate when the virtual object
rotates. To calculate the intersection between this virtual object and the real object,
we traverse the kdtree and prune away the nodes for which the bounding box does
not overlap with the bounding volume of the real object. To reduce the overhead of
this pruning, we do not use the bounding volume of the real objects from the previous
section directly. Instead we calculate an axis aligned bounding box of this volume in
the local coordinate system of the virtual object. This way we only have to perform
very fast intersection tests between axis aligned bounding boxes when pruning.
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(a) input (b) without fitting a plane (c) with fitting a plane

Figure 2.8: Experiment that shows that a plane has to be fitted to obtain a smooth
animation.

scene few many close many far
no bounding volume | 0.47ms 375 76.0ms 229918 9.66ms 54396
bounding frustum of cameras | 0.51ms 375 76.7ms 180427 6.24ms 10793
bounding frustum of silhouettes | 36.1ms 275  52.1ms 23230  42.4ms 2015

Table 2.1: The effect of the use of bounding volumes on the performance of our
system. The three columns correspond to the three experiments shown in figure 2.9
The total time it takes to calculate the collisions and perform the rigid body simulation
is shown, along with the number of points for which a visual hull intersection test was
performed.

2.5 Results

As explained in section[2.3] we locally approximate the visual hull by a plane to cal-
culate good collision information. Figure 2.8 shows an experiment where we demon-
strate that fitting this plane is really necessary. In this experiment we used an artificial
static scene that consists of a single slope. The four input images are shown in image
(a). We drop a number of virtual objects (toruses) onto this plane and they should
slide smoothly down the slope. Image (b) shows a frame of the resulting animation
when we do not fit a plane but use the visual hull directly. In this case the animation
is not smooth and the virtual object bounces up and down. In these still frames, this
effect is not very obvious, but in the accompanying video it is very clear. Image (c)
shows our plane based approach. Now the collision information is more accurate
which results in a better simulation.

We tested the effect of the use of bounding volumes on the performance of the system.
An artificial static scene of a rabbit is used for this experiment. The input images are
shown in figure (a). We used the three different situations shown in figure 2.9 to test
the performance. The first scene contains only a few virtual objects, the second scene
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(a) input (b) few virtual objects

(c) many virtual objects close to the real (d) many virtual objects at a larger dis-
object tance from the real object

Figure 2.9: Three experiments to test the effect of the use of bounding volumes on
the performance of our system.
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contains many virtual objects that are close to the visual hull, the third scene contains
many virtual objects that are spread out over a large distance. Table 2.1] shows the
effect of using bounding volumes on the performance in the situations shown in figure
It is clear that whether and which bounding volumes should be used depends on
the situation. Using the silhouettes to construct a bounding volume generates lots of
overhead because segmenting the images is computationally intensive, but when a lot
of virtual objects are near the visual hull, it pays off. When only a few virtual objects
are present, using no bounding volume is the best choice, because of the overhead
when using bounding volumes. When many virtual objects are present in the scene,
but the virtual objects are far away from the visual hull, using a bounding frustum of
the cameras is the best choice.

As can be seen in table 2.1l when only a few virtual objects are present in the scene,
calculating the collisions is very fast, a lot faster than segmenting the input images.
As said in the introduction, a naive way to calculate intersections between real and
virtual objects is to first calculate a polygonal visual hull of the real objects and then
use traditional collision detection algorithms to obtain the intersection between the
visual hull and the virtual objects. Since segmenting the input images is only the
first step in the naive method, our collision detection algorithm is a lot faster than the
naive one.

Figure 210 and figure 2.T1] show experiments where a person moves a real box and
the virtual boxes on top of it move accordingly. In this experiment we show we can
handle virtual objects that are lying in rest on top of real ones.

The experiment in figure Z.12] and figure 2.13] shows we can handle non-convex ob-
jects. A number of non-convex objects fall on a dancer. Figure 2.1l shows we have no
problem handling many objects in real time.

2.6 Conclusions and Future Work

We presented a visual hull based real-time system for detecting collisions between
real and virtual objects in a multicamera setting. We demonstrated the collision de-
tection system could be coupled to a physically based simulation system. We had
to locally approximate the real object by a plane to calculate accurate collision in-
formation for each collision. We also analysed the effect of bounding boxes on the
performance of the algorithm.

Currently, the system can not handle objects that move very fast. If at one instant,
the visual hull is in front of a rigid body and at the next frame, it is behind the rigid
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Figure 2.10: A stack of virtual boxes on top of a real box is tipped over by lifting
the real box. This demonstrates how our technique is capable of modeling virtual
objects that are lying in rest on top of real ones, due to correct treatment of multiple
simultaneous collisions.

Figure 2.11: A virtual box on top of a real box. When the real box is lifted, the
virtual box stays on top of the virtual box. When the real box is tilted, the virtual box
falls from the real one.
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Figure 2.12: A dancer interacts with concave objects.

(a) (b) (© (d)

Figure 2.13: A dancer interacts with concave objects.
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body, the contact that should have been detected is missed. To solve this, we have to
be able to query the visual hull in between two frames. For each camera, we would
need some kind of optical flow between two consecutive frames of this camera to
approximate the shape of the visual hull between these two frames. Since one of our
goals is interactivity, calculating an approximation of the visual hull in between two
frames is not an easy task.
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In this chapter we present two new motion capture systems. They can be used to
obtain information for a sparse set of scene points. We show how this information
can be used in the context of video manipulation. Both systems are low cost optical
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tracking systems that use imperceptible markers.

The first is a camera based system that locates and identifies a number of electronic
markers that contain blinking LEDs.

The second system is called Prakash. In this system, light patterns are projected into
the scene and electronic markers in the scene decode these patterns to calculate their
position, orientation and incident illumination.

3.1 Related Work

3.1.1 Why Optical Tracking ?

The surveys by Welch and Foxlin ] and Hightower and Borriello
[W] describe a large number of approaches to build a motion tracking
system using magnetic, acoustic, optical, inertial or radio frequency signals.

We chose to create optical systems, because of the advantages over other approaches.
Optical systems are typically able to achieve a high accuracy and low latency. The
major disadvantage of optical systems is their need for line of sight. Ambient light
can also interfere with such systems.

A typical optical system consists of a number of light sources and light sensors.
Optical systems can be subdivided into two groups. Outside-in tracking systems
have light sensors outside the scene and light sources in the scene. Inside-out tracking
systems are the opposite, they have light sources outside the scene and light sensors
in the scene.

