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Abstract

The enzymatic '80-labeling is a useful quantification technique to account for between-
spectrum variability of the results of mass spectrometry experiments. One of the important issues
related to the use of the technique is the problem of incomplete labeling of peptide molecules,
which may result in biased estimates of the relative peptide abundance. In this manuscript, we
propose a Markov-chain model, which takes into account the possibility of incomplete labeling
in the estimation of the relative abundance from the observed data. This allows for the use of
less precise but faster labeling strategies, which should better fit in the high-throughput proteomic
framework. Our method does not require extra experimental steps, as proposed in the approaches
developed by Mirgorodskaya et al. (2000), Lopez-Ferrer et al. (2006) and Rao et al. (2005),
while ineluding the model proposed by Eckel-Passow et al. (2006) as a special case. The method
estimates information about the isotopic distribution directly from the observed data and is able
to account for biases induced by the different sulphur content in peptides as reported by Johnson
and Muddiman (2004). The method is integrated in a statistically sound framework and allows for
the calculation of the errors on the parameter estimates based on model theory. In this manuscript,
we describe the methodology in a technical matter and assess the properties of the algorithm via a
thorough simulation study. The method is also tested on a limited dataset; more intense validation
and investigation of the operational characteristics is being scheduled.
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1 Introduction

Peptide-centric techniques are gaining a lot of interadife search of new protein
biomarkers, surrogate endpoints, or markers for clasditaf diseases. Typi-
cally, such techniques extensively use liquid chromaifalgygL.C) combined with
mass spectrometry (MS) for protein-expression profiliregause they promote the
high-throughput quantitative characterization of a ppate. By comparing the pro-
tein abundances between different samples, differepgalbressed proteins can be
found. By analyzing these proteins, important informaabout, e.g., mechanisms
of disease can be obtained. However, the LC-MS measuremenisfluenced by
different sources of variability, which can obstruct theedtion of differentially
expressed proteins. In order to reduce the effect of thebdity on the data, a
labeling approach can be considered. There are two gepaciepted labeling
strategies for the relative quantification of proteins.

The first strategy is based on the principle of isobaric labgi.e., the reporter
protocol. In this approach, peptides from multiple samplescoded with isobaric
mass tags (e.g., iTRAQ from Applied Biosystems, TMT fromtBoone Sciences,
ExacTag from Perkin Elmer, etc.) and are mixed together.ti@eplabeled with
different tags are indistinguishable in a precursor scao.qUantify the relative
abundance of a peptide in the labeled samples, an additemm#m MS interroga-
tion is required. Quantification of the relative abundargcbdsed on the observed
intensities of the reporter molecules.

The second strategy is based on isotopic labeling, i.epré@irsor protocol. In
this approach, peptides are coded with stable isotope ¢ags (CPL from TopLab,
ICAT from Applied Biosystems, etc.) and mixed together vathunlabeled sample.
The stable isotope tag will result in an increase of the pefgimass. Due to this
increased mass, a peptide from the labeled sample is daaerfnom its unlabeled
counterpart in a precursor scan. Quantification of theivelatbundance is based
on the observed intensities.

Isobaric labeling has several advantages over the isolaipéting strategy. For
instance, it allows for multiplexing up to eight samples med_.C-MS run. The
guantification results are also complemented by the ideatifin of the putative
peptide. However, a disadvantage of the isobaric labeliregegyy is that for the
guantification of a peptide a tandem MS fragmentation isirequ The selection of
these peptides is data dependent and limited by the avadatdunt of material and
instrument acquisition. Usually only the most abundanttipeg are selected for
tandem MS and often undersampling occursgfLal., 2005). It is also well possible
that uninteresting peptides, which are not differentiakpressed, are selected.

For these reasons, we regard the isobaric labeling as highéble and ex-
cellent for screening samples containing only a limited banof peptides. This
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makes the technology suited for the hypothesis-driveruatiain of differentially
expressed proteins. However, when the scope is hypotbesisration, i.e., discov-
ery by analyzing complex proteomes, this approach is natnagbt For the screen-
ing of whole proteomes for differentially expressed pnaget would be convenient
if a thorough data analysis could indicate the peptidescivhre differentially ex-
pressed prior to a second interrogation on the tandem MS.talgeted approach
should improve the dynamic range and sensitivity of the wetland should lead
to a more efficient use of the mass spectrometry device.

1 6 1 8-
c / 0 n s trypsine R_C / 0
AN ‘0 2H, 0 N 0

R + 2H,°0

Figure 1: Chemical reaction scheme for the two-step enzgnia-labeling pro-
cedure.

In this respect, a relatively low-cost and open-sourcertiegte for stable iso-
tope labeling is the enzymati€¢O-labeling, where the tw&’O oxygen atoms in
the carboxyl-terminus of a peptide are replaced with oxyigetopes from heavy-
oxygen-water. By putting emphasis on the enzymatic aspettteolabeling, we
want to distinguish between the method considered in thrsuseipt and the com-
monly used proteolytic labeling. Enzymatic labeling isfpemed in two steps. In
the first step, protein digestion is done in normal water. hie $econd step, the
labeling is done in heavy-oxygen-water. The oxygen replasds in the carboxyl-
terminus are a continuous process and are enzymaticadllyzat by a proteolytic
reagent. This labeling reaction is schematically depiateBigure 1. In princi-
ple, this reaction is the reverse of the protease-catalgeptide-bond (Miyagi and
Rao, 2007). We assume that both oxygen-atoms on the carbexyinus will react
equally favorable with thé*O-atoms. Hence, in ideal circumstances, the labeling
should lead to an increase of the mass of the peptide molbgulalalton (Da).

