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Abstract. The goal of this article is to introduce a collaborative clus-
tering approach to the domain of ubiquitous knowledge discovery. This
clustering approach is suitable in peer-to-peer networks where different
data sites want to cluster their local data as if they consolidated their
data sets, but which is prevented by privacy restrictions. Two variants
exist, i.e. one for data sites with the same observations but different
features and one for data sites with the same features but different ob-
servations. The technique contains two parts, i.e. a collaborative fuzzy
clustering technique and a particle swarm optimization to optimize the
collaboration between data sites. Empirical analysis show how and when
this PSO-CFC approach outperforms local fuzzy clustering.
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1 Introduction

Computing environments and technologies are increasingly evolving towards mo-
bile, finely distributed, interacting and dynamic environments containing mas-
sive amounts of heterogeneous, spatially and temporally distributed data sources.
Examples are peer-to-peer systems, grid systems and wireless sensor networks.
These ubiquitous computing environments pose new challenges to the field of
knowledge discovery and data mining which remain unsolved by traditional data
mining techniques. The research discipline fostering the inception of innovative
data mining methodologies which are capable to handle these new challenges
has been termed Ubiquitous knowledge discovery (KDubiq).
? The authors wish it to be known that, in their opinion, both first two authors should

be regarded as joint First Authors.
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KDubiq is a very wide research area with features setting it aside from tra-
ditional data mining and distributed data mining. KDubiq algorithms typically
operate in environments with distributed computing power and distributed data
sources. KDubiq algorithms must be capable of communication with different
data sources and computing sites and should also be usable in environments too
large to set up a master computer which collects and consolidates the different
site results. Therefore, a KDubiq environment typically consists of several com-
puting devices performing local data mining on site using limited information
at hand while communicating with other sites. Sometimes computing and power
resources are limited and require resource-aware KDubiq techniques. Sometimes,
privacy and security restrictions hold which prevent raw data to be communi-
cated or to be gathered centrally. Sometimes, KDubiq algorithms have to deal
with data streams and must be able to process the data in real-time. Not all
of these features have to be present at the same time for an environment to be
ubiquitous and neither does a KDubiq algorithm necessarily have to deal with
all these challenges. It all depends on the application. A sensor network will e.g.
need algorithms which are very much resource-aware and limit communication
to the absolute minimum while grid systems have much less resource constraints.
On the other hand, KDubiq algorithms working on a peer-to-peer network are
more likely to have to deal with privacy issues than algorithms working in a
sensor network. For a more elaborated discussion of the different KDubiq char-
acteristics, the interested reader may refer to the KDubiq Blueprint [1] which
will be available as a Springer book by Fall 2008. Next, two motivating examples
are given to illustrate the type of applications our KDubiq algorithm can deal
with and to identify the KDubiq challenges faced in such applications.

Motivating Example 1. A company holds information on a set of potential
customers which it wishes to segment. This will allow them to identify new op-
portunities and act appropriately. At the same time, other companies hold other
information on the same set of potential customers and have a similar need to
identify different segments. Due to privacy, security or business reasons, these
companies are unwilling or prohibited to exchange their data. This prevents them
from consolidating their data and performing analysis on the enriched data set.
Yet an overall discovery of common patterns through some collaboration mech-
anisms enforced over the companies could be highly profitable in contrast to a
confined discovery of local knowledge structures (clusters). In some sense, these
companies could be regarded as members of a peer-to-peer ubiquitous environ-
ment where data and computing power are distributed. They might benefit from
a KDubiq clustering algorithm which allows them to segment the customers by
using local data and findings coming from other companies without violating
privacy, security or business constraints.

Motivating Example 2. Two companies retain the same type of information
about their customers. Both companies have a different customer base and are
not necessarily active in the same market. They want to segment their customers
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to identify customer stereotypes and they expect that the stereotypes of the first
company shows some overlap with the stereotypes of the second company. To
increase the validation of specific customer stereotypes found by cluster analy-
sis, both companies would prefer to enrich their own data with the data from
the other company. However, privacy, security and business restrictions prevent
them from exchanging their data. Yet again, an overall discovery of common
patterns through some collaboration mechanisms enforced over the companies
could be highly profitable in contrast to a confined discovery of local knowledge
structures (clusters). The companies can be considered as members of a peer-to-
peer ubiquitous environment where data and computing power are distributed
and where both could benefit from an adequate KDubiq clustering algorithm.

Both examples illustrate a ubiquitous environment with distributed data
sources and distributed computing power where privacy issues prevent the ex-
change of raw data. This environment requires a clustering technique which can
run locally, but which can find similar results as if all data was consolidated at
one site, without violating the privacy restrictions. Other KDubiq features, such
as resource limitations and real-time data mining are of much less importance
in these types of applications and it should be noted that the KDubiq technique
presented is not designed to consider these challenges.

1.1 Contributions and outline.

This article, introduces a KDubiq clustering algorithm which is a combination
of particle swarm optimization (PSO) and collaborative fuzzy clustering (CFC).
This algorithm, which is a modified version of the one introduced by Falcón et
al. [2], matches the type of problem sketched in the motivating examples.

The next section gives an overview of relevant literature on related existing
data mining techniques. The third section is devoted to discuss the original
CFC algorithm, introduced by Pedrycz [3, 4] while the fourth section introduces
PSO and shows how both techniques cooperate in this KDubiq environment. The
fifth section, contains the results of elaborated experiments which test the added
value of our KDubiq clustering technique compared with local fuzzy clustering
(i.e. without collaboration between data sites). Finally, the limitations of the
current technique and the directions for future research will be discussed before
the final conclusions are drawn.

2 Relevant Work

Our approach can be considered as a distributed clustering approach which is not
new to the literature. Several methodologies aimed at amalgamating informa-
tion from multiple clustering analyses can be found, ranging from multi-cluster
combiners [5] to consensus clustering [6] or the well-known cluster ensembles [7,
8]. The motivation behind these approaches stems from the need to combine the
output of manifold unsupervised learning algorithms, following the footsteps of
well-settled meta-classifier techniques, as a way of getting a coherent picture of
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the underlying data dynamics, given the wide diversity of optimization criteria
driving the overall clustering task in dissimilar scenarios.