3.1.2 Outside-in Tracking

In outside-in tracking systems, the light sensors are located outside the scene, and
the markers that are being tracked emit or reflect light to the sensors. Most outside-
in optical tracking systems film a number of markers with high-speed cameras. To
each interesting point in the scene, a marker is attached. The 2D position of the
markers is determined by each camera. Because the cameras are calibrated, a 3D
position can be obtained from the multiple 2D positions captured by the cameras.
The markers can reflect light from their environment onto the cameras or they can
emit light themselves.

In most systems that use reflecting markers, retroreflective materials are used. These
materials have the special property that they reflect most of the incident light back
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Figure 3.1: In the PhaseSpace system [@], a number of LEDs are attached to
points of interest. These points are tracked using multiple high speed cameras to
obtain their 3D position.

to the light source it was emitted from. To maximally profit from the retroreflec-
tive effect of the markers, a light source is placed near each Camera[m,

orporation 0€].

In systems that use markers that emit light themselves, each marker has to
be equlpped with a power source and a light source ﬂ_dﬁ Dmgmﬁﬂ

N ]. LEDs are mostly used as light sources because of their small
size and energy efficiency. Using markers with LEDs instead of reflective markers
has one big advantage. If each marker is given a unique ID, the LEDs can be turned
on and off in a pattern corresponding to this ID. The cameras capturing these LEDs
can determine the iID of each LED from the way it turns on and off. This way two
markers will never get swapped — even after occlusions the system will be able to
identify each marker.

Because high frame rates are desirable in a tracking system, high speed cameras are
often used. The disadvantage of high speed cameras is their cost and their high band-
width requirements. To alleviate these problems, the PhaseSpace motion tracking
system ] uses two 1D line sensors instead of a normal 2D camera (See figure
BI). In their system, the LED of only one of the markers is turned on while the
others are turned off. When the scene is captured using two 1D line sensors that are
orthogonal to each other, the 2D position of the marker can be obtained. The 3D
position can be obtained if even more 1D line sensors are used.

The disadvantage of outside-in tracking is that the contrast between the markers and
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Figure 3.2: Using the HiBall system ML a marker which contains multiple
light sensors senses the amount of light arriving from a number of LEDs attached to
the ceiling to calculate its position.

the rest of the scene has to be high. Otherwise the markers can not be found in
the camera images, and the tracking fails. When tracking a human actor using such
systems, the person has to wear dark clothes.

3.1.3 Inside-out Tracking

The opposite of outside-in tracking systems are Inside-out Tracking systems. In these
systems, the light sources are placed outside the scene while the light sensors are
located on the markers that are being tracked.

One way to construct an inside-out tracking system is to sweep the scene with a
fast rotating beam of light. The markers that are being tracked contain a cheap light
sensor. By sensing the moment in time when the sensor is lit by the beam of light,
its position can be obtained. Multiple rotating light sources are needed to obtain a
3D position. Examples of such methods are Indoor GPS ﬂKan.gi)AL lSmcn&e.nBQ],
Spatiotrack [II]IEPE] and Shadow Track [IM].

In the UNC HiBall system M], multiple light sensors are placed on the marker
(See figure 3.2). Each of these sensors faces in a different direction. The ceiling is
covered with LEDs that are turned on one after the other. The amount of light arriving
at the light sensors from each of the LEDs depends on, among other things, the angle
and the distance between the sensor and the light source. When the amount of light
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(a) sketch of the system (b) a person using the system

Figure 3.3: Using the RFIG system [M] a person can find out information
about boxes in a warehouse by aiming a projector at them.

arriving at the sensor is known for a number of LEDs, it becomes possible to calculate
the position and orientation of the sensor.

The performance of most inside-out tracking systems does not depend on the number
of markers. This is an advantage over outside-in tracking systems, where it becomes
increasingly difficult to identify each marker when more markers are added to the
system. With inside-out systems, the markers calculate their own position and identi-
fying markers is trivial. However, in outside-in tracking systems all the markers can
be very simple devices consisting of a retroreflective patch or a single LED, whereas
in inside-out tracking systems, the markers are more complex because they have to
sense light and process their measurements.

3.1.4 Projecting Data

A video projector can be used to project more than just images. Extra information,
invisible to the human eye, can be embedded in the projected images. Or by project-
ing special patterns instead of normal images onto a scene, a light sensor attached to
a marker in the scene can calculate its position.

Raskar et al. [M] present a system where a hand-held projector illuminates
a scene containing a number of objects which have markers attached to them (See
figure B.3). The markers are RFID markers that contain a light sensor. When the
markers are lit by a number of binary light patterns, they can calculate their own
position. Their position is sent back to electronics attached to the projector. The
projector can then project additional information onto the objects because their posi-
tions are now known. This is useful in a warehouse where a person with a portable
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projector can find out information about boxes by aiming a projector at them.

Nii et al. ] present a system where a projector is used to send position depen-
dent information (e.g. audio) to receivers in a scene. They do this in such a way that it
seems to a human observer that the projector is projecting a normal image. They use
the observation that the human visual system averages out patterns that are projected
onto a scene at a very high speed. The projected patterns are chosen in such a way
that they are averaged out by the human visual system to produce a normal image,
while special devices with optical sensors are able to decode the invisible high fre-
quency data that is embedded in these patterns. Cotting et al. ] present
a similar system where they use a DLP projector to project the patterns at a high
speed. Lee et al. ] transmit low-perception grey code patterns encoded in an
image with a projector onto a scene containing markers with light sensors attached to
them. The markers that receive this light can calculate their positions while a human
observer sees a normal image. The least significant bits of the projected patterns are
used to transmit data to the markers, while the most significant bits of the projected
patterns are used to let a user view a normal image.

3.1.5 Projectors for Tracking

One could use projectors designed to project video images for the purpose of trans-
mitting (location) information to optical sensors in the scene, as explained in the
previous section. Because the amount of information that can be sent depends on
the speed of the projector, high speed projectors are desired. High speed projectors
designed for projecting video images rely on Digital Light Processing (DLP) or on
Gated Light Valves (GLV) ]. Instead of using a general purpose projec-
tor to project data onto the scene, one could devise projectors that are only able to
project patterns for location tracking. With only this application in mind, choices can
be made that result in a low cost and a high frame rate as we will show in section[3.3]

3.2 Locating And Identifying Active Markers using a
Multi-Camera Setup

In this section we describe a camera based tracking system that can identify and
locate a number of electronic markers. Each marker contains an IR LED that emits
a unique time coded light pattern. The 3D position of each marker can be calculated
using images of the scene captured by multiple calibrated cameras. The time coded
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Figure 3.4: A sketch of the hardware components of our system.

light pattern is used to uniquely identify each marker so there are no reacquisition
problems after occlusions.