For example, the labeled peptides from, say, Sample Il, cam e pooled
together with the unlabeled peptides from, say, Sampled,pancessed simulta-
neously by LC and MS. Without the enzymati®-labeling, the isotopic peaks,
corresponding to the isotopic distributfonf a peptide present in both samples,
would appear at the same location in the resuljmgt mass spectrumThis is

1The term dalton (Da) is a mass unit and is defined/d2 of the mass of an unbound atom of
12C at rest and in its ground state.

2A peptide molecule has different isotopic variants with féedént mass because of the presence
of carbon {2C, '3C), hydrogen{H, 2H), nitrogen {“N, '°N), oxygen {¢0, 170, 180), and sulphur
(3%S, 338, 318, 36S) isotopes. The probability of occurrence of the variaais loe computed and
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Figure 2: Effect of enzymatit®O-labeling in a mass spectrum in "stick” represen-
tation. Left panel: “sticks” can be seen as a representatidhe distribution of
the isotopic variants of the peptide. Right panel: labetiagses accumulation of
different isotopic variants in a joint spectrum.

graphically illustrated in the left panel of Figure 2. Indtsituation, no distinction
could be made between the contributions of the differeriblgioal samples to the
peptide peaks observed in the joint spectrum (cfr. isobalbieling). However, with
the enzymati¢®O-labeling, the isotopic peaks which correspond to theltabgep-
tide will shift 4 Da to the right in the mass spectrum, as showthe right-hand side
panel of Figure 2. This allows for making a distinction beénwéhe peaks related to
peptides from different samples. Consequently, a directparison of the peptide
abundance in the two samples is possible because the almenmi@asurements are
affected by the same amount of machine noise. A “naive”@ggr to compute the
relative abundance of the peptide in the two samples woulkd ke the ratio of
the heights of the first and fifth peak observed for the peptidee joint mass spec-
trum (see the right-hand side panel of Figure 2), as thedespeauld correspond
to the monoisotopic variants of the peptide in the unlabeled labeled sample,
respectively. However, as it can be observed from Figurerdgesisotopic peaks of
the unlabeled peptide will still overlap with the monoisatopeak of the labeled
peptide. Thus, even in this ideal setting, where a massahifDa is acquired, the
ratio would yield a biased estimate of the relative abundabecause it does not
take into account the overlap of the isotopic peaks.

In practice, however, there are more problems related tasieeof the enzy-
matic **O-labeling strategy. First, the heavy-oxygen water doé¢<antain100%
pure'®*O-water. It can also contaiiO- and!”O-atoms. We term theseater impu-
rities. Note that, if the two carboxyl-terminus oxygen atoms apaeed by, e.g.,
170-atoms, the peptide molecule becomes heavier by only 2nanhd Da, as it

is called the isotopic distribution. When assayed by higgnlution mass spectrometry a peptide
produces a series of peaks, called isotopic peaks. The peakseparated by approximately one
mass-unit and their intensity correspond to the isotopétrithution of the peptide. The lightest
isotopic variant of a peptide is called the monoisotopidarsr
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ideally would be the case 0% pure!8O-water. Second, the speed of the enzy-
matic reaction, i.g. the oxygen incorporation rate, depardmultiple unobserved
factors and therefore can differ for different peptides.aA®sult, at the end of the
enzymatic reaction, not all peptide molecules from Samptady have been ac-
tually labeled. The isotopic peaks for these moleculesaviirlap with the peaks
from Sample I, which results in a biased estimate of theiveabundance.

These problems imply that the peaks, observed for a pepti@@int spectrum,
will correspond to a complex mixture of shifted and overliagpsotopic peaks that
are related to the isotopic distributions of the peptideguooles in the unlabeled and
labeled samples. In order to obtain an unbiased estimateeaktative abundance
of the peptide in the two samples, the overlap of the isotppaks has to be taken
into account (Yeet al,, 2009).

Several methods have been proposed to deal with the issuen®©hand, ef-
forts aimed at the optimization of the labeling processehagen undertaken. For
instance, methods that prohibit the back-exchange have ineestigated (Storms
et al, 2006; Stae®t al, 2004). Alternatively, techniques that only allow for the
incorporation of a singl&*0O-atom have been proposed (Retal., 2005).

On the other hand, approaches that address the issue at#henddysis stage
have been developed. Mirgorodskagtaal. (2000) have formulated a regression
approach, which uses information about the isotopic distion and about the la-
beling efficiency of the labeled peptide. The informatioexsracted from an addi-
tional mass spectrum of the labeled peptides, obtainedadeiing the unlabeled
and labeled sample. This extra MS step complicates the coraduithe experi-
ment. Lopez-Ferreet al. (2006) and Raet al. (2005) have suggested to identify
the amino acid sequence of the peptide via an additional M&tiication (tandem
MS). Consequently, they can calculate the isotopic distioim of the peptide. The
extra MS identification and the calculation of the isotopitribution are compu-
tationally involved and require extra mass spectrometee tiEckel-Passowt al.
(2006) have proposed a regression approach similar irt gpithe method of Mir-
gorodskayeet al. (2000). They have used the method of Seekal. (1995) to
estimate the average isotopic distribution. This methddss and does not need
extra MS steps. However, it can lead to biased relative admgelestimates, as the
actual isotopic distribution of a peptide can substantidéviate from the average
isotopic distribution when, e.g., the peptide containglui atoms (Johnson and
Muddiman, 2004; Valkenborgt al., 2007). Other methods treat the problem as a
normalization issue similar to the one related to microadata, but by doing so
they ignore valuable information regarding the labelinggessses.

