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ABSTRACT 

 

Service network design for freight transportation is 

concerned with the selection and characteristics of routes 

on which services are provided. An efficient service 

network design should take empty container repositioning 

movements into account. These empty container 

movements are highly interrelated with loaded container 

transports. Unfortunately, most existing models do not 

consider both types of movements together. In this paper, a 

model for service network design in intermodal barge 

transportation is presented. Both loaded container transports 

and empty container repositioning movements are taken 

into account. The model is applied to the Albert Canal 

which connects the port of Antwerp with four hinterland 

ports. Several possible assumptions and empty container 

management scenarios are defined. The optimal shipping 

route under different demand conditions is calculated and 

the optimal location of an empty container hub in the 

hinterland is determined. Finally, the model is extended to a 

multi period model to cope with transport demand variation 

over periods. 

 

1. INTRODUCTION 

 

During the last two decades intermodal barge transport has 

gained market share in Northwestern Europe, with annual 

growth figures of 10% to 15% (Konings 2003). Currently, 

barge transport plays an important role in the hinterland 

access of major sea ports in this region. For the port of 

Antwerp in Belgium, the share of barge transport in the 

modal split rose from 22.5% to 34.8% between 1999 and 

2009 (Port of Antwerp, 2009). Although many interesting 

contributions to literature have been made, Caris et al. 

(2008) indicate several intermodal planning problems that 

need further research attention, like service network design 

for intermodal barge transport. 

Crainic and Laporte (1997) state that service network 

design is an important issue at the tactical decision level for 

intermodal transportation. It is involved with the selection 

of routes on which services are offered and the 

determination of characteristics of each service, particularly 

their frequency. State-of-the-art reviews on service network 

design in freight transportation are presented by Crainic 

(2000) and Wieberneit (2008). An overview of models for 

service network design in intermodal transportation may be 

found in Crainic and Kim (2007). Research on service 

network design specifically for intermodal barge 

transportation is scarce. Groothedde et al. (2005) discuss 

the design of a hub network for transporting palletized fast 

moving consumer goods by barge and road transport. Maras 

(2008) investigates the design of an optimal barge shipping 

route in a linear network. Caris et al. (2010) study the 

advantages of cooperation between hinterland terminals and 

different bundling strategies for barge transportation in the 

hinterland of the port of Antwerp. 

Empty container repositioning is an important aspect that 

might be taken in to account when creating a service 

network for intermodal barge transportation and for freight 

transportation in general (Crainic, 2000). Because of 

regional imbalances between import and export volumes, 

some terminals or ports will create a surplus of empty 

containers, while others will face a deficit. In order to be 

able to satisfy future requests for empty containers by 

shippers, empty containers need to be repositioned. In barge 

transportation, these repositioning movements are made by 

using excess capacity of container ships (Choong et al. 

2002; Maras 2008). Since these movements often represent 

a large part of the overall movements, they should be taken 

into account when creating service networks. 

Empty container repositioning at a global level, in the 

context of maritime shipping network design, is studied 

among others by Shen and Khoong (1995), Cheung and 

Chen (1998), Lam et al. (2007) and Li et al. (2007). Also a 

large amount of research exists on empty container 

repositioning at a regional level, between shippers, 

consignees, depots and terminals (Crainic et al. 1993; Olivo 

et al. 2005; Jula et al. 2006; Chang et al. 2008). 

Unfortunately, all these papers optimize empty container 

flows without considering loaded container movements or 

by considering loaded container movements as given. Only 

a few papers consider the simultaneous optimization of 

loaded and empty container flows (Erera et al. 2005; Song 

and Dong 2008; Bandeira et al. 2009; Huth and Mattfeld 

2009; Braekers et al. 2010). 