3.2.1 Introduction

Figure 3.4l shows a sketch of the system. The light emitted by a LED on the marker
is captured by the cameras. The captured images are sent to a PC that identifies
the marker and calculates the 3D position of the marker. The PC is responsible to
keep everything synchronised. To synchronise the cameras to the PC, the PC sends a
trigger signal to the cameras. To synchronise the markers to the PC, synchronisation
data is optically send to the markers using the synchronisation LEDs. To capture this
synchronisation data, the markers contain a binary light sensor.

The system is applicable in a wide range of situations, because its accuracy and work-
ing volume depend entirely on the cameras and the lenses used. Simply by changing
the cameras or lenses, the system can fit specific budget and accuracy constraints.
Because the cost of cameras is dropping, the presented system is not expensive. Be-
cause it is an optical system, occlusions can cause the system to fail. We address this
issue by the use of a redundant set of cameras. The light emitted by the markers is
invisible to the human observer because infra red LEDs are used.

In figure we show how the system is used to create peephole displays. Robots
with laptops on top of them drive around on a stage during a theatre play. Because the
robots are being tracked using our system, the laptops can display images to create
the illusion of a peephole display.
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Figure 3.5: Laptops attached to robots are tracked by our system to create peephole
displays during a theatre play.

3.2.2 Strobe Pattern

Because the cameras are calibrated, calculating the 3D position of a marker is easy
once its 2D position is found for each camera. When multiple markers are being
tracked, the hard part is to find the corresponding LED in an image captured by one
camera given the 2D position of this LED for another camera. To solve this problem,
each marker is given a unique ID. This is a number that uniquely identifies each
marker. This ID is embedded in a time coded light pattern emitted by the LED on the
marker. By decoding this pattern, the PC can identify each marker using the images
captured by the cameras. For each frame the cameras capture, the LED is turned
on/off according to this pattern.

Figure shows a light pattern that can be used to identify 8 markers. The even
frames of the pattern are used to locate the markers and to determine occlusions. For
these frames, the LED of all markers are turned on. The odd frames are used to
identify the markers. During each odd frame, the LED emits a single bit of the ID of
the corresponding marker. In the example pattern shown in the figure, the ID consists
of 3 bits and one parity bit for error detection, thus 2° = 8 markers can be identified
using this pattern. In our prototype setup we used 64 markers, in that case the marker
ID consists of 6 bits and the strobe pattern is 14 frames long.
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frame nr‘ 1 2 3 4 5 6 7 8
LED on/off ‘ bitl on bit2 on bit3 on parity on

Figure 3.6: The strobe pattern of a LED is used to find the position and the ID of the
corresponding marker. In this example, the ID of the marker consists of three bits.
These three bits are encoded in the strobe pattern.

3.2.3 Tracking Algorithm

Overview

In this section we give an overview of the algorithm to locate and identify the markers
using the images captured by the cameras. In the next sections each step of the
algorithm will be described in detail.

To find the 3D position and ID of a marker, we first find its 2D pixel position and ID
for each camera. From this we can calculate its 3D position

To find the 2D position in image space and the ID for each marker for a given camera
we perform a number of steps. Note that we need multiple frames to decode the ID of
the markers visible in these frames (see figure 3.6)). First we use simple thresholding
to find the 2D position of the markers in these camera images. Image (a) of figure[3.7]
shows an example where two markers are filmed by a single camera. It shows the 2D
pixel positions where a LED was located for 8 consecutive frames, each position is
labeled by the frame number where the LED was found. Note that for most frames,
we found more than one LED. Next we find correspondences between the marker
positions over time. For each marker that is visible in the camera images, we find
its trajectory (See figure B.7] (b)). This way we know, for a given marker position
and frame, what the position of this marker was for the other frames. To find the
trajectories, we only use the even frames, the moments for which we know all the
LEDs are turned on (see figure 3.6). Once the trajectory of each marker is known,
its corresponding ID can be calculated. To find the ID, we need to determine for
which odd frames the LED of the marker was turned on (see figure 3.6]). Because
we calculated the trajectory of the markers for the even frames, we can estimate
their positions for the odd frames. To determine whether the LED is turned on for a
given odd frame, we simply check if we found a LED in the camera image near the
estimated position.

So in summary

e Find 2D positions of LEDs for each camera image using thresholding.
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(a) All the LEDs we found over 8 frames
for a single camera. Each point is labeled
with the frame number it was found in. The
LED positions found in even frames are
colored gray, those found in odd frames are
colored black.
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(b) Each line represents the trajectory of
a single marker and connects the positions
of this marker. These trajectories were es-
timated using the even frames. The white
circles depict the estimated position of the
marker for odd frames where the LED was

turned off.

Figure 3.7: Finding the position and ID of multiple markers for multiple frames of a
single camera.

e Find trajectory of each LED over a small number of even frames.

e Find the corresponding ID for each trajectory using the odd frames.

e For each camera, we now have the 2D position and the ID for each marker.
Now we combine the information from multiple cameras to obtain the 3D po-
sitions.

Now we will describe each step in detail.

Segment images

Given a single image of a camera, we need to find the 2D position of each LED in this
image. We use two observations to do so. The LEDs are brighter than most objects in
the scene and they are very small, so the gradient of the image is large near a LED. To
find the LEDs, we segment out each pixel that is brighter than a given threshold and
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for which the image gradient is larger than another threshold. Now we have multiple
image segments where a LED might be. For each segment we calculate the size. If
it is too big to be a LED, it is removed. We calculate the centre of the remaining
segments and these are passed on to the next step of the algorithm as the potential 2D
positions of the markers.

Find trajectory

The input of this step of the algorithm is a number of potential marker positions for a
number of even frames. An example of such a dataset is shown in image (a) of figure
37 For each point in the current even frame, we need to determine which point
in the previous even frame corresponds to it. We only use the even frames for this,
because we know all LEDs are turned on for these frames (see figure 3.6). We also
have to make sure this step is robust against errors made during the previous step.
The previous step might have found false positives.

We use the observation that we are designing a tracking system for a large working
volume. So in between two even frames, the markers will not have moved many
pixels. If we want to know, for example, which point in frame 4 corresponds to a
given point in frame 2, we simply look for the point in frame 4 that is the closest
to the given point of frame 2. If this distance is not too large, we assume these two
points correspond to the same marker. If the distance is larger that a given threshold,
we assume there is no point in frame 4 that corresponds to the given point. This could
be due to occlusions or the given point might be a false positive from the previous
step of the algorithm.

