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Classical Liénard equations of degree n ≥ 6 can have
[n−1

2 ] + 2 limit cycles

P. De MaesschalckI , F. Dumortier

Hasselt University, Campus Diepenbeek, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium

Abstract

Based on geometric singular perturbation theory we prove the existence of clas-
sical Liénard equations of degree 6 having 4 limit cycles. It implies the existence
of classical Liénard equations of degree n ≥ 6, having at least [n−12 ] + 2 limit
cycles. This contradicts the conjecture from Lins, de Melo and Pugh formulated
in 1976, where an upperbound of [n−12 ] limit cycles was predicted. This paper
improves the counterexample from Dumortier, Panazzolo and Roussarie (2007)
by supplying one additional limit cycle from degree 7 on, and by finding a coun-
terexample of degree 6. We also give a precise system of degree 6 for which we
provide strong numerical evidence that it has at least 3 limit cycles.

Keywords: slow-fast system, singular perturbations, limit cycles, relaxation
oscillation, classical Liénard equations
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1. Introduction

The so-called Hilbert-Smale problem ([1], 13th problem) asks for the maxi-
mum number of limit cycles that classical Liénard equations can have, depending
on the degree. A scalar second-order differential equation

ẍ+ f(x)ẋ+ x = 0

can be studied in a phase plane as a system{
ẋ = y
ẏ = −x− f(x)y,

(1)

or in the so-called Liénard plane as{
ẋ = y − F (x)
ẏ = −x, (2)
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where F (x) =
∫ x
0
f(s)ds. The systems (1) and (2) are analytically conjugate and

are both called classical Liénard equations. The degree of the Liénard equation
is given by the degree of F . The number of limit cycles of such Liénard equations
can be studied in either form (1) or (2).

In 1976 (see [2]), A. Lins, W. de Melo and C. Pugh conjectured that the
maximum number of limit cycles for a classical Liénard equation of degree n
would be equal to [n−12 ] (the largest integer less than or equal to n−1

2 ), inducing
the occurrence of at most 2 limit cycles in degree 6 and 3 limit cycles in degree 7.
It was not too hard to understand that the conjecture seemed very reasonable.
Up to affine changes in (x, y, t), including a time reversal if necessary, one can
write the function F in system (2) as

F (x) = x2` +
2`−1∑
i=1

aix
i, (3)

in case n = 2`, or

F (x) = x2`+1 +

2∑̀
i=1

aix
i, (4)

in case n = 2` + 1. Systems (2) with a function F as in (3) represent (time-
reversible) centers when all ai, with i odd, are zero. Let us write these ai as
(a1, a3, . . . , a2`−1). There are ` such parameters and they represent “rotational
parameters” (see e.g. [3]), in the sense that if one only changes one of them, for
example a2j+1, in expression (3), then the determinant∣∣∣∣∣∣∣∣∣∣

y −

x2` +

2`−1∑
i=1

i 6=2j−1

aix
i + ã2j−1x

2j−1

 y −

(
x2` +

2`−1∑
i=1

aix
i

)

−x −x

∣∣∣∣∣∣∣∣∣∣
is given by (ã2j−1 − a2j−1)x2j , which has everywhere the same sign as ã2j−1 −
a2j−1, except for x = 0.

In the presence of only one such parameter it clearly follows that system
(2) has no limit cycles. It could be expected that at most ` − 1 limit cycles
could be created under the influence of all (a1, . . . , a2`−1). Some people even
claimed in the literature to have proven this conjecture based on the “rotational
properties” of these parameters. In any case it looked like a good strategy to
try to work along these lines, at least for n = 2`.

However, in [4] has been proven the existence of classical Liénard equations
of degree 7 with at least 4 limit cycles. This easily implied the existence of
classical Liénard equations of degree n, n ≥ 7, with [n−12 ] + 1 limit cycles. The
counterexamples were proven to occur in systems{

ẋ = y −
(
x7 +

∑6
i=2 cix

i
)

ẏ = ε(b− x)
(5)
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Figure 1: To the left: The dynamics of the layer equation and a FSTS cycle. To the right:
the fast dynamics, combined with the slow dynamics on the slow curve

for small ε > 0. By affine coordinate changes in (x, y, t), systems (5) can be
written as (2), with F as in (4), but for large values of ‖a‖ with a = (a1, . . . , a2`).
For more information, see [5] or [6].

System (5) represents a singular perturbation problem. In [4] the parameters

(c1, . . . , c6) were chosen in a way that the function x7 +
∑6
i=2 cix

i had 6 critical
points, permitting to use the results of [7]. The calculations were quite involved
and, as far as we know, no one yet succeeded in finding specific numerical
examples exhibiting 4 limit cycles.

