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Abstract

We provide smooth local normal forms near singularities that appear in
planar singular perturbation problems after application of the well-known
family blow up technique. The local normal forms preserve the structure
that is provided by the blow-up transformation. In a similar context, Ck-
structure-preserving normal forms were shown to exist, for any finite k. In
this paper, we improve the smoothness by showing the existence of a C∞

normalizing transformation, or in other cases by showing the existence of
a single normalizing transformation that is Ck for each k, provided one
restricts the singular parameter ε to a (k-dependent) sufficiently small
neighborhood of the origin.
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1 Introduction

This paper deals with normal forms for families of vector fields that often arise
in the study of planar singular perturbation problems. Though the paper has a
non-void intersection with [DR], it is largely complementary and independent.
Also the main idea of the proof is quite different. The vector fields under study
typically have a singular point with one nonzero eigenvalue of the linear part
and multiple center and/or parameter directions. Either such singular points
appear naturally in the singular perturbation problem (normal hyperbolicity)
under consideration, or they arise from studying a more complicated singular
point without any nonzero eigenvalue in the linear part (see e.g. [DMD10] or
[DMD11] for motivating examples). With the blow-up technique introduced in
[DR96] one often succeeds in reducing the study of such a complicated singular
point to the study of one or more partially hyperbolic points. In this blow-
up process, it is necessary to include parameters in the phase-space (thereby
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explaining the more-dimensional center directions in planar problems), and to
replace these parameters by a product of parameters and phase variables. A
blow-up transformation might for example by given by (x, y, λ) := (X,XY,XZ).
The trivial foliation dλ = 0 is then replaced by a more complicated foliation
d(XZ) = 0. This complicates the dynamics in the center directions, but the
property of having one hyperbolic direction is an important advantage, see also
Remark 2 below. The objective in this paper is to normally linearize the vector
field, i.e. to linearize the differential equation of the hyperbolic variable, leaving
unchanged every fiber of the stable (resp. unstable) foliation, as well as the extra
structure given by the foliations mentioned above. While a finitely smooth nor-
mal linearization of the systems has already been dealt with in a general setting
(see e.g. [Tak71], [Bon96], [Bon97]), we aim in this paper at getting a normal
linearization that is as smooth as possible. The theorems that we present, es-
pecially Theorem 2, provide normal linearizations that respect a lot of essential
structure, combined with a maximal smoothness. With these theorems, some
proofs of former results can be made more direct and transparent. Moreover,
Theorem 2 reveals to be essential for proving the new results that can be found
in [DMD10], [DMD11], and some work in progress. We will deal with specific
situations that we describe now.

One result that is presented in this paper deals with the (ε, λ)-family of
vector fields

Xε,λ :

 ẋ = −x εrm(x, y1, . . . , yn)
ẏi = qiyi ε

rm(x, y1, . . . , yn), i = 1, . . . , n,
ż = −b(λ)z + f(x, y1, . . . , yn, z, ε, λ).

(1)

where qi > 0, r ≥ 1, and m is a monomial in x, y of the form ±xκ0yκ1
1 . . . yκnn

(with κi ≥ 0); in case all κi = 0 we suppose m = ±1. (At the end of this
section, in Remark 3, we comment on the restriction on m(x, y).) The function
f is C∞ near x = y = z = ε = 0 and for λ ∈ Λ where Λ is a compact subset of
some finite-dimensional euclidean space. We keep ε ≥ 0. The function b(λ) is
C∞ on Λ. Furthermore we assume that b(λ) > 0, for all λ ∈ Λ, and that

f(0, 0, 0, 0, λ) = 0,
∂f

∂z
(0, 0, 0, 0, λ) = 0.

A first result concerns the existence of “center manifolds” at the origin with
nice differentiability properties. We mean (ε, λ)-families of invariant manifolds
z = ϕ(x, y, ε, λ) that form λ-families of center manifolds of the extended family
of vector fields

Xε,λ + 0
∂

∂ε
(2)

at (x, y, ε, λ) = (0, 0, 0, 0). Throughout the paper, we will abusively call such
invariant manifolds center manifolds of Xε,λ at the origin, though in case m ≡
±1 they are not center manifolds, but merely invariant manifolds.

Of course, for each k ≥ 1, the existence of Ck local center manifolds of (2) is
well-known, and it is known that in general one cannot expect the existence of a
C∞ center manifold, even if one starts with an analytic vector field (see [vS79]).
In fact, another counterexample is given in [Tak86]; there the author provides
an example of a smooth vector field in which any given center manifold cannot
be further smoothened by restricting it to a smaller domain. Nevertheless, in
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the specific family expressed by (1), we can improve the result of the center
manifold theorem: we obtain the existence of a center manifold given as the
graph of a function that is C1 on a large domain around the origin, and that for
each k is Ck on a sufficiently small neighborhood of the chosen singular point.
Moreover, in this specific problem, the neighborhoods, depending on k, will only
shrink in the ε-direction when the smoothness requirements increase.

Theorem 1. Let Xε,λ be as in (1), with the conditions described above. Then
there exists a neighborhood V × [0, ε1] of (x, y, ε) = (0, 0, 0) and a C1-graph
z = ϕ(x, y, ε, λ) on V × [0, ε1] × Λ that forms an (ε, λ)-family of invariant
manifolds of Xε,λ, with ϕ(0, 0, ε, λ) = 0.

When m 6≡ ±1, the function ϕ can be chosen C∞.
When m ≡ ±1, there exists a decreasing sequence (εk)k for which ϕ is Ck

on V × [0, εk] × Λ. Furthermore, in case m ≡ 1, ϕ is smooth for x 6= 0 and in
case m ≡ −1, ϕ is smooth for ‖y‖ 6= 0.

Though the traditional center manifold theorem also shows the existence of
Ck-center manifolds, for any desired value of k, the obtained center manifold
is possibly dependent on k. This proves to be a nuisance in some applications.
The main benefit of Theorem 1 is hence the fact that a single center manifold
is constructed that can be made as smooth as required, provided one takes ε
small enough.

After straightening the center manifold given in Theorem 1, one gets a family
of vector fields

Xε,λ :

 ẋ = −x εrm(x, y)
ẏi = qiyi ε

rm(x, y), i = 1, . . . , n,
ż = −a(x, y, ε, λ)z + F (x, y, z, ε, λ)z2.

(3)

The functions a and F are Ck for (x, y) ∈ V , |z| small, ε ∈ [0, εk], λ ∈ Λ,
and they are smooth for x 6= 0 in case m ≡ 1, for ‖y‖ 6= 0 in case m ≡ −1.
Furthermore, a(0, 0, 0, λ) = b(λ) > 0, and when m 6≡ ±1, we may take εk = ε1

(implying C∞ smoothness in a full neighborhood of the origin).

Theorem 2. Consider a family of vector fields (3), with the above mentioned
conditions. There exists a local C1-family of diffeomorphisms of the form

(x, y, z)→ (x, y, z̃), z̃ = ψ(x, y, z, ε, λ),

with ∂ψ
∂z (x, y, 0, ε, λ) = 1, defined for (x, y, z) ∈ Ṽ near the origin and for ε ∈

[0, ε̃1], λ ∈ Λ, conjugating the family (3) to
ẋ = −x εrm(x, y)
ẏi = qiyi ε

rm(x, y), i = 1, . . . , n,
˙̃z = −a(x, y, ε, λ)z̃.

When m 6≡ ±1 and (3) is C∞, then the conjugacy can be chosen C∞.
When m ≡ ±1, there exists a decreasing sequence (ε̃k)k (with ε̃k ≤ εk) for

which ψ is Ck on Ṽ × [0, ε̃k]× Λ. The function ψ is C∞ for x.‖y‖ 6= 0.

Remark 1. In case m ≡ 1, one might expect the conjugacy to be smooth outside
x = 0 (and not just outside x.‖y‖ = 0 as announced in the theorem), in analogy
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with the smoothness of the center manifold in that case. This may be not true:
lack of smoothness for nonzero values of ε might also occur along y = 0. Sim-
ilarly, lack of smoothness for nonzero values of ε might occur along both x = 0
and y = 0 in case m ≡ −1.