In this manuscript, we rigorously describe an alternatedehbased approach
to estimate the relative abundance of a peptide from enzyaligt'*O-labeled MS
data. The approach uses the regression framework, coedidgrMirgorodskaya
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et al. and combines the framework with a probabilistic model, \whiescribes
the kinetics of the enzymatitO-labeling reaction. An important advantage of
the method is that it allows to estimate the peptide’s iseotdstribution directly
from the observed data, which in turn can be used to validdteeipeaks are in-
deed originating from a bonafide peptide (Valkenbetg@l., 2008a). This implies
that no additional MS steps are required for quantificatidmle the information is
unbiasedly extracted from the observed spectra. The meshalole to accommo-
date additional joint mass spectra for a given peptide, whan arise from, e.g.,
neighboring LC-fractions or technical replicates. Furtiee extended the method
such that it can account for the possible presenc¢é@ftoms in the heavy-oxygen
water. The proposed method is integrated into a sound tatatiframework and
the properties are thoroughly evaluated by means of a siionlatudy. A con-
trolled MS experiment, limited to one commercially avai@purified protein, is
conducted in order to demonstrate the correct functionfrifp@ method on mass
spectrometry data. More complex experiments are beingpset arder to further
investigate the operational characteristics of the method

2 Methods

We assume that, prior to the statistical analysis of a sefigeeaks observed in
a MALDI-TOF spectrum, the spectrum was appropriately j@epssed. To this
aim, we use the strategy proposed by Valkenbketrgl. (2009; 2008b). The pre-
processing strategy extracts the information about theshoasition and the height
(intensity) of peaks, which are most likely due to a peptitleus, we represent the
peaks in a mass spectrum by “sticks”, disregarding theijpsha

In what follows, we present the development of our approaelthe first sub-
section, we describe the basic model for peptide peaks wasén a joint mass
spectrum obtained from an enzymati®©-labeling experiment. The observed peaks
are expressed in terms of the unobserved isotopic peakghrsemples before la-
beling. Unfortunately, the model is not practical, as it v@weparameterized. To
address the issue, in the second subsection, we formuladesannious model
for the kinetics of the enzymatic reaction, which drastice¢duces the number of
parameters in the basic model and makes the latter estimable

In developing the model, we assume availability of a singiatjspectrum.
However, in practice, multiple spectra, resulting fromlgsis of, e.g., several repli-
cated measurements for the same or different biologicapkwill usually be
available. Thus, in the third section, we discuss how thiigien of multiple spec-
tra can be handled via the construction of the log-likelthdanction. Finally, in

the last subsection, we discuss the issues related to therimainalgorithms used
for the practical implementation of the model.
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Figure 3: The height of the fifth peak of the observed jointspen can be defined
in terms of the unobserved peptide peak intensities betdrelihg and the mass
shift probabilities. Due to the imprecise labeling of a papt five potential mass
shifts can occurp,, P, P», P; and P,. In this way, the set of isotopic peaks from
the labeled peptide can contribute to the fifth peak in thetjepectrum via the
earlier defined mass shift probabilities.

In this manuscript, various assumptions are made duringdhstruction of the
model. In order to improve the understanding of the methgdj@eline to evaluate
the validity of the assumptions is added to the Appendix.

2.1 A modd for thejoint spectrum

As it was mentioned in the introduction, the heavy-oxygernewaontains water
impurities. We denote the proportions 6, 17O, and!®*O atoms in the heavy-
oxygen water by, p17, andp;s, respectively, withpig + pi17 + p1s = 1. Due to
water impurities, the carboxyl-terminus of a peptide cantam different isotopes
of oxygen. Let us consider the triplétis, n17, n1s), Wwherenyg, ni7, andn,g de-
note the number of°O, 170, and!'®O atoms in a carboxyl-terminus, respectively.
Clearly, nig + n17 + n1g = 2. The possible isotope combinations can now be
expressed as follows:

X(1)=(2,0,0), X(3)=(1,0,1), X(5)=(0,1,1),
X(2)=1(1,1,0), X(4)=1(0,2,0), X(6)=(0,0,2), 1)
For example, configuratioiX'(3) = (1,0, 1) indicates that one of the carboxyl-
terminus oxygen atoms was replaced by @d-atom, while the other was replaced
by an'®*O-atom.
For different configurations in (1), peaks correspondinth#isotopic distribu-
tion of a labeled peptide will shift with multiples dfDa. The mass shift depends

http://www.bepress.com/sagmb 6
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on the configuration. The probability of a particular mastt $bllows from the
probability distribution of the six possible configuratsoof the carboxyl-terminus:

Py=P{X(1)}, P,=P{X(3)}+P{X(4)},
P =P{X(2)}, Py=P{X(5)}, Pi=P{X(6)}, )

where the index of the probability indicates the mass sHiittvranges frond to 4
Da. It should be noted that we define the mass shifts relatigestrboxyl-terminus,
which contains twd®O-atoms. The probabilities,, . . ., P, can also be interpreted
as a neutron count, where the index denotes the number dfcaaddineutrons due
to the presence of oxygen isotopes in the carboxyl-terminus

Figure 3 illustrates a single joint mass spectrum for a aefdaptide. It presents
how the fifth peak of the observed joint spectrum at the rltgntd side is composed
out of the unobserved isotopic variants of the peptide in@@arhand Sample Il at
the left-hand side before the labeling. Note that the firgt iotopic variants of the
peptide in Sample Il (labeled sample) contribute to the figlak of the observed
joint spectrum via the mass shift probabilities induced by tabeling. Hence,
in order to estimate the relative abundance of the peptideariwo samples, we
need to retrieve the information about the unobserved anoes of the isotopic
variants before the labeling. To this aim, we propose a madath expresses the
m observed peak intensitigs in the joint spectrum as a function of the abundance
of thel unobserved isotopic variants of the peptide in Sample | @made 11 before
the labeling. The function is parameterized in terms of tlassrshift probabilities,
defined in (2). Note that the observed peak intensifigs a joint mass spectrum
are most likely also affected by instrument noise. Theesfare need to consider a
model that incorporates an error structure. Thus, we astiuahe

yj:$j+€j, (3)

with ¢; ~ N(0,0?) and thats;'s are independent. A correlated, heteroscedastic
error structure for the random error termsnight also be plausible, but this leads to
a more complex model and is a topic of further research. Téhexin=1,2,...,m
denotes the position of the peak in the observed series &spea joint spectrum
(see Figure 3), withi = 1 referring to the first peak in the joint spectrum.