In [8], among other results, one can find a study of systems{
ẋ = y −

(
x2` +

∑2`−1
i=2 cix

i
)

ẏ = ε(b− x)
(6)

in which the ci are such that the function x2` +
∑2`−1
i=2 cix

i has only one critical
point, let us say a minimum. This leads to the simplest possible degenerate
limit periodic sets, from which it is known how to perturb a lot of limit cycles.
A degenerate lps (limit periodic set) for a “layer equation”, as represented by
(6) with ε = 0, is a closed curve consisting of fast orbits and parts of the slow

curve {y = x2` +
∑2`−1
i=2 cix

i}; we also call them slow-fast cycles.
In this paper, we will restrict to the type of slow-fast cycles as represented

in Figure 1, that we call a FSTS-cycle (fast–slow–turning point–slow). Also [8]
dealt with such FSTS-cycles, although represented in the phase plane as in (1)
instead of in the Liénard plane as in (2), as we will do here. The slow curves
that we will encounter in this paper can and will have inflection points, but no
extra critical points besides the one at the origin.

Limit cycles of system (6) that are Hausdorff close to a FSTS-cycle as in
Figure 1 are relaxation oscillations, in the sense that the speed close to the fast
orbit is of order O(1), while the speed near the slow curves is of order O(ε).
The relaxation oscillation itself is of size O(1).

In [8] we succeeded in finding such relaxation oscillations of high multiplicity,
together with a complete unfolding. We did however not obtain new counter
examples to the [2]-conjecture, but could only check the predicted maximum.
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The construction was based on the use of the “slow divergence integral”, whose
definition we will recall now.

Consider a slow-fast family of vector fields{
ẋ = y −H(x, c)
ẏ = ε(b− x)

(7)

with H(x, c) = x2` +
∑2`−1
i=2 cix

i, under the condition that the slow curve {y =
H(x, c)} is like in Figure 1: we more precisely require that h(x, c)/x > 0 (both
for x 6= 0 and for x = 0), where h(x, c) = ∂H

∂x (x, c). For some c ∼ c0 and
x ∈ [x′0, x0] with x′0 < 0 < x0, we can e.g. parameterize the FSTS-cycles by the
value Y at which the fast orbits cut the y-axis. This fast orbit has a specific
ω-limit (ωc(Y ), Hc(ωc(Y ))) and α-limit (αc(Y ), Hc(αc(Y ))) on the slow curve
{y = Hc(x) := H(x, c)}. The FSTS-cycle ΓcY is defined, for a value c, by the
fast orbit through (0, Y ) together with the parts of the slow curve in between
x = ωc(Y ) and x = αc(Y ).

Away from the slow curve (i.e. the singular points of (7) for ε = 0), the
ε-perturbation in (7) does not play an important role, and the dynamics in (7)
can be studied by examining the fast system (e.g. the unperturbed system for
ε = 0). Close to the slow curve however, the ε-perturbation becomes more
relevant. Writing y = H(x, c) + O(ε), and imposing a dynamics along this
graph in (7) yields (h(x, c) +O(ε))x′ = ε(b− x). The slow dynamics is defined
as the leading-order approximation of this dynamical system. For (7), the “slow
dynamics” on the slow part of ΓcY is hence given by

x′ = − x

h(x, c)

and is strictly negative under the assumptions we imposed. This shows that
for ε > 0 small, orbits of (7) are first attracted to the right branch of ΓcY
(following the fast dynamics), and then slowly drift to the left along the slow
curve (following the slow dynamics).

In the forthcoming analysis, the divergence integral along closed orbits of (7)
reveals to be important, as it gives information on the nature of the closed orbit
with respect to its repelling or attracting properties. In a slow-fast context,
orbits spend much more time close to the slow curve than away from the slow
curve, and one can show that the leading-order approximation of the divergence
integral, after multiplication by ε, is given by the so-called slow divergence inte-
gral. One obtains the slow divergence integral by computing the divergence of
the vector field along the slow curve, and integrating this divergence w.r.t. the
1-form induced by the slow dynamics. The slow divergence integral of ΓcY is
given by

I(Y, c) =

∫ αc(Y )

ωc(Y )

h(x, c)2

x
dx. (8)

In [8] we worked at values c0 and cycles ΓY0
c0 for which

∂I

∂c2j+1
(Y0, c0) 6= 0, (9)
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and this for every c2j+1 present in the expression of H(x, c).
Condition (9) is almost always satisfied for systems (6) and leads in [8] to

the proofs of the proposed results on classical Liénard equations. This condition
(9) is like a natural condition to express that the parameter c2j+1 remains
“rotational” in a uniform way when ε → 0 (or in other words, when ‖a‖ with
a = (a1, . . . , a2`−1) as in (3) tends to infinity).