In the proof of this specific normal form, we use a more general statement
on normal linearization of finite differentiability:

Theorem 3. For any k there exists a N = N(k) with the following property.
Consider a CN λ-family of vector fields on Rq+1,

Xλ(v, z) = F (v, λ)
∂

∂v
+G(v, z, λ)z

∂

∂z
,

defined for v near 0 in Rq, for z near 0 in R, and for λ ∈ M , where M is
a compact subset of a finitely dimensional euclidean space Rp. Assume that
F (0, λ) = 0 and inf{|G(0, 0, λ)| : λ ∈ M} > 0. There exists δ = δ(k) > 0 such
that if

sup

{
|Re µ| : µ ∈ Spec

(
∂F

∂v
(0, λ)

)
and λ ∈M

}
≤ δ (4)

then there exist an open neighborhood Vk of the origin in Rq+1 and a local Ck+1

family of diffeomorphisms of the form

(v, z)→ (v, z̃), z̃ = z(1 + ψ(v, z, λ)),

with ψ(v, 0, λ) = 0, conjugating the family Xλ to the family

NXλ(v, z̃) = F (v, λ)
∂

∂v
+G(v, 0, λ)z̃

∂

∂z̃
.

Theorem 3 gives a way to normally linearize a vector field, just like in Theo-
rem 2. However, as the smoothness of the normalizing transformation increases,
the domain on which it is defined may shrink to a point in Theorem 3. Further-
more, the normalizing transformation itself might depend on the choice of k.
Theorem 2 provides, in a more specific context, a single conjugacy with an in-
creasing smoothness on decreasing domains, and furthermore, the decrease in
domain only occurs in the ε-direction. The proof of Theorem 3 is inspired by
techniques in [Bon97].

Remark 2. The fact that the hyperbolic direction ∂
∂z is one-dimensional im-

plies that there are no resonances in this direction; this is used in the proof of
Theorem 3 (e.g. estimate (20)). Our results might remain true if the z-direction
is higher dimensional, provided that additional non-resonance assumptions on
the real parts of the eigenvalues are made, see also [Bon97].

Remark 3. The class of vector fields (1) that Theorems 1 and 2 apply to is
of a specific nature. Besides the assumption that the hyperbolic direction is
one-dimensional, as explained in Remark 2, the family of vector fields (1) has
some additional structure that limits the results to the specific form in (1). The
presence of an invariant foliation d(xq1y1) = · · · = d(xqnyn) = 0 is a very
important assumption; the necessity to have results on normal forms preserving
this structure forms the basis of this paper. Such invariant foliations occur
frequently in the study of degenerate singularities of families of vector fields.
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Another restriction on the generality of (1) is the nature of the monomial
m(x, y). Also this condition arises from the needs that become apparent when
blowing up degenerate singularities in the context of singular perturbations. One
could think of generalizing the results by replacing m(x, y) by a more general
function m(x, y, z). It is however likely that the results in Theorem 1 and Theo-
rem 2 are no longer valid (though we do not give an example) when m depends
on z. Also replacing m(x, y) by a function that is zero along arbitrary curves
through the origin will for sure cause complications, especially at points where
the zero set {m = 0} is tangent to the invariant foliation.

2 Proof of Theorem 3

In the proof we will use cut off functions, among others, in the (v, λ)-direction
(i.e. the “center direction”). It can be checked that we shall be able to choose
those cut off functions not depending on the parameter λ ∈ M , due to the as-
sumptions in the theorem. Hence, for the sake of readability, we will introduce
a variable x = (v, λ) ∈ Rm := Rq ×Rp that we will use when no confusion is
possible. During the proof, we however take care that the constructed conjuga-
cies are defined for x = (v, λ) ∈ V ×M , in some open neighborhood V ⊂ Rm

of v = 0. We thus write

X(x, z) = F (x)
∂

∂x
+G(x, z)z

∂

∂z
(5)

and develop
G(x, z) = G(x, 0) +G1(x, z).z

so (5) becomes

X(x, z) = F (x)
∂

∂x
+ (G(x, 0).z +G1(x, z).z2)

∂

∂z
.

Let us abbreviate
c := inf

λ∈M
|G((0, λ), 0)|.

Suppose, by induction on k, that X is of the form

X(x, z) = F (x)
∂

∂x
+ (G(x, 0).z +G1(x, z).zk)

∂

∂z
.

We claim that we may, and will, assume that G1(x, 0) is ‘as flat as needed’ in
the v-variable:

Lemma 1. Up to a polynomial change of variables we may assume that

G1(x, 0) = O(v[ cδ ]−1), as v → 0.

Proof. Using condition (4) we infer that a monomial of the form a(λ)vj1zj2 is
non-resonant whenever 1 ≤ |j1| < c/δ and j2 ≥ 2, because for the spectrum
{µ1(λ), . . . , µm(λ)} of ∂F

∂v (0, λ) we have

|〈(Re µ1(λ), . . . ,Re µm(λ)), j1〉| ≤ δ|j1| < c ≤ |G((0, λ), 0)|.(j2 − 1)

and so
G((0, λ), 0) 6= 〈(µ1(λ), . . . , µm(λ)), j1〉+G((0, λ), 0)j2.

Hence the monomial a(λ)vj1zj2 ∂
∂z is non-resonant. This proves the lemma.
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Let us write

X0(x, z) = F (x)
∂

∂x
+G(x, 0).z

∂

∂z

and
G1(x, z) = a(x) +O(z)

and also

X1(x, z) = G1(x, z).zk
∂

∂z
= (a(x).zk +O(zk+1))

∂

∂z

so X = X0 + X1. Using cut off functions we may, and do, assume that all
occurring flows are globally defined. We also assume, without loss of generality,
that G((0, λ), 0) is negative, i.e. G((0, λ), 0) ≤ −c with c > 0.

Some notations. We write π0 : Rm ×R → Rm : (x, z) 7→ x respectively
π+ : Rm × R → R : (x, z) 7→ z for the projection on the “center” respec-
tively stable direction. If h(x, z) is a function on Rm × R → R we consider
1
k!
∂kh
∂zk

(x, 0).zk if it exists; we then also denote

|h|x,k =

∣∣∣∣ 1

k!

∂kh

∂zk
(x, 0)

∣∣∣∣ ,
and if h takes values in Rm ×R we abbreviate

|π+h|x,k =: |h|+,k,x.

If Y is a vector field we write Yt for its time t map. This means that

Yt(v) = v +

∫ t

0

Y (Ys(v))ds.

We fix c̃ > c > 0 where c̃ − c is ‘as small as desired’. Using a cut off function
we take care that the Lipschitz constant of X in the z-direction is less than c̃,
that is:

|π+X(x, z)− π+X(x, z′)| ≤ c̃|z − z′|. (6)

In the sequel of this induction step we shall neglect all objects of order zk+1

and higher. For w ∈ Rm ×R we want to estimate differences of the form

π+(Xt(w + (0, b(x)zk))−Xt(w)) =: d(t, x)zk (7)

for some given function b(x). We can write

π+Xt(w) = π+w +

∫ t

0

π+X(Xs(w))ds

and also

π+Xt(w + b(x)zk) = π+w + b(x)zk +

∫ t

0

π+X(Xs(w + b(x)zk))ds

so

π+(Xt(w + (0, b(x)zk))−Xt(w)) = b(x)zk

+

∫ t

0

(
π+X(Xs(w + b(x)zk)− π+X(Xs(w))

)
ds. (8)
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We use (6) and estimate (8), using the notation from (7) for t > 0:

|d(t, x)||z|k ≤ |b(x)||z|k +

∫ t

0

c̃|d(s, x)||z|kds.

We see that |d(t, x)| is bounded from above by the solution ϕ(t) of the integral
equation

ϕ(t) = |b(x)|+ c̃

∫ t

0

ϕ(s)ds

or, if one prefers, the differential equation ϕ′ = c̃ϕ with initial value ϕ(0) =
|b(x)|, which is known to be ϕ(t) = |b(x)|ec̃t. We conclude that

|d(t, x)| ≤ |b(x)|ec̃t.