Another reason for this fusion of knowledge structures is to assess the robust-
ness of a specific clustering algorithm to the variability of sampled data, which is
a pivotal issue in noisy and uncertainty-permeated environments. The represen-
tative approach in this category is consensus clustering [6], i.e. a rather simple
resampling technique executing the same clustering method multiple times over
a set of perturbed instances of the same original data set. Finally, it attains an
agreement or consensus among the multiple runs. Among the different cluster-
ing aggregation protocols, cluster ensembles [7, 8] have proved to be an efficient
and general framework for mapping a set of hard partitions into an optimal,
combined partition, even when the number of clusters in each partition may
vary. Assuming a unique, global collection of patterns (possibly distributed over
several feature spaces), data confidentiality at the local level is enforced by ex-
changing only the crisp labels corresponding to the cluster assignments of each
data object. Given the high computational complexity of the ensuing ”median
partition” problem as posed in [7] and [8], the need for heuristic methods to de-
rive approximate solutions of an acceptable quality becomes relevant to the topic.
This doesn’t happen in collaborative fuzzy clustering, where good solutions to
the clustering guided by the augmented objective function can be obtained with
relatively modest computational effort. Moreover, the representation of cluster
assignments as fuzzy memberships in our approach allows capturing the inherent
relationships occurring at each individual repository at a deeper level.

A common denominator of any clustering aggregation technique, including
bagging [9] and multi-cluster combination [5] is that the emphasis lies on getting
a corporate representation of the individual findings supplied by multiple sources,
often accomplished by unified consensus functions. Since the input labelings
don’t necessarily come from diverse, participating data sites, no collective pursuit
for global knowledge directly affecting the distributed object collection takes
place. This is precisely the purpose of the distributed clustering protocols, i.e.
to gradually modify the data in each repository in such a way that meaningful
results can be achieved and no implicit or explicit constraints over the data are
violated. In that sense, privacy preservation plays a vital role as the cornerstone
of lately released distributed clustering models in ubiquitous environments.

For example, the scheme presented in [10] is concerned with distributed ob-
ject collections which are described by the same group of features. The proposed
framework is general enough to embrace unsupervised and semi-supervised sce-
narios and supports a broad range of data types and learning algorithms. How-
ever, it suffers from several drawbacks compared to collaborative fuzzy cluster-
ing, among them the assumption about the existence of an underlying proba-
bilistic distribution of the information dwelling at each local repository. Such dis-
tributions are to be learned (e.g. Gaussian with full-variance, von Mises-Fisher,
etc.) and their condensed parameters are sent to a central location for further
aggregation into a unified model. The existence of such a controller may be
infeasible in ubiquitous scenarios like sensor networks deployed for emergency
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monitoring or hazard surveillance. Furthermore, the quantification of the pri-
vacy requirements or the weights associated with the local models makes room
for subjective criterion which leads to undesirable effects at the global level.
None of these requisites become a hindrance for collaborative clustering.

A good analogy to CFC could be the fine-grained distributed version of
the very popular K-Means algorithm with full privacy preservation put forward
in [11]. It targets the horizontal mode (i.e. feature-scattered clustering) in such
a way that an elaborate degree of isolation in the communication phase among
the data sites has been envisioned. As part of the secure multiparty computa-
tion approach enforced to prevent exchange of valuable data, not even cluster
prototypes or distances between patterns to clusters are disclosed, which turns
the algorithm more complicated and awkward. In collaborative fuzzy clustering,
either partition matrices or cluster prototypes stand as the main vehicles for con-
ducting the whole optimization process. This type of granular information may
offer some insight about the local information but not to the extent of compro-
mising the identity of the actual patterns. Another problem with the algorithm
in [11] is the way it computes the closest cluster for each data point, which is
believed to be the sum of the partial distances found at the local level. While
this is true for the most common distance measures (e.g. Euclidean, Manhattan,
etc.), this feature severely restricts the shape of the clusters to be found and
thus narrows the scheme’s applicability to non-traditional scenarios.

3 Collaborative Fuzzy Clustering

Our approach is based on Collaborative Fuzzy Clustering (CFC) which was intro-
duced in 2002 by Pedrycz [3] as a novel clustering algorithm intended to reveal
the overall structure of distributed data which at the same time respects any
restrictions preventing data sharing. As discussed in the previous section, this
approach exhibits both similarities and differences with other existing techniques
under the umbrella of distributed clustering (cf [4]).

The collaborative clustering scheme contains two major steps. First, a local
clustering analysis is performed at each individual data site separately. Next, the
local findings are exchanged and an augmented clustering algorithm is applied
at each data site. This augmented clustering algorithm takes the local data as
well as the results of other sites and into account. The second step is repeated
until some termination criterium is met.

Typically, two types of collaborative clustering can be distinguished, i.e. the
horizontal mode and the vertical mode. The horizontal mode assumes that each
data site holds information on the same set of objects but described in different
feature spaces, as is the case in the first motivating example. The vertical mode
assumes that each data site holds information on different objects described in
the same feature space. This is the case in the second motivating example. Next,
the two versions of CFC will be explained in detail with the motivating examples
in mind.
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3.1 Horizontal CFC

There are P companies and each company [ii] measured A[ii] variables xa[ii] for
the same set of N customers. The companies agreed to segment their customers
in C clusters. The first step of the collaborative scheme performs a local fuzzy
C-means cluster analysis (FCM) at each company [ii] separately using only the
local data. The generic version of the FCM method was proposed by Dunn [12]
and Bezdek [13] in the 1980s, but has undergone significant changes over the
years. The reader may refer to Hoppner et al. [14] for a comprehensive reference
on this topic.

FCM identifies C cluster centers and assigns each record k (i.e. a customer
in our case) with a specific membership degree uik to cluster i. The membership
degrees uik for i = 1, · · · , C are constrained to sum to 1. The FCM analysis tries
to minimize the objective function

Q[ii] =
N∑

k=1

C∑

i=1

u2
ik[ii]d2

ik[ii] (1)

where dik denotes the distance between case k and cluster center i and where
[ii] refers to one of the companies at which the local analysis is performed.

The local analysis provides each company with a C ×A[ii] cluster prototype
matrix containing the cluster centers and a N × C partition matrix containing
the membership degrees of each case k to each cluster i. Note that the size of the
cluster prototypes differ across data sites because each site [ii] has a different
feature set size A[ii].

In the second stage of CFC, the companies have to exchange their local
results, without violating the privacy restrictions. In horizontal CFC the com-
munication between data sites is realized by exchanging the partition matrices.
The partition matrices are comparable between data sites in Horizontal CFC
because they relate to the same customers and clusters. At the same time, no
private information about the customers is exchanged and without the proto-
type matrices, which are not exchanged, it is impossible to retrieve the original
data. By realizing the communication at the level of granular information, col-
laborative clustering succeeds in complying to any privacy, security or business
constraints.