It should be noted that there is a special relation betweemtbbserved peaks
in a joint mass spectrum and thenobserved isotopic variants. For example, con-
sider a peptide, which has> 5 isotopic variant¥ (including the monoisotopic

3A sensitive mass spectrometer is able to visualize up to §@topic variants for a peptide.
However, low-abundance and low mass peptides can havepisotariants which, fall under the
limit of detection. The structure of the model can be eastljusted to accommodate for this.
Generally, the value af: ranges between 9 and 11.
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variant). Based on this information, we can calculate thalmer of observed peaks
expected in a joint mass spectrum. Enzyméti-labeling and mixing of such a
peptide with its unlabeled counterpart will result in an@tved joint spectrum of
m = [ + 4 peaks, due to the mass shiftbDa. Equivalently, in order to determine
the structure of the system of equations in (5) for an obskjeat spectrum, we
need to specify = m — 4 for a series ofn > 9 peaks.

The mean intensity;;, of the first peak in the joint mass spectrum can now be
expressed as

vy = Hl+ PHI, (4)

where H/} is the unobserved abundance of the monoisotopic varianamp |
(unlabeled) and* H!! denotes the contribution of the monoisotopic variant from
Sample Il (labeled) before the labeling. It should be noteat P, indicates the
probability that a peptide will not receive an isotope label, does not shift to a
higher mass. Now, for the expected intensities of a seripeaks observed in the
joint spectrum, we can write down such a decomposition, wdescribes how the
unobserved isotopic variants of both samples before tredifadcontribute to them:

Ty = Hi{+ PH"+ P H,
_ I II 11 II
T3 = H2+P0H2 +P1H1 +P2HO,
vy, = Hi+ PHY + P H) + PH!" + PyH,

- (5)
Tmes = H |+ PH" +PH",+PH",+ PH", +
PH!,,
T3 = PHI + PHM, + PyH!, + PH,,
Tm—2 = PzHlI_Il + PsHlI_Ig + P4HZI_13,
Tm—1 = P3H11_11 + P4HZI—I27
T, = PH,.

TermsPF,, ..., P, denote the contributions of the unobserved isotopic visiiom
Sample Il to the observed peaks from the joint spectrum. Dhé&ibutions depend
on the mass shift probabilities, which were defined in (2)teNbat, for the peaks
(m —3) tom, there are no contributions from the unobserved isotopiamtof the
peptide in Sample | (unlabeled).

We can reduce the number of parameters, involved in (5), imo#ing the
fact that the isotopic distribution of a peptide is the saorelie two samples, dis-
regarding the oxygen atoms in the carboxyl-terminus. lbfe$ that the ratio of
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abundance of any of the unobserved isotopic variants of ¢épéige should be the
same in both samples. Thus, let us define the sisbadpic ratiosas

H!  HI
Ri L = 5 6
Al T Al ©)
withi =1,...,(l —1) = (m — 5). The abundances of the isotopic variants can be

written as a function of the isotopic ratidg and the abundances of the monoiso-
topic variantsi! and H!!. Obviously, the ratid?, is equal to one.

As we are mainly interested in the relative abundance of digeepresent in
Samples | and Il, we further reparameterize the abundarictt® anonoisotopic
variantsd} and H}" as

Hl=H and H'=HQ, (7)

where H is called the reference intensity agd= H!’/H] is the relative abun-
dance. By combining (6) and (7) with (5), we obtain the systéraquations de-
picted in (8) with5 + 2 + (m — 5) = m + 2 parameters. Note, however, that this
still is more than the number of observed peaksThus, we need to consider some
additional simplifying assumptions. These are discussela next section.

vy = H+ RHQ,

vy = HRy+ PHQR, + PLHQ,

r3 = HRy+ PR HQRy, + PPHQR, + RHQ,

21 = HRs+ PyHQRs + PLHQRy + PyHQR, + PyHO,

- (8)
Ty = HR_ 1+ PRHQR 1+ PIHQR >+ P,HQR 3+
PsHQR; 4 + PLHQR; 5,
T3 = PIHQR 1+ PPHQR, >+ PsHQR, 3+ PLHQR, 4,
o = PHQR; + PBHQR; o+ PLHQR, 3,
Tm-1 = PsHQR 1+ PLHQR, 2,
Tm = PHQR; 4.

2.2 A model for the enzymatic 80O-labeling

A way to further reduce the number of parameters is to assumedel! for the
enzymatic'®O-labeling reaction, such that the shift probabilitigs. . . , P, can be
replaced by a smaller number of parameters. To this aim, wsider a Markov-
model.
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Figure 4: Possible transitions between the carboxyl-teusistates in the Markov-
chain.

In equation (1) we introduced different configuratioxig ), indicating the com-
bination of oxygen isotopes present at the carboxyl-teus\of a peptide. We will
refer to the configurations as states. As argued in the prs\8ection, we assume
that the carboxyl-terminus of all isotopic variants of a fég from Sample Il be-
fore the labeling contains tw§O-atoms, i.e., it is in stat& (1). This is depicted
in Figure 4, where the white circle denotes statél). After one oxygen-atom
replacementi = 1), the peptide’s carboxyl-terminus will stay with certairop-
ability in state X' (1) or moves to stateX'(2) or X (3). The probability depends
on the proportions of the heavy-oxygen water impuritigsandp,; (see previous
section). The new states are indicated by the light grayreonlBigure 4, where the
arrows indicate the possible direction of transitions eAfivo oxygen replacements
(k = 2), the probabilities for the carboxyl-terminus to remairsiatesX (1), X (2),
or X (3) will change. Moreover, three additional states can be rexchamely,
X (4), X(5), and X (6) (see the dark gray circles in Figure 4). A third oxygen-
replacement reactiork (= 3) will allow for eight new transitions, indicated by the
black arrows in Figure 4, and so on. This process can be seardissrete-time
Markov-chain, with the discrete time steps interpretechasoikygen replacements.

