
Practical examples of GPU Computing
Optimization Principles

Patrik Goorts1
1,2,4Hasselt University - tUL - IBBT

Expertise centre for Digital Media
Wetenschapspark 2

BE-3590 Diepenbeek
Belgium

1patrik.goorts@uhasselt.be

Sammy Rogmans2
2Multimedia Group, IMEC

Kapeldreef 75
BE-3001 Leuven

Belgium
2sammy.rogmans@uhasselt.be

Steven Vanden Eynde3 Philippe Bekaert4
3Lessius Hogeschool – Campus De Nayer

J. De Nayerlaan 5
BE-2860 Sint Katelijne Waver

Belgium
3steven.vandeneynde@gmail.com
4philippe.bekaert@uhasselt.be

Abstract—In this paper, we provide examples to optimize signal
processing or visual computing algorithms written for SIMT-
based GPU architectures. These implementations demonstrate
the optimizations for CUDA or its successors OpenCL and Di-
rectCompute. We discuss the effect and optimization principles of
memory coalescing, bandwidth reduction, processor occupancy,
bank conflict reduction, local memory elimination and instruction
optimization. The effect of the optimization steps are illustrated
by state-of-the-art examples. A comparison with optimized and
unoptimized algorithms is provided. A first example discusses the
construction of joint histograms using shared memory, where
optimizations lead to a significant speedup compared to the
original implementation. A second example presents convolution
and the acquired results.

Index Terms—CUDA, GPGPU, optimization principles, visual
computing, Fermi.

I. INTRODUCTION

In the last years, generic parallel computing on graphical
devices is becoming popular for versatile problems. GPUs are
used in generic visual computing and games, but also in medi-
cal fields [Shams et al., 2010], biology [Phillips et al., 2005],
physics and many more. Thanks to the great interest in off-the-
shelf parallel devices, a lot of research and work is conducted
to enable ease of programming of graphical devices. These
advances remove the need to map every problem to a visual
representation processable by the graphical pipeline. With the
introduction of CUDA [NVIDIA, 2010], it is possible to use
generic instructions on a parallel device; no graphical pipeline
is used. While CUDA eases the use of GPUs for parallel
computation, the efficient programming is still difficult. Due
to the different limitations and the memory hierarchy, very
fast execution is possible, but some effort must be made to
maximize the performance.

In this paper, we will investigate some considerations when
implementing computer vision algorithms on CUDA-enabled
devices. These algorithms typically need a lot of memory
to store and save data. The copying of these data between
on-chip and off-chip memory can take more time than the
actual calculations, as stated by the infamous memory wall
[Asanovic et al., 2006]. To tackle this problem, special care
should be taken to efficiently perform memory operations.

Another less-known problem includes the access strategy
of on-chip memory. While the access time is short, multiple
threads shall access the memory simultaneously. This simulta-
neous access can significantly reduce performance. This kind
of optimizations is less documented and investigated. We
applied the reduction of these so-called bank conflicts to two
examples and reduced the execution time.

We will provide examples where all of this optimizations
are effective. These examples demonstrate the importance
of optimizations which are often forgotten in state-of-the-
art algorithms. We will focus on CUDA-enabled devices, but
these optimizations still hold for OpenCL [Munshi, 2008] and
DirectCompute [Boyd, 2008], as these use the same execution
model as CUDA.

The paper is divided as follow: in section 2 we will provide
a general overview to optimize the parallel execution of
algorithms on SIMT-based architectures and section 3 will
provide some optimization examples. We will conclude in
section 4.

II. PARALLELIZATION OF ALGORITHMS

In this section, we will provide an overview to optimize
algorithms implemented on SIMT architectures. The first step
is the division of the algorithm in threads. Threads should be
chosen to reduce the communication between them. CUDA
allows fast communication through shared memory, but global
communication is slow and unsynchronized. However, using
shared memory can reduce redundant memory reads and
improve performance. After defining threads, these must be
grouped in blocks. These choices must be made according to
the code optimization guidelines, including:

1) Global memory coalescing: Optimize off-chip memory
access by grouping successive memory loads in one
instruction. The memory bus is less occupated, thus
allowing more throughput.

2) Global memory bandwidth reduction: Reduce total
amount of memory requirements.

3) Increasing occupancy: Use more processing power
simultaneously by defining enough threads to keep every
processor busy.