Find ID

Once the trajectories are found, we know the position of each marker for a number
of even frames. But we do not know the ID of each marker yet. To find the ID for
a given marker, we need to know for a number of odd frames whether its LED was
turned on or off (See figure B.6). To do this, we estimate the position of the marker
for each odd frame by interpolating the position of the marker at the even frames. For
a given odd frame, we assume the LED of the marker is turned off if no LED is found
near the estimated position. If a LED is found in the camera image near this position,
we assume the LED of the marker was turned on. We use linear interpolation to
estimate the position.

Once all the bits of the ID and the parity bit are obtained this way, we check the
ID against the parity bit to determine whether an error has occurred. One reason for
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errors might be occlusions We found that one parity bit was enough to obtain a robust
system, but more rigid error detection can be incorporated if needed.

Find 3D position

Now we know the 2D position and ID of each marker for each camera and frame.
Because the cameras are calibrated, we can find the 3D position of a marker for a
given frame, using the 2D positions if the marker is visible in at least 2 cameras.

3.2.4 Hardware Details

Overview

Figure 3.4 shows the different hardware components of our system. The cameras that
capture the scene are connected to a PC. This PC processes the images and broadcasts
the position of each marker. The marker contains a microcontroller and a LED to
signal its position to the cameras. Because the markers are battery powered, we want
them to use as little power as possible. That is why we turn on the LEDs only for the
very short time the shutter of the cameras is open. This is why the markers have to
be synchronised to the cameras. The PC also needs to know which bit of the strobe
pattern (see figure the markers are sending for a given frame, so the markers
also have to be synchronised to the PC. For this purpose, the PC is responsible to
send trigger signals to the cameras and synchronisation signals to the markers. The
PC sends a trigger signal to the cameras using an external trigger cable. To send a
synchronisation signal to the markers, a number of synchronisation LEDs are placed
above the scene. The PC sends a synchronisation signal to the synchronisation LEDs
over a synchronisation cable, these LEDs optically send this signal to the markers
that contain a light sensor to capture the signal. The technology used to optically
send this signal is the same as that used in the remote control for a television. In
the synchronisation signal the PC sends to the LEDs, the current frame number is
encoded. This way, the markers know which bit of their strobe pattern they need to
send to the cameras.

Figure shows a block diagram of the hardware components of our tracking sys-
tem. Each rectangle with a dashed border represents a component of our system.
Each subcomponent is represented by a solid rectangle. The arrows represent the
flow of data. Solid arrows represent wires and dashed arrows represent wireless con-
nections. In the following sections, we will describe each component in detail.
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Figure 3.8: Block diagram of the hardware components of the system.

PC

The PC runs the tracking software that interprets the images from the cameras.
Firewire is used to connect the cameras to the PC. The tracking software has to be
synchronised to the markers and the cameras. To this end the PC is connected to
the Control board. This is a custom designed printed circuit board responsible for
keeping all the components in the system synchronised.

Each time the tracking software receives a frame from the cameras, it tells the Con-
trol board a new image has to be captured while the tracking software processes the
current one. To do this, the PC sends the current frame number to the Control board
(also see figure[3.6). The Control board will make sure that when the cameras capture
the next image, the LED of each marker is turned on or off according to this frame
number and the strobe pattern of the marker. This way the PC stays synchronised
with the other components in the system.

Cameras

The cameras send the images they capture to the PC. They are triggered when a signal
is applied to their trigger input. This input is connected to the Control board. So the
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Control board controls when the cameras capture an image. The cameras capture the
position and ID of each marker through their CCDs.

Control board

This is a custom designed printed circuit board. It is connected to the PC and is
responsible for synchronising the other components in the system. It contains a mi-
crocontroller with two USARTSs (Universal Synchronous-Asynchronous Receiver/-
Transmitter) used for serial communication with the PC and the Trigger board.

One of these USARTS is used to communicate with the PC. This USART is directly
connected to a USB module. The USB module is connected to the PC and acts as
a virtual com port. Using this virtual com port, the tracking software on the PC can
communicate with the microcontroller.

The other USART is used to send synchronisation data to the markers. To this end,
it is connected to a Trigger board which optically sends data to the markers. Because
the distance between the Control board and the Trigger board can be quite large,
RS485 is used to connect them. The USART of the microcontroller is connected to a
RS485 Transceiver which in its turn is connected to the Trigger board.

To trigger the cameras, a general purpose 10 pin of the microcontroller is connected
to the trigger input of the cameras.

Trigger board

The Trigger board is also a custom designed printed circuit board. It is responsible
for relaying synchronisation data from the Control board to the markers. This data
is optically transmitted to the markers using a number of LEDs. The light the LEDs
emit is modulated with a carrier frequency of 455 kHz to make the system more
robust against ambient light. The markers only sense light that is modulated by this
frequency. The ambient light, which is not modulated by this frequency, is ignored.

A microcontroller on the Trigger board receives synchronisation data from the Con-
trol board using a RS485 link. To this end, the USART of the microcontroller is
connected to a RS485 transceiver which in turn is connected to the PC Board.

The microcontroller receives synchronisation data from the Control board and checks
it for transmission errors. If the data is OK, it is transmitted to the markers using the
LEDs. A general purpose IO pin of the microcontroller is used to turn the LEDs on
and off.
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Figure 3.9: One of the markers that is tracked by our system.

The Control board is typically located near the PC while the Trigger board is located
above the scene where its LEDs can illuminate the markers below.

Marker

Each marker contains an IR receiver to receive the synchronisation signal from the
Trigger board, a microcontroller and a LED to signal its position and ID to the cam-
eras. The IR Receiver is a binary chip that filters out light that is not modulated by
a carrier frequency of 455 kHz It is connected to the USART of the microcontroller.
The microcontroller interprets the synchronisation data and turns the LED on or off
according to the strobe pattern of the marker. The ID of the marker is programmed
in the memory of the microcontroller together with the firmware.

Figure shows a picture of one of the markers that is tracked by our system. Note
that this marker contains two LEDs that are being tracked, and consequently it also
has two IDs, one for each LED. The light sensor, used to capture the synchronisation
signal, and the microcontroller (MCU) are also visible in this picture.

