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Abstract. In this paper we introduce a novel approach to restore a
single image degraded by atmospheric phenomena such as fog or haze.
The presented algorithm allows for fast identification of hazy regions
of an image, without making use of expensive optimization and refine-
ment procedures. By applying a single per pixel operation on the original
image, we produce a ’semi-inverse’ of the image. Based on the hue dis-
parity between the original image and its semi-inverse, we are then able
to identify hazy regions on a per pixel basis. This enables for a simple
estimation of the airlight constant and the transmission map. Our ap-
proach is based on an extensive study on a large data set of images,
and validated based on a metric that measures the contrast but also
the structural changes. The algorithm is straightforward and performs
faster than existing strategies while yielding comparative and even better
results. We also provide a comparative evaluation against other recent
single image dehazing methods, demonstrating the efficiency and utility
of our approach.

1 Introduction

In outdoor environments, light reflected from object surfaces is commonly scat-
tered due to the impurities of the aerosol, or the presence of atmospheric phe-
nomena such as fog and haze. Aside from scattering, the absorption coefficient
presents another important factor that attenuates the reflected light of distant
objects reaching the camera lens. As a result, images taken in bad weather con-
ditions (or similarly, underwater and aerial photographs) are characterized by
poor contrast, lower saturation and additional noise.

Image processing applications commonly assume a relatively transparent
transmission medium, unaltered by the atmospheric conditions. Outdoor vision
applications such as surveillance systems, intelligent vehicles, satellite imaging,
or outdoor object recognition systems need optimal visibility conditions in or-
der to detect and process extracted features in a reliable fashion. Since haze
degradation effects depend on the distance, as disclosed by previous studies [1,
2] and observed as well in our experiments (see Fig. 1), standard contrast en-
hancement filters such as histogram stretching and equalization, linear mapping,
or gamma correction are limited to perform the required task introducing ha-
los artifacts and distorting the color. The contrast degradation of a hazy image
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Foggy image Histogram equalization Local contrast stretching Our result

Fig. 1. Standard techniques limitations. From left to right: initial foggy images, his-
togram equalization, local contrast stretching and our restored result.

is both multiplicative and additive. Practically, the haze effect is described by
two unknown components: the airlight contribution and the direct attenuation
related to the surface radiance. The color ambiguity of the radiance is due to
the additive airlight, which increases exponentially with the distance. Enhancing
the visibility of such images is not a trivial task, as it poses an inherently under-
constrained problem. A reliable restoration requires an accurate estimation of
both the true colors of the scene and the transmission map, closely related to
the depth-map.

Recently, there has been an increased interest in the vision and graphics
communities in dehazing single images [1–5]. In this paper we introduce an al-
ternative approach to solve this challenging problem. Our technique is based on
the remark that the distance from the observer to the scene objects is highly cor-
related with the contrast degradation and the fading of the object colors. More
specifically, by an extensive study it has been disclosed an important difference
between hazy and non-hazy image regions, by performing a per pixel comparison
of the hue values in the original image to their values in a ’semi-inversed’ image.
This ’semi-inversed’ image version is obtained by replacing the RGB values of
each pixel on a per channel basis by the maximum of the initial channel value
(r, g or b) and its inverse (1 − r,1 − g or 1 − b), followed by an image-wide
renormalization. This observation has been validated on a large set of images,
and allows for the detection of the hazy image regions by applying only a single
simple operator. This facilitates the estimation of the airlight constant color,
and enables us to compute a good approximation of the haze-free image using a
layer-based approach.
Contributions. This paper introduces the following three main contributions:
- first of all, we introduce a novel single image algorithm for the automatic de-
tection of hazy regions.
- secondly, our approach works on a per pixel basis. This makes it suitable for
parallelization, and allows us to retain sharp detail near edges.
- finally, our layer-based fusion dehazing strategy yields comparative and even
better restored results than the existing approaches but performs faster being
suitable for real-time applications.
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2 Related Work

An important area of applications for dehazing algorithms can be found in multi-
spectral remote sensing applications, where specialized sensors installed on satel-
lites capture a specific band of the reflected light spectrum. Due to aerosol im-
purities and cloud obstruction, the recorded images require specific processing
techniques [6, 7] to recover the original information.