We trivially note that c̃ is also a Lipschitz constant for π+(−X). So also for
X−t = (−X)t we have the estimate

|π+(X−t(w + (0, b(x)zk))−X−t(w))| ≤ ec̃t|b(x)||z|k. (9)

Remark that π0 ◦X−t ◦X0
t (x, z) = x for any t, since X and X0 have the same

π0-component. Next we want to study the limit t→∞ of π+(X−t ◦X0
t )(x, z),

more specifically we want to consider the coefficient function of zk. For that
purpose we let t1 > t2 > 0, t = t1 − t2 and write, making use of (9):

|X−t1 ◦X0
t1 −X−t2 ◦X

0
t2 |+,k,x = |X−t2 ◦X−t ◦X0

t1 −X−t2 ◦X
0
t2 |+,k,x

≤ ec̃t2 |X−t ◦X0
t1 −X

0
t2 |+,k,x

= ec̃t2 |X−t ◦X0
t1 −X

0
−t ◦X0

t1 |+,k,x . (10)

Lemma 2. We have for t > 0:

|Xt −X0
t |+,k,x ≤ ec̃t lim

z→0

1

|z|k

∫ t

0

e−c̃s|π+X
1(X0

s (x, z))|ds. (11)

Proof. We can write

Xt(w)−X0
t (w) =

∫ t

0

(X(Xs(w))−X0(X0
s (w)))ds

=

∫ t

0

(
X(Xs(w))−X(X0

s (w)) (12)

+X(X0
s (w))−X0(X0

s (w))

)
ds

=

∫ t

0

(X(Xs(w))−X(X0
s (w)) +X1(X0

s (w)))ds

and so

π+(Xt(w)−X0
t (w)) =

∫ t

0

(
π+X(Xs(w))− π+X(X0

s (w))

+ π+X
1(X0

s (w))

)
ds
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Let us write
π+(Xt(w)−X0

t (w)) =: d(t, x).zk

and also

ψ(t) = lim
z→0

1

|z|k
|π+X

1(X0
t (w))|.

Then for t > 0:

|d(t, x)| ≤ c̃
∫ t

0

|d(s, x)|ds+

∫ t

0

ψ(s)ds.

We consider the differential equation

ϕ′(t) = c̃ϕ(t) + ψ(t) (13)

with initial value condition ϕ(0) = 0. Its solution is ϕ(t) = ec̃t
∫ t

0
e−c̃sψ(s)ds.

We conclude that

|d(t, x)| ≤ ec̃t
∫ t

0

e−c̃sψ(s)ds; (14)

observe that the right hand sides of (14) and (11) are equal. This finishes the
proof of lemma 2.

Lemma 3. We have for t > 0:

|X−t −X0
−t|+,k,x ≤ lim

z→0

1

|z|k

∫ t

0

ec̃s|π+(X1(X0
−t+s(x, z))|ds. (15)

Proof. In the proof of lemma 2 we have only used that the Lipschitz constant
of π+X in the z direction is less than c̃. Since this is also true for the vector
field π+(−X), and since (−X)t = X−t we obtain

|X−t −X0
−t|+,k,x ≤ ec̃t lim

z→0

1

|z|k

∫ t

0

e−c̃s|π+X
1(X0

−s(x, z))|ds. (16)

The integral in the right hand side of (16) can be rewritten as follows, using a
substitution s = t− σ:∫ t

0

e−c̃s|π+X
1(X0

−s(x, z))|ds =

∫ 0

t

e−c̃(t−σ)|π+X
1(X0

−t+σ(x, z))|d(−σ)

= e−c̃t
∫ t

0

ec̃σ|π+X
1(X0

−t+σ(x, z))|dσ. (17)

If we insert (17) into (16) we get the desired right hand side in (15), modulo
renaming σ again s. This proves lemma 3.

So now we continue the estimate in (10) as follows. We replace (x, z) by
X0
t1(x, z) in (15) and obtain

|X−t1 ◦X0
t1 −X−t2◦X

0
t2 |+,k,x

≤ ec̃t2 lim
z→0

1

|z|k

∫ t

0

ec̃s|π+(X1(X0
−t+s+t1(x, z)))|ds

= ec̃t2 lim
z→0

1

|z|k

∫ t

0

ec̃s|π+(X1(X0
t2+s(x, z)))|ds. (18)
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Let us denote X0
t2+s(x, z) = (x′, z′) then π+X

1(x′, z′) = G1(x′, z′).(z′)k and
hence |π+X

1(x′, z′)| ≤ ‖G1‖∞|z′|k. We can choose c̄ close to c such that |z′| ≤
e−c̄(t2+s)|z|. Hence

|π+X
1(x′, z′)| ≤ ‖G1‖∞e−c̄(t2+s)k|z|k (19)

and so, plugging (19) into (18), we have:

|X−t1 ◦X0
t1 −X−t2 ◦X

0
t2 |+,k,x ≤ ‖G1‖∞ec̃t2

∫ t

0

ec̃se−c̄(t2+s)kds

≤ ‖G1‖∞e(c̃−kc̄)t2
∫ ∞

0

e(c̃−kc̄)sds

= ‖G1‖∞e(c̃−kc̄)t2 1

kc̄− c̃
. (20)

Since c̃ and c̄ are close to c we have that c̃− kc̄ is close to (1− k)c. Since k ≥ 2
and since c > 0 we have that c̃ − kc̄ < 0. Hence, for t2 sufficiently large the
right hand side in (20) is as small as desired.

Using completeness of R we conclude that the coefficient of zk in X−t ◦
X0
t (x, z) converges uniformly in x for t→∞ to a continuous function say α(x)

of x. Let us now explain why this limit has more smoothness.
Let us denote ∂Xt/∂x(x, z) = h(t, x, z). Then h satisfies the equation

∂

∂t
h(t, x, z) = dX(Xt(x, z)).h(t, x, z)

and if we write this down in components π0h =: hc and π+h =: h+ we consider
thus the vector field

TX(x, z, h0, h+) := X(x, z) +

(
∂π0X

∂x
(x, z).h0 +

∂π0X

∂z
(x, z).h+

)
∂

∂h0

+

(
∂π+X

∂x
(x, z)h0 +

∂π+X

∂z
(x, z).h+

)
∂

∂h+
.

Here we have used the concept of the ‘tangent’ of a map. This is, in general,
defined as follows, see [AM78]. If E,F and G are, say, normed spaces and if f :
U ⊂ E → F is C1 then we define Tf : U ×Lc(G,E)→ F ×Lc(G,F ) : (v, h) 7→
(f(v), df(v).h) The advantage of this concept is that it respects composition,
that is: T (g ◦ f) = Tg ◦ Tf . Also the higher order chain rule becomes simply
T r(g ◦ f) = T rg ◦ T rf . We calculate

TX0(x, z, h0, h+) = F (x)
∂

∂x
+G(x, 0)z

∂

∂z
+
∂F

∂x
(x)h0

∂

∂h0

+

(
∂G

∂x
(x, 0).zh0 +G(x, 0)h+

)
∂

∂h+

and for X = X1:

TX1(x, z, h0, h+) = G1(x, z)zk
∂

∂z

+

(
∂G1

∂x
(x, z)zkh0 +

∂G1

∂z
(x, z)zkh+ + kG1(x, z)zk−1h+

)
∂

∂h+

9



By estimates of a similar kind as the ones above, and by using the flatness
of G1, the coefficient of zhh0 in the h+-direction of T (X−t1 ◦X0

t1 −X−t2 ◦X
0
t2)

tends uniformly in x to zero for t2 → ∞. Hence, using completeness and a
theorem of Weierstrass on interchanging limit and derivative, the function α(x)
of x is of class C1.

This ends the induction step. So from now on we may assume that X =

X0 + X1 where X1 = O(|z|N )
∂

∂z
where N is ‘as large as desired’. The next,

and final, step is to eliminate X1. Again we consider X−t ◦X0
t . The component

in the x-direction is the identity. We examine the z-direction. Let κ > 0 be a
Lipschitz constant for X and X0 and let t1 > t2 > 0. We can choose C > 0 be
so that |X1(x, z)| ≤ C|z|N .

Then, for t = t1 − t2, we have, in a similar way as in the estimates above
(we hence skip details) :

|π+(X−t1 ◦X0
t1 −X−t2 ◦X

0
t2)(x, z)| ≤ eκt2

∫ t

0

eκs|X1(X0
t2+s(x, z))|ds

≤ Ceκt2
∫ t

0

eκs|π+X
0
t2+s(x, z)|Nds

≤ C|z|Neκt2
∫ t

0

eκse−c̃(t2+s)Nds

≤ C|z|N e
(κ−c̃N)t2

c̃N − κ
. (21)

Hence, provided that N > κ/c̃, we have that the limit for t → ∞ of X−t ◦X0
t

converges uniformly in (x, z) to a continuous H(x, z). In order to show that
H is finitely smooth we can, again, pass to the tangent map T (X−t ◦ X0

t ); a
computation shows that we can make similar estimates as above in (21) for the
coefficients of h, provided that we replace N by N − 1.