Timings

Figure shows the time it takes for the synchronisation signal to travel from the
PC to the markers. When the PC receives an image from the cameras, it sends a
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0.0 ms 2.§ ms 5.0 ms 75ms 9.5ms

PC sends sync
PC board sends sync
Trigger board sends sync

Led on marker turns on
Shutter of cameras open

Figure 3.10: The timings of the synchronisation signal.

synchronisation signal to the Control board. The Control board receives this, checks
for transmission errors and sends this signal to the Trigger board. The Trigger board
also checks for transmission errors and then sends the signal to the markers. The
markers then turn their LEDs on or off according to the synchronisation signal and
their ID. The Control board sends a synchronisation signal to the cameras at the
same moment that the markers turn on their LEDs. The time it takes to send the
synchronisation signal from the Control board to the markers is hard coded in the
firmware of the Control board, so the Control board knows how long it has to wait
after sending the synchronisation signal before triggering the cameras. The shutter of
the camera is opened for 2 ms and the LEDs of the markers are turned off once the
shutter of the camera closes. The LEDs are turned on a little longer than the camera
shutters are open to allow for a margin of error in the timings. The shutter time of the
cameras is hard coded in the firmware of the markers, so the markers know how long
their LEDs should be turned on. This way the LEDs of the markers are turned on for
only a very small amount of time and battery power is not wasted. Once the images
are captured, the cameras wait for the PC until it finishes processing the previous
image. Then the images are sent to the PC and the PC signals the Control board to
start capturing the next image.

3.2.5 Results

Peephole Display

We tracked a number of robots with laptops on top of them using our tracking system
to build peephole displays. In this setup we used four cameras with a resolution of
640x480. The area across which the robots are tracked is 10 by 8 meters, which
results in an accuracy of approximately 10 m /640 ~ 8 m /480 ~ 2 cm. The cameras
are calibrated using the calibration toolbox by Svoboda M} In image (a)
of figure B.11] we show a number of laptops that are being tracked. Each laptop
is equipped with one markers containing two LEDs (see figure to estimate the
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(a) Robots being tracked (b) Estimated 3D position of the robots
along with a point cloud representation of
the scene.

Figure 3.11: Tracking robots to create peephole displays.

(a) Camera (b) The synchronisation LEDs

Figure 3.12: One of the IR Cameras and the LEDs which send the synchronisation

signal to the markers.
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position and 2D orientation of each robot. Because the camera used to capture image
(a) is sensitive to infrared light, the light emitted by the markers can be seen as the
white dots at the top of the laptop displays. Note that this IR light is invisible to the
human observer. Image (b) shows a 3D point cloud representation of the scene. The
squares represent the estimated positions of the robots.

Image (a) of figure[3.12Ishows one of the IR cameras that are used to capture the light
from the LEDs on the markers. Image (b) shows the LEDs used to optically send the
synchronisation data to the markers.

Verification Experiments

In this section we perform a number of experiments to determine the accuracy of
our system. Four cameras with a resolution of 640x480 pixels are attached to the
ceiling (2.5m above the floor) of a square room that measures 4m x 5.5m. All the
experiments are performed near the floor, in the middle of the room. The distance
between this point and the cameras is 4.5m.

In the first experiment, two markers are attached to a stick, approximately 30 cm
apart from each other. The tracking system is used to measure the distance between
these two markers while the stick is moved around in a box of approximately 1m
x Im x Im. The variation in the calculated distance is a measure for the accuracy
of our system. The results of this test are shown in figure Image (a) shows
the two markers (LEDs) attached to a stick. Image (b) shows the 3D position of
the first marker calculated by our system. The position looks jagged because it is
only updated during the even frames (see figure 3.6). Image (c) shows the distance
between the markers calculated by our system for each frame. The average distance
18 30.94 cm. For each frame, the difference between the calculated distance and the
average distance is shown in image (d). The average difference is 0.17 cm and the
maximum difference is 0.51 cm.

In the second experiment we move a marker along a line and capture its position every
10 cm. The results of this test are shown in figure 3.14l Image (a) shows a picture of
the setup used to perform this experiment. A marker is shown next to a ruler that is
used to move the marker exactly 10 cm between two measurements. Image (b) shows
the 3D position of the marker relative to its position at the first frame. Image (c) shows
the distance between the position of the marker and the position of the marker at the
first frame along with the ground truth. The difference between the ground truth and
the calculated distance is shown in figure (d). The average difference is 0.53 cm and
the maximum difference is 1.24 cm.
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Figure 3.13: The tracking system is used to calculate the distance between two
markers attached to a stick that is moved around. The error is the difference between
the average distance and the distance for a single frame.



46

Motion Capture

160
140
120
100

E 80

60
40
20

0

(a) Setup

P

~

e measured

~

1

-

ground truth
—

3 5 7 9 11 13 15
frame nr

(c) Distance

1.4
1.2

0.8
0.6
0.4
0.2

1 3 5 7 9 11 13 15

frame nr

(b) Relative 3D position

1 3 5 7 9 11 13 15
frame nr
(d) Error

Figure 3.14: The position of a marker is calculated every 10 cm.
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Figure 3.15: The position of a marker is calculated every millimeter.
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In the final experiment we measured the spatial resolution of the system by sliding
a marker along a line and capturing its position every millimeter. The results of this
test are shown in figure Image (a) shows a marker next to a measure. Image
(b) shows the 2D pixel coordinate of the marker for each of the four cameras. The
coordinate is relative to the coordinate of the marker at the first frame. The coor-
dinates are calculated with subpixel accuracy. This is possible because the marker
is larger than one pixel in the camera images, the larger the marker in the camera
image, the higher the accuracy. This can be seen in the graph, camera 4 is closer to
the marker and therefore the marker is larger in the images it captures and thus the
subpixel accuracy of camera 4 is higher than that of, for example, camera 3 which is
further away. Image (c) shows the 3D position of the marker and image (d) shows
the distance traveled along with the ground truth. The average difference between the
distance measured by our system and the ground truth is 0.13 cm and the maximum
difference is 0.31 cm.

Conclusions

From these experiments, we can conclude that our tracking system is able to accu-
rately measure both small local movements and the absolute marker position. This is
an advantage over many other methods that are only able to determine local move-
ments (such as inertia based systems) or global movements (such as GPS based sys-
tems). Our system is able to determine the absolute position of each marker accu-
rately because current camera calibration methods are very accurate. Because the
markers are larger than one pixel in the images, we are able to determine their posi-
tion with subpixel accuracy. This way our system is able to accurately measure very
small movements.

When we assume a 2D accuracy of one pixel (no subpixel accuracy), the theoretical
spatial resolution of the setup is approximately 5.50 m / 640 pixels ~ 4 m / 480 pixels
~ 0.8 cm. This matches the results from our experiments because we can conclude
from the first two experiments that the spatial accuracy of this setup is between 0.5
cmen 1 cm.