However, in [8], we also encountered combinations (Y0, c0) at which the con-
dition (9) gets violated for all c2j+1 present inH(x, c). This is a quite exceptional
situation that already occurs for n = 6. Investigating such a situation we saw
that it is possible for n = 6 to encounter values c0 for which 4 limit cycles can
be perturbed from the union of FSTS-cycles ΓYc0 that are present in the layer
equation. We more precisely can prove the following theorem:

Theorem 1. Given the (ε, δ, b)-family of polynomial Liénard equations of de-
gree 6 {

ẋ = y −
(
1
2x

2 + 5δx3 − 35
46x

4 − 12δx5 + 21
46x

6
)

ẏ = ε(b− x),
(10)

and given k ∈ {1, 2, 3, 4}, there exists a smooth curve

b = εBk(ε, δ),

defined for ε ∈ [0, ε0] and δ ∈ [−δ0, δ0] (for some sufficiently small ε0 > 0 and
δ0 > 0), along which the vector field (10) has exactly k limit cycles when δ 6= 0
and ε ∈ ]0, ε1(δ)] for some ε1 : [−δ0, δ0]→ R with ε1(δ) > 0 for δ 6= 0. All these
limit cycles are hyperbolic and surround a hyperbolic focus that is attracting
when δ < 0 and repelling when δ > 0.

The proof of Theorem 1 will be given in Section 2. For δ ∼ 0, δ 6= 0, the
limit cycles obtained in Theorem 1 are relaxation oscillations that tend towards
specific slow-fast cycles ΓYi

, i = 1, . . . , k, when δ → 0. We will show that
the heights Yi of these slow-fast cycles are located inside a compact interval
[Ymin, Ymax] that does not depend on (ε, δ) and that is bounded away from 0.
Hence, the canard cycles are relaxation oscillations of size O(1).

As usual in that kind of construction we can take ε1 to be a smooth function
on [−δ0, δ0] with ε1(0) = 0. We can also remark that the functions Bk are in no
way unique. In fact, for every k ∈ {1, 2, 3, 4}, there is an infinity of such curves.
More precise information can be found in Section 2.2.

Let (ε, δ, b) = (ε0,−ν0, b0) be fixed and let{
ẋ = y −H(x, ν0)
ẏ = ε0(b0 − x),

(11)

with H(x, ν0) = 1
2x

2 − 5ν0x
3 − 35

46x
4 + 12ν0x

5 + 21
46x

6, represent a system with
4 hyperbolic limit cycles, of which the largest one is attracting (hence with
ν0 > 0). If we change H(x, ν0) in (11) by H(x, ν0) + ν1x

7, for ν1 sufficiently
small, then the four limit cycles persist. Moreover, by taking ν1 < 0, the circle
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at infinity will be attracting (see e.g. [9]) and the new system of degree 7 will
have at least 5 limit cycles of odd multiplicity. Fixing such ν1 < 0, ν1 ∼ 0, and
considering H(x, ν0) + ν1x

7 + ν2x
8 with ν2 sufficiently small, will give a system

of degree 8 with at least 5 limit cycles of odd multiplicity. Continuing this way
by adding νjx

j , for j ≥ 9, with νj decreasing sufficiently fast, and taking care
of alternating the signs of the νj with j odd, one easily obtains following result:

Theorem 2. Let n ≥ 6. There exist polynomial vector fields of degree n of the
form (2) with at least

[
n−1
2

]
+ 2 hyperbolic limit cycles.

Typically, the canard cycles obtained in Theorem 1 are very hard to find
numerically, even in the very specific setting of Theorem 1. The reason is the
singular nature of slow-fast systems like (10): all orbits through {x = 0}, and
with a y-coordinate between [Ymin, Ymax], with 0 < Ymin < Ymax, will follow a
fast–slow trajectory in forward time, until they intersect {x = 0} again some-
where close to the turning point. Similarly, these orbits will follow a fast–slow
trajectory in negative time, until they intersect {x = 0}. In other words, one
can define a “forward map” and a “backward map”, and the periodic orbits are
then identified as the zeros of the difference between the forward and backward
map. In a singular perturbation context, the image of the interval [Ymin, Ymax]
under the forward map is an interval of exponentially small size (O(exp(−κ/ε))
for some κ > 0). The image of the backward map is an interval of a similar
size. This implies that in order to distinguish periodic orbits from orbits that
are not periodic, one needs an accuracy of the order O(exp(−κ/ε)).

The constant κ in the exponential expression can be determined and is re-
lated to the one-sided slow divergence integral (the slow divergence integral as
in (8), but taken between the ω-limit and the turning point at x = 0 instead
of between ω and α), since this measures the amount of attraction the forward
orbit undergoes. This immediately implies that the bigger the canard-cycle is,
the more difficult it is to find it numerically. Of course, taking the singular
parameter ε larger, the exponential estimates become more tractable and this
would increase the hope to find bigger canards. However, the larger ε, the less
guarantee one has that the limit cycles appear as claimed in Theorem 1.

After the publication of [4] different people expressed their interest in seeing a
numerical example of a Liénard equation with more limit cycles than conjectured
in [2]. In an appendix, we come up with an example, close to the example
predicted by Theorem 1. We find 3 limit cycles fixing ε at 0.005. The example
with 3 limit cycles is already a numerical counterexample to the conjecture of
[2] for degree 6.