Many haze-removal techniques have used additional information in order
to facilitate the search for a solution to this underconstrained problem. Some
methods [8, 9] employ multiple images of the same scene, taken under various
atmospheric conditions or combined with near-infrared version [10]. Polarization
methods [11–13] exploit the fact that airlight is partially polarized. By taking
the difference of two images of the same scene under different polarization an-
gles, it becomes possible to estimate the magnitude of the polarized haze light
component. Another category of techniques assume a known model of the scene.
Narasimhan and Nayar [14] employ a rough approximated depth-map obtained
by user assistance. Deep Photo [15] uses the existing georeferenced digital ter-
rain and urban models to restore foggy images. By using an iterative registration
method, they align the 3D model with the outdoor images, producing the depth
map required by the restoration process.

Recently, several single image based methods [1–5] have been introduced.
The method of Fattal [1] uses a graphical model that solves the ambiguity of
airlight color based upon the assumption that image shading and scene trans-
mission are locally uncorrelated. The approach of [5] proposed a related method
with [1] solution. This method models the image with a factorial MRF and
computes the albedo and depth independently like two statistically independent
latent layers. In Tan’s approach [2], the restoration aims to maximize the local
contrast. He et al. [3] employ the dark channel image prior, based on statistical
observation of haze-free outdoor images, in order to generate a rough estimation
of the transmission map. Subsequently, due to the fact that they approximate
the scene using patches of a fixed size, a matting strategy is required in order
to extrapolate the value into unknown regions, and refine the depth-map. Tarel
and Hautiere [4] introduced a contrast-based enhancing approach to remove the
haze effects, aimed at being faster than the previous approaches.

3 The Optical Model

The optical model used in this paper is similar to the one employed in previous
single image dehazing methods [1–4], initially described by Koschmieder [16].
For the sake of completeness, a brief description of this model is presented in
the following section.

When examining an outdoor scene from an elevated position, features grad-
ually appear to become lighter and fading as they are closer towards the hori-
zon. Only a percentage of the reflected light reaches the observer as a result
of the absorption in the atmosphere. Furthermore, this light gets mixed with
the airlight [16] color vector, and due to the scattering effects the scene color is
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Fig. 2. Optical model.

shifted (illustrated in Fig. 2). Based on this observation, the captured image of
a hazy scene Ih is represented by a linear combination of direct attenuation D
and airlight A contributions:

Ih = D +A = I ∗ t (x) +A∞ ∗ (1− t (x)) (1)

where Ih is the image degraded by haze, I is the scene radiance or haze-
free image, A∞ is the constant airlight color vector and t is the transmission
along the cone of vision. This problem is clearly ill-posed, and requires us to
recover the unknowns I, A∞ and t(x) from only a single input image Ih. In a
homogeneous atmosphere, the transmission t is considered to be modulated as:

t (x) = exp(−β ∗ d(x)) (2)

where β is the attenuation coefficient of the atmosphere due to the scattering
and d represents the distance to the observer.

From equation 1, it becomes apparent that the chrominance attenuation
becomes increasingly influenced by the airlight, as the optical depth increases:

A
D =

A∞ ∗ (1− t(x))

I ∗ t(x) (3)

Theoretically, if the transmission and the airlight are known the haze-free image
can be easily computed:

I = A∞ − (A∞ − Ih) /t(x) (4)

4 Haze Detection

The dark object method [6] is a well-known technique within the remote sensing
community, where it is employed to remove haze from homogeneous scenes. More
recently, He et al. [3] have presented a new derivation of this approach, called
the dark channel strategy. A disadvantage of this new method is its inability to
properly preserve edges, which is caused mainly by the employed erosion filter
during the stage of computing the dark channel. In order to recover the refined
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Fig. 3. Haze detection. The first row shows the original hazy images I. In the second
row, we show the yielded semi-inversed image Isi. Finally, in the third row, we label the
pixels identified as not under the influence of haze with a blue mask. In these regions,
the intensity of the blue color is proportional with the hue disparity.

transmission map and the latent image, this patch-based approach requires a
complex postprocessing stage. By employing the dark channel prior [3], it has
been shown that each patch of a natural image contains at least one point that is
dark for non-sky or haze-free regions. The validity of this observation is mainly
motivated by the fact that natural images are colorful and full of shadows [3]).