Empty container repositioning in barge transportation is 

studied by Choong et al. (2002) and Maras (2008). Choong 



 

 

et al. (2002) study the operational side of the empty 

container repositioning problem in intermodal barge 

transportation. The authors assume loaded container 

transports by barge to be known. They formulate a model 

that minimizes repositioning costs over multiple periods by 

using excess ship capacity and other uncapacitated, but 

more expensive transport modes (truck, rail). Experimental 

results show that a longer planning horizon can give better 

empty distribution plans because the use of slower but 

cheaper transport modes like barge is encouraged. 

To the authors’ knowledge only Maras (2008) investigates 

empty container repositioning in the context of service 

network design for barge transportation. Maras (2008) 

adapts a model introduced by Shintani et al. (2007) for 

service network design in maritime shipping. In the model 

of Shintani et al. (2007) the profit maximizing shipping 

route between a number of sea ports is determined. Not all 

ports have to be visited, but if a port is visited all transport 

demand at that port has to be satisfied. Container in- and 

outflow is balanced at every port, either by empty container 

repositioning using excess capacity or by leasing and 

storing empty containers. The problem is solved by a 

genetic algorithm. 

Maras (2008) adapts the model of Shintani et al. (2007) to 

the context of barge transportation. The author considers 

the viewpoint of a logistic service provider or shipping 

company that wants to charter a single ship to offer a 

roundtrip barge service between a fixed start and end port. 

The objective is to maximize profit, while it is assumed that 

non-profitable transport requests may be turned down. The 

problem is to define which intermediary hinterland ports 

need to be visited between the start and end port, while 

taking both loaded container transport and empty container 

repositioning movements into account. Empty containers 

may be transported between any pair of ports and leased or 

stored at every port. Not all transport demand at a visited 

port has to be satisfied. Instead, it is assumed that any 

number of containers smaller than the transport demand 

may be transported between two ports. The model is 

applied to a sequence of ten ports. Since the number of 

possible routes is far lower in barge transportation than in 

maritime shipping because all ports are situated across a 

single axis, Maras (2008) is able find optimal solutions by 

using commercial software. The author finds the maximum 

profit for five types of ships under a single transport 

demand situation. 

In this paper, the model of Maras (2008) is extended in 

several ways and applied to the management of hinterland 

transport chains in Western Europe. A dummy port is 

introduced so that the starting port should not be 

predefined. More realistic assumptions regarding fulfilling 

transport demand at hinterland ports are made. The model 

formulation is adapted to represent the situation of the 

Albert Canal which connects four hinterland ports with two 

clusters of terminals in the port of Antwerp. Three possible 

empty container management scenarios are defined and the 

optimal location for an empty container hub in the 

hinterland is determined. The model is tested for all 

scenarios under different transport demand conditions. 

Finally, the model is extended to a multi period model, 

including storage and leasing options, to handle situations 

where transport demand is not the same every period. 

A detailed problem description is given in Section 2. The 

network structure, adapted to the Albert Canal, is presented 

in Section 3. The formulation of the single period model 

and experimental results are presented in Section 4. In 

Section 5, the multi period model is described. Finally, in 

Section 6 conclusions are drawn and future research 

opportunities are identified. 

 

2. PROBLEM DESCRIPTION 

 

In this paper, the viewpoint of a logistic service provider or 

shipping company that wants to offer a regular barge 

service between a sea port and some hinterland ports is 

considered. The decision maker has to determine which 

loaded containers are to be transported and thus which 

hinterland ports need to be visited. The objective is to 

maximize profit. Revenues are generated by loaded 

container transports. Costs of performing the loaded 

container transports and empty container repositioning 

costs are taken into account. Although empty containers 

may be transported at a marginal cost using excess 

capacity, these movements cause handling costs, take 

loading and unloading time and reduce the capacity 

available for loaded container transports (Choong et al. 

2002; Maras 2008). At each port, the total number of 

containers coming in and going out needs to be balanced. In 

contrast with Maras (2008), no leasing and storage option is 

considered in the single period model. Since it is the 

intention of performing the same route every period, 

continuously leasing containers at a certain port and storing 

containers at another port seems not realistic in our problem 

context. 