This finishes the proof of Theorem 3. �

3 Proof of Theorem 1

Before starting the actual proof, let us first give an outline. A family of invari-
ant manifolds z = ϕ(x, y, ε, λ) of (1) is expressed by a solution to the partial
differential equation

εrm(x, y)

(
−x∂ϕ

∂x
+ q1y1

∂ϕ

∂y1
+ · · ·+ qnyn

∂ϕ

∂yn

)
= −b(λ)ϕ+ f(x, y, ϕ, ε, λ),

which we can try to solve using the method of characteristics. Given a suitable
initial curve γ, we will follow orbits of the system{

ẋ = −x εrm(x, y)
ẏi = qiyi ε

rm(x, y), i = 1, . . . , n,

which are characteristics for the PDE. The value of the center manifold at a given
point (x∗, y∗, ε∗, λ) is hence determined by an integral along this characteristic.
Integration along these characteristics is done in local Ck-normal forms, where

10



we find explicit expressions for the value of the invariant manifold. If we obtain
that a given invariant manifold is Ck in local Ck-normal form coordinates, and
if we can do this for any k, then this proves the C∞ smoothness.

Let us now do some preparatory work. Using the implicit function theorem,
we find a local graph z = ζ(x, y, ε, λ) where ż = 0 in (1). Subtracting ζ from z,
it is clear that, without loss of generality, we may assume that

f(x, y, 0, ε, λ) = O(εr). (22)

This way, vector field (1) has, for ε = 0, a (hyper)plane of singular points given
by z = 0. Similarly, we can assume that

f(x, y, 0, ε, λ) = 0, ∀(x, y) for which m(x, y) = 0. (23)

At each point of {ε = z = 0}, we have the existence of Ck-center manifolds,
and even the existence of a Ck-conjugation that normally linearizes (1) at that
point. In case m 6≡ ±1, we also have one or more subspaces of singular points
given by z = m(x, y) = 0.

Lemma 4. Let the family of vector fields Xε,λ be as in (1), with properties (22)
and (23). Near each point (x, y, z, ε) = (x0, y0, 0, 0) for which holds

b(λ) +
∂

∂z
f(x0, y0, 0, 0, λ) > 0

and for each k ≥ 0 there exists a Ck conjugacy of the form

(x, y, z) 7→ (x, y, z̃); z̃ = Ψk(x, y, z, ε, λ)

(with ∂Ψk
∂z (x, y, 0, ε, λ) = 1) conjugating (1) to a family of vector fields of the

form

Xε,λ :

 ẋ = −x εrm(x, y)
ẏi = qiyi ε

rm(x, y), i = 1, . . . , n,
ż = −bk(x, y, ε, λ)z,

(24)
for some bk > 0. In case m 6≡ ±1, the lemma also holds at points (x, y, z, ε) =
(x0, y0, 0, ε0) for which m(x0, y0) = 0 and b(λ) + ∂

∂z f(0, y0, 0, ε0, λ) > 0.

Proof. We first consider a Ck λ-family of center manifold of Xε,λ + 0 ∂
∂ε near

(x, y, z, ε) = (x0, y0, 0, 0). After straightening a sufficiently smooth center mani-
fold, this brings the family in the form of Theorem 3, after which one can apply
a local normal linearization.

Without loss of generality, we may assume that the C1-normal form from
Lemma 4, applied at (x0, y0) = (0, 0), is valid for x, yi, z ∈ [−1, 1], ε ∈ [0, 1],
λ ∈ Λ, and that b1(x, y, ε, λ) ≥ δ for some δ > 0 on this domain. Let us now
construct a center manifold with the required smoothness properties.

Recall the function

m(x, y) = ±xκ0yκ1
1 . . . yκnn ,

11



and observe that it divides the space into two parts: a part where m(x, y) > 0,
and a part where m(x, y) < 0. We will construct, independently for each part, a
smooth center manifold z = ϕ(x, y, ε, λ), and show that it extends to a smooth
manifold also at points where m(x, y) = 0. More specifically, in the region
m(x, y) > 0, we will construct the center manifold by following orbits in positive
time, starting from |x| = 1. In the region m(x, y) < 0, we will construct the
center manifold by following orbits in positive time, starting from ‖y‖ = 1, see
later.

The construction in each part of the space can be done completely indepen-
dently: extending to (x, y) with m(x, y) = 0 can always be done without any
problem, as will be clear from the following Lemma:

Lemma 5. Let k be an arbitrary integer or∞. Let U1, . . . , Up be the connected
components of [−1, 1]n+1\{m−1(0)}. Suppose that z = ϕ(x, y, ε, λ) represents an
invariant manifold of (1) with the property that ϕ(x, y, ε, λ) = 0 when m(x, y) =
0, and that each ϕi = ϕ|Ui is Ck. Then ϕ is Ck.

Proof. Suppose first that κ0 6= 0. Then some components U` and Uj have
a partly shared boundary on {x = 0}. We show that ϕ is Ck along {x =
0} ∩ U` ∩ Uj . To that end, notice that there is a unique formal power series
expansion z = ϕ̂ :=

∑∞
i=1 ϕi(y, ε, λ)xk with

ϕ̂ =
1

b(λ)

(
εrm(x, y)

(
−x∂ϕ̂

∂x
+ q1y1

∂ϕ̂

∂y1
+ · · ·+ qnyn

∂ϕ̂

∂x

)

− f(x, y, ϕ̂, ε, λ)

)
.

This is easily seen by an induction argument, observing that knowledge of ϕ̂
up to a given degree N in x completely determines the right-hand side of the
above equation up to at least degree N + 1 in x. Here, we have used that
f(x, y, 0, ε, λ) = O(m(x, y)), see (23). Since both ϕj and ϕ` are invariant man-
ifolds, their order k Taylor expansion satisfies the above equation, and there-
fore their order k Taylor expansion coincide.. This shows the Ck-smoothness
along {x = 0} ∩ U` ∩ Uj . Similar arguments show the Ck-smoothness along
{yi = 0} ∩ U` ∩ Uj when κi 6= 0.

Center manifold in {m(x, y) ≥ 0, x ≥ 0}

Let us first deal with the region m(x, y) ≥ 0, x ≥ 0. The region {m(x, y) ≥
0, x ≤ 0} is treated similarly (in the cases where this domain is not empty),
after applying the transformation x 7→ −x. We show that the center manifold
z = ϕ(x, y, ε, λ), defined for (x, y) with m(x, y) > 0 and x > 0, has a smooth
extension towards the boundary {x = 0} ∪ {m(x, y) = 0}.

Define
γ = {x = 1, z = 0, ‖y‖ < 1, ε ∈ [0, 1],m(x, y) ≥ 0}.

We aim to find the unique center manifold, defined on m(x, y) ≥ 0, that contains
the set γ. We consider orbits through γ and write the union as a (ε, λ)-family
of graphs z = ϕ(x, y, ε, λ).

12



Consider the vector field (1) in C1 normal form coordinates, as given in
Lemma 4 (applied at (x0, y0) = (0, 0)). The section γ is given in these coordi-
nates as

γ̃ = {x = 1, z̃ = Ψ1(x, y, 0, ε, λ), ‖y‖ < 1, ε ∈ [0, 1],m(x, y) ≥ 0}.

Due to its elementary form, a center manifold of the vector field in normal
form, containing γ̃, can be written explicitly as a graph z = ϕ̃(x, y, ε, λ): for
0 < x ≤ 1, ‖y‖ < 1 and for ε > 0 we write

ϕ̃(x, y, ε, λ) := Ψ1(1, xqy, 0, ε, λ) exp

(
−1

εrm(x, y)xκq−κ0

∫ 1

x

B(s, x, y, ε, λ)

s1+κ0−κq ds

)
where xqy is a shortcut for (xq1y1, . . . , x

qnyn), κq is a shortcut for κ1q1 + · · ·+
κnqn, and where

B(s, x, y, ε, λ) := b1(s, (x/s)qy, ε, λ).

It is not hard to see that as long as xεm(x, y) 6= 0 the graph z̃ = ϕ̃(x, y, ε, λ)
is a C1 invariant manifold of the vector field in C1-normal form. Let us look
at the boundary of this domain, i.e. at xεm(x, y) = 0. To that end, we give an
elementary bound of the exponential appearing in ϕ̃:

Lemma 6. Given any N , and any 0 < x0 < 1 there exists εN > 0 for which

exp

(
−1

εrm(x, y)xκq−κ0

∫ 1

x

B(s, x, y, ε, λ)

s1+κ0−κq ds

)
≤ CN (xεm(x, y))N ,

for some CN > 0, as long as ε ≤ εN and 0 < |x| < |x0|. When m 6≡ 1, we may
choose εN = 1.