Once the companies received the partition matrices, the true collaborative
FCM can be applied, which minimizes an augmented objective function (cf.
eq. 3). This function integrates the information from the other companies with
the local data and uses collaboration links α[ii, jj] to control the extent of col-
laboration between two companies [ii] and [jj]. The set of all collaboration links
is called the collaboration matrix.

Q∗[ii] = Q[ii] +
P∑

jj=1
jj 6=ii

α[ii, jj]
N∑

k=1

c∑

i=1

(uik[ii]− uik[jj])2dik[ii] (2)
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The augmented objective function adds a second term to the goal function
which quantifies the differences between the partition matrices of every data
site. This forces the CFC algorithm to search for similar clustering results across
data sites. During this collaborative stage, the entries of the partition matrix
and prototype matrix will be recomputed. Next, the new partition matrices will
be exchanged and each company will minimize the augmented objective function
again. This is repeated until some termination criterion is reached, which relies
on the changes to the partition matrices obtained in successive iterations of
the clustering method. Algorithm 1 displays the breakdown of the horizontal
collaborative clustering scheme.

Algorithm 1 The horizontal collaborative clustering scheme
1: for each data location [ii] do
2: Perform standard FCM clustering, minimizing objective function Q[ii]
3: end for
4: repeat
5: Exchange the current partition matrices between the data locations
6: for each data location [ii] do
7: Run the collaborative FCM clustering, minimizing Q∗[ii]
8: end for
9: until some termination criterion is reached

3.2 Vertical CFC

In the vertical version of CFC, there are P companies and each company ii has
a different set of N [ii] customers which are all measured by the same set of A
features {x1, . . . , xa, . . . , xA}.The companies agreed to segment their customers
in C clusters. The first step of the collaborative scheme performs a local fuzzy
C-means cluster analysis (FCM) at each company [ii] separately using only the
local data. This step is exactly the same as for the horizontal CFC variant. The
local analysis provides each company with a C × A cluster prototype matrix
containing the cluster centers and a N [ii] × C partition matrix containing the
membership degrees of each case k to each cluster i. Note that this time the
size of the partition matrices differ across data sites because each site [ii] has a
different set of N [ii] customers.

In the vertical CFC, the prototype matrices are exchanged instead of the
partition matrices. Since the feature sets are equal across data sites, the clus-
ter prototypes can be compared among data sites which allows us to measure
the difference between the local cluster solutions. Only prototype matrices are
exchanged which preserves the privacy of the data.

Once the companies receive the prototype matrices, the true collaborative
FCM can be applied, which minimizes an augmented objective function (cf.
eq. 3). As in the horizontal version, a new term is added to the goal function
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which quantifies the inequality between the cluster solutions at different data
sites. The second term of the augmented function compares the local membership
degrees uik[ii] with the membership degree uik[jj]. This is the membership a case
k would have if cluster center i was positioned at the location of cluster center
i from data site jj. The vertical version also uses collaboration links α[ii, jj] to
control the extent of collaboration between two companies [ii] and [jj].

Q∗[ii] = Q[ii] +
P∑

jj=1
jj 6=ii

α[ii, jj]
N∑

k=1

c∑

i=1

(uik[ii]− uik[jj])2dik[ii] (3)

During the collaborative stage, the entries of the partition matrix and pro-
totype matrix will be recomputed and the new prototype matrices will be ex-
changed. Next, each company will minimize their augmented objective function
again and this is repeated until some termination criterion is reached. Algo-
rithm 2 displays the breakdown of the vertical collaborative clustering scheme.

Algorithm 2 The vertical collaborative clustering scheme
1: for each data location [ii] do
2: Perform standard FCM clustering, minimizing objective function Q[ii]
3: end for
4: repeat
5: Exchange the current prototype matrices between the data locations
6: for each data location [ii] do
7: Run the collaborative FCM clustering, minimizing Q∗[ii]
8: end for
9: until some termination criterion is reached

4 Optimizing the Collaboration Matrix

One of the parameters of CFC is the collaboration matrix which can be set
by using expert knowledge. Company experts should set high collaboration links
with companies they want to cooperate strongly with and low collaboration links
with companies whose data is not believed to be very compatible. Choosing the
right collaboration links can be a difficult task which could lead to unbalanced
results if chosen incorrectly. There is no guarantee that collaboration will yield a
meaningful result no matter how strong the connection between two companies
might be.

Falcón et al. [2] developed a technique to optimize the collaboration ma-
trix during the clustering analysis by applying the evolutionary optimization
technique of Particle Swarm Optimization (PSO). Their objective was to a max-
imize the level of collaboration which is different from our objective. Our goal
is to mimic the situation where all companies would consolidate their data sets
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and perform a single global cluster analysis, which is impossible due to pri-
vacy constraints. Therefore, our approach will need a PSO objective function
which focusses on finding similar cluster solutions across companies. This sec-
tion presents a modification of the PSO objective function to suit the needs of
our KDubiq environment.

It should be noted that the KDubiq approach only makes sense if companies
consider their own data as incomplete and want to improve the quality of their
local analysis by collaborating with other companies which they believe have
compatible data. If the data from other companies are not compatible or rele-
vant or companies don’t want to dilute the knowledge structures found by local
analysis in favor of the knowledge structures revealed through a global clustering
approach, companies should stick with their local analysis.

Particle Swarm Optimization (PSO) is an evolutionary optimization tech-
nique developed by Kennedy and Eberhart [15], inspired by the swarming be-
havior of bird flocks and fish schools. The optimization algorithm initializes Z
particles xz, each representing a possible solution to the optimization problem.
Next, the particles start to fly throughout the solution space and at each time
interval t, the fitness of the solution is evaluated by means of a fitness function.
During their flight, each particle remembers its own best position pz. The di-
rection of a particle in the solution space is influenced by the particle’s current
location xz(t), the particle’s current velocity vz(t), the particle’s own best posi-
tion pz and the global best position among all particles pg. The particle’s new
position xz(t + 1) is calculated by eq. 4 and eq. 5:

vz(t + 1) = wvz(t) + c1r1(pz − xz(t)) + c2r2(pg − xz(t)), (4)

xz(t + 1) = xz(t) + vz(t + 1), (5)

where w is the inertia weight and c1, c2 are the acceleration constants draw-
ing the particle toward the local and global best locations, respectively. The
stochastic components of the PSO meta-heuristic are given by r1 and r2, which
represent two uniformly distributed random numbers. All particles keep moving
in the solution space until some criterion is met. The global best position at the
end is the solution to the optimization problem. For a broader insight about this
widespread optimization technique, refer to [16].