The ship starts its route at one of the hinterland ports, 

travels to the port of Antwerp and then returns to the same 

hinterland port. Along the route, one or more hinterland 

ports in-between may be visited. The intermediate ports 

visited upstream may differ from those visited downstream. 

While in the model of Maras (2008) the starting port is 

fixed in advance, this is not the case in this paper. A 

dummy port is introduced as the starting point of the ship, 

which means that the actual starting port is decided by the 

model. 

As mentioned in the introduction, Maras (2008) assumes 

that any number of loaded containers may be transported 

between two ports as long as this number is smaller than the 

transport demand between these two ports. In this paper, 

two more realistic assumptions are proposed and the model 

is tested for both. The first assumption is that all transport 

demand originating from a hinterland port should be 

fulfilled when it is visited downstream. Likewise, all 

transport demand to a port should be fulfilled when it is 

visited upstream. Upstream and downstream decisions are 

made separately. The second assumption is that transport 

demand to and from a certain hinterland port is the sum of 

the transport demand of several clients. Therefore, the 

decision maker may choose to serve one, several or all of 

these clients. This means that the total transport demand at 

a port is made up of several blocks and that the number of 



 

 

containers transported should be a combination of these 

blocks. 

Finally, three different empty container management 

scenarios are considered in this paper. Scenario one 

represents the case where empty containers may only be 

transported to and from an empty container hub located in 

the port area. In the second scenario, an empty container 

hub is located in one of the hinterland ports besides the hub 

in the port area. In the third scenario, a hub is located in all 

ports which means that empty containers may be 

transported between all pairs of ports. 

 

3. NETWORK 

 

The model presented in this paper is applied to the situation 

of the Albert Canal which connects the port of Antwerp 

with hinterland ports in Deurne, Meerhout, Genk and Luik. 

In the port area of Antwerp, two clusters of sea terminals 

can be identified, one on the right river bank and one on the 

left river bank (see Figure 1). Both clusters are separated by 

three lock systems, which means ships have to pass through 

a lock in the port area to sail from one cluster to another. 

 

 
 

Figure 1: The Albert Canal 

 

Because travelling from one river bank to the other may 

take two and a half hours, both clusters are considered as a 

separate port. It is assumed that a ship may visit a river 

bank only once each roundtrip. If it is decided to visit both 

river banks, the order of visiting should be free to choose 

since this may have an impact on the capacity available to 

reposition empty containers in some of the scenarios 

described in Section 2. In order to preserve the linear 

representation of the ports, a duplicate node is created for 

the cluster at the right river bank. Next, all hinterland ports 

and the dummy port are duplicated to facilitate the 

formulation of the problem. The final network 

representation is shown in Figure 2. The dummy port is 

represented by nodes 1 and 13, Luik by nodes 2 and 12, 

Genk by nodes 3 and 11, Meerhout by nodes 4 and 10, 

Deurne by nodes 5 and 9, Antwerp right river bank by 

nodes 6 and 8 and finally Antwerp left river bank by node 

7. The ship starts and ends at the dummy port (node 1 and 

13) and can only travel from a node to another node with a 

higher number. 

 

4. SINGLE PERIOD MODEL 

 

4.1 Problem Formulation 

 

In this section the problem formulation for the single period 

model is presented. The following notation is used: 

 

𝑃 = 1, … ,13 = set of 13 ports 

𝐿 =   𝑖, 𝑗  | 𝑖 ∈ 𝑃\13, 𝑗 ∈ 𝑃\1, 𝑖 < 𝑗  
𝑐𝑖
𝑒 = entry cost at port 𝑖 (€) 

𝑐𝑖
ℎ = handling cost at port 𝑖 (€/TEU) 

𝑡𝑖
𝑎 = standby time for arrival at port 𝑖 (h) 