Note: the case m ≡ −1 does not occur here, since m is assumed positive in this section.

Proof. We have B(s, x, y, ε, λ) ≥ δ, and write K = κ0 − κq. We distinguish
three cases: K = 0, K > 0 and K < 0. When K = 0, we find∫ 1

x

B(s, x, y, ε, λ)
ds

s
≥ δ

∫ 1

x

ds

s
= δ| lnx|,

so the exponential under study is bounded by exp −δ| ln x|εrm(x,y) . When K = 0, we

have κ0 = κq, so the property m ≡ 1 is equivalent to the property κ0 = 0.
When m 6≡ 1 (and hence κ0 ≥ 1), we can use | lnx| ≥ | lnx0| and m(x, y) ≤
x1/2m(x, y)1/2 to find that the exponential is bounded by

exp
−δ| lnx0|

εrx1/2m(x, y)1/2
≤ (2N)!

(δ| lnx0|)2N
(εrx1/2m(x, y)1/2)2N ≤ CN (xεm)N .

On the other hand, when m ≡ 1, we find that the exponential is bounded by

exp
−δ| lnx|

εr
≤ exp

−δ| lnx0|
2εr

· exp
−δ| lnx|

2εr

≤ N !(
δ
2 | lnx0|

)N εrN · xδ/2εr ≤ N !(
δ
2 | lnx0|

)N (εrx)N ≤ CN (xεm)N
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as soon as εr ≤ δ
2N . This illustrates the necessity of bounding ε by some εN in

case m ≡ 1. Let us now deal with the case K < 0. Then∫ 1

x

B(s, x, y, ε, λ)
ds

s1+K
≥ δ

∫ 1

x

ds

s1+K
=

δ

|K|
(1− x|K|) ≥ δ

|K|
(1− x|K|0 ).

The exponential is then bounded by

exp

(
− δ

εrm(x, y)x|K|
1− x|K|0

|K|

)
.

Like before, it is easily shown that such an expression is O(xεm)N for any N .
Finally assume K > 0:∫ 1

x

B(s, x, y, ε, λ)
ds

s1+K
≥ δ

∫ 1

x

ds

s1+K
= − δ

K

xK − 1

xK
≤ − δ

K

xK0 − 1

xK
.

It follows that the exponential under consideration is bounded by

exp

(
− δ

εrm(x, y)

1− xK0
K

)
.

Like before, it follows that such an expression is O(εNm2N ) for any N . Let us
conclude by showing that m(x, y) = O(x), i.e. that κ0 6= 0 in this case. This is
clear since K = κ0 − κq > 0.

Using Lemma 6, it is easy to show that ϕ̃ extends to xεm(x, y) = 0, x ≥ 0
in a C1-way. Note: the smoothness is not guaranteed at (x, ε) = (±1, 0), but
this is not essential.

In original coordinates, the manifold is a graph

z = ϕ(x, y, ε, λ),

defined for x ∈ [0, 1], ‖y‖ < 1, ε ∈ [0, 1] and λ ∈ Λ (keeping (x, ε) 6= (1, 0).) We
show that for any given k this given manifold is Ck, provided we restrict ε to a
k-dependent interval.

First observe that the manifold consists of regular orbits departing from the
sections γ±. This implies that for xεm 6= 0 it is immediately clear that ϕ is
C∞. Let us now discuss the smoothness outside x = 0:

Lemma 7. The (ε, λ)-family of invariant manifolds z = ϕ(x, y, ε, λ) is C∞ in
{x > 0}.

Proof. We only need to deal with the smoothness at εm = 0, so take a spe-
cific (x∗, y∗, ε∗), with ε∗m(x∗, y∗) = 0 and with x∗ > 0. We will show that
for any given integer k, the function ϕ is Ck at (x∗, y∗, ε∗, λ). Recall that
ϕ(x∗, y∗, ε∗, λ) = 0.

The orbit of{
ẋ = −x
ẏi = qiyi, i = 1, . . . , n,

through (x∗, y∗) reaches {x = 1} in finite (negative) time in a point (1, ỹ), with
ỹi = y∗i

x
qi
∗

; let us denote by γx∗,y∗ the orbit-segment between x = x∗ and x = 1.
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x

y
(x∗, y∗)

x

y

(x∗, y∗)

Figure 1: The orbit through (x∗, y∗) is divided in several pieces. To the left
the case x∗ > 0 (treated in Lemma 7), to the right the case x∗ = 0 (treated in
Lemma 8).

Because εm = 0 at the end point of γx∗,y∗ , we have εm = 0 on the whole
of γx∗,y∗ (either ε∗ = 0 in which case this is trivially true, or m(x∗, y∗) = 0,
in which case some y∗i = 0, hence yi = 0 on the orbit). This shows that one
can apply Lemma 4 at all points (x0, y0, 0, ε∗), where (x0, y0) lies on γx∗,y∗ .
This way, one obtains a finite covering of {(x, y, z) : (x, y) ∈ γx∗,y∗ , z = 0} by
neighborhoods in which we have Ck-normal forms for (1). There is a value εk
so that all these normal forms are valid for ε ∈ [0, εk]. We also observe that
the center manifold is O(εm), so keeping |εm| close enough to 0, the center
manifold z = ϕ(x, y, ε, λ) is entirely overlapped by such neighborhoods. Let us
next treat the Ck-smoothness of ϕ near a given point (x, y, ε) = (x∗, y∗, ε∗),
with x∗ > 0. On the orbit γx∗,y∗ , we can choose a number of points (pi)i=1,...,N ,
with pi = (x(i), y(i)), p1 = (1, ỹ) and pN = (x∗, y∗), so that the piece of the orbit

between pi and pi+1 is entirely visible in a single neighborhood Vi with a Ck-
normal form, see Figure 1. Now, the value of p2 is determined by integrating an
orbit through γ. Below, we will prove that the value of ϕ is Ck-smooth near p2,
but let us first indicate how the lemma is an immediate consequence of such a
proof. Once the smoothness near any p2 is shown, we can define a Ck-manifold

γ(2) = {x = x(2), ‖y − y(2)‖ � 1, z = ϕ(x, y, ε, λ), |mε| � 1},

through p2. The value of p3 can now be determined by integrating an orbit
from the manifold γ(2), in a way identical to the way the value of p2 is obtained
by integrating from γ. By repeating the same argument, we show that ϕ is
smooth near p3. Continuing by induction, we finally find the smoothness of ϕ
near pN = (x∗, y∗), and for ε = ε∗. Let us now show the smoothness of ϕ near
any pi, using the normal form

ẋ = −x εrm(x, y)
ẏi = qiyi ε

rm(x, y), i = 1, . . . , n,
˙̃z = −bk(x, y, ε, λ)z̃,

The initial manifold γ is seen in normal form coordinates as a manifold

γ̃ = {x = 1, ‖y‖ < 1, z̃ = Ψk(1, y, z0(1, y, ε, λ), ε, λ), ε ∈ [0, εk]},
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for some Ck function z0(1, y, ε, λ), where Ψk is like in Lemma 4 (and for pi = p2

we have z0 ≡ 0). We hence find an invariant manifold z̃ = ϕ̃(x, y, ε, λ) containing
γ̃, where

ϕ̃ = Ψk(1, xqy, z0(1, xqy, ε, λ), ε, λ)·

exp

(
−1

εrmxκq−κ0

∫ 1

x

Bk(s, x, y, ε, λ)

s1+κ0−κq ds

)
. (25)

Here Bk(s, x, y, ε, λ) = b̃k(s, (x/s)qy, ε, λ), and the smoothness of ϕ̃ is shown
easily: with each partial derivative of ϕ̃, the exponential can be factored out,
and using Lemma 6, we find that such an exponential is sufficiently flat w.r.t. εm
as εm → 0. This shows that ϕ̃ has a Ck-extension to those points where
εm = 0.

The technique of proof can be adapted to prove the smoothness at points
where x = 0. However, one has to keep in mind that one has to work with a
singular orbit, like in Figure 1. One needs to cover this singular path by a finite
number of neighborhoods in which normal forms are taken. On the x-axis, one
may proceed like in the proof of Lemma 7. Once one obtains the smoothness
near the origin, one can proceed along {x = 0}. Here we distinguish two cases.
When m = O(x), we can cover the plane {x = 0} by neighborhoods where
we take normal forms like in Lemma 4. When m 6= O(x), the set {x = 0} is
nonsingular (outside mε = 0). The characteristics are hence regular curves.