In the PSO-CFC approach, a single particle will represent an entire collabora-
tion matrix and the flight of the particles represents the search for a collaboration
matrix which optimizes the similarity of the cluster solutions across data loca-
tions. To achieve such optimization, an appropriate fitness function is developed
which represents the average dissimilarity between cluster solutions across data
sites. The goal of the PSO algorithm is to minimize this function.

The objective function can be defined in three steps. The first step, which
is different for the horizontal and vertical variant, measures the dissimilarity
between cluster i from data site [ii] and cluster j from data site [jj]. In the
horizontal variant, cluster dissimilarity must be based on the partition matrices
which is the only information available about the clusters from other data sites.
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In horizontal PSO-CFC, a cluster Ci[ii] is redefined as a set of membership
degrees {u1i[ii], · · · , uNi[ii]} and the dissimilarity between cluster i from data
site [ii] and cluster j from data site [jj] are measured as follows:

d(Ci[ii], Cj [jj]) =
1
N

N∑

k=1

|uik[ii]− ujk[jj]|. (6)

This dissimilarity measure becomes zero, which is the lower bound, when all
patterns belong to both clusters with equal membership degree. On the other
hand, it will become 1, which is the upper bound, when both clusters are crisp
and don’t have any pattern in common.

In the vertical variant, dissimilarity between two clusters must be based on
the prototype matrices which is the only information known from the cluster
solutions at other data sites. In vertical PSO-CFC, the dissimilarity between
cluster i from data site [ii] and cluster j from data site [jj] is measured by
calculating the Euclidean distance between the two cluster centers vi[ii] and
vj [jj] (cf Equation 7 where via[ii] represents the ath feature of cluster center
vi[ii]).

d(Ci[ii], Cj [jj]) =

√√√√
A∑

a=1

(via[ii]− vja[jj])2 (7)

This distance measure only has a lower bound equal to 0 which is reached
when both cluster centers are at the exact same location in the feature space.
No upper bound exists.

The second step is to measure the average dissimilarity between the clusters
of data site [ii] and data site [jj]. This requires a proper mapping between the
clusters of data site [ii] and the clusters of data site [jj]. Instead of developing
an algorithm to perform this non-trivial mapping, our approach uses a simple
heuristic which appears to work very well. This heuristic maps a cluster i from
data site ii to the least dissimilar cluster j from data site jj. Dissimilarity is
measured with Eq. 6 for horizontal PSO-CFC and Eq. 7 for vertical PSO-CFC.
The average dissimilarity between two data site [ii] and [jj] is calculated by
means of Eq. 8. Note that this measure equals 0 when both cluster solutions are
identical.

D[ii, jj] =
1
c

c∑

i=1

c

Min
j=1

[d(Ci[ii], Cj [jj])] (8)

The third and final step of constructing the objective function represents the
level of dissimilarity present between all data sites. The PSO objective function,
which will be termed ρ, measures the average dissimilarity of all possible combi-
nations of two data sites [ii] and [jj]. With P data sites, there are P (P−1)

2 data
site combinations, which results in the following objective function:
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ρ =
2

P (P − 1)

P∑

ii=1

P∑

jj>i

D[ii, jj] (9)

The PSO-CFC algorithm uses this objective function to determine the op-
timal set of collaboration links. In the KDubiq clustering setting, this implies
that aside from data locations, which are called data nodes, a computing loca-
tion is need which performs the PSO algorithm. This location will act as the
coordination node. It should be noted that the coordination node can be the
same physical location as a particular data node, but doesn’t have to be. Algo-
rithm 3 shows how the collaborative clustering scheme and the particle swarm
optimization are integrated to automate the determination of the collaboration
links.

Algorithm 3 The horizontal collaborative clustering scheme
1: Initialize Z particles xz (coordination node)
2: repeat
3: for each particle xz do
4: Perform Alg. 1 or 2 with collaboration matrix xz (data nodes)
5: Send the partition matrices to the coordination node
6: Calculate the fitness function ρ (coordination node)
7: Update pz (coordination node)
8: end for
9: Update pg (coordination node)

10: for each particle xz do
11: Calculate the new position xz(t + 1) (coordination node)
12: Send xz(t + 1) to the data nodes
13: end for
14: until some termination criterion is reached (coordination node)
15: Send the optimal collaboration links to the data nodes
16: Perform Alg. 1 or 2 with the optimal collaboration matrix (data nodes)

5 Experiments

5.1 Methodology

Each analysis compares three different clustering approaches, i.e. the global clus-
tering (GC) approach, the local clustering (LC) approach and the collaborative
clustering (CC) approach, and requires a separate data set per data site for
the CC and LC approach and a consolidated data set for the GC approach.
The LC approach performs a standard FCM clustering for each data set sepa-
rately. This represents the situation where companies only have access to their
own data and are not willing to collaborate with other companies. The GC
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approach represents the other extreme where no privacy constraints hold and
where companies consolidate their data sets to achieve a single data set of higher
quality, i.e. larger feature space or more observations. This approach is tested by
performing a FCM clustering analysis on the consolidated data set. The CC ap-
proach represents the KDubiq environment described in the motivating examples
where privacy constraints prevent companies from sharing their data. However,
in contrast with the LC approach, where companies work as isolated sites, the
CC approach uses a collaboration mechanism to approximate the results of the
GC approach. The CC approach is tested by performing a PSO-CFC clustering
analysis across all data sites with the following parameters: 20 particles, 100
iterations, c1 = c2 = 2.0 and the inertia weight dynamically varied from 1.4
to 0.4. The purpose of each analysis is to evaluate the quality of the clustering
results from all three approaches. In this article, cluster quality is defined as the
number of correctly assigned cases. Analysis were performed on both artificial
data sets and real-life data sets.

Artificial data sets have the benefit that we have full control over the struc-
ture of the data, which allows us to isolate the effect of a specific data structure
property on cluster quality. It also has the benefit that the true cluster member-
ships are known which allows an exact evaluation of the cluster quality. Once
the artificial data structure is designed, a sample can be drawn for each data
site and the consolidated data set is created by joining all local data sets. Next,
the three approaches are applied to the data sets and the number of incorrectly
assigned clusters are counted for each approach. Cluster assignment is based on
the cluster with the highest cluster membership.