Fig. 1. Calculation of a joint histogram. The pixel value in the first image
and the corresponding pixel value in the second image defines which position
in the joint histogram should be updated. (a) Example of a joint histogram.
(b) Matrix representation.

4) Reduce bank conflicts: Optimize on-chip memory ac-
cess by avoiding operations in the same memory seg-
ment (bank).

5) Eliminate local memory usage: Reduce costly register
swapping to slow off-chip memory.

6) Optimize instructions: Reduce clock cycles of the
calculations.

These principles go further than previous research
[Ryoo et al., 2008], providing more low-level and often for-
gotten strategies.

III. OPTIMIZATION EXAMPLES

In this section we will provide two state-of-the-art exam-
ples where optimization increased the performance. The first
example calculates joint histograms based on the method
of [Shams and Kennedy, 2007]. The second example inves-
tigates the effect of coalescing and bank conflicts on con-
volution calculation and is based on the work described in
[Goorts et al., 2009].

A. Joint Histogram Calculations

We will now provide an example of a visual computing
algorithm parallelized with a SIMT architecture, the calcula-
tion of joint histograms. Given two images with given pixel
correspondences, a 2D histogram is created. For every pixel
in the first image and the corresponding pixel in the second
image, a greyvalue pair is obtained. The 2D histogram counts
the occurrence of every pair (see figure 1). Joint histograms
are widely used in image registration algorithms.

Dividing the calculation of joint histograms in threads is
possible in different ways. A thread can process a pair of
greyvalues and fill in the histogram, or a thread can process a

Implementation Time
Original implementation 350 msec
Optimized implementation (atomic) 196 msec
Optimized implementation (tagged) 190 msec

TABLE I
RESULTS OF JOINT HISTOGRAM CALCULATIONS

field in the histogram and counting the corresponding pairs in
the image. In the former case every thread must have write-
access to every element in the histogram and a concurrent
write system must be provided. In the latter case every thread
must read the full image, and as a consequence the algorithm
doesn’t scale well for large images.

The implementation used here is described in
[Shams and Kennedy, 2007]. This method uses a histogram
per warp (16 concurrent running threads), located in shared
memory, producing subhistograms. These subhistograms are
added together first at block level and later globally in a
second kernel. Because threads in the same warp can access
the same memory location, some write protection must be
provided. In [Shams and Kennedy, 2007], this problem is
solved by tagging the values with the thread ID. The written
values are read again after the write, and the tag is compared.
If the tag is wrong, another thread has written its value and
the write will be retried. Eventually, every thread will have
updated the memory location.

int bin = ...;
unsigned int tagged;
do
{
\\ Remove previous tag
unsigned int val =

localHistogram[bin] & 0x07FFFFFF;

\\ Tag the value with the thread id
tagged = (threadid << 27) | (val + 1);

\\ Write to the histogram
localHistogram[bin] = tagged;

} while (localHistogram[bin] != tagged);

This method was originally developed before atomic oper-
ations in shared memory were provided. Here, we will inves-
tigate the original method, but using these atomic operations
and other optimization techniques.

We have performed joint histogram calculations of im-
ages of size 4096x4096 on a NVIDIA GTX 280 with 30
multiprocessors, a clock speed of 1.3 GHz and 1 GiB
of off-chip memory. As shown in Table I, the version of
[Shams and Kennedy, 2007] is more efficient when using op-
timization techniques. More specifically, we have reduced the
size of the data to speed up memory reads, enabled colaesced
loads and decreased bank conflicts. These optimizations can be



Fig. 2. Alignment of the threads when performing convolution. The apron is a multiple of 16 to enable coalescing in all blocks.

accomplished by rearranging the threads, and thus control the
memory operations per thread. Additionally, we have modified
the calculation instructions to reduce registry usage and thus
reduce register swappng to global memory. By using these
optimizations, we accomplished a speedup of 150 msec, which
demonstrates the importance of attention to optimization.

Using atomic add operations on shared memory to remove
the tagging technique does not result in faster execution. This
demonstrates that care should be taken when using atomic
operations, even in small kernels, and other techniques should
be implemented and benchmarked if possible.