In this work we introduce a novel per pixel method that aims at generalizing
the previous dark-channel approach. During our experiments, in which we ana-
lyzed a large set of natural images degraded by haze, we have observed that in
haze-free and non-sky images, pixels in the neighborhood of dark pixels have a
low intensity value in at least one color channel (r, g or b). On the dark channel,
patches representing sky and hazy regions contain high values, as the local min-
imal intensity of such patches is high. Similarly, it has been observed that pixels
in sky or hazy areas have high values in all color channels. These observations
confirm the assumption that values in hazy image patches vary smoothly, except
at depth discontinuities.

Based on these observations, we introduce a direct haze detection algorithm
that operates in a pixel-wise manner. We create a semi-inversed image Isi(x) =[Ir

si, Ig
si, Ib

si

]
. This image can be obtained by replacing the RGB values of each

pixel x on a per channel basis by the maximum of the initial channel value and
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Fig. 4. Results from applying our haze detection procedure on a large data set of im-
ages. Overall, haze-free images contain 96% pixels labeled as haze-free (masked in blue),
while hazy and sky images are characterised by a significant decrease in haze-free pixels
(less than 13%).

its inverse:

Ir
si(x) = max

x∈I
[Ir(x), 1− Ir(x)]

Ig
si(x) = max

x∈I
[Ig(x), 1 − Ig(x)] (5)

Ib
si(x) = max

x∈I
[Ib(x), 1 − Ib(x)

]

where Ir(x), Ig(x) and Ib(x) represent the RGB channels of a considered image
pixel x. Because the operations performed in equation 5 map the range of all
pixels of the semi-inversed image Isi onto the range [0.5, 1], renormalization is
required.

The reason of hue disparity is due to the image characteristics that have been
previously described. In haze-free areas since at least one-channel is characterized
by small values the operation will replace that value with its inverse. In regions
of sky or haze since all values are characterized by high values, the max operation
will return the same values. Therefore, by this direct hue comparison of the semi-
inverse with the original image version, we are able to find pixels that need to
be restored while conserving a similar color appearance with the original one.

As illustrated in Fig. 3, this simple operation produces a semi-inversed image
Isi in which hazy areas are rendered with enhanced contrast, while the unaltered
areas appear as the inverse of the initial image. To identify the regions affected by
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haze, we compute the difference between the hue channels of the original image
I and Isi, and threshold it using a predefined value τ . The value of τ facilitates
the selection of those pixels that present similar aspect in both the initial and
the semi-inverse version. The results in this paper have been generated with the
default value τ = 10◦. Only pixels that have a hue disparity below this threshold
τ are labeled as hazy pixels. In our approach the hue information is represented
by the h∗ channel after the image is transformed into the perceptual CIE L∗c∗h∗

color space.
By applying this simple strategy, we are able to estimate the hazy regions

with acceptable precision. In order to check the validity of our observation, we
collected a large database of natural images from several accessible photo sites
(e.g. Flickr.com, Picasaweb.com, Photosig.com). Note that all the selected images
have been taken in daily light conditions. We defined three main categories of
outdoor images: haze-free images without sky, sky images, and hazy images.
After manually selecting 800+ images for each of these classes, we evaluated the
variation of the hue using the strategy previously described. The main conclusion
is that the haze-free images are characterized by a vast majority of pixels affected
by significant hue variations, while in the other two categories this variation is
considerably less. We illustrate this in Fig. 4. In order to differentiate between the
latter categories, it is possible to detect sky regions using existing techniques [17].
For a comparison of our haze detection component with the dark channel method
of He et al. [3], we refer to the discussion section.

5 Our Approach

5.1 Airlight Color (A∞) Estimation

One important correlation for dehazing algorithms constitutes the relation be-
tween optical depth and airlight [18, 11]. The airlight A becomes more dominant
as the optical depth increases. The optical model (equation 1) reveals the fact
that two objects with different reflectance properties, located at the same dis-
tance from the observer, have identical airlight gains. Consequently, when ob-
serving the values of A in a small area around a scene point, they usually show
only minor variations, except when depth discontinuities occur. Moreover, the
A∞ constant can be acquired from the areas with the highest additive contribu-
tion, which are commonly the areas of the image characterized by high intensity.