𝑡𝑖
𝑑 = standby time for departure at port 𝑖 (h) 

𝑡𝑖
ℎ = handling time per container  

         at port 𝑖 (h/TEU) 

𝑡𝑚𝑎𝑥 = maximum roundtrip time (days) 

𝑐𝑐ℎ = daily charter costs (€/day) 

𝑐𝑓 = fuel price (€/ton) 

𝑐𝑙 = lubricant price (€/ton) 

𝑠𝑓𝑐 = specific fuel consumption (tons/kWh) 

𝑠𝑙𝑐 = specific lubricant consumption (tons/kWh) 

𝑁𝑖𝑛𝑠𝑡 = engine output/propulsion (kW) 

𝐶𝐴𝑃 = ship capacity (TEU) 

𝑌 = profit (€) 
𝑅 = total revenues (€) 

𝐶 = total costs (€) 

𝐶𝑐ℎ𝑎𝑟 = ship charter costs (€) 

𝐶𝑓𝑢𝑒𝑙 = voyage fuel costs (€) 

𝐶𝑙𝑢𝑏𝑟 = voyage lubricant costs (€) 

𝐶𝑒𝑛𝑡𝑟 = total port entry costs (€) 

𝐶ℎ𝑎𝑛𝑑 = total handling costs (€) 

𝑇 = roundtrip time (h) 

𝑇𝑡𝑟𝑎𝑣 = total travel time (h) 

𝑇𝑒𝑛𝑡𝑟 = total time entries (h) 

𝑇ℎ𝑎𝑛𝑑 = total handling time (h) 

 

For all combinations of ports 𝑖 and 𝑗 with  𝑖, 𝑗 ∈ 𝐿, the 
following parameters and variables are introduced: 
 

𝑟𝑖𝑗 = loaded container freight rate (€/TEU) 

𝑑𝑖𝑗 = loaded container transport demand (TEU) 

𝑡𝑖𝑗 = travel time (h) 

𝑥𝑖𝑗 = loaded containers transported (TEU) 

𝑦𝑖𝑗 = empty containers transported (TEU) 

𝑧𝑖𝑗 =  
1          if ports 𝑖 and 𝑗 are directly connected

0          else
  

 

 

 

 

 
 

Figure 2: Network Representation 



 

 

The problem is formulated as follows: 

 

𝑀𝑎𝑥 𝑌 = 𝑅 − 𝐶 (1) 

 

Subject to: 

 

𝑅 =   𝑥𝑖𝑗 ∙ 𝑟𝑖𝑗(𝑖 ,𝑗 )∈𝐿   (2) 

 

𝐶 = 𝐶𝑐ℎ𝑎𝑟 + 𝐶𝑓𝑢𝑒𝑙 + 𝐶𝑙𝑢𝑏𝑟 + 𝐶𝑒𝑛𝑡 + 𝐶ℎ𝑎𝑛𝑑   (3) 

 

𝐶𝑐ℎ𝑎𝑟 = 𝑐𝑐ℎ ∙ 𝑡𝑚𝑎𝑥   (4) 

 

𝐶𝑓𝑢𝑒𝑙 = 𝑐𝑓 ∙ 𝑠𝑓𝑐 ∙ 𝑁𝑖𝑛𝑠𝑡 ∙  𝑧𝑖𝑗 ∙ 𝑡𝑖𝑗(𝑖 ,𝑗 )𝜖𝐿   (5) 

 
𝐶𝑙𝑢𝑏𝑟 = 𝑐𝑙 ∙ 𝑠𝑙𝑐 ∙ 𝑁𝑖𝑛𝑠𝑡 ∙  𝑧𝑖𝑗 ∙ 𝑡𝑖𝑗(𝑖 ,𝑗 )𝜖𝐿   (6) 

 