Assume that we want to compare the cluster quality of the GC approach
versus the CC approach. This comparison is done by subtracting εcc, i.e. the
number of errors of the CC approach, from εgc, i.e. the number of errors of the
GC approach, which results in the new variable d = εcc−εgc. Note that one exper-
iment leads to a single observation of d which can not lead to reliable conclusions.
Therefore, for each analysis, we performed 30 experiments. Each experiment z
draws new data from the artificial data distributions and dz is calculated. This
results in a sample of cluster quality comparisons {d1, . . . , dz, . . . , d30}. Ulti-
mately, we want to draw inferences about the population mean µd which tells us
if CC performs better than GC on average or not in general. To draw conclusions
about µd, we need an estimator of this population parameter, which is typically
the sample average d =

∑30
z=1 dz

30 . However, the true population mean µd might
differ to some extent from its estimator d. Therefore, confidence intervals need
to be constructed to know how reliable d is as an estimator of µd. To build such
confidence intervals, the sampling distribution of d around µd has to be known.

If the underlying variable d is normally distributed, the t-test could be used to
evaluate the sample mean and to construct confidence intervals [17, 18]. However,
the underlying distribution of d is unknown and the sample size is not very large
in our analysis (z = 30) which makes the t-test more sensitive to violations of the
normality assumption. Instead of relying on the robustness of the t-test, we opted
for the nonparametric bootstrap technique to construct confidence intervals.



PSO Driven Collaborative Clustering 13

Nonparametric bootstrap [19] is a recently fashionable way for statistical
inference for quantities for which theoretical and/or even asymptotic results
are hard to derive. The basic idea behind bootstrapping is that new samples
S∗b are created by resampling with replacement from the original sample S =
{d1, . . . , dz, . . . , d30} until the new sample size is equal to the original sample size.
This process is repeated a number of times which results in a set of B resamples,
denoted as {S∗1 , . . . , S∗b , . . . , S∗B}. The key idea is that all these resamples can be
considered as samples from the unknown population (or at least they look like
the unknown population).

If the sample average d based on sample S∗b is denoted as d∗b , then the dis-
tribution of d∗b around d is analogous to the sampling distribution of d around
the population mean µd [20]. Since we can make B, i.e. the number of resam-
ples, very large, we can get a very detailed empirical distribution of d∗b which
provides a detailed estimate of the sampling distribution of d. This estimate of
the sampling distribution can be used to construct confidence intervals around d.
Various approaches to construct bootstrap confidence intervals exist, such as the
normal-theory interval, the bootstrap percentile interval and the bias-corrected,
accelerated percentile intervals (BCa). According to Fox [20], the latter are prefer-
able and for a 95% BCa confidence interval, the number of bootstrap samples
should be on the order of 1000 or more. For more technical details about the
construction of bootstrap confidence intervals and the use of bootstrapping to
evaluate the results of machine learning algorithms, the interested reader should
refer to [20, 18].

In summary, the following methodology is used for each analysis:

a) An artificial data distribution is designed.
b) For each of 30 experiments, samples from the artificial data distribution are

drawn for each data site and the consolidated data set is created.
c) For each experiment, the measurements of interest are constructed and the

average over the thirty experiments is calculated.
d) Bootstrapping is used to generate BCa confidence intervals, based on 10000

bootstrap samples.

Artificial data sets give researchers full control over the structure of the data
which allows them to assign changes in cluster performances to specific causes,
similar to a controlled laboratory experiment. On the other hand, artificial data
sets might not always reflect reality which makes the results and conclusions
less usable. Therefore, we also conducted some analysis on a real-life marketing
data set. A first problem is that the true cluster memberships of the customers
are not known. In our experiments we used the cluster assignments of the GC
approach as the estimates for the true cluster memberships. The quality of the
CC and LC approach is measured by counting the number of customers they
assign to different clusters than the cluster assigned by the GC approach.

A second problem is that we only have one data set and the underlying
distribution is unknown which prevents us from drawing new samples. Therefore,
the bootstrap principle was used and new data sets were generated by sampling
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from the original data set with replacement until the size of the new data sets
are equal to the original data set size. According to the bootstrap principle,
these resamples can be considered as samples from the unknown population (or
at least they look like the unknown population).

The subsequent steps of calculating the average quality difference between
CC and LC and the construction of confidence intervals is completely analogous
to the methodology followed with the artificial data sets.

5.2 Horizontal Clustering: Empirical Results

Artificial Data Sets. Firstly, three different analysis were performed on artifi-
cial data to evaluate the relative quality of the LC and CC approach in different
situations. Each analysis uses different data structures, which represent increas-
ing clustering task complexity. We first will discuss the data structure of each
analysis, before the results are discussed.

All three analysis concern two data sites. Each data site has a data set with
600 observations from three clusters, i.e. C1, C2 and C3, 200 observations from
each cluster. The difference between the data sites are the features used to de-
scribe the observations. The consolidated data set is the combination of the local
data sets and has always four features, i.e. X1, X2, X3 and X4.

The first analysis represents the easiest clustering task. It uses cases drawn
from three different multivariate normal distribution, i.e. one per cluster, with
mean vector µ1, µ2 and µ3 for respectively clusters C1, C2 and C3 and with the
same covariance matrix Σ for all three clusters.

µ1 =
[
3 1 1 2

]
µ2 =

[
1 3 3 2

]
µ3 =

[
2 3 1 2

]
Σ =




0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1




Figure 1 shows the 2 dimensional scatterplots for a random data set generated
from the artificial data structure discussed above. These plots show that features
X2 and X3 are sufficient to perfectly separate the three clusters while feature X4

does not help the identification of the three clusters at all. In the first analysis,
data site A has access to features X1, X2 and X3 and data site B has features X3

and X4. Figure 1d reveals that data site A should have no problem assigning the
cases to the correct cluster, while Figure 1f shows that it is impossible for site B to
separate clusters C3 and C1. The first analysis simulated a KDubiq environment
where one company has all necessary features to solve a perfectly separable
clustering problem, while the second company lacks important features.

The situation simulated in the second analysis differs from the first analysis
because in the second analysis no single company has all necessary features to
solve the clustering problem. However, the cluster problem can still be perfectly
separated with all the features of the consolidated data set. The data sets gen-
erated for the second analysis still use the same distribution as above, but this



PSO Driven Collaborative Clustering 15

0 1 2 3 4

0
1

2
3

4

X1

X
2

cluster 1
cluster 2
cluster 3

(a) X1 vs X2

0 1 2 3 4

0
1

2
3

X1

X
3

cluster 1
cluster 2
cluster 3

(b) X1 vs X3

Fig. 1: Scatterplot of full artificial data set [To be continued . . . ]

time data site A has only access to features X1 and X2, while data site B has
access to features X3 and X4. Figure 1a shows that data site A can no longer
separate the three clusters as there is some overlap between clusters C2 and C3,
while Figure 1f shows that data site B still has problems separating clusters C3

and C1.
The third analysis represents the same situation as in analysis 2, but now

for a problem which is not perfectly separable, even if all features are provided.
This is a more realistic situation. The data generated for the third analysis still
uses three multivariate normal distributions with the same covariance matrix as
above, but with the following mean vectors for respectively clusters C1, C2 and
C3:

µ1 =
[
3 1.5 1 2

]
µ2 =

[
1 2 1.5 2

]
µ3 =

[
2 2 1 2

]

Analogue to analysis 2, data site A received features X1 and X2, while data
site B has access to features X3 and X4.
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Fig. 1: Scatterplot of full artificial data set [To be continued . . . ]

For all three analysis, the methodology described in subsection 5.1 was used
and the results are presented in Table 1. The ε statistics refer to the number
of incorrectly assigned cases in a certain data site by a specific approach. For
example, εAB

lc are the number of incorrectly assigned cases for data site A and B
by the LC approach. The ε statistics for the GC approach are always calculated
for the consolidated data set and the superscript denoting the data sites is left
out of the notation.