The Markov-chain can now be defined more formally. Giventaedition prob-
ability matrix T', the state probabilities can be expressed as follows:

S, = ST*P(k), 9)

http://www.bepress.com/sagmb 10
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with S}, denoting a6 x 1 column vector containing the state probabilities after
k (k = 0,1,...) oxygen replacements and(k) denoting the probability that
replacement reactions will take place. Under the assumptiat at the beginning
of the labeling process the isotopic variants of a peptidgample Il contairn 00%
160-atoms at the carboxyl-terminus, the< 1 initial state vector is given b, =
(1,0,0,0,0,0)".

Recall that we assume that the enzymatic reaction is eqlikdily on both
reaction sites of the carboxyl-terminus. We also assumeptieious oxygen re-
placements do not influence the enzymatic reaction for éubdygen replacements,
i.e., that the transition probabilities, specified in malffi, are independent of the
number of oxygen replacemerits The transition probability matril’ with transi-
tion probabilitiesP,, can then be constructed in the following way from the known
water impuritiesp, andp;:

D6 P17 D18 0 0 0
P16 pPie+piv pis pi7 pis 0
2 2 D) 2 2
P16 pi7 Pi6t+p1s 0 P17 pis
2 2 2 2 2 ’ (10)
0 D16 0 P17 P18 0
0 pi6 P16 pi7  pi7+pis  pis
2 2 2 2 2
0 0 P16 0 P17 P18
Row (@ = 1,...,6) and columnf = 1,...,6) indices correspond to statés(1)

to X (6), respectively. The transition probabilitié, give the probability to move
from stateX (a) to stateX (b). For example, the probability to move from state
X(3) = (1,0,1) to stateX (1) = (2,0,0) equalsPs; = pis/2, because only if
the 180-atom in stateX (3) is replaced by af®O-atom, we reach stat€(1). The
chance that a carboxyl-oxygen is replaced with®d-atom depends on the water
impurity p;¢ of the heavy-oxygen water. We assume that the concentraitioater
impurities is constant over time. This achieved by perfoigrthe enzymatic reac-
tion in an abundance of heavy-oxygen-water, such thatidiuty exchanged®O

is negligible.

Term P(k) in (9) represents the probability éf oxygen replacements. The
number of oxygen replacemeritgiuring the labeling reaction is unknown and de-
pends on the reaction speed and duration. The duration efithgnatic reaction is
usually known and kept constant across multiple labelingeaments. We will de-
note the duration by. The reaction speed depends on many factors and is specific
for a peptide. We express the speed as the peptide-specifigporation rate\,
which gives the number of reactions per time unit. We assinaig for a particular
peptide ) is constant over time.

Under these assumptions, the probability fooxygen replacements can be
modeled by a Poisson process with ratand timer. As a result, after summing
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over all possible values df and rearranging terms, equation (9) can be expressed
as follows:

S'(\, 7, p1s, p17) = Sge_’\TeT)‘T , (12)
where S’(\, 7, pi1s, p17) is the vector containing the state probabilities for the iso
tope combination on the carboxyl-terminus of a peptide wittorporation rate\
after a reaction time in heavy-oxygen water with impuritigs;s and p;;. Note
that, to simplify notation, we will suppress the userop;s, andp,; in subsequent
formulae.

The terme eI in equation (11) can be seen as a transition matrix result-
ing from a solution of the Kolmogorov backward equation fazaamtinuous-time
Markov model with generata®@ = \(T" — I), wherel; is the6 x 6 identity matrix
andT as defined in (10).

Now, the probabilities of the mass shifts, defined in (2), @mputed as fol-
lows:

Pl()‘) = SZ()‘)v PS()‘) = 55()‘)7 P4()‘) = 56()‘)7 (12)

where the index denotes the element of the state probabddiorS(\).

Figure 5 shows the values of the mass shift probabilitiesfasetion of A for
a labeling reaction of = 120 in heavy-oxygen water with impuritiess = 4%
andp;; = 1%. Note that, for\ > 0.1, the shift probabilities are basically constant.
A similar plot would be obtained for the dependence of thebphilities on the
reaction duration. It follows that, for a peptide with> 0.1, the enzymatic reaction
is basically completed after20 time units, e.g., minutes; extending the duration
does not change the mass shift probabilities, because dotiae has reached a
stationary condition. This means that, if we consider aigeptith A = 0.1, after
7 = 120 minutes, only89.8% of the molecules will receive tw&'O-atoms on their
carboxyl group in the current setting. In other words, thaapic peaks of only
89.8% of the peptide molecules from Sample Il will shift by 4 Da te thight in
the joint mass spectrum. Further, the peaks.89%, 8.04%, 0.08%, and0.18% of
the labeled molecules will shift by 3, 2, 1, and 0 Da, respetti The analysis of
a labeled mass spectrum should correct for these diffexaartaps to avoid biased
estimates of the relative peptide abundance. Furtherpitldhoe stressed that the
presence of th& O-isotope may lead to mass shifts of 1 and 3 Da. Altholighis
a non-abundant isotope of oxygen, its contribution to tlas baay not be ignorable.
In the case ofl% "O contamination, this leads t097% of the peptides labeled
with 170.
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Figure 5: Shift probabilities,, P», P; and P; as a function of\ for an enzymatic
reaction ofl20 minutes with heavy-oxygen water impuritiesof = 4% andp,; =
1%. Shift probabilitiesP; are small and not shown in this figure.