These properties of the hazy images have been exploited as well in the previ-
ous approaches to estimate the airlight constantA∞. As observed by Narasimhan
and Nayar [9], this constant is best estimated in the most haze-opaque areas.
He et al. [3] choose the 0.1% brightest pixels of the dark channel as their pre-
ferred region. Another approach [2] is to search for this component in regions
with the highest intensity, assuming that the sky is present and that there are
no saturated pixels in the image.

The key advantage of our approach is that we are able to clearly identify hazy
regions. As explained in section 4, these regions are identified in a straightforward
manner by observing the hue disparity between the image and its semi-inverse.
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Fig. 5. Layer-based dehazing. Top line: the initial foggy image; the rough transmission
map that corresponds to I0; the result of a naive method which simply pastes all layers
Li upon each other, introducing artifacts; the result of our method, which applies soft
blending of the layers. Middle line: the mask regions for each layer. Bottom line:
the computed layers Li.

In order to mask the most haze-opaque areas, we perform the same procedure,
but with the intensity of the semi-inverse increased by a factor ξ (with a default
value of ξ = 0.3). During our experiments, we found that for images where the
sky is present, the resulted mask contains mostly the sky region, which decreases
the searching space. The extraction of the airlight color vector A∞ is performed
by determining the brightest pixel only in the positive (unmasked) region (see
Fig. 3). The winning value of A∞ is extracted from the original foggy image from
the same location as the brightest pixel. This approach has shown to be more
robust than only searching for the most brightest pixels in the entire image.

5.2 Layer-based Dehazing

The contrast within an dehazed image is directly correlated with the estimated
airlight A and the inferred transmission t(x) at each point. Due to the physical
additive property of the airlight (see equation 1), it is possible to estimate the
direct attenuation D once the A∞ is known, by varying A = A∞ ∗ (1− t (x)) in
all possible values of its range [2]. Previous approaches have introduced many
constraints and cost functions that favor certain image characteristics based on
local image patches, thus limiting this range, and making it possible to compute
an approximate transmission map. In previous strategies, the transmission map
is commonly refined further using an energy minimization approach, based on
the assumption that for local neighborhoods the airlight shows only very minor
deviations (an assumption that breaks down at depth discontinuities). The main
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Foggy image Semi-inverse image He et al. [2009]Haze detection maskHue variation mask

Fig. 6. Our technique is able to identify hazy regions on a per pixel basis. Comparing
the haze mask produced by our technique to the dark channel mask of He et al. [3]
clearly shows that we are able to preserve significantly more detail.

drawback of such approaches is that the employed search methods, even though
they are commonly very expensive, are unable to ensure an accurate transmis-
sion map. In contrast, we present a fast method which segments the image in
regions that do not contain abrupt depth discontinuities. Our strategy was in-
spired by the approach of Narasimhan and Nayar [9], which aims to normalize
the pixels in so-called iso-depth neighborhoods. However, the previous method
requires two pictures in order to identify such regions for their normalization
operation. When using multiple images, it becomes possible to identify such iso-
depth neighborhoods, as they are invariant to the weather conditions and do not
contain sudden depth discontinuities [9].

There are many possible strategies to create a dehazed image after a per pixel
identification of hazy regions. In this work, we propose a layer-based method,
which aims at preserving a maximum amount of detail, while still retaining
sufficient speed. We initiate our algorithm by creating several new images Ii,
with i ∈ [1, k] and k layers, in which we remove a decreasingly growing portion
of the airlight constant color A∞ from the initial hazy image I:

Ii = I − ci ·A∞. (6)

with the iteratively increasing airlight contribution factor ci. Parameter ci is a
scalar value in the range [0, 1] with its value depending by the number of layers.