2. Proof of Theorem 1

The proof of Theorem 1 relies on several ingredients. We first show that
there is a compact annulus around the origin where the vector field (10) has
k limit cycles, for 0 < ε ≤ ε0, 0 < |δ| ≤ δ0 and k = 1, 2, 3, 4. We then
show that the result holds in any compact annulus around the origin. Next, we
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show that we can extend the annulus towards infinity (using Poincaré-Lyapunov
compactification), and finally, we show that no additional limit cycles are found
near the origin. Of course, to obtain lower bounds for the number of limit cycles,
only the first part of the proof is essential. The study near the origin and near
infinity is included to show that the techniques that we use permit to treat the
systems under consideration completely.

In the first part of the proof, we study the slow divergence integral, as defined
in Section 1. A result from [10] shows that a slow-fast system where the slow
divergence integral has ` simple zeros can lead to `+ 1 limit cycles. Because it
is an essential ingredient in our proof, we will repeat this result here, together
with a well-known result on the entry–exit relation in slow-fast systems. This
is done in Section 2.1. In Section 2.2, we show that the slow divergence integral
of (10) has exactly 3 zeros when δ 6= 0, δ ∼ 0. In Section 2.3, we finish the
proof of Theorem 1 by combining the information from previous subsections
with information near the origin and near infinity.

2.1. Essential ingredients from geometric singular perturbation theory

We consider {
ẋ = y −H(x, c)
ẏ = ε(b− x)

(12)

where H(x, c) =
∫ x
0
h(s, c)ds and h(x, c)/x > 0 for all x. Given a height Y ,

we consider the slow-fast cycle ΓcY as defined in the introduction. Recall the
x-coordinates αc(Y ), ωc(Y ) of the fast part of the slow-fast cycle.

Proposition 1. (e.g. [11]) There is a smooth surface b = εBY (ε, c), defined for
ε ∈ [0, ε0], with ε0 > 0 sufficiently small, along which (12) has an (ε, c)-family
of periodic orbits intersecting the y-axis at height Y . The periodic orbits tend
towards ΓcY as ε → 0. When I(Y, c) 6= 0, the family of periodic orbits are, for
ε > 0, hyperbolic limit cycles (attracting or repelling, depending on whether the
sign of I(Y, c) is negative or positive).

This proposition can be used to fix one limit cycle of a prescribed size. We
will restrict to choices of a height Y where I(Y, c) 6= 0. We then define the
related entry–exit relation. To that end, we consider a situation where we have
a hyperbolic limit cycle along a given surface b = εBY (ε, c), as specified in
Proposition 1. We assume that I(Y, c) < 0; the other case can be reduced to
this case after applying (x, t) 7→ (−x,−t).

We introduce the slow-relation function: A pair (Ya, Yr) satisfies the slow
relation when ∫ αc(Yr)

ωc(Ya)

h(x, c)2

x
dx = 0.

For each Ya > 0 there exists a unique Yr so that (Ya, Yr) satisfies the slow
relation and vice versa.

Proposition 2. (Entry–exit relation) Fix (Y, c) for which I(Y, c) < 0, and fix a
compact interval [Ymin, Ymax] containing Y in its interior. Consider the vector
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field (12) along the parameter surface specified in Proposition 1. Then, there is
a 0 < Ỹmin < Ymin so that for ε > 0 small enough, the first return map

Pε,c : {0} × [Ymin, Ymax]→ {0} × [Ỹmin, Ymax]

is well-defined. The first return map is continuous as ε→ 0, and tends towards
a piecewise-analytic map P0,c defined as follows:

1. P0,c(Y
′) ≡ Y for all Y ′ ≥ Ya where Ya < Y is the unique height for which

(Y, Ya) satisfy the slow relation.

2. P0,c(Y
′) = Y ′r for all Y ′ < Ya where Y ′r is the unique height for which

(Y ′r , Y
′) satisfy the slow relation.

This Proposition is a direct consequence of the results in [11], where a more
elaborated entry–exit relation is given. From this Proposition, we can deduce
that there will be no limit cycles with height in ]Y, Ymax]. Furthermore, given
a height Y ′ < Y for which I(Y, c) 6= 0, then the result on the Poincaré map at
height Y shows that the orbit is either spiraling upwards (I < 0) or spiraling
downwards (I > 0). It indicates that additional limit cycles are only to be
expected at heights where the slow divergence integral is zero. This is essentially
the topic of the next Proposition:

Proposition 3. [10] Consider system (12) along a parameter surface b =
εBY (ε, c) as provided in Proposition 1. If for some c = c∗, the slow diver-
gence integral I(Y, c∗) has a simple zero at y = Y∗ ∈ ]0, Y [, then there exists a
Hausdorff neighborhood V around Γc∗Y∗

, such that for ε > 0 small enough and for
c close enough to c∗, the vector field (12) with b = εBY (ε, c) has a unique limit
cycle in V . If ∂I

∂Y (Y∗, c∗) > 0 then the limit cycle is hyperbolically attracting, if
∂I
∂Y (Y∗, c∗) < 0, then the limit cycle is hyperbolically repelling.