3.2.6 Conclusions

We presented a real time camera based system to locate and identify a number of
electronic markers. Because the price of cameras and computational power is quickly
decreasing, the hardware cost of the system is low. Because the accuracy and working
volume of the system completely depends on the cameras and lenses used, one can
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easily adjust the system to comply with certain cost and performance requirements.
To demonstrate the usefulness of our system, we build peephole displays by tracking
robots with laptops attached to them. In this setup, a large working volume (10m by
8m) was used with an accuracy of approximately 2 cm.

The system could be improved by combining multiple steps of our algorithm using
probabilistic methods. One could devise a system that finds the 3D positions, trajec-
tories and IDs all at once. By doing this, more prior information will be available to
each step of the algorithm resulting in a more robust system. The system could be
made more robust against ambient light by placing an IR bandpass filter in front of
the cameras to filter out light with a different wavelength than that of the IR LEDs.

3.3 Prakash

In this section we describe Prakash, a high speed motion tracking system that cap-
tures, not only the position, but also the orientation and incident illumination for a
number of scene points. In contrast to the system presented in the previous section,
this is not a camera based system. Instead, multiple patterns of light are projected
onto the scene and electronic markers calculate their own position and orientation by
sensing this light. The result is a highly scalable system which is not bound by the
number of markers being tracked.

3.3.1 Introduction

Many high speed motion tracking systems rely on high speed cameras to obtain the

osition for a number of scene points that are marked by special reflective markers
EM]. A disadvantage of this approach is the need for a large amount of
bandwidth and computational power to handle the vast amount of data generated by
the high speed cameras.

In contrast to camera based systems (such as the one presented in the previous sec-
tion), the method presented in this section is an inside-out tracking system. An elec-
tronic marker containing a number of light sensors is attached to each scene point
we want to track. Time multiplexed light sources project well chosen illumination
patterns onto the scene. By sensing these illumination patterns, the markers can cal-
culate their position, orientation and incident illumination.

Unlike with camera based approaches, decoding the light patterns is not computa-
tionally intensive, nor are there any high bandwidth requirements. The system can
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Qrientation Sensor

RGB incident lumination sensor

Figure 3.16: A marker is attached to each scene point of interest. It consists of
a microcontroller and a number of sensors to calculate its position, orientation and
incident illumination.

be built using off the shelf components, resulting in a low cost system. Because we
use an optical system, interreflections of light and very bright ambient illumination
can cause the system to fail. Later in this section we will describe which measures
were taken to make the system more robust against ambient light. We show this by
tracking a person outside in daylight.

The main contributions of our system are:

e High speed location and orientation tracking by decoding multiplexed light
patterns.

e Capturing incident illumination.

e The used markers are imperceptible under clothing and work in normal lighting
environments.

e New video manipulation methods that use the measured properties.

3.3.2 Estimating Scene Parameters

In this section, we describe how each property — position, orientation and incident
illumination — is captured and we analyse the accuracy of the system.

An electronic marker is attached to each point in the scene we need to track. As
is shown in figure [3.16l such a marker consists of a printed circuit board, a micro-
controller and a number of optical sensors. For each property we capture (position,
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Figure 3.17: This is an image of the light sources that optically label the scene.
The marker uses the light from the projectors for position tracking, the intensity of
the light from the orientation beacons for orientation tracking. A camera is added to
show tracking results on top of a video of the scene.

orientation and incident illumination), a sensor is present on the marker. The micro-
controller processes the information from the sensors and transmits the result via an
RF system.

Figure B.17] shows the light sources that label the scene. Three one dimensional
projectors are used to label the 3D space, more details will be given in the section
about location sensing. Four light beacons are used for the orientation tracking. And
also a camera is present so the tracking results can be used to augment a video of the
scene.

Position

First we will describe 1D position tracking, later we show how we can extend this to
2D and 3D tracking.

For 1D position tracking, a number of binary patterns are projected onto the scene.
These patterns are shown in figure The patterns are projected onto the scene
one after the other using our custom projector. A sketch of a 4-bit projector is shown
in figure It consists of a number of LEDs, and in front of each LED is a mask.
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Figure 3.18: The light patterns that are projected onto the scene for 10-bit position
tracking.

® b b ®
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Figure 3.19: A 4-bit high speed pattern projector for location tracking. By turning
the 4 LEDs on one after the other, the patterns in front of each LED is projected.

When a LED is turned on, the corresponding pattern is projected onto the scene.
When the LEDs are turned on one after the other, a marker in the scene can calculate
its position from the sequence by which it is illuminated by the light patterns. The
first (leftmost in figure pattern is used to obtain the most significant bit of the
coordinate of the marker, it decides whether the marker is in the left or in the right
side of the scene. The second pattern is used to obtain the next bit of the coordinate.
The last pattern is used to obtain the least significant bit of the coordinate. So, each
mask that is projected improves the accuracy of the system by one bit. In our setup
we used projectors with 8 LEDs, so the coordinates have a precision of 8 bits. To
decode the light patterns, the marker has a binary light sensor that senses whether or
not it is illuminated. Infrared LEDs were used to make the system invisible to the
human observer.

To make sure the system is robust against ambient illumination, the projectors emit
light modulated with a carrier frequency of 455 kHz. The binary light sensor only
responds to light with this carrier frequency. Ambient infrared light (e.g. from the
sun) is not modulated with this frequency and is thus ignored. The technology used
is the same as that in a remote control for a television.

Because we use LEDs as light sources we are able to switch them on and off very
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(a) 2D setup (b) 3D setup

Figure 3.20: The setups of the projectors for 2D and 3D position tracking are shown.

rapidly and thus are able track the markers at high sample rates. Our 1D location
tracker works at 1000 Hz.

To extend this approach to 2D, we simply put two 1D projectors orthogonal to each
other and operate them one after the other. One projector is used to obtain the X-
coordinates and the other one is used for the Y-coordinates. For 3D location tracking,
the 2D system is extended by a third 1D projector in stereo with the first one. Using
the first and the third projector, the distance between the marker and the projectors
can be calculated using triangularization. Figure [3.20 shows a sketch of the setup for
2D and 3D location tracking.

The field of view of the system is 1.5m x 1.5m at a distance of 3m from the pro-
jectors, or 27 degrees. So, in theory, the X-Y resolution of our 8-bit system is
1.5m/255=5.8mm at 3 meters.