After applying our haze detection operation on Ii, only the pixels with a
sufficiently low hue disparity are labeled as being part of layer Li. In the absence
of the scene geometry, discretization of the image in k distinct layers enables us
to estimate the values of ci that correspond to the most dominant depth layers of
the scene. For instance, when the scene contains two objects located at different
depths, the transmission map will be characterized by two dominant values (as
the airlight is correlated with the distance). Finally, these layers are blended into
a single composite haze-free image. In order to smooth the transitions between
the different layers, the number of extracted layers k needs to be at least 5 or
more. As can be observed in Fig. 5 every layer (except the first one) includes
the pixels of the previous layer, but with different levels of attenuation. The
fast generated results in our paper have been yielded using a default value of 5



10 Codruta Ancuti et al.

layers and the values for ci: [0.2; 0.4; 0.6; 0.8; 1]. To obtain the haze-free image
I0, the layers are blended in the descending order of the airlight contribution. A
naive approach would consist of simply copying the pixels from each layer on the
next, but this might generate unpleasing artifacts due to small discontinuities
(see Fig. 5). In order to remove such undesirable transitions artifacts, each layer
will contribute a small percentage onto the next layer, according to the following
equation:

I0 =

k∑

i=1

χiLi. (7)

where the scalar parameter χi weights the contribution of the layers pixels,
increasing exponentially according with the layer number. Splitting the input
image into non-uniform neighborhoods that contains approximately uniform
airlight generates good results, even when using only a single image. In compar-
ison, algorithms that are based upon fixed-size patches may introduce artifacts
because these uniform patches do not consider the intensity distribution of the
small region. Moreover, our straightforward pixel based strategy is computation-
ally effective overcoming the existing single image dehazing approaches (see the
next section for comparative processing times).

6 Discussion

6.1 Haze Detection

As we have stated in the introduction, we believe to be the first to present an
algorithm for per pixel haze detection. It could be stated that the algorithm of
He et al. [3], an extension of the dark object technique common in the remote
sensing community [6], could also be regarded as a method for haze area de-
tection. However, in order to create the dark channel, their technique employs
a patch-based approach which is unable to properly preserve any detail. When
taking a closer look at Fig. 6, the patch-like structure of the dark channel images
immediately becomes apparent. The black regions associated with haze-free ar-
eas do not reflect the true haze-free area borders. It is important to note that
these transitions need to be recovered properly, as edges between two regions
characterized by large illumination differences can generate prominent halo arti-
facts. This is the result of using patches with a constant dimension, which do not
consider the intensity distribution of the small region. In constrast, our method
employs a pixel-wise multi-layer strategy, which decomposes the image in regions
that are characterized by small illumination transitions. This approach does not
suffer from halo artifacts, because the regions are non-uniform and respect the
image intensity distribution.

6.2 Haze Removal

We have tested our approach on a large data set of natural hazy images. Fig-
ure 7 illustrates results (our dehazed image and the computed transmission map)
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Foggy images Our result Transmission Tan [2008]

Kratz & Nishino [2009]

He et al. [2009]

Fig. 7. Comparative haze removal results. From left to right: initial foggy images, our
restored results, our estimated transmissions (depth map) and the corresponding results
obtained by Tan [2] , He et al. [3] and Kratz and Nishino [5] respectively.

obtained for three foggy images by our technique, compared to the methods of
Tan [2],He et al. [3] and Kratz and Nishino [5]. All the figures presented in this
paper and supplementary material contain the original restored images provided
by the authors. As can be observed, we are able to enhance the images while
retaining even very fine details. Furthermore, our method accurately preserves
the color of the objects in the scene. Another set of images is provided in Fig. 9,
where the top lines show comparative results obtained by the techniques of Fat-
tal [1], He et al. [3], Tarel and Hautiere [4] and our method. It should be noted
that in the discussion above, we have limited ourselves to images in which the
scene is sufficiently illuminated. Even though the method performs generally
well, for poorly lit scenes (an extreme case of such problem), like previous single
image dehazing techniques, our approach may have trouble to accurately detect
hazy regions. This limitation is due to the hypothesis of the considered opti-
cal model that assumes that regions characterized by small intensity variations
contain no depth discontinuities.