In the next section, we focus on providing an example of a slow-fast vector
field, having a slow divergence integral with 3 zeros.

2.2. Slow divergence integrals with 3 zeros

We consider a family of vector fields{
ẋ = y − F (x, c)
ẏ = ε(b0 − x),

where c = (a0, a1, b1, b2), ε ≥ 0, and b0 is a parameter close to 0. We write

F (x) = F (x, c) =

∫ x

0

f(s)ds,

f(x) = f(x, c) := x+ b1x
3 + b2x

5 + a0x
2 + a1x

4.

The parameters c = (a0, a1, b1, b2) will be chosen very specifically later, but we
prefer to keep them general for the moment; we however keep (a0, a1) ∼ (0, 0).
For (a0, a1) = (0, 0), the family of vector fields is symmetric w.r.t. (x, t) 7→
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(−x,−t). Hence, (b1, b2) are parameters that preserve symmetry, whereas the
parameters (a0, a1) are symmetry-breaking. We will choose (b1, b2) so that

f(x, 0, 0, b1, b2)

x
> 0, ∀x,

and hence so that f(x, a0, a1, b1, b2)/x > 0 on the entire real line, when (a0, a1)
is sufficiently close to (0, 0). This ensures that the shape of y = F (x, c) is
like in Figure 1, and on the other hand it also ensures that the slow dynamics
x′ = −x/f(x) is regular. Recall that a slow-fast cycle ΓcY has a fast horizontal
orbit, with an ω-limit on the right branch of the curve y = F (x); its x-coordinate
is denoted by ωc(Y ). The x-coordinate of the α-limit will be denoted αc(Y ).
Of course

αc(Y ) < 0 < ωc(Y ), F (αc(Y ), c) = Y = F (ωc(Y ), c).

Along this section, it will be convenient to parameterize the slow-fast cycles
by the omega-limit ωc(Y ), instead of by its height Y . We will hence define
the slow-fast cycle Γ

c

x, with some x > 0, as the slow-fast cycle with height
Y = F (x, c). The corresponding α-limit will be denoted αc(x) = α(x, c). The
relation x 7→ αc(x) is called the fast relation. The next proposition examines
the asymptotics of the (analytic) fast relation function for (a0, a1) near (0, 0).

Lemma 1. The fast relation function is given by

αc(x) =− x+ a0R0(x, b1, b2) + a1R1(x, b1, b2) +O(‖(a0, a1)‖)2,

as (a0, a1)→ (0, 0), where

R0(x, b1, b2) = −2

3

x2

1 + b1x2 + b2x4
,

R1(x, b1, b2) = −2

5

x4

1 + b1x2 + b2x4
.

Proof. Due to the symmetry, we have α(x, 0, 0, b1, b2) ≡ −x, so it suffices to look
at the partial derivatives at (a0, a1) = (0, 0). This is an elementary calculation
based on implicit differentiation of the equation

F (α(x, a0, a1, b1, b2), a0, a1, b1, b2) = F (x, a0, a1, b1, b2)

with respect to ai, for i = 0, 1. We find f(αc, c).
∂αc

∂ai
+ ∂F

∂ai
(αc, c) = ∂F

∂ai
(x, c),

implying that

((−x) + b1(−x)3 + b2(−x)5).Ri(x, b1, b2) =
1

3 + 2i
x3+2i − 1

3 + 2i
(−x)3+2i.

This proves the lemma.

Let us now compute the slow divergence integral

I(x, c) =

∫ αc(x)

x

f(s, c)2

s
ds.
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Figure 2: Graph of f(x, 0, 0, b∗1, b
∗
2)

Lemma 2. The slow divergence integral is given by

I(x, a0, a1, b1, b2) = a0I0(x, b1, b2) + a1I1(x, b1, b2) +O(‖(a0, a1)‖)2,

as (a0, a1)→ (0, 0), where

I0(x, b1, b2) = −2

3
x3 − 2

15
b1x

5 +
2

21
b2x

7,

I1(x, b1, b2) = −2

5
x5 − 6

35
b1x

7 − 2

45
b2x

9.

Proof. Again, a symmetry argument is used to show that I(x, 0, 0, b1, b2) ≡ 0,
so it suffices to look at the partial derivatives w.r.t. ai.

As explained in the introduction, we look for parameter values (b1, b2) where
at a given point, say at x = 1, both I0 and I1 are zero. We find a unique solution

(b∗1, b
∗
2) = (− 70

23 ,
63
23 ).