It is important to point out that the sensitivity of the estition method with
respect to assumptions made about the percert&yand'°O contamination is
not a concern, because the degree of contamination presém: iheavy-oxygen
water are measured prior to the labeling experiment.

From this perspective, by using (11) and (12), we replacévbeshift probabil-
ities by a single parameter, namely,Consequently, we further reduce the number
of parameters in (5) t8+ (m — 5) = m — 2, which is less then the number of avail-
able observations:. This allows us to fit the model, specified by (8) and (11)—(12)
to the observed data.

2.3 Estimation and inference

As described in the previous sections, by using (8) and (12);-we can express
the expected values; of the peaks observed in the joint spectrum as a function
of parameter vectdd = [Q, H, Ry, ..., R,,_5, A\]. The parameter of interest is the
relative abundano@, defined in (7). By using the assumed form of the model, given
in (3), the likelihood for the joint spectrum witth observed peaks of intensitigs

can be expressed as follows:

13
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- 1 A fy (G2
L 0 — e 202 {yJ x]( )} . 13
©) 31;[1 oV2r (13)

Itis difficult to express the function; (0) explicitly in the general case. An example
of the model structure in matrix formulation can be foundia Appendiegs.

The extension of (13) to accommodate additional,rsapectra resulting from,
e.g., technical replicates or peptides, which appear inipd@lmass spectra due to
a high-dimensional LC-step, is obvious:

ey 1 ! >
L(O) = e*%ﬁ{ysrﬂ:sj(e)} ) 14
(9) ];[lj]_[1 — (14)

For each additional spectrum(s = 1,...,n), an extra reference intensity pa-
rameterH, may need to be added to vec#yto allow for the between-spectrum
intensity-scale variability. The reference intensities@unt for the relationship be-
tween the abundances in multiple mass spectra due to LGulgbe stressed that
this relationship is not additive, but multiplicative. Bhineans that all peak heights
of a particular peptide differ by a multiplicative constdiff across the LC-runs.
Also, a separate residual variance parametemay be used. Note that the num-
ber of observation§: x m) increases more rapidly than the number of parameters
(2 + n + m — 5) when additional mass spectra are available for a given ghepti
Thus, inclusion of additional spectra improves the efficieof the estimation, as it
increases the number of degrees of freedom.

The estimate® are found by maximizing likelihood (14). The residual vari-
ance(s) are estimated by the usual mean residual sum oesqlimder the normal-
ity and homoscedasticity assumptions, the approximatanag-covariance matrix
of the estimated parameters can be obtained by

V() = XJJI), (15)

wheredJ is the Jacobian of (possibly, modified for multiple spediitalihood func-
tion (13), evaluated &. Moreover,

Lty (16)

whered; is theith element 0, s(0;) is the standard deviation éf, andt, is the
t-distribution withd = n x m — (2 + n +m — 5) degrees of freedom.
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In the context of the proposed model, inference is espgdialbortant for the
parameters) and \. It is straightforward to assigpn-values to the obtained esti-
mates. For example, if we want to test whether the relativmdénce?), differs
significantly from one fi, : @Q = 1), we calculate following statistic:

tscore = Q—_Al . (17)
s(Q)
Thep-value can now be calculated from thecore using the cumulativedistribution
with d degrees of freedom.
As mentioned earlier, the structure of the model is rigidigrtetermined by the
number of observed peptide peaks Parameteys which are found non-significant
by previously described tgst will not restrict the model.

2.4 Practical implementation of the estimation procedure

Practically, the maximum likelihood estimat@sare obtained by minimizing the

term
S (g — a)? (18)
s=1 j=1

in function of parameter8 = [Q, H,, ..., H,, Ry, ..., R,_5, A]. Because function

zj(0) is non-linear in the parameters and because the parametetsrastrained
to positive values, minimizing (18) becomes a constraimatlimear optimization
problem. In order to transform this to an unbounded optitropaproblem, the
logarithm of the parameters can be estimated. This is seffi¢or all parameters
except for), because the derivatives of the shift probabilities are new for large
values of\. This can be observed in the example of Figure 5. To avoid nigaie
instability during the minimization, parametgrshould be constrained to an upper
bound. For instance, we propose an upper bound fequal to20/7. This upper
bound was implemented via an extension of Box’s idea:

~ 20/7exp(N)

= 19
exp(N)+1 ' (19)
with the inverse transformation given by
A
/ J—
N =log (720/7 — )\) . (20)

The transformation is depicted in Figure 6 foe= 120. It can be observed that
can take any real value, whilkelies betweert) and0.166. From Figure 5, it can be
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Figure 6: Transformation (19) of

seen that for large-values § > 0.1), the shift probabilities, . . ., P, stabilize.
Thus, in a steady-state, largewvalues do not influence the shift probabilities much.
Therefore, it is reasonable to assume an upper bounddéqual to0.166.

The minimization of (18) can now be solved as an unconstdamoa-linear op-
timization problem. For this purpose, the Gauss-Newtorhogki{Hartleyet al,
1961) can be used. The required Jacobian matrix can be easilylated analyt-
ically, because the derivative of the matrix exponentigllih) has the same form
as the derivative of a scalar exponential. The Gauss-Nemgihod converges fast
when the starting values are close to the true values of ttaers. Therefore, a
rough estimate of the parameter values is needed. Thengtaiue for the relative
abundancé) can be calculated as the ratio between the fifth and the fiestipéen-
sity observed in the joint spectrum. The reference intgrigitor the joint spectrum
is chosen as the peak intensity of the first peak. The isot@pi@s R, ..., R,,_5
are calculated by the method of Valkenbetgl. (2008a). The starting value for
is chosen to be constant at the upper bound, defined in (19).