As previously mentioned our approach has the advantage to perform faster
than related algorithms. Our method implemented on CPU (Intel 2 Duo 2.00
GHz) processes an 600×800 image in approximately 0.013 seconds being suitable
for real-time outdoor applications. In comparison, the technique of Tarel and
Hautiere [4] processes an 480 × 600 image in 0.2 seconds. However, as can be
observed in Fig. 8 the patch-based method of Tarel and Hautiere [4] risks to
introduce artifacts close to the patch transitions but also to distort the global
contrast. The method of Tan [2] requires more than 5 minutes per image while
the technique of Fattal [1] computes an 512 × 512 image in 35 seconds. The
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Foggy image Kopf et al. [2008] Tarel & Hautiere [2009] Our result

Fig. 8. From left to right: initial foggy image, the result obtained by Deep Photo [15]
that employs additionally an approximated 3D model of the scene, the result of Tarel
and Hautiere [4] and our result.

algorithm of He et al. [3] takes approximately 20 seconds per image while the
computation times of the techniques of Kratz and Nishino [5] were not reported.

6.3 Evaluating Dehazing Methods

Since there is no specialized evaluation procedure of the dehazing techniques we
searched the recent literature for an appropriate method for this task. Tarel and
Hautiere [4] evaluate the quality of dehazing techniques based on a visibility
resaturation procedure [19]. Because this procedure only applies to grayscale
images and is mainly focused on finding the most visible edges, we searched for
a more general method that is able to perform a pixelwise evaluation of the
dehazing process.

In this work, we have employed the Image Quality Assessment (IQA) qual-
ity measure introduced recently by Aydin et al. [20], which compares images
with radically different dynamic ranges. This metric, carefully calibrated and
validated through perceptual experiments, evaluates both the contrast and the
structural changes yielded by tone mapping operators. The IQA metric is sensi-
tive to three types of structural changes: loss of visible contrast (green) - con-
trast that was visible in the reference image is lost in the transformed version,
amplification of invisible contrast (blue) - contrast that was invisible in the ref-
erence image becomes visible in the transformed image, and reversal of visible
contrast (red) - contrast visible in both images, but with different polarity. As
a general interpretation, contrast loss (green) has been related with image blur-
ring, while contrast amplification (blue) and reversal (red) have been connected
to image sharpening.

Since these modifications are closely related to our problem, we have found
this measure to be more appropriate as a means to evaluate the resaturation of
hazy regions after applying different dehazing techniques.

Figure 9 shows the comparative results of applying the IQA metric on two
foggy images and their dehazed versions, using the method of Fatal [1], He et
al. [3], Tarel and Hautiere [4] and ours. The bottom-left table of Fig. 9 dis-
plays the comparative ratios of the (colored) pixels yielded by the IQA measure
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Fattal [2008] He et al. [2009] Tarel and Hautiere [2009] Our resultFoggy image
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LossLoss Ampl Revers

Probability Scales(%)

Image quality metric

Fatal [2008]

He et al. [2009]

Tarel et al. [2009]

Our result

LOSS (%) AMPL (%) REVERS (%)

0.03 2.9 8.3

2.1 0.23 0.17

2.3 1.2 6.8

1.7 0.21 7.7

Fig. 9. Evaluation of the results using the IQA metric. The top two lines present the
comparative results obtained by Fattal [1], He et al. [3], Tarel and Hautiere [4] and our
method. The bottom two lines show the results after applying the IQA between initial
image and the restored version. The left bottom table presents the ratio of the color
pixels (with a probability scale higher than 70%) counted for each method.

when applied to the results of the considered dehazing methods. Following the
recommendation of Aydin et al. [20], in order to reduce the possibility of mis-
classification, only the pixels with a probability scale higher than 70% have been
considered. Based on the results from the table, it becomes clear that compared
with the other techniques, the structural changes yielded by our algorithm are
more closely related to sharpening operations (blue and red pixels) and less
related with blurring (green pixels).

7 Conclusions

In this work, we have presented a single-image dehazing strategy which does not
make use of any additional information (e.g. images, hardware, or available depth
information). Our approach is conceptually straightforward. Based on a per pixel
hue disparity between the observed image and its semi-inverse, we are able to



14 Codruta Ancuti et al.

identify the hazy regions of the image. After we have identified these regions,
we are able to produce a haze-free image using a layer-based approach. The
processing time of our technique is very low, even when compared to previous
methods who were designed and optimized for speed. In the future, we will be
investigating a more comprehensive optical model, as well as extending our work
to the problem of video dehazing.
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