Analyzing the results of the first analysis, the LC approach succeeded in
assigning the cases of the first data site to the correct clusters, while it had
great troubles assigning the cases of the second data site. These results were
expected given the data structure of both sites. The CC approach did succeed
to overcome the clustering problem of the second data site. The information ex-
changed during the collaboration phase of the CC approach successfully lowered
the number of incorrectly assigned cases at data site B to 14 cases out of 600,
compared with 202 cases out of 600 for the LC approach. On the other hand,
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Fig. 1: Scatterplot of full artificial data set

it is remarkable that the CC approach did make assignment errors for data site
A, which should be perfectly separable. Further analysis of the results revealed
that the PSO-CFC algorithm got stuck in a local optimum during three of the
thirty experiments. Initially, the PSO-CFC algorithm had even more problems
getting stuck in local optima. By changing the default number of particles to
40, we managed to lower the number of local optima problems, but couldn’t
eliminated them completely. These adjusted settings were used for all horizontal
PSO-CFC experiments. Comparing the CC and LC approach, the results are
very promising. When one data site contains all information to segment the cus-
tomers correctly, other data sites clearly benefit by applying the CC approach.

The second analysis changed the environment such that no single data site
has all information available to solve a separable cluster problem. This is reflected
in the results. The LC approach didn’t make assignment errors for data site A in
the previous analysis, but now it makes 20 assignment errors on average. Note
that these errors are caused by the fact that data site A is no longer perfectly
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Table 1: Cluster quality comparisons between the GC, LC and CC approach in
a horizontal clustering environment on artificial data

Analysis
Statistic 1 2 3

εA
LC mean 0.2 21.7 84.6

95% CI [0.1,0.4] [20.4,22.9] [79.9,90.7]

εB
LC mean 202.1 199.6 307.7

95% CI [200.9,203.3] [197.8,201.3] [302.7,314.8]

εA
CC mean 14.27 26.4 108.4

95% CI [3.6,38.83] [22.0,33.8] [94.9,129.0]

εB
CC mean 14.3 26.4 108.4

95% CI [3.6,38.9] [22.0,33.8] [94.9,129.0]

εAB
LC − εAB

CC mean 201.8 221.0 220.1
95% CI [200.5,203.0] [218.5,223.5] [213.3,227.9]

εAB
CC − 2εGC mean 28.0 52.4 44.6

95% CI [6.7,77.0] [43.6,67.1] [17.87,85.87]

εAB
LC − 2εGC mean 173.7 168.6 175.5

95% CI [124.0,195.0] [152.1,177.8] [132.8,203.1]

separable into three clusters. The number of errors made by the LC approach
for data site B remains the same as in the first analysis, which was expected
since it concerns the same data structure. Also in the second analysis, the CC
approach succeeded to cluster the observations of data site B much better than
the LC approach, i.e. 26.4 incorrect cluster assignments versus 199.6 incorrect
cluster assignments. However, the number of errors made on data site B by the
CC approach is higher than in the first analysis, although the data structure of
data site B didn’t change and the problem is still perfectly separable given all
features. Furthermore, the number of errors made by the CC approach on data
site A and B together is more or less equal to the difference in number of errors
between the CC and the GC approach. This indicates that the GC approach
still successfully separates the clusters in the second analysis. Therefore, one
can conclude that when not all necessary features are present at a single data
site, the CC approach will make more errors, but still significantly decreases the
number of errors made compared to the LC approach, i.e. 221 errors less on
average over both data sites.

The third analysis reflects the more realistic situation where observations
are not perfectly separable given all features. Because of this, the GC approach
now also makes assignment errors (86.1 on average, with [83.7,88.6] as 95%
CI). Not only does GC makes more errors than in the previous two analysis,
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also the LC and CC approach experience more difficulties clustering the data.
However, comparing CC and LC, the results show that the CC approach makes
on average 220.1 errors less on both data sites combined than the LC approach.
Thus, even when data is no longer perfectly separable, the CC approach improves
the clustering results compared to the LC approach.

Customer Satisfaction Data Set. Besides the artificial data set, we also
experimented with a real data set to see how our approach behaves in a real world
setting. This data set comes from a customer satisfaction survey performed in
the family entertainment sector. Customers were asked to rate the performance
of several attributes for 4 different products from the same company on scales
from 1 [Low] to 10 [High]. The customers also had to indicate how satisfied they
were with each product as a whole on a scale from 1 [Low] to 10 [High]. In total,
666 respondents who bought all 4 products completed the survey entirely and
were retained for our experiment. Table 2 shows the number of attributes for
each product. Although all products were sold by the same company, the data
could also reflect 4 companies selling a single product to the same customer
population. In the remainder of this article, we will assume the latter situation.

Table 2: Attribute Dimensions.
Attribute
dimension

Number of
attributes

Product A 7
Product B 4
Product C 6
Product D 3

If no privacy or security issues would exist and all four companies were willing to
exchange private customer information, they could consolidate all their customer
data and use this to segment the customer population into different groups.
This would be the GC approach. However, companies often don’t want to share
private customer information or privacy constraints forbid to do so. Therefore,
the common situation is that companies only use their own limited data to
perform a customer segmentation, which is the LC approach. In general, we
assume that the global clustering approach provides better results since the
clustering algorithm has access to more information about the customers. In this
article, we propose the CC approach, i.e. a third approach trying to approximate
the GC results without violating privacy restrictions.