Further, in order to improve the numerical stability of thtimization problem,
the matrix exponential dI" is computed by using a scaling and squaring algorithm
with a Padé approximation (Highaet al., 2005).

3 Resaults

In this section, we present results of a simulation studgeutaken to check the
statistical properties and robustness of the develope@md also show results
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of an application of the model to a controlled experimentefeénzymatic labeling
of bovine Cytochrome C peptides.

3.1 Simulation study

We considered five tryptic peptides found in human blood aleatified on tan-
dem MS. The peptides were chosen such that their mass fahie irange between
1000 Da to 3000 Da in steps of approximately00 Da. The isotopic distribution
of these peptides was calculated via the multinomial expanss described by
Yergey (1983). This resulted in, respectivélyp, 6, 7, and8 isotopic variants for
the peptides (in the order of peptides’ increasing massH®. joint spectra were
generated by using the model, defined by (3), (8), and (12)—(Nine different
parameter settings were considered. Relative abund@ne@s allowed to take
the valuesl /2, 1, and2. Peptide-specific oxygen incorporation ratevas set at
0.08, 0.02, and0.008. The choice was motivated by the form of the plot shown
in Figure 5. The duration of the enzymatic reaction was kepstant atr = 120
minutes. For illustration purposes, the proportions ofvigeaxygen water impuri-
ties were assumed to equak = 4% andp;; = 1%. Finally, a small amount of
normal instrument noise with? = 5, compatible with values observed in well-
controlled, unlabeled MALDI-TOF spectra, was added to taeegated expected
values of the peaks; negative values were truncated at nerara regarded as iso-
topic peptide variants under the limit of detection. In ortteassess if inference
holds for small sample sizes, we considered only two ref@g§ = 2) for this
simulation study. This means that, for each simulationrsgttwo joint spectra are
generated. Inter-spectra variability due to, e.g., lasetdltions, LC-variability,
ionization efficiency or inefficient crystallization, waisrailated by using different
reference intensitieH for the joint spectra. They took the value®@f = 1800 and
Hy, = 2200 for @ = 0.5 and 1, andd; = 900 and H, = 1100 for Q = 2. In this
way, the joint mass spectra, generated@oe= 0.5 and) = 2, should be equally
affected by the instrument noise.

The simulated data were analyzed by using the model modifiedntiltiple
spectra, as explained in the previous section. The intemtas to check the statis-
tical properties of estimation and inference under the rhasisumptions. We gen-
eratec2500 data sets for each setting and calculated the coverage obitfiielence
intervals (CIs) of the estimated parameters, obtained yguthe ¢-distribution
(16). Furthermore, for each of the estimated parametegsathrage relative bias
b and the empirical variancé€,,,, were computed from the500 estimated param-
eter estimates. The average model-based variafjcevas calculated from the
2500 model-based variances, obtained from the diagonal elenoéihe variance-
covariance matrix, estimated by (15). We mainly discusgéisealts of estimation
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Table 1: Simulation results for the peptide with m&eg0.5 Da: estimation of).

The relative bias, empirical variance;,,,, and the average model-based variance
2

S

mb*
Q A bx 107" 3 x107° s2, x 107> Clcoverage
0.5 0.008| -590.91 219.41 207.96 93.88
0.5 0.02 -63.28 3.98 412 95.04
0.5 0.08 -23.16 0.48 0.52 95.12
1 0.008| -165.43 107.82 103.04 94.48
1 0.02 -20.26 1.90 1.94 95.24
1 0.08 -8.18 0.27 0.28 95.08
2 0.008] -76.00 292.93 273.84 94.40
2 0.02 -16.50 6.19 6.12 95.04
2 0.08 -7.52 1.40 1.41 94.60

of parameters) and \ for the peptide with mas$000.5 Da. The results for the
other peptides are similar.

Table 1 shows the results for relative abundafcelin general, the results for
A > 0.008 are satisfactogy; the estimation bias is negligjble, thelettased vari-
ance is close, but slightly higher than the empiricalpnd,the Cl coverage is close
to the desired level di5%. The standard error for the estimated coverage is equal
to 1/0.05 x 0.95/2500 = 0.004. The bias and difference between the variances
decrease with\. For A = 0.008, the results show a larger bias in the estimate of
@ and an underestimation of the empirical variance. In the cdés) = 0.5 and
A = 0.008, this results in the ClI coverage statistically significamtadler than the
desired level 0D5%. Note that, as shown in Figure 5, when= 120, the incor-
poration rateA = 0.008 leads to a very inefficient labeling. As a consequence, a
substantial proportion of labeled peptides do not receiheavy-oxygen isotope
and there is a large overlap of isotopic peaks for the pepfrden the two samples.

In such circumstances, one can expect difficulties in esingahe relative abun-
dance; in the extreme case, with a total failure of labelihgiould be impossible
to distinguish between the isotopic peaks from the two samph such a case the
relative abundance cannot be estimated.

In order to asses the validity of thedistribution, we constructed Q-Q-plots
of the statistic in (16) for the relative abundance paraméte Figure 1 in the
Appendix displays the Q-Q-plots of the statistic againstdistribution with2 x
9— (24 2+ 4) = 10 degrees of freedom. The Q-Q-plots re-iterate the suitgbili
of the use of the-distribution, perhaps with the exception)ot= 0.008 (panels (c),