Observe that f(x, 0, 0, b∗1, b
∗
2) = x

23 (23 − 70x2 + 63x4) has no zeros, meaning
that this choice of function satisfies the condition f(x)/x > 0 for all x, see also
Figure 2. Let us now, for this specific choice of parameters (b∗1, b

∗
2), look at the

linearization of I along the line

a1 = −4a0.

We find

I(x, a0,−4a0, b
∗
1, b
∗
2) =

(
56

115
x9 − 42

23
x7 +

692

345
x5 − 2

3
x3
)
a0 +O(a20)

=

(
2

345
x3(x2 − 1)(115− 231x2 + 84x4)

)
a0 +O(a20).

The function 1
a0
I(x, a0,−4a0, b

∗
1, b
∗
2)
∣∣∣
a0=0

has besides the zero x = 1, two ad-

ditional zeros, respectively around x ≈ 0.8 and x ≈ 1.4. These three zeros are
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Figure 3: Graph of 2
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x3(1−x2)(115−231x2+84x4), which is the first-order Taylor coefficient
(w.r.t. a0) of −I(x, c) along c = (a0,−4a0, b∗1, b

∗
2)

simple and hence persist as zeros of the slow divergence integral for |a0| small,
and taking |a0| small enough, these zeros lie inside the compact interval

[
1
2 , 2
]
.

Renaming a0 = 15δ, we find

f(x) = x+ 15δx2 − 70

23
x3 − 60δx4 +

63

23
x5,

which leads to a vector field of the form (10) specified in the formulation of
Theorem 1.

Let
1

2
≤ x1(δ) < x2(δ) < x3(δ) ≤ 2

be the three zeros of 1
a0
I(x, a0,−4a0, b

∗
1, b
∗
2)
∣∣∣
a0=15δ

. Of course x1(0), x2(0) and

x3(0) are exactly the (positive) zeros of (x2 − 1)(115− 231x2 + 84x4) (see also
Figure 3), and are hence distinct for δ ∼ 0. Let Y1(δ), Y2(δ), Y3(δ) be the
heights of the corresponding slow-fast cycles.

Now consider the heights Y (1) = 1
4 , Y (2) a height between Y1(0) and Y2(0),

Y (3) a height between Y2(0) and Y3(0), and Y (4) = 3. We then apply Proposi-
tion 1 at all these heights, and find different surfaces b = εBk(ε, δ) in parameter
space, k = 1, 2, 3, 4. It is then a direct consequence of the entry–exit relation
stated in Proposition 2 and Proposition 3 that the family of vector fields (10)
along b = Bk(ε, δ), and for ε > 0 small enough and δ 6= 0 close enough to 0, has
exactly k limit cycles in any compact annulus around the origin. Furthermore,
From Proposition 3 clearly follows that all these limit cycles are hyperbolic.

2.3. Dynamics near the turning point and near infinity

We continue the discussion from previous section, and use the same nota-
tions. When δ < 0, the sign of I goes from + to −, from − to + and from + to
− again. This implies that the smallest of the obtained limit cycles along any

11



of the four surfaces b = εBk(ε, δ) is always repelling. When δ > 0, it is the other
way around.

On the other hand, we know that the four surfaces b = εBk(ε, δ) all have the
same Taylor development w.r.t. ε (and are in fact exponentially close to each
other). Using formal computations, together with the known situation for δ = 0
and ε = 0, it is elementary to check that

b = −15δε(1 +O(ε)).

This information can be used to see that for ε > 0 and δ 6= 0 small enough, the
unique singularity of (10) near the origin is repelling when δ > 0 and attracting
when δ < 0. Unfortunately, the hyperbolic attraction/repulsion at this point
is not obtained uniformly in ε, and therefore we need an additional argument
to show that in a uniform neighborhood of the origin, system (10) has no limit
cycles.

This additional argument is provided in [12] and [13]. We give more details
in Section 2.3.1. The behaviour at infinity is studied in Section 2.3.2.

2.3.1. Dynamics near the turning point

We take any δ1 ∈ [−δ0, δ0] with δ1 6= 0. In terms of [12], equation (10),
for δ ∼ δ1, represents a slow-fast Hopf bifurcation of codimension one. The
codimension is one because the coefficient in front of x3 ∂

∂x is nonzero. In [12], it
has been proven that in a uniform neighborhood of the origin in (x, y, ε)-space,
the equations (10) have at most two limit cycles. In Section 3.1.4 of [13], more
precisely in the subsections “Cyclicity of the origin (x, y) = (0, 0)” and “Unicity
of the limit cycle near Γ0”, it has been shown, based on [12], that one can in
fact have at most one limit cycle in a slow-fast Hopf bifurcation of codimension
1, and it has to be simple.

Assume now δ1 < 0. We now restrict to b = εBk(ε, δ) as in the statement of
Theorem 1, and denote the limit cycles obtained in Section 2.2 by L1, . . . , Lk,
in increasing order of size. From the observations made above we know that
there can be at most one extra limit cycle inside L1 and it has to be simple.
Since δ1 < 0, we have b > 0, and then we know from Section 2.2 that the focus
is attracting, while the limit cycle L1 is repelling. It is hence not possible to
have an extra limit cycle inside L1. A similar argument is possible when δ1 > 0.