The purpose of this analysis is to analyze the differences between the clusters
found by all three approaches. Given the context of customer satisfaction and
the fact that all attributes measure performance or satisfaction on a “low-to-
high” scale, we considered a 2-cluster model. The cluster assignments of the



20 Benôıt Depaire, Rafael Falcón, Koen Vanhoof, and Geert Wets

GC approach were used as an estimate of the true cluster assignments. The
methodology described in section 5.1 was used to calculate the average number
of incorrectly assigned cases for both the CC and the LC approach, together
with their bootstrap confidence intervals. The results are shown in Table 3

Table 3: Cluster quality comparisons between the LC and CC approach in a
horizontal clustering environment on real data

Statistic LC CC

εA
. mean 223.9 185.5

95% CI [203.5,242.3] [170.6, 199.0]

εB
. mean 224.1 185.5

95% CI [208.2,238.2] [170.6, 199.0]

εC
. mean 214.8 185.5

95% CI [202.0,226.0] [170.6, 199.0]

εD
. mean 246.1 185.5

95% CI [233.2,257.9] [170.6, 199.0]

These results look very promising. Under the assumption that the cluster
assignments of the GC approach are good approximations of the true cluster
assignments, we find that the CC approach outperforms the LC approach on
all four data sites. Summed over all four data sites, the CC approach makes
166.7 errors less for 2664 cluster assignments, with a 95% confidence interval of
[152.8, 181.4]. These results indicate that companies could achieve better cluster
compositions by using the CC approach instead of the LC approach. Also note
that no local optima problems were experienced for the real data set.

Not only does the collaboration aspect of the CC approach has an impact on
the cluster assignments, it also influences the cluster centers. Figure 2 show the
profiles for all the cluster centers found by the three approaches for each data
site. These figures are based on the original data. A profile shows the values of
a cluster center for each feature and gives an idea about the distance between
the cluster centers. All four profiles show that each cluster solution contains two
clusters which can be identified as a high satisfaction/performance group and a
medium satisfaction/performance group of customers. If we focus on company
A, we see that the cluster centers are more separated in the LC approach than
in the GC approach. We can also see that the CC approach provides cluster
centers which approximate the GC approach solution much better. This pat-
tern can be found for all four companies. This implies that if companies would
share their private information, they would find more balanced customer clusters
due to the additional customer information. These results confirm that the CC
approach can approximate the GC solution without revealing private customer
information.
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Fig. 2: Cluster profiles

5.3 Vertical Clustering: Empirical Results

Artificial Data Sets. To assess the performance of the vertical variant of PSO-
CFC, four different analysis were conducted on artificial data sets. Each analysis
represents a different task, which ranges from easy to difficult. Each analysis
assumes two data sites with their own local data sets containing 300 cases for
the first three analysis and 450 cases for the last analysis. Both data sites have
their data described by two features, X1 and X2. The consolidated data set,
which is used for the GC approach, always consists of the combination of both
local data sets. The data sets in the first analysis contain data from two clusters,
while the other analysis use data containing three clusters.

The first analysis represents a very easy clustering problem for both data
sites. Both sites draw their data from two multivariate normal distributions, i.e.
one per cluster, with the following mean vectors µ1, µ2 for respectively clusters
C1, C2 and with the same covariance matrix Σ for both clusters:

µ1 =
[
4 4

]
µ2 =

[
0 0

]
Σ =

[
0.7 0
0 0.7

]
.
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The data sets in analysis 1 represent a randomly drawn data sample, where
both clusters are equally represented and which is perfectly separable.

The second analysis tries to make the clustering problem more challenging
by adding a third cluster and by changing the data distribution of the clusters
such that the clusters do overlap which makes a perfect cluster assignment no
longer possible. This analysis uses the following Σ as a covariance matrix and
µ1, µ2, µ3 as mean vectors for respectively C1, C2 and C3:

µ1 =
[
2 3

]
µ2 =

[
2.5 2

]
µ3 =

[
3 3

]
Σ =

[
0.2 0
0 0.2

]
.

The second analysis represents a situation where the data is drawn completely
at random and where both clusters are equally present in the data, but for a
problem which is no longer perfectly separable.

The third analysis makes the situation more realistic and more complex by
changing the distribution of the clusters within the data. The data are still
sampled at random from the same data distributions as in analysis 2, but this
time cluster C3 is oversampled and C2 is undersampled in data site A, while
C2 is oversampled and C3 is undersampled in data site B. The exact sampling
distributions of the clusters are shown in Table 4. This analysis represents a
situation where data is not perfectly separable and where some clusters might
be more present within the data than others. This is a very common situation
in real-life data sets. For example, a company which mainly sells to one type
of customer will most likely have a majority of this type of customer within its
data set. However, it should be noted that conditional on the cluster, the data
are still a random sample.

Table 4: Cluster distribution for third analysis
C1 C2 C3

Site A 100 50 150
Site B 100 150 50

The fourth analysis goes one step further by creating so called biased sam-
ples for both data sites. The data for data site A and B are still drawn from
the same data distributions as in the previous two analysis, but no longer at
random, except for the observations of cluster C3. Cluster C1 was split in two
parts based on the test expression X2 −X1 > 1. Observations passing this test,
belong to the first part of C1, those failing the test belong to the second part.
Cluster C2 was split with the test expression X2 > 2. Table 5 shows the ex-
act sampling distribution for the fourth analysis. Note that the clusters are not
equally represented locally, neither are they drawn at random.

The results of all four analysis are presented in Table 6. The results of this
first analysis show that the starting problem was indeed very easy, since none of
the approaches made significant cluster assignment errors. The second analysis,
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Table 5: Cluster distribution for fourth analysis
C1 C2 C3

X2 −X1 > 1 X2 −X1 ≤ 1 X2 > 2 X2 ≤ 2
Site A 120 30 60 90 150
Site B 30 120 90 60 150

Table 6: Cluster quality comparisons between the GC, LC and CC approach in
a vertical clustering environment on artificial data

Analysis
Statistic 1 2 3 4

εA
LC mean 0.1 56.46 69.3 61.9

95% CI [0.0,0.2] [54.4,58.7] [66.6,72.1] [59.0,64.6]

εB
LC mean 0.1 57.8 67.9 87.9

95% CI [0.0,0.2] [55.8,59.9] [65.6,70.9] [83.5;93.0]

εA
CC mean 0.1 56.7 57.6 68.4

95% CI [0.0,0.2] [54.7,58.7] [55.9,59.1] [65.9,70.7]

εB
CC mean 0.1 56.6 56.7 91.4

95% CI [0.0,0.2] [54.1,58.9] [54.2,58.9] [88.5,94.8]

εAB
LC − εAB

CC mean 0.1 1.2 22.9 -10.0
95% CI [0,0] [-0.5,2.6] [20.4,25.5] [-12.9,-6.8]

εAB
CC − εGC mean 0.1 2.0 23.5 -4.9

95% CI [-0.2,0.1] [0.4,3.3] [20.8,25.9] [-7.8,-1.1]

εAB
LC − εGC mean 0.1 0.8 0.6 5.1

95% CI [-0.2,0.1] [0.0,1.9] [-1.03,2.33] [3.4,6.9]

which represented a problem which was no longer perfectly separable was a
bigger challenge. The results show that both the CC and LC approach make
some cluster assignment errors, i.e. around 56 cases out of 600. However, no
statistically significant difference can be found between the error rate of the CC
and LC approach. It should be noted that the LC approach still perform as
good as the GC approach, which suggests that CC can only improve on LC in
a vertical PSO-CFC setting if LC performs worse than GC. This confirms our
idea that the CC approach mimics the GC approach.