Lemma 8. Given k ≥ 1, the function ϕ(x, y, ε, λ), defined for x ≥ 0, is Ck

along x = 0, for ε sufficiently small. When m 6≡ 1, the function ϕ(x, y, ε, λ),
defined for x ≥ 0, is C∞ along x = 0, for ε sufficiently small.

Proof. We first deal with the smoothness near the origin (x, y) = (0, 0), and
then show how the smoothness properties can be extended throughout the rest
of {x = 0}.

Given k, we consider a Ck-local normal form at (x0, y0, ε) = (0, 0, 0). For
ν small enough, the section {x = ν, ‖y‖ < ν, ε < ν} is visible in this normal
form, and along that segment we already have established the smoothness of the
center manifold. In local coordinates, this manifold is given by z̃ = ϕ̃(x, y, ε, λ),
and we hence find

ϕ̃(x, y, ε, λ) = ϕ̃(ν, (x/ν)qy, ε, λ) exp

(
− 1

εrmxκq−κ0

∫ ν

x

Bk(s, x, y, ε, λ)

s1+κ0−κq ds

)
,

with Bk(s, x, y, ε, λ) = b̃k(s, (x/s)qy, ε, λ). From this expression, it is clear that
ϕ̃ is Ck-smooth near (x, y, ε) = (0, 0, 0). The smoothness along x = 0 in par-
ticular follows from the estimates in Lemma 6. We can repeat this construc-
tion for any k, restricting ε to a k-dependent neighborhood of 0. However,
when m 6≡ 1, we can repeat the construction by taking local normal forms at
(x0, y0, ε) = (0, 0, ε) with nonzero ε (because then (x, y, z, ε) = (0, 0, 0, ε) is also
a semi-hyperbolic singularity). This observation suffices to see that the center
manifold is C∞ near the origin when m 6≡ 1.

Let us now deal with the smoothness of the manifold z = ϕ(x, y, ε, λ) in the
rest of {x = 0}. At points of this plane where εm(x, y) 6= 0, we can draw char-
acteristics that reach a neighborhood of the origin. Since such characteristics
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are regular, the smoothness of the center manifold at such points follows from
the smoothness of the center manifold near the origin. So it suffices to consider
those points of {x = 0} with εm = 0. We can cover this part of {x = 0} by a
finite number of neighborhoods where we have Ck-normal forms as in Lemma 4
(given a fixed k).

Given a fixed (x∗, y∗, ε∗) with x∗ = 0 and ε∗m(x∗, y∗) = 0. We may suppose
y∗ 6= 0. The characteristic through (x∗, y∗) travels through a finite number of
neighborhoods where we have normal forms. Let us introduce the variable

ρ = R(y) :=

√
y2q1

1 + · · ·+ y2qn
n , qi :=

q1q2 . . . qn
qi

.

We will treat the passage from a section R(y) = ν to a section R(y) = µ
(with 0 < ν < µ), and show that the smoothness properties in the first section
are transported to the second section near the given characteristic. Since the
characteristic is cut by a finite number of such sections R(y) = const, we obtain
the required smoothness at (x∗, y∗, ε∗) by an induction argument. We remark
that the characteristic through (x∗, y∗) tends towards the origin in negative
time, so for the initial induction step one can rely on the smoothness results
obtained at the beginning of the proof of this lemma, i.e. the smoothness near
the origin. So let us focus on a single passage between R(y) = ν to R(y) = µ.
We remark that if we write ρ = R(y), then

ρ̇ = Qρεrm(x, y), with Q := nq1 . . . qn.

We use ρ as a variable to parameterize the characteristic. Suppose in local
Ck-coordinates, the center manifold z̃ = ϕ̃(x, y, ε, λ) is shown to be Ck-smooth
near a given point on the section R(y) = ν. Given a point (x, y) on R(y) = µ,
its characteristic meets R(y) = ν at a point which we denote

(x̃, ỹ) = (x(µ/ν)1/Q, y1(ν/µ)q1/Q, . . . , yn(ν/µ)qn/Q).

Using this notation, we have

ϕ̃(x, y, ε, λ) = ϕ̃(x̃, ỹ, ε, λ)·

exp

(
−1

Qεrm(x, y)

∫ µ

ν

Bk(ρ, x, y, ε, λ)

ρ.(ρ/ν)(κ1q1+···+κnqn−κ0)/Q
dρ

)
.

where Bk(ρ, x, y, ε, λ) = b̃k(x(ρ/ν)1/Q, y1(ν/ρ)q1/Q, . . . , yn(ν/ρ)qn/Q, ε, λ).
This expression seems complicated at first sight, but the integral inside it is

completely regular (since we keep ρ outside 0 here), and can be bounded from
below by a positive constant. Regardless of whether m ≡ 1 or not, it is easily
seen that this expression is Ck smooth at x = 0 and at points where εm = 0.

Center manifold in {m(x, y) ≤ 0}

When m is negative, we use a slightly different approach: where the center
manifold was constructed by following orbits through {x = ±1} in the domain
{m ≥ 0}, we will now construct a center manifold by putting an initial condition
on the sphere R(y) = 1. Here, we define

R(y) :=

√
y2q1

1 + · · ·+ y2qn
n , qi :=

q1q2 . . . qn
qi

.
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We integrate from the sphere

C : y2q1

1 + · · ·+ y2qn

n = 1.

It can be readily verified that, if we introduce the variable ρ = R(y), then

ρ̇ = Qρεrm(x, y); with Q := n.q1 . . . qn.

We recall that the C1-normal form from Lemma 4, applied at (x0, y0) = (0, 0),
is valid for x, yi, z ∈ [−1, 1], ε ∈ [0, 1], λ ∈ Λ. We assume that b1(x, y, ε, λ) ≥ δ
for some δ > 0 on this domain.

Let γ = {y ∈ C, z = 0, |x| ≤ 1, ε ∈ [0, 1],m(x, y) ≤ 0}. We find an invariant
manifold by considering all orbits through γ. In the C1-normal form, this initial
plane is seen as an initial manifold

γ̃ = {y ∈ C, z̃ = Ψ1(x, y, 0, ε, λ), |x| ≤ 1, ε ∈ [0, 1],m(x, y) ≤ 0}.

We now write, for m < 0,ε > 0 and y 6= 0,

ϕ̃(x, y, ε, λ) = Ψ1(xρ1/Q, y1/ρ
q1/Q, . . . , yn/ρ

qn/Q, 0, ε, λ)·

exp

(
−1

Qεr|m(x, y)|ρ(κ0−κ1q1−···−κnqn)/Q

∫ 1

ρ

B(s, x, y, ε, λ)

s1+(κ1q1+···+κnqn−κ0)/Q
ds

)
, (26)

evaluating the right-hand side at ρ = R(y) and where

B(s, x, y, ε, λ) = b1

(
x(ρ/s)1/Q, (s/ρ)q1/Qy1, . . . , (s/ρ)qn/Qyn, ε, λ

)
.

It can be readily verified that z̃ = ϕ̃(x, y, ε, λ) is an invariant graph under the

local normal form. To that end, observe that xQρ and yQi /ρ
qi are first integrals.

Furthermore, this graph contains the initial manifold γ̃.
The C1-smoothness of the invariant manifold z̃ = ϕ̃(x, y, ε, λ) follows directly

from a study of the involved exponential, just like in Lemma 6.

Lemma 9. Introduce the shortcut K = κ0−κ1q1−· · ·−κnqn. Let m(x, y) < 0.
Given any ρ0 < 1, and any integer N , there exists εN > 0 such that

exp

(
−1

Qεr|m(x, y)|ρK/Q

∫ 1

ρ

B(s, x, y, ε, λ)

s1−K/Q ds

)∣∣∣∣
ρ=R(y)

≤ CN (R(y)ε|m|)N ,

for some CN > 0, as long as 0 < ε ≤ εN , x ∈ [−1, 1], and y with 0 < R(y) ≤ ρ0

and m(x, y) < 0. When m 6≡ −1, we may choose εN = 1.

Proof. The proof is completely analogous to the proof of Lemma 6.

The estimates in Lemma 9 imply that z = ϕ̃(x, y, ε, λ) has a C1-extension
towards ρ = 0 (i.e. towards y = 0), and also towards x = 0 and ε = 0. Further-
more, the smoothness is only limited by the smoothness of the normal form and
of the chosen initial manifold γ̃.