The resolution in de Z-direction depends on the distance between the first and the
third projector, and it also depends on the distance between the marker and the pro-
jectors. If d is the distance between the projectors, p is the distance between the
projectors and the marker and « is the angular resolution of the projector, then the
theoretical Z-resolution of the system is equal to

d’>+ p?
d—oaop

o

We have a baseline of d = 1.3m and an angular resolution of o = 0.0017 rad = 0.1
degrees, so at a distance of p = 3m from the projectors, the theoretical resolution in
the Z-direction is 22mm.
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Figure 3.21: When moving a single marker in front of a measure, we show that in
practice the accuracy of 2D the position tracking is as high as predicted in theory. In
the top left corner of each frame, we show the x-coordinate that was calculated by
our system.

Verification Experiments To verify the accuracy of the position tracking system,
we performed three tests.

In the first test, we moved a marker along the x-axis in front of a measure as can
be seen in figure 3.2 The purpose of this test is to verify whether the actual X-
Y resolution of the system is the same as we predicted in theory. We positioned the
marker 3m away from the projectors, so the resolution should in theory be 5.8 mm. In
figure 3.21] we see the marker in front of the measure, and in each successive image,
the marker is moved to the right over a distance of approximately 5.8 mm. From
the figure, it is apparent that our system is indeed precise enough to measure these
movements, so the 2D position tracking is as accurate as we predicted in theory.

The second test is also designed to test the accuracy of the system in the X-Y di-
rection. The setup of the experiment is shown in figure (a). It consists of two
markers that are attached to the two ends of a stick, facing in the direction of the pro-
jectors parallel to each other. This way the two markers will not move with respect to



3.3 Prakash 55

(a) A photo of the position veri-
fication experiment
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(c) Distance measured by our system between two markers that are attached to a rigid body along the
Z-axis

Figure 3.22: The results of the tests to verify the accuracy of the position tracking.
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each other. In this experiment, we will wave this stick around in a plane parallel to the
X-Y plane without rotating it at a distance of 3m from the projectors. The distance
measured by our system between the two markers should remain nearly constant.
The variation of the measured distance between the two markers is a measure of the
accuracy of the system. In figure (b) we show the results of this experiment.
The average distance between the markers is 199.01 mm, the standard deviation is
3.70 mm and the maximum deviation is 7.01 mm. As in the previous test, this test
also confirms that the actual accuracy of the 2D tracking system corresponds to the
theoretical accuracy, which is, as said before, 5.8 mm at a distance of 3m using our
8-bit system.

The third experiment is very similar to the second one. But instead of the accuracy
in the X-Y direction, we test the accuracy in the Z direction. As in the previous
experiment, we once again attach two markers at the ends of a stick, but this time we
hold the stick in the direction of the Z-axis. Now we move the stick back and forth
and once again we look at the relative distance between the markers as calculated
by our system. Figure (c) shows the results of this experiment. The average
distance between the markers is, 205.58 mm, the standard deviation is 18.33 mm and
the maximum deviation is 64.29 mm.

Orientation

For the orientation tracking, we have a number of infrared light sources (orientation
beacons) that light up one after the other. These light sources are shown in figure
BI7l For each of these light sources, the marker measures the amount of incident
illumination. The orientation of the marker can be calculated from these measure-
ments using the fact that the amount of incident illumination depends on the angle
between the sensor and the light source.

We assume the location and the brightness of each light source is known. We also
assume the position of the marker is captured using the method described in the
previous section. Each light source L; is turned on one after the other, and for each
light source, the sensor on the marker measures the amount of incident illumination
I; from this light source. We can estimate the normal N of the marker by solving the
following set of equations:

P.
Iizk(Vi‘N)d*;

1

for i =1 to #light sources 3.1)

With & the gain of the sensor, d; the distance between the marker and the i-th light
source, P; the power of the i-th light source and V; = [Viy,Vy,V;;] the normalized
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Figure 3.23: A photo of and a graph with the results of the orientation verification
experiment. It shows the angle between two markers that are attached parallel to each
other on a rigid box that is being rotated.

vector from the marker to the i-th light source. At least three light sources are needed
to obtain the normal N, but to increase the accuracy, more light sources are used in
our setup.

Verification Experiments To verify the orientation tracking, we performed the ex-
periment shown in figure 3.23] Image (a) shows the setup used to perform the exper-
iment. Three markers are shown that are attached to a plank approximately parallel
to each other. When the plank is tilted, the angle between the markers stays the same.
The variation of the angle between two markers measured by our system is an indica-
tion of the accuracy of our system. In this experiment we used 8 orientation beacons,
and the beacons were spread over 2.5m. The graph in figure 3.23] (b) shows the dif-
ference of the angle between two markers while the plank is rotated. As is visible in
the graph, the box was rotated from 10 to 30 degrees and the angle between the two
markers has a mean of 1.32 degrees with a standard deviation of 0.46 and a maximum
variation of 1.49 degrees. So the accuracy of the orientation of the system is within 1
degree.



58 Motion Capture

Incident Illumination

A sensor on the marker measures the incident visible light. It returns the color of
the light that illuminates the marker. This information can be used in two ways. A
first application is to color virtual objects as if they were lit by light present in the
real scene. The information can also be used to calculate the reflectance of a surface
in the scene. The irradience near the surface can be captured by placing a marker
nearby and the light reflected by the surface can be captured using a camera. From
this irradiance E; and radiance B, the lambertian reflection p; can be calculated.

By CameraReading,,
P — - (3.2)
E,  I'(TagReading) /dA)

I'(.) represents the function that maps colors from the marker color space to the
camera color space.

3.3.3 Applications

In this section we show a number of video manipulation techniques that use the mo-
tion capture system presented in this chapter.

Virtual Objects

In figure 3.24] we show an example where a virtual label is added to a piece of cloth.
The scene consists of a person holding a piece of cloth illuminated by a video pro-
jector projecting a red-green-blue rainbow pattern. To track the cloth, twelve imper-
ceptible markers are attached to it. We fit an openGL NURBS through the position
and normal information of the markers as shown in image (c) of figure 3.24] But as
we did not use the illumination information of the markers for this image, the cloth
is lit in a different way than the rest of the scene. As shown in image (d), realism can
be added by coloring the virtual label using the incident illumination captured by the
markers. The illusion is created that the rainbow pattern projected onto the real scene
also illuminates the virtual label.