𝐶𝑒𝑛𝑡𝑟 =  𝑧𝑖𝑗 ∙ 𝑐𝑗
𝑒

 𝑖 ,𝑗  ∈𝐿
𝑖≠1

 (7) 

 
𝐶ℎ𝑎𝑛𝑑 =  (𝑥𝑖𝑗 + 𝑦𝑖𝑗 )(𝑐𝑖

ℎ + 𝑐𝑗
ℎ)(𝑖 ,𝑗 )∈𝐿   (8) 

 

𝑥𝑖𝑗 ≤ 𝑑𝑖𝑗 ∙  𝑧𝑖𝑞
𝑗
𝑞=𝑖+1              (𝑖, 𝑗) ∈ 𝐿  (9) 

 

𝑦𝑖𝑗 ≤ 𝐶𝐴𝑃 ∙  𝑧𝑖𝑞
𝑗
𝑞=𝑖+1            (𝑖, 𝑗) ∈ 𝐿   (10) 

 

𝑥𝑖𝑗 ≤ 𝑑𝑖𝑗 ∙  𝑧𝑞𝑗
𝑗−1
𝑞=𝑖                   (𝑖, 𝑗) ∈ 𝐿  (11) 

 

𝑦𝑖𝑗 ≤ 𝐶𝐴𝑃 ∙  𝑧𝑞𝑗
𝑗−1
𝑞=𝑖                (𝑖, 𝑗) ∈ 𝐿  (12) 

 

   𝑥𝑞𝑠 + 𝑦𝑞𝑠 ≤ 𝐶𝐴𝑃 + 𝑀 1 − 𝑧𝑖𝑗  
𝑛
𝑠=𝑗

𝑖
𝑞=1           

                                                                       (𝑖, 𝑗) ∈ 𝐿   (13) 

 

  𝑥𝑗𝑖 + 𝑦𝑗𝑖  (𝑗 ,𝑖)∈𝐿 −  (𝑥𝑖𝑗 + 𝑦𝑖𝑗 )(𝑖 ,𝑗 )∈𝐿 = 0         𝑖 ∈ 𝑃  (14) 

 

 𝑧1𝑗
13
𝑗=2 = 1  (15) 

 

 𝑧𝑖13
𝑛−1
𝑖=1 = 1 (16) 

 

𝑧1.2 = 𝑧12.13   (17) 

 

𝑧1.3 = 𝑧11.13   (18) 

 

𝑧1.4 = 𝑧10.13   (19) 

 

𝑧1.5 = 𝑧9.13   (20) 

 

 𝑧𝑖6
5
𝑖=1 +  𝑧𝑖8

7
𝑖=1 ≤ 1  (21) 

 

 𝑧𝑖𝑞
𝑞−1
𝑖=1 −  𝑧𝑞𝑗

13
𝑗=𝑞+1 = 0          𝑞 = 2, … ,12  (22) 

 

𝑇 = 𝑇𝑡𝑟𝑎𝑣 + 𝑇𝑒𝑛𝑡𝑟 + 𝑇ℎ𝑎𝑛𝑑   (23) 

 

𝑇 < 24 ∙ 𝑡𝑚𝑎𝑥   (24) 

 

𝑇𝑡𝑟𝑎𝑣 =  𝑧𝑖𝑗 ∙ 𝑡𝑖𝑗(𝑖 ,𝑗 )∈𝐿   (25) 

 

𝑇𝑒𝑛𝑡𝑟 =  𝑧𝑖𝑗 ∙ (𝑡𝑖
𝑑 + 𝑡𝑗

𝑎) 𝑖 ,𝑗  ∈𝐿
𝑖≠1,𝑗≠13

   (26) 

 

𝑇ℎ𝑎𝑛𝑑 =   𝑥𝑖𝑗 + 𝑦𝑖𝑗  ∙ (𝑡𝑖
ℎ + 𝑡𝑗

ℎ)(𝑖 ,𝑗 )∈𝐿   (27) 

 

𝑥𝑖𝑗  integer        (𝑖, 𝑗) ∈ 𝐿   (28) 

 
𝑦𝑖𝑗  integer        (𝑖, 𝑗) ∈ 𝐿   (29) 

 
𝑧𝑖𝑗 =  0,1        (𝑖, 𝑗) ∈ 𝐿   (30) 

 

The objective is to maximize profit, represented by 

revenues minus total costs (1). Revenues are calculated by 

multiplying the number of loaded containers transported 

between two ports and the corresponding freight rate (2). 