In original coordinates, this implies the existence of a C1 center manifold
z = ϕ(x, y, ε, λ) containing the initial set γ. By techniques identical to those in
Lemma 7 and Lemma 8, one can prove that this center manifold is in fact C∞

for ε small enough, in case m 6≡ −1. When m ≡ −1, we obtain Ck-smoothness
for any k, provided we restrict ε to a k-dependent neighborhood of 0. This ends
the proof of Theorem 1. �
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4 Proof of Theorem 2

We look for a (sufficiently smooth) change of variables in the form

z = u(1 + ψ(x, y, u, ε, λ)),

with ψ(x, y, 0, ε, λ) = 0, and impose that u̇ = −a(x, y, ε, λ)u to find

u(1 + ψ)2F (x, y, u(1 + ψ), ε, λ)

= εrm(x, y) (−xψx + q1y1ψy1 + · · ·+ qnynψyn)− auψu. (27)

In other words, we search an invariant manifold of the form v = ψ(x, y, u, ε, λ)
for the family of vector fields

ẋ = −xεrm(x, y),
ẏi = qiyiε

rm(x, y), i = 1, . . . , n,
u̇ = −au
v̇ = u(1 + v)2F (x, y, u(1 + v), ε, λ).

(28)

This observation reduces the study of a near-identity normal form transforma-
tion to the study of an invariant manifold, and allows us to use techniques that
are completely analogous to the techniques used in the construction of a center
manifold for (1).

Like in Section 3, we first construct a solution of (27) in {m(x, y) > 0}. At
the end of this section, we give a comment on how the set {m(x, y) < 0} is
treated, and how both solutions can be extended smoothly to m(x, y) = 0.

Using Theorem 3, applied to (3), we know the existence of a C2 solution ψ1

of (27), locally, with the property ψ1(x, y, 0, ε, λ) = 0. Without loss of generality
we may assume it is defined for x, yi, z ∈ [−1, 1], ε ∈ [0, 1].

Define the integers

qi =
q1q2 . . . qn

qi
.

We define the cylinder

C : y2q1

1 + · · ·+ y2qn

n = 1.

We now intend to adapt ψ1 so that besides (27), also the boundary condition

ψ|C = 0 (29)

is satisfied. For the moment we already know that ψ|C∩{u=0} ≡ 0. To obtain
(29), we exploit the non-uniqueness of solutions of (27), and observe that ad-
ditional solutions can be found by composing the diffeomorphism z = u(1 + ψ)
by another diffeomorphism that preserves the normal form. Let us write such a
diffeomorphism, or better its inverse, in the form

w = u(1 + β(x, y, u, ε, λ)).

Imposing the boundary condition on the composition yields a condition on β:

β|C = ψ1|C . (30)
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Imposing the invariance of the normal form under the transformation yields the
following partial differential equation on β:

εrm(x, y) (−xβx + q1y1βy1 + · · ·+ qnynβyn)− auβu = 0. (31)

Remarkably, β satisfies a linear partial differential equation, which we can
solve using the method of characteristics:

Lemma 10. Equation (31) together with the boundary condition (30) has a
unique C2 solution on {m(x, y) ≥ 0}, that is zero on {m(x, y) = 0}.

Proof. With the method of characteristics in mind, we introduce the system of
ordinary differential equations

ẋ = −xεrm(x, y)
ẏi = qiyiε

rm(x, y), i = 1, . . . , n,
u̇ = −a(x, y, ε, λ)u

β̇ = 0.

We introduce the radial variable

ρ = R(y) :=

√
y2q1

1 + · · ·+ y2qn
n .

It can be readily verified that

ρ̇ = Qρεrm(x, y); with Q := n.q1 . . . qn,

and that xQρ and yQi /ρ
qi are constant along characteristic curves. The general

solution of (31) is given by

β(x, y, u, ε, λ) = B
(
xρ1/Q,

y1

ρq1/Q
, . . . ,

yn
ρqn/Q

,

u exp

(
− 1

Qεrm(x, y)ρK/Q

∫ 1

ρ

A(s, x, y, ε, λ)

s1−K/Q ds

)
, ε, λ

)∣∣∣∣
ρ=R(y)

, (32)

for any function B, where K = κ0 − q1κ1 − · · · − qnκn and

A(s, x, y, ε, λ) = a
(
x(ρ/s)1/Q, (s/ρ)q1/Qy1, . . . , (s/ρ)qn/Qyn, ε, λ

)
.

(The appearing exponential coincides with the exponential in Lemma 9.) Evalu-
ating β at C, i.e. at ρ = 1, we find β(x, y, u, ε, λ) = B(x, y, u, ε, λ), so the bound-
ary condition is satisfied if we choose B = ψ1. We show the C2-smoothness of β
for values of y where R(y) < 1. (Along {ρ = 1, εm(x, y) = 0} one cannot expect
β to be C2; in general one finds a so-called boundary layer there.) In Lemma 9
it is shown that the exponential appearing inside (32) is flat w.r.t. y at y = 0
(or equivalently flat w.r.t. ρ at ρ = 0, since ρ = R(y)). This shows that

β(x, y, u, ε, λ)→ ψ1(0, ∗, 0, ε, λ), as y → 0,

where ∗ can be any value ỹ with R(ỹ) = 1. The continuity at y = 0 follows
from the fact that ψ1|u=0 = 0. Similar arguments can be applied to show the
continuity of any of the partial derivatives of β. Similarly, the exponential factor
is flat w.r.t. ε at εm = 0, from which one can derive the C2-smoothness of β
at εm = 0. We remark that Ck-smoothness would follow as easily if the initial
condition on C (expressed by ψ1) would have been Ck.
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Using Lemma 10, we find a solution of (27) subject to the boundary condition
ψ|C = 0, and which is C2 for {ρ < 1}∪{ρ ≤ 1, εm 6= 0}. It is immediately clear
from the method of characteristics that along regular characteristic curves, the
solution is C∞ (or Ck when ε ≤ εk, depending on the smoothness of the initial
system (3)). Characteristic curves through (x, y, u) become singular for ε = 0,
for m(x, y) = 0 or for y = 0. In order to obtain better smoothness properties,
we hence have to study these boundaries.

Using the method of characteristics, and using a covering of characteristic
curves by neighborhoods in which local normal forms can be taken, we will
now prove that such a solution is in fact C∞ on ρ < 1 (respectively Ck on
ρ < 1 when ε ≤ εk). The method of proof is similar to the method used to
deal with the smoothness of the center manifold in Theorem 1: we will cover
a given characteristic curve through (x∗, y∗, u∗) by neighborhoods in which we
have local Ck-normal forms. Because the characteristic curves have a part near
u = 0 and a part away from u = 0, we will need normal forms besides the normal
forms of Lemma 4: away from u = 0, we need a variant to the flow-box theorem,
which partially puts a vector field in a flow box, leaving some directions fixed:

Lemma 11. Consider a Ck vector field

Xλ(v, z) = F (v, λ)
∂

∂v
+G(v, z, λ)

∂

∂z
,

defined for v near 0 in Rm, for z near 0 in R, and for λ ∈ M (M is a com-
pact in a finitely dimensional euclidean space). Assume that F (0, λ) = 0 and
G(0, 0, λ) 6= 0. There exists an open neighborhood Vk of the origin in Rm+1 and
a local Ck family of diffeomorphisms of the form

(v, z) 7→ (v, z̃), z̃ = ψ(v, z, λ),

conjugating the family Xµ to the family

F (v, λ)
∂

∂v
+ 1.

∂

∂z̃
.

Proof. This is an adapted version of the flow-box theorem. It suffices to use
(x, t) as variables instead of (x, z), where t is the time.

Lemma 12. The unique solution of (27) with boundary condition ψ|C = 0 is
smooth for x.‖y‖ 6= 0, m(x, y) ≥ 0. When (3) is C∞ along x = 0, then so will
ψ be C∞ along x = 0. Otherwise, ψ, defined on m(x, y) ≥ 0, will be Ck along
x = 0, provided ε ≤ εk, for some sequence (εk)k.

Proof. In this context we keep y 6= 0, so we only have to deal with the smooth-
ness at εm = 0 (otherwise the value of ψ is determined using an integration along
regular characteristic curves). For any fixed (x∗, y∗, u∗, ε∗) with ε∗m(x∗, y∗) = 0,
and for any k, we will show that ψ is Ck near (x, y, u, ε) = (x∗, y∗, u∗, ε∗). Since
k is arbitrary, this will show the C∞-smoothness at εm = 0.