2.3.2. Dynamics near infinity

Remains to show that no limit cycles can appear near infinity. Since we only
need to look in the halfplane where Y > 0, the relevant coordinate change is
given by

(x, y) =

(
X

u
,

1

u6

)
,

where u > 0 is small and X is kept in a large compact interval. The line {u = 0}
represents the line at infinity. The family of vector fields{

ẋ = y −
(
1
2x

2 + 1
3a0x

3 + 1
4b1x

4 + 1
5a0x

5 + 1
6b2x

6
)

ẏ = ε(b− x)

12



u = 0

X

u

Figure 4: Behaviour at infinity, for ε = 0 and for ε > 0. The line at infinity is represented by
{u = 0}.

(of which (10) in Theorem 1 is an example) is written in the new coordinates
near infinity, after multiplication by u5, as

Ẋ = 1−
(
1
2u

4X2 + 1
3a0u

3X3 + 1
4b1u

2X4 + 1
5a1uX

5 + 1
6b2X

6
)

− 1
6εu

10X (bu−X)

u̇ = − 1
6εu

11 (bu−X)

At the line at infinity {u = 0}, we find two semi-hyperbolic singularities {X =
±(6/b2)1/6}, under the assumption that b2 > 0 (and this is the case in the
example (10)). Define X±0 = ±(6/b2)1/6 and consider center manifolds

X = X±0 +O(u)

at these singularities. It is not hard to find that

X = X±0 −
a1
5b2

u+O(u2),

at each of these points. This allows us the compute the dynamics inside the
center manifold up to leading order. We find, at both points,

u̇ = εu11
(
X±0
6

+O(u)

)
.

This behaviour is compatible with the slow dynamics: pointing downwards (in-
creasing u) on the right branch of the slow curve, and pointing upwards on the
left branch of the slow curve, see also Figure 4. The two singularities at infinity
are hence semi-hyperbolic saddles, and hence have unique ε-families of center
manifolds.

We denote the unique ε-family of center manifolds by X = ψ±(u, ε). For
u = u0 sufficiently small, we consider a small segment

Σµ : {(X,u) : − µ ≤ X − ψ+(u0, ε) ≤ µ, u = u0},

for some small µ > 0. Any limit cycle that comes near infinity will for sure cross
this section (orbits that do not cross this section can be studied in the (x, y)-
plane inside a large compact set). From the entry–exit relation in Proposition 2
clearly follows that the orbit of the left end point of Σµ will make a contour
around the unique singularity near the turning point and will cross the section
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{x = 0} again at a point with a height that is o(1)-close to the height of the
biggest limit cycle Yk. Now it is easy to see (with the more elaborate entry–exit
relation in [11]) that also the right end point of Σµ has this property. This means
that all orbits through Σµ will end up near (0, Yk), for ε > 0 small enough. It
clearly follows that no limit cycles near infinity are present, and hence that all
limit cycles are the ones that were obtained in Section 2.2.

This concludes the proof of Theorem 1.

Appendix: Finding three canard cycles numerically

As will be explained later in this section, a very high precision is needed to
find canards, even for moderately small values of the singular parameter ε. The
numerical simulations described in this section are based on a Runge-Kutta
(order 7) ode-solver, with fixed step size h. Typically, h = 10−6 or smaller.
The implementation is done in C++, and the tests ran on a regular desktop
computer. Because of the very sensitive nature of the dynamics of slow-fast
vector fields, some of the calculations are done in quadruple precision. To that
end, we use the “double–double” C++ library, implemented by the authors of
[14] and publicly available.

Instead of working with (10), it reveals better to work with a slight adapta-
tion {

ẏ = y − F#(x)
ẋ = ε(b− x),

(13)

with

with F#(x) =
1

2
x2 − 1

100
x3 −

(
35

46
+

1

16

)
x4 +

23

1000
x5 +

21

46
x6. (14)

Let us explain why an adaptation is helpful, and at the same time explain
why only 3 limit cycles are searched instead of 4 limit cycles as predicted by
Theorem 1.

To understand this, we first consider the theoretical example (10) and no-
tice that it is not possible to choose ε very small while computing limit cy-
cles, as the smaller ε is chosen, the more digits accuracy are needed in order
to distinguish the orbits from each other. Indeed: if one tracks two orbits,
starting respectively at (0, Y0) and at (0, Y1), with Y0 < Y1, then both or-
bits will intersect {x = 0} again somewhere slightly below the fixed point
at heights T (Y0), T (Y1). From singular perturbation theory, it is clear that
|T (Y0) − T (Y1)| = O(exp(I−(Y0)/ε)), where I− is the “one-sided slow diver-
gence integral”

I−(Y ) =

∫ 0

ω(Y )

f(x)2

x
dx < 0,

calculated along the relevant part of the attracting branch of the slow curve.
This means that in order to distinguish the orbit through (0, Y0) from the orbit
through (0, Y1), one needs O(|I−(Y0)|/ε) digits accuracy. Therefore, by choosing
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ε = O(10−4), it is unlikely that trustworthy results will be found with numerical
analysis.