Total costs are the sum of ship charter costs, fuel costs, 

lubricant costs, port entry costs and container handling 

costs (3). Ship charter costs are determined by the 

maximum roundtrip time and daily charter costs (4). Fuel 

and lubricant costs depend on the distance travelled, engine 

power of the ship and the respective fuel and lubricant 

prices (5,6). Port entry costs are calculated in equation (7). 

Handling costs for both loaded and empty containers are 

calculated in equation (8). Constraints (9), (10), (11) and 

(12), together with constraint (22), ensure that no loaded or 

empty containers are transported between two ports when 

they are not connected. The capacity of the ship is 

controlled by constraint (13). For each port, container 

inflow and outflow should be the same (14). The ship must 

start and end at the dummy port (15,16) and the final real 

port must be the one corresponding with the first real port 

(17,18,19,20). The right river bank, represented by nodes 6 

and 8, may only be visited once (21) and when a ship enters 

a port, it should also leave it (22). The total time of the 

roundtrip is the sum of the travel time, port entry time and 

container handling time (23) and must be lower than the 

maximum roundtrip time (24). The travel time, port entry 

time and container handling time are calculated by 

equations (25), (26) and (27). Finally, the number of loaded 

and empty containers transported should be integer values 

and the linking variables between nodes are binary 

variables (28,29,30). 

Under the assumption that all transport demand at a port 

needs to be fulfilled when the port is visited, the following 

constraints are added: 

 

𝑥𝑖𝑗 = 𝑑𝑖𝑗 ∙ 𝑎𝑖𝑗       (𝑖, 𝑗) ∈ 𝐿    (31) 

 

𝑎𝑖𝑗 =  0,1            (𝑖, 𝑗) ∈ 𝐿    (32) 

 

Under the assumption that the transport demand at each 

port is divided into a number of blocks, the following 

parameters and constraints are added: 

 

𝐵𝑖𝑗 = number of demand blocks between 𝑖 and 𝑗 

𝑑𝑖𝑗
𝑏 = transport demand in block 𝑏 between 𝑖 and 𝑗 (TEU) 

              with  𝑑𝑖𝑗
𝑏

𝑏∈𝐵𝑖𝑗
= 𝑑𝑖𝑗   



 

 

 
𝑥𝑖𝑗 =  𝑑𝑖𝑗

𝑏 𝑒𝑖𝑗
𝑏

𝑏∈𝐵𝑖𝑗
        (𝑖, 𝑗) ∈ 𝐿 (33) 

 

𝑒𝑖𝑗
𝑏 =  0,1                       (𝑖, 𝑗) ∈ 𝐿, 𝑏 ∈ 𝐵𝑖𝑗  (34) 

 

Finally, for each empty container management scenario, the 

appropriate values of 𝑦𝑖𝑗  are set to be zero. 

 

4.2 Experimental Results 
 

Experimental results for the single period model are 

presented in this section. The model is applied to the 

situation of the Albert Canal for a ship with a capacity of 

120 TEU. Maximum roundtrip time is set at two days. 

Figures for cost and time parameters are based on real 

values or found in other research papers (Konings 2007; 

Maras 2008). The model is solved using Lingo 10.0. 