Let us look at a characteristic curve through (x∗, y∗, u∗), as ε→ 0. It is an
orbit of  ẋ = −xεrm(x, y),

ẏi = qiyiε
rm(x, y), i = 1, . . . , n,

u̇ = −a(x, y, ε, λ)u
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Figure 2: The characteristic curve through (x∗, y∗, u∗) (when y∗ 6= 0) to the left
for ε > 0, and the Hausdorff limit curve as ε→ 0 to the right.

and we consider the piece of the orbit from (x∗, y∗, u∗) until the intersection
point with C, see Figure 2. As ε→ 0, the characteristic curve tends towards a
singular curve, see Figure 2. Similarly, when m(x∗, y∗) = 0, characteristic curves
through nearby (x, y, u) tend towards a singular curve through (x∗, y∗, u∗). We
cover the singular curve by neighborhoods in which Ck-normal forms are valid,
as in Lemma 4. Of course, this is only possible in the part of the curve where
u = 0. The part where u 6= 0 will be covered by neighborhoods where the “flow-
box” normal form of Lemma 11 can be taken. Like in the proof of Lemma 7
(in order to deal with the smoothness of center manifolds), we choose points
(p1, . . . , pN ) on this limit curve, with pN = (x∗, y∗, u∗), with p1 the intersection
point of the limit curve with the plane C, in a way that the passage between pi
and pi+1 can be treated with one single local normal form. We then show by
induction on i that ψ is smooth near pi. Let us treat the induction step. Let

z = u(1 + ψk(x, y, u, ε, λ))

express a local Ck-normalizing transformation. The composition of ψ with the
inverse of the local transformation is expressed by

z = u(1 + β(x, y, u, ε, λ)),

where β is a solution to (31). Furthermore, in the induction we may assume
that β is Ck near pi, and we have to prove that it is smooth near pi+1. We
discuss two cases: in the first case, pi and pi+1 lay on {u = 0}. In the second
case, pi and pi+1 lay both on the vertical part of the limit curve (see Figure 2).
In the first case, we consider a manifold

{ρ = ρi, β = βi(x, y, u, ε, λ)}

and consider characteristics through this manifold. We show that we can in-
tegrate Ck-smoothly to ρ = ρi+1, with 0 < ρi+1 < ρi. This involves studying
an expression like (32), as εm → 0, and is analogous to the discussion of the
smoothness of β in the proof of Lemma 10. In the second case, where pi and
pi+1 lay both on the vertical part of the limit curve, we can proceed as follows.

Even though at this stage, we cannot assume that the normalizing trans-
formation expressed by ϕ is Ck near pi+1, the resulting normal form is Ck

everywhere (because of its simple quasi-linear form). Therefore, we can apply
the Ck-version of the flow-box lemma (Lemma 11) both to the original family
of vector fields and to the family of vector fields after applying the normalizing
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Figure 3: The characteristic curve through (x∗, y∗, u∗), as y∗ → 0 (and ε→ 0)

transformation expressed by ϕ. We now have two ways of locally getting to the
flow-box form  ẋ = −xεrm(x, y),

ẏi = qiyiε
rm(x, y), i = 1, . . . , n,

u̇ = 1
(33)

One way directly with a Ck flow-box transformation, another way by a compo-
sition of a flow-box transformation with the transformation expressed by ψ. By
combining all these transformations, one gets a Ck-transformation

z = u(1 + β̃(x, y, u, ε, λ))

conjugating the flow-box normal form (33) to itself, and for which we know that
β̃ is Ck near pi. The Ck-smoothness of ψ near pi+1 is then a direct consequence
of the Ck-smoothness of β̃ near pi+1. Such a β̃ is a solution of the PDE

εrm(x, y)
(
−xβ̃x + q1y1β̃y1 + · · ·+ qnynβ̃yn

)
− β̃u = 0,

and we choose to integrate characteristic curves from the section {u = ui} near
pi, up to a section {u = ui+1}. The equation is a regular perturbation of β̃u = 0,
and hence can be easily treated near εm = 0.

Lemma 13. Let ψ be the unique solution of (27) with boundary condition ψ|C =
0, , defined on m(x, y) ≥ 0. Given k ≥ 1, the function ψ(x, y, ε, λ) is Ck along
y = 0, for ε sufficiently small. When m 6≡ 1 and when (3) is C∞, the function
ψ(x, y, ε, λ) is C∞ along y = 0, for ε sufficiently small.

Proof. We only have to treat the smoothness at y = 0, and consider the Haus-
dorff limit of a characteristic curve through (x∗, y∗, z∗) as y∗ → 0. This is
shown in Figure 3. We just give a sketch of the proof, since the main ideas
are identical to the ideas in Lemma 7, Lemma 8 and Lemma 12. We consider
a covering of the limit curve drawn in Figure 3, and take a number of points
p1, . . . , pK , . . . , pL, . . . , pN , where p1 is the point in C, pN = (x∗, y∗, u∗), and
where pK and pL are the two intermediary corner points of the limit curve. The
smoothness of ψ near p1, . . . , pK−1 follows from Lemma 12. The smoothness
near pK follows the same way, if we notice that the expression for β in (32) is
sufficiently flat in ρ as ρ→ 0 (and this way the transformation is Ck at ρ = 0).

The smoothness near pK+1, . . . , pL can be studied using a variant of the
technique in Lemma 12: instead of integrating from section ρ = ρi to ρ = ρi+1,
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we here need to integrate from sections x = xi to x = xi+1. This yields a slightly
different formula for β, but the study of the smoothness of β is identical.

Finally, the part from pL to pN (the vertical part) is studied in a way identical
to the study of the vertical part in the proof of Lemma 12.

Let us now comment on how the region {m(x, y) ≤ 0} is dealt with. In-
stead of imposing a boundary condition on C, we will now impose a boundary
condition on x = ±1. The involved exponentials are exactly the same as those
encountered in Section 3. We do not repeat the construction here, as it would
be a repetition of the same ideas as before. The adaptation of the arguments
presented above to the case m ≤ 0 is hence left to the reader.

Now it only remains to be shown how the normalizing transformations in the
different connected components of m 6= 0 can be seen as one smooth normalizing
transformation. Again, we use the same ideas as in Section 3, but the proof is
slightly different:

Lemma 14. Let k be an arbitrary integer or∞. Let U1, . . . , Up be the connected
components of [−1, 1]n+1\{m−1(0)}. Suppose that v = ψ(x, y, u, ε, λ) represents
an invariant manifold of (28) and that ψ(x, y, 0, ε, λ) = 0. When each ψi = ψ|Ui
is Ck, then also ψ is Ck.

Proof. The proof is analogous to the proof of Lemma 5. Suppose that κ0 6= 0.
Then some components U` and Uj have a partly shared boundary on {x = 0}.
We show that ψ is Ck along {x = 0} ∩ U` ∩ Uj . Like in Lemma 5, the proof

will follow from the uniqueness of formal power series expansion z = ψ̂ :=∑∞
i=0 ψi(y, u, ε, λ)xk that express formally the invariance of z = ψ̂. The zero-

order coefficient ψ0(y, u, ε, λ) in ψ̂ is a solution of

u(1 + ψ0)2F (0, y, u(1 + ψ), ε, λ) = −au(ψ0)u, (ψ0)|u=0 = 0.

It suffices to observe that this equation expresses the fact that the graph v =
ψ0(y, u, ε, λ) is the stable manifold of{

u̇ = −au
v̇ = u(1 + v)2F (0, y, u(1 + ψ), ε, λ),

which is unique. Similarly, the higher order coefficients in this expansion can be
seen as stable manifolds, and are hence all uniquely identified. Since both ψj
and ψ` are invariant manifolds of (28), their order k Taylor expansion satisfies
the above equation, and therefore their order k Taylor expansion coincide.. This
shows the Ck-smoothness along {x = 0}∩U` ∩Uj . Similar arguments show the
Ck-smoothness along {yi = 0} ∩ U` ∩ Uj when κi 6= 0.

This lemma, combined with the preceding results, finishes the proof of The-
orem 2. �

References

[AM78] R. Abraham and J. E. Marsden, Foundations of mechanics, Ben-
jamin/Cummings Publishing Co. Inc. Advanced Book Program,
Reading, Mass., 1978, Second edition, revised and enlarged, With

24
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