The results from the third analysis, show that the error rate of the LC ap-
proach increases compared to the second approach. This must be caused by the
fact that the clusters are no longer equally present within the local data sites.
Apparently, unequal representations of clusters can make it more difficult to
find the true clusters within the data when the clusters overlap. However, the
CC approach does not seem to suffer from this new cluster challenge. The error
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rate of the CC approach on both data sites remain equal to the previous anal-
ysis. A direct comparison of the cluster quality of the CC approach versus the
GC approach, reveals that the CC approach still performs equally good as the
GC approach. Compared with the LC approach, the results show that the CC
approach results in significantly less cluster assignment errors.

The results of the fourth analysis, were rather surprising. Apparently, the
LC approach outperforms both the GC and CC approach. The biased sampling
produced data sets which were easier to cluster individually, than collectively.
This suggests that the CC approach (and the GC approach!) should only be used
under the assumption that the observations are sampled at random conditional
on the cluster.

6 Remarks and Future Research

Some general remarks about the limitations of the current study should be made.
Firstly, no real data set was used to confirm the results of the analysis of the
vertical PSO-CFC algorithm. This was because the authors had no appropriate
data sets at hand with compatible data describing the same set of features coming
from different companies. We tried to resample data sets with replacement from
the original customer satisfaction data set, but these new data samples have the
same distribution as the original one which resembles the first analysis on the
artificial data set for the vertical clustering variant. The results of this analysis
showed that CC and LC approach performed equally well. These results were
confirmed by our analysis on the resampled real-life data sets. Because no other
meaningful analysis could be performed with the real-life data sets, they were not
considered in the previous section. Future research should try to find appropriate
real-life data sets for a vertical clustering approach and use it to test the three
approaches.

Secondly, the horizontal PSO-CFC algorithm appeared to get stuck in local
optima for some analysis on the artificial data sets. Although this did not occur
on the real-life data sets and the overall conclusions on the artificial data sets
were favoring the CC approach, future research should investigate this. The
analysis should be repeated for other real-life data sets to verify if this problem
is perhaps caused by the structure of the artificial data sets. On the other hand,
it might be promising to search for an improvement of the current algorithm to
prevent this situation.

Thirdly, the current version of the algorithm uses a heuristic (cf Eq. 8) to
perform the cluster mapping across data sites, which does not offer a guarantee of
a perfect mapping in every situation. However, the results show us no problems
with the heuristic. Empirical research done by the authors seems to suggest that
the CFC algorithm automatically creates a partially correct mapping because
incorrect mappings are penalized by the second term of the augmented objective
function of CFC. However, if the algorithm starts with an incorrect mapping,
the CFC algorithm needs various runs only to create a correct mapping, before
it can do the real collaboration. The authors have the impression from empirical
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experiments that this mapping phase takes longer as the number of data sites
and clusters increases. Currently, they are working on the integration of a binary
integer programming problem to solve the mapping problem such that the CFC
algorithm can directly start with the collaboration phase. Future research must
show if this approach can increase the speed of the algorithm.

The latter aspect can be important if the current algorithm has to become
resource-aware. In this article, the PSO-CFC algorithm has been introduced as
KDubiq algorithm, but hasn’t considered the computational complexity of the
algorithm because the algorithm was developed with a KDubiq situations in
mind where computing power is not a scarce resource, such as in P2P networks
or grid computing. The current code has not been developed with resource re-
strictions in mind as can occur in other KDubiq environments such as sensor
networks. It could be interesting to perform future research to create a sensor-
network variant of the PSO-CFC algorithm. Currently, the complexity of the
PSO-CFC algorithm is mainly dependent on the complexity of the CFC algo-
rithm, since the PSO part only repeats the CFC algorithm for each particle a
number of iterations long. Empirical experiments suggested that the algorithm is
rather sensitive to the number of data sites and the number of clusters. However,
exact analysis have not been performed in this study. As for the communication
requirements, which is also important in sensor networks, the vertical version is
much more interesting than the horizontal version since it only passes cluster
prototypes. These are much smaller than partition matrices, which are passed
by the horizontal version. There is still a lot of ground to cover on the resource-
awareness aspect of the algorithm which creates some interesting paths for future
research.

7 Conclusions

In this article, the authors presented a PSO driven collaborative clustering algo-
rithm to the KDubiq community. This technique can address some typical issues
in KDubiq research, such as privacy constraints and distributed computing. Pre-
vious research of PSO-CFC in non-KDubiq environments and the new empirical
results in this study demonstrate the quality of this collaborative clustering ap-
proach.

As for the horizontal variant of PSO-CFC, the analysis on artificial data sets
showed that the CC approach always outperforms the LC approach. Even if not
a single data site has all the necessary features to separate the clusters or when
a perfect separation of the clusters is not possible, even with all features from
all data site, the CC approach makes less assignment errors and succeeds better
in approximating the GC result. The latter was also confirmed by the analysis
on the real-life data set.

As for the vertical variant of PSO-CFC, the analysis on artificial data sets
showed that CC performs equally well as LC and GC when the data is sampled
completely at random and the clusters are equally represented in the different
data sets. When the data is drawn at random conditional on the clusters, but
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the clusters are no longer equally represented in the data set, the CC approach
significantly outperforms the LC approach and performs equally well as the GC
approach. Only when the sampling is biased, we can not be certain that CC
performs equally well as LC. The analysis showed that, a biased sampling led
to better clustering results for LC. However, one has to be careful to generalize
this conclusion since our experiment only implemented one specific type of bias.

Overall, the collaborative clustering algorithms are very suitable for appli-
cations in certain KDubiq environments, but future research remains necessary.
The authors hope that this article can motivate and convince other researchers
to explore the use of (PSO driven) collaborative clustering techniques in KDubiq
environments.
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