With camera based tracking systems, similar results can be obtained. But for such
systems the markers will no longer be imperceptible. In applications where transpar-
ent labels have to be shown on top of the real objects, this might be intolerable.
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(a) input with marker locations (b) marker orientations

(c) virtual label (d) virtual label with incident illumination

Figure 3.24: A virtual label is added to a piece of cloth using the position, orientation
and incident illumination of twelve markers attached to a piece of cloth.
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(a) Input

(c) With virtual sword (d) With motion blur

Figure 3.25: A stick, with three markers attached, is replaced by a virtual sword. The
scene is lit by a rainbow pattern, and the virtual sword is lit accordingly. Because we
have a high speed tracking system, realistic motion blur can be added.
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Motion Blur In figure we show an example where a tracked real object is
replaced by a virtual object. The scene consists of a person holding a plastic stick.
The performance is filmed by a camera that is calibrated with respect to the tracking
system. Three markers are attached to the stick in order to track it. Using the position
and orientation information we obtain from the markers, we can render a virtual
model of a sword on top of the stick in the input video. This example shows another
application of capturing the incident illumination. The scene is lit by a LCD projector
that projects a red-blue-green rainbow pattern. If we did not capture the incident
illumination, the rendered sword would be uniformly lit, while the other objects in
the video would be lit by the rainbow pattern, which reduces the realism of the final
result. The markers attached to the stick capture the local lighting information, and
by using this information while rendering the sword, we create the illusion that the
sword was lit by the rainbow pattern. The top images of figure 3.23] show a frame of
the input video. The white squares shown in image (b) indicate the position of each
marker as calculated by our system. The bottom images shows the virtual sword
composited with the input video.

The tracking system runs at a much higher frame rate than the input video. We can
use this to add realistic motion blur effects to the final rendering result. Instead of
rendering the sword once for each video frame, we render it once for each sample
we obtain from the tracking system and blend the results together. This way we get
correct motion blur.

Achieving this result using a pure video based approach is not very easy. Tracking the
stick using a pure video based approach can be quite hard for a number of reasons. If
the sword moves fast, a lot of motion blur is generated, which makes tracking it using
video based approaches very difficult. The material of the stick the markers are at-
tached to, is not important in our approach. Video based techniques will have trouble
handling specular or transparent materials. Because the scene is lit by light sources
with arbitrary colors, video based approaches can not easily use color information to
track the stick. Estimating the motion blur using video based approaches is also not
very straightforward.

Orientation Tracking

In figure we show the strength of our single point orientation tracking method.
Many tracking systems only obtain position information, orientation is derived from
the position of multiple tracked points. In order to obtain an accurate estimate of the
orientation of a surface, it has to be large enough to attach multiple markers to it and
the further away the markers are from each other, the higher the accuracy. It is not
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Figure 3.26: A stick, with markers attached to it, is rotated. Our system is able to
track this movement as is shown by rendering a virtual sword in place of the tracked
stick. Motion tracking systems that calculate the orientation of surfaces from position
information have problems to track this kind of motion of thin objects, because there
is not enough space to place the required markers.

possible to obtain the orientation of a single point or of a very thin stick using such
an approach.

In figure we show an example where the orientation of a stick is required. It
shows a person holding a stick that is being tracked. The position and orientation
information of this stick is used to replace the stick by a virtual model of a sword.
Using only position tracking, the subtle rotation of the sword would be hard to capture
— the multiple markers needed to derive the orientation, would have to be placed very
close to each other resulting in a low accuracy.

In our system however we can track the orientation of a single marker directly. We
do not have to place multiple markers to obtain the orientation of a surface. This
is why our system has no problems with tracking the motions and objects shown in
figure 3.26

Robust Tracking

In this section we will describe experiments to test the robustness of our system. We
show it works in daylight and has no problem handling specular objects.

A first experiment is shown in figure B.27l It shows a person who is being tracked
outside in daylight. The person is wearing a jacket equipped with a number of mark-
ers. The position of the markers is tracked using a portable version of our 2D tracking
system. The 2D system consists of two perpendicular 1D projectors and a camera to
film the scene that is being tracked. A person in a car uses this hand held 2D system
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(a) setup (b) tracking a running person

Figure 3.27: An experiment that shows our system is able to work in daylight con-
ditions using imperceptible markers. A person who runs on a street is tracked from a
car using a portable version of our tracking system.

to track a person wearing the jacket with the markers attached to it.

As shown in the top left image, the markers are hidden under clothing with only
the small sensors exposed. This demonstrates the markers are imperceptible under
clothing.

In contrast to camera or vision based tracking methods, our system is insensitive to
specular objects in the scene. Figure shows how three markers behind a sheet
of tin foil are tracked without a problem. In this figure we also show that we are able
to track markers behind materials that are opaque for visible light but transparent for
infrared light such as coke.

3.3.4 Conclusions

In this section, we presented Prakash, a high speed tracking system that obtains the
position, the orientation and the incident illumination for a number of points. Using a
number of verification experiments, we analysed the accuracy and robustness of this
system. We also demonstrated how this system can be used to manipulate footage
and augment it with virtual objects.
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Figure 3.28: We can track markers behind highly specular surfaces and behind ma-
terials that are opaque for visible light but transparent for infrared light such as coke.

3.4 Conclusions

In this chapter we presented two tracking systems and demonstrated their use in video
manipulation tasks. The first system is a camera based position tracking system. It
is a flexible system because its field of view and accuracy can easily be changed by
using different cameras or lenses. The second system tracks position, orientation and
incident illumination at high speeds. It is a little less flexible because changing its
field of view is less straightforward, but there are no theoretical limitations to the field
of view.

Both systems are low cost optical systems that are quite robust against ambient light
and both use imperceptible electronic markers. Line of sight is needed in both sys-
tems and they are both able to uniquely identify each marker. In the camera based
tracker, a PC calculates the position of each marker, so this information is easily
broadcast to other devices using ethernet. In the Prakash system, the markers them-
selves calculate their position and orientation. If another device needs this informa-
tion, it has to be transmitted by the markers using an RF channel which might cause
problems due to limited bandwidth.

Because the markers calculate their own position and orientation in the Prakash sys-
tem, it supports an unlimited number of markers. The camera based tracker is less
scalable because the PC calculates the position of each marker, which means that if
more markers are added, more computational power is needed.

In the camera based tracking system, we currently use cameras of 640x480 pixels,
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so the accuracy of the position tracking in this system is about 9 bits. The posi-
tion tracking in the Prakash system is 8 bit because we use 8 LEDs in the position
projectors.

Prakash uses LEDs to project the patterns into the scene which results in very high
frame rates, the position tracking system works at 1000Hz for 1D tracking and at
300Hz for the 3D tracking while the camera based tracking system only runs at
30Hz.
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Time and Color Multiplexed Illumination
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Multiplexing light is important for many video manipulation techniques. By project-
ing patterns of light onto a scene, depth information can be acquired. Normals of
surfaces in a scene can be obtained by turning a number of point light sources on and
off. Relighting techni