B. Convolution

Convolution is an image processing method where for every
pixel a new pixel value is calculated in function of the values
surrounding the current pixel. Convolution is often referred
to as finite impulse response filtering. Effects of block sizes
and implementation strategies are extensively investigated in
[Goorts et al., 2009]. Here, we will discuss the importance
of the position of threads to enable coalescing and reduce
bank conflicts. We will only consider normal convolution

Fig. 3. Horizontal convolution of a 4096x4096 image with different filter
sizes. The importance of coalescing increases if the filter sizes increase; bigger
filters require larger aprons with more uncoalesced reads and more memory
operations, while the coalesced algorithm requires only one read per 16 words.

algorithms; techniques using fast Fourier transformations and
singular value decompositions are not in the scope of this
paper.

One thread per pixel is assigned. Every thread now needs
the value of the surrounding pixels, requiring to load multiple
pixels from off-chip memory. Because threads in the same
block have a shared memory, it is possible to use the data
read by other threads and thus enabling data reuse to reduce
memory reads. However, threads at the border of the block
do not have sufficient data available and therefore a border
of threads is created to read the missing data. This border
is called the apron. Because these threads do not calculate
new output, the pixels located in the apron must be read by
different blocks. These redundant reads must be reduced to a
minimum.

Because of the apron, it is not sufficient to use blocks with
the for coalescing required width of a multiple of 16. The
width of the apron must also be a multiple of 16 (see figure
2) to enable coalescing in every block. By doing this, we will
create a lot of unnecessary threads, but the performance will
increase thanks to coalesced memory operations and the elim-
ination of bank conflicts. This result is visible in figure 3. The
results are dependent on the filter size; the larger the filter, the
larger the apron. Because the non-coalesced algorithm must
read every word in the apron apart, the memory instructions
will increase if the apron size increases. In the coalesced
case, the read instructions stay constant and optimal. There
will be more thread and more blocks, but the performance is
still higher, which proves the importance of coalescing in this
application. Because the thread positions are chosen correctly,
bank conflicts are removed from the coalesced case.

IV. CONCLUSION

We have applied optimization principles to increase the per-
formance of algorithms executed on SIMT architectures. By
coalescing off-chip memory loads, reducing bandwidth, in-
creasing occupancy, reducing bank conflicts, eliminating local
memory usage and optimizing instructions, one can maximize
the utilization of the resources of the parallel device and reduce



execution time. Reducing bank conflicts is forgotten by most
programmers, but these can increase performance significantly.
We have demonstrated the effectiveness of the optimizations
with two state-of-the-art examples.

REFERENCES

[Asanovic et al., 2006] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis,

J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf,

J., Williams, S. W., and Yelick, K. A. (2006). The Landscape of Parallel

Computing Research: A View From Berkeley. Electrical Engineering and

Computer Sciences, University of California at Berkeley, 18(183):19.

[Boyd, 2008] Boyd, C. (2008). The DirectX 11 Compute Shader. Shading

Course SIGGRAPH.

[Goorts et al., 2009] Goorts, P., Rogmans, S., and Bekaert, P. (2009). Op-

timal data distribution for versatile finite impulse response filtering on

next-generation graphics hardware using cuda. Parallel and Distributed

Systems, International Conference on, pages 300–307.

[Munshi, 2008] Munshi, A. (2008). OpenCL: Parallel Computing on the

GPU and CPU. Shading Course SIGGRAPH.

[NVIDIA, 2010] NVIDIA (2010). What is cuda?

http://www.nvidia.com/object/what is cuda new.html.

[Phillips et al., 2005] Phillips, J. C., Braun, R., Wang, W., Gumbart, J.,

Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kal, L., and Schulten, K.

(2005). Scalable molecular dynamics with namd. Journal of Computational

Chemistry, 26(16):1781–1802.

[Ryoo et al., 2008] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S.,

Kirk, D. B., and mei W. Hwu, W. (2008). Optimization principles and

application performance evaluation of a multithreaded gpu using cuda. In

PPOPP, pages 73–82.

[Shams and Kennedy, 2007] Shams, R. and Kennedy, R. A. (2007). Efficient

histogram algorithms for NVIDIA CUDA compatible devices. In Proc. Int.

Conf. on Signal Processing and Communications Systems (ICSPCS), pages

418–422, Gold Coast, Australia.

[Shams et al., 2010] Shams, R., Sadeghi, P., Kennedy, R. A., and Hartley,

R. I. (2010). A survey of medical image registration on multicore and the

GPU. IEEE Signal Processing Mag. (to appear).