Artificial but realistic data are used for the loaded container 

transport demand. For each hinterland port, transport 

demand to and from each cluster in the port area ranges 

between 20 and 40 TEU, between 50 and 70 TEU or was 

set to zero. Fifteen different demand situations are defined, 

varying from each other in terms of: 

- balanced or unbalanced distribution of demand 

over the hinterland ports, 

- balanced or unbalanced downstream and upstream 

demand, 

- transport demand to and from one or both clusters 

at the port. 

For each situation, two instances are generated. Together 

with ten random instances, this results in a set of 40 

problem instances.  

In Section 2, two assumptions for fulfilling transport 

demand are described and three empty container 

management scenarios are presented: an empty container 

hub in the port area, a hub in the port area and in the 

hinterland or a hub at every port. A distinction is made 

whether the hub in the port area is located on the left or 

right river bank, or on both river banks. 

For each of the 40 problem instances, the optimal shipping 

route is determined for all combinations of demand 

assumptions and empty container management scenarios. 

Results are shown in Table 1. The rows represent the 

different empty container management scenarios. For 

scenario two the hub in the hinterland may be located in 

Deurne (2-D), Meerhout (2-M), Genk (2-G) or Luik (2-L). 

The columns distinguish between the two demand 

assumptions and the three possibilities for hub location in 

the port area. Results for the third empty container 

management scenario are always the best. For the other 

scenarios the relative gap with the profit of scenario three is 

shown.  

Table 1 shows that results for the first empty container 

scenario are worse than those of scenarios two and three, 

especially for the case where all transport demand needs to 

be fulfilled at a port. When comparing scenarios one and 

two, it seems that a network with a single empty container 

hub in the hinterland already gives substantially better 

results compared with a network with only a hub in the port 

area. Results are even better when a hub is located at every 

port. 

The model formulation allows to determine the optimal 

inland location of an empty container hub. It can be seen 

that on average Genk is the best location under all 

circumstances. However, the difference with other locations 

is often small. When using the model in practice, the 

decision where to locate a hub should therefore be based on 

accurate cost and demand information. 

An empty container hub on the right river bank in the port 

area gives on average better results than a hub on the left 

river bank. Probably this is due to the fact that the travel 

time from the right river bank to the hinterland ports is 

smaller than for the left river bank. When a hub is located at 

both river banks, results are even better. 

 

Table 1: Overview of Results 

 

Scen. All Blocks 

 Left Right Both Left Right Both 

1 16.39 13.05 8.66 8.80 7.78 4.95 

2-D 7.14 4.99 4.01 4.85 4.77 3.75 

2-M 4.72 3.20 2.10 4.54 4.45 3.39 

2-G 4.35 2.74 1.74 3.76 3.88 2.82 

2-L 9.66 7.23 5.74 4.24 4.19 3.47 

3 - - - - - - 

 

No large difference in the average loading degree of the 

ship is found between the different demand assumptions 

and empty container management scenarios. When 

travelling between two ports, on average 70% of the 

capacity is taken up by loaded containers, while 6% is used 

for empty container repositioning. The number of 

hinterland ports visited is on average 2.41. Roundtrip time 

is almost always equal to the maximum of two days, 

implying that time represents a restriction on the number of 

containers that can be transported. Only in 65% of the 

experiments both clusters in the port area are visited. The 

time restriction may be a reason for this, since travelling 

between both clusters takes a considerable amount of time.  

 

5. MULTI PERIOD MODEL 

 

In the previous sections it is assumed that transport demand 

is the same in every period. A single period model is used 

since the optimal shipping route does not change and each 

period the same number of loaded and empty containers are 

transported. In reality, transport demand will not be 

constant over periods. For example, some shippers may 

want containers to be transported every week, while others 

only require containers to be transported once every two 

weeks. In order to handle these kind of situations, the 

model described in the previous sections is extended to a 

multi period model. 

For each period, the optimal shipping route is defined. This 

route is not necessarily the same for each period. However, 

if the transport demand of a certain client is fulfilled in one 

period, it should also be fulfilled in the other periods. 