The same argument shows that it is very difficult to find 4 limit cycles of (10),
even with more moderate choices of ε: recall the positions x1(δ), x2(δ), x3(δ) of
the zeros of the slow divergence integral from Section 2.2. Let Yi, i = 1, 2, 3, be
the related heights of the slow-fast cycles, then for δ = 0 we have

x1 ≈ 0.81, Y1 ≈ 0.13, I−(Y1) ≈ −0.072;

x2 ≈ 1.00, Y2 ≈ 0.20, I−(Y2) ≈ −0.101;

x3 ≈ 1.45, Y3 ≈ 1.91, I−(Y3) ≈ −7.140.

showing that for ε = 0.01,

exp(−I−(Y1)/ε) = O(10−4),

exp(−I−(Y2)/ε) = O(10−5), (15)

exp(−I−(Y3)/ε) = O(10−310).

This shows that the region in phase space where the third zero of the slow
divergence integral becomes relevant in the analysis, is completely out of reach
from a numerical point of view. Even with moderate values of ε and δ, for
example with ε = 0.1 and δ = 0.001, we find that exp(I−(Y3)/ε) = O(10−31),
which would require an accuracy far beyond the capabilities of standard desktop
computers.

In the remainder of this section, we will hence limit to finding 3 limit cycles,
which involves dealing with 2 zeros of the slow divergence integral. But even
finding 3 limit cycles for (10) proves to be very difficult, despite of the reasonable
required accuracy of the order shown in (15). The explanation can be found
in Figure 5, where the computed divergence integral is drawn for several values
of ε. Let us first explain how we have computed these graphs: we consider
orbits through (0, Y ), and follow them numerically until they reach the section
{x = 0} once more. We do this both in forward and in backward time. In this
computation, we take b = 0 (b is in fact O(εδ), so can be assumed small and
relatively irrelevant in this computation).

Figure 5 shows that although the zeros of the slow divergence integral persist
as zeros of the computed integrals, both shift to the right as ε increases, the
largest one even quite fast. Now it is important to realize that while the x-
coordinate of the zero increases, it becomes more and more difficult to deal
with limit cycles of that order, as explained before.

Because the zeros of the computed divergence integrals shift to the right
too quickly, we consider (13) instead of (10), precisely to keep the zeros of the
computed divergence integral sufficiently close to the theoretical values. The
vector field (13) is found experimentally in the neighborhood of (10), and has
the property that the divergence integral I(Y ), for a fixed value of ε > 0, has
two zeros that have not shifted to the right too much, and where one hence may
expect 3 numerically distinguishable limit cycles to appear.
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Figure 5: Computed divergence integrals in (10), with δ = −0.01 and for specific choices of
ε: ε = 0.001, ε = 0.005, ε = 0.01. The thicker curve is δ times the graph in Figure 3. As ε
increases, the zeros of the divergence integral shift to the right. All curves have an additional
zero in {x > 1.2}, but this part of the graph has not been plotted.

We thus consider (13) for the specific value of b = 0.000063032171696. The
numerical proof for the existence of the 3 limit cycles is based on the presence
of 4 sign changes in the numerical study of the difference map (map in forward
time from {x = 0} to {x = 0} versus map in backward time). This computation
is done with very high precision: we used a Runge-Kutta method of order 7,
with a step size h = 10−8. We find sign changes near heights Y1, Y2, Y3,
where Y1 ≈ 0.25, Y2 ≈ 0.21, and Y3 ≈ 0.02. This means that limit cycles of
approximately these 3 heights are numerically found. The limit cycles of heights
Y1 and Y2 are related to the zeros of the slow divergence integral, as indicated
by Proposition 3, whereas the limit cycle of height Y3 is purely related to the
specific choice of the parameter b, as indicated by Proposition 1. In fact, we
have computed b precisely to have a limit cycle at this specific height.

The first limit cycle, i.e. the cycle near height Y1, is found with moderate
accuracy, say with a step size h = 10−6. The second and third limit cycle require
a much smaller step size: the computation in that region has been done with
step size h = 10−8.

Remark. Slight adaptations of the parameter b, or lower accuracy computations
will only show 0, 1 or 2 limit cycles. This is due to the fact that all curves
b = εBY (ε), defined in Proposition 1, lie exponentially close to each other. A
slight change in b will most probably imply that this value of b lies on a curve
b = εBY (ε) with a height Y less than Y3. From the entry–exit relation described
in Proposition 2 follows that no limit cycles are seen above height Y .
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