Short term container leasing and storage options are 

introduced in the multi period model, while they are not 



 

 

considered in the single period model. Since the number of 

loaded containers transported between two ports may differ 

from period to period, empty container repositioning needs 

will also change. A port may have a surplus of empty 

containers in one period and a deficit in another. In that 

case, temporarily storing empty containers at a port and 

leasing empty containers elsewhere could be an interesting 

option. Empty container repositioning costs and handling 

time are saved and more capacity is available to transport 

loaded containers. The extra costs due to leasing and 

storing containers are introduced in the model. These costs 

depend on the duration of the lease and storage. The model 

decides which option, repositioning empty containers or 

leasing and storing empty containers, is the best in each 

situation. 

Each port has a starting stock of empty containers available 

(this can be zero). At the end of the planning period, the 

same amount of containers should be located at that port. 

Finally, it is assumed that empty containers can only be 

leased and returned at ports where an empty container hub 

is located. Storing containers is possible at every port. 

To test the multi period model, ten random two period 

problem instances are generated with transport demand at 

each port varying between both periods. The length of a 

period is assumed to be a single week and empty container 

inventory at every port is assumed to be zero at the 

beginning of the first week. Results are obtained for all 

three empty container management scenarios. The empty 

container hub in the port area is assumed to be located on 

the right river bank. For the second scenario the hinterland 

hub is assumed to be located in Genk, since this gave the 

best results for the single period model. Only the 

assumption where all transport demand in a port has to be 

satisfied is considered. 

Results show that on average the relative gap between the 

profit of the different empty container management 

scenarios increases substantially. Scenarios one and two are 

on average respectively 23.10% and 9.96% worse than 

scenario three, while this was only 13.05% and 2.74% in 

the single period case. The gap between scenario one and 

two is 14.59% (10.60% in the single period case), which 

shows again that a single empty container hub in the 

hinterland has a large positive effect on profit in 

comparison with the situation where there is only a hub in 

the port area. 

Another interesting finding is that increasing the planning 

horizon may offer better results. Choong et al. (2002) show 

that using a longer planning horizon may offer better empty 

container distribution plans because slower but cheaper 

transport modes like barge may chosen over faster but more 

expensive modes like road transport. The multi period 

model described in this section shows that a longer 

planning horizon may also offer benefits when optimizing 

loaded and empty container movements in barge 

transportation simultaneously. When the planning period 

for the two period problem instances is increased to four 

weeks, with the transport demand of weeks three and four 

being the same as those of weeks one and two, slightly 

more profit is generated. Average weekly profit increases 

for empty container management scenario one by 0.02%, 

for scenario two by 1.15% and for scenario three by 0.83%. 

Further research is needed to investigate the cause of these 

improvements. 

 

6. CONCLUSIONS 

 

Empty container repositioning should be taken into account 

when designing a service network for barge transportation. 

The model presented in this paper simultaneously decides 

on which loaded container transports and empty container 

repositioning movements should be performed. The profit 

maximizing route for a ship is determined while taking time 

and capacity restrictions into account. 

The model is applied to the Albert Canal in the hinterland 

of the port of Antwerp. Two assumptions regarding 

fulfilling transport demand and three empty container 

management scenarios are defined. Finally, the model is 

extended to a multi period model that can cope with 

demand variations over periods. 

Results clearly show the advantage of an empty container 

hub in the hinterland, both in the single and multi period 

case. For the single period case, results for a network with a 

hub in the port area and one in the hinterland are even close 

to those of a network with a hub in all ports. Besides, the 

presented models allow to determine the best location of an 

empty container hub in the hinterland. 

Future research could focus on the effect of changing the 

maximum roundtrip time of the ship. Also the tradeoff 

between the capacity of the ship and the frequency of 

service may be investigated. Finally, more insight in the 

results of the multi period model may be gained. 
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