(f) and (i)).
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Table 1 in the Appendix presents the results for the pejmisific incorpora-
tion rate \. They indicate that the relative bias of estimates Xatecreases with
increasing®. For@ > 1 itis below 1%, while for @ = 0.5 it is between0.5%
and7%. This trend may be seen as an expected one: a larger aburafgrejgtide
molecules in Sample Il results in a larger amount of ill-labdemolecules and a
larger overlap of isotopic peaks with the unlabeled peptidéecules in Sample I.
This, in turn, has a positive effect on the estimation of pater\. For A\ < 0.08,
the model-based variance is close to, but slightly smalian the empirical one.
For A = 0.08, the empirical variance is much larger than fox 0.08, and it is
overestimated, on average, by the model-based estimatesrasult, for\ = 0.08
and@ = 0.5, the CI coverage is statistically significantly higher thiha nominal
level. A fast incorporation rate (in this case,> 0.08) will emerge in a reaction,
which reaches its stationary condition very rapidly. Thisams that the labeling
reaction is complete and stable after a duratiom 6f 120 minutes for)\ values
larger than0.08, as can be seen in Figure 5. In this region, the derivativekeof
mass shift probabilities with respect iaare close to zero. As a consequence, there
is a degree of uncertainty and the algorithm cannot prgcdetkermine the value of
the \ parameter. It should be noted that, in an extreme case,ahikead to uniden-
tifiability issues. On the other hand, a fast incorporatiate iwill often lead to a
complete reaction and this will positively influence thegisen of the estimates
for the relative abundance.

To check whether the peptide mass influences the precisi@stohation of
@, we plotted the empirical and mean model-based variancebddive peptides
considered in the simulations. Panel (a) from Figure 2 inAppendix shows the
plot for A = 0.08. It indicates that the smallest variance is obtainedjot 1. This
can be explained by the fact that, in this case, the influeht@anstrument noise
is relatively small, because more peaks in the joint spdwke a large intensity.
For@ = 0.5 and@ = 2, the influence of noise is larger for the small peaks.

The variances increase for decreasin(see panel (b) of Figure 2 in the Ap-
pendix). A smaller incorporation rate leads to inefficieatidling and it increases
the number of the peptide molecules from the labeled sarhpledo not receive
two '80-atoms. As a consequence, there is a larger overlap ofpisop@aks re-
lated to those molecules with the isotopic peaks of the degdtom the unlabeled
sample. This results in a larger uncertainty about theivelatbundance and a
larger variance of estimateg. A reverse pattern can be observed when inspecting
the variance of the estimates df(see panel (a) and panel (b) of Figure 3 in the
Appendix). This is because a substantial amount of oveirgpigotopic peaks is
required to accurately estimake On the other hand, when estimatifyg we want
to avoid the overlap.
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3.2 Bovine Cytochrome C data

In this section, we describe the application of the propaesethod to a data set of
six replicated joint mass spectra obtained from the trypéptides of bovine Cy-
tochrome C from LC Packings. The peptide mixture was divitéd two parts.
One part was enzymatically labeled with a stalii@-isotope, with trypsine as a
catalyst, while the other part remained unlabeled. Nexgethunits from the un-
labeled part where mixed with one unit from the labeled pahich should result
in the relative abundance ratio ¢f = 0.33. The composed mixture was auto-
matically spotted six times on one stainless steel plate tmpat. The plate was
processed by &00 MALDI-TOF/TOF analyzer (Applied Biosystems) mass spec-
trometer. More details about the exact procedure can belfouthe manuscript by
Stae=t al.(2004). We restrict the analysis to three Bovine Cytochr@peptides,
for which joint spectra were obtained. The other Bovine Chgtome C peptides
could not be retrieved from the spectra. The amino acid caitipas of these
peptides are as follows: peptide CC1 (mass 1167.61 Da) - TEHBLFGR; pep-
tide CC2 (mass 1455.66 Da) - TGQAPGFSYTDANK; peptide CC39%b83.75
Da) - KTGQAPGFSYTDANK. The data are processed by the metmesgnted by
Valkenborget al. (2009) and the resulting joint spectra in stick represéntatith
m = 10 peptide peaks are displayed in panel (a) of Figures 4, 6, amespec-
tively, in the Appendix. The quality of the peak selectiommanually curated in
order to confirm that all the found peaks are members of thregponding isotopic
distribution.

Table 2 shows the parameter estimates of the model modifiedutiiple spec-
tra, defined by (3), (8), and (11)—(12), obtained by fitting thodel to the observed
peak heights of the six joint spectra for each of the threeidened peptides. The
proportions of water impurities of the heavy-oxygen waterevreported by the
lab experimentalists and equal pg; = 2% andp,;; = 0.9%. The true values of
isotopic ratiosR; were calculated from the atomic composition of the peptlaes
using the convolution method developed by Rockwood (1945)we do not know
the values of the peptide-specific incorporation ratipg/e only estimate products

AT.
Panel (b) of Figures 5, 7, and 9 in the Appendix display thiereded expected

values of the peaks of the joint spectra shown in correspgaianels (a). For pep-
tides CC2 and CC3, the observed and estimated peak heigimstede in agree-
ment, while for CC1 marked differences are observed. Theuiduing reference
intensities, i.g. first peak in the joint spectrum), are Wwarbting, which indicate
the between-spectrum variability due to, e.g., laser fatodns, crystallization ef-
fects, etc. For this reason, we consider the referenceditiien as a nuisance and
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Table 2: Parameter estimates (Est.) and standard erroy$©éSEd on six technical
replicates for the tryptic bovine Cytochrome C peptides assih167.61, 1455.66,
and1583.75 Da.

Q R1 R2 Rg R4 R5 AT
Peptide CC1 (1167.61 Da)
True 0.33 0.6552 0.2394 0.0631 0.0133 0.0065 -
Est. 0.5518 0.8266 0.2949 0.0318 0.0629 0.000001 4.7980
SE 0.0318 0.0119 0.0192 0.0161 0.0191 0.0154 0.3998
Peptide CC2 (1455.66 Da)
True 0.33 0.7902 0.3414 0.0947 0.0329 0.0077 -
Est. 0.3340 0.7903 0.3367 0.0966 0.0322 0.0063 7.7350
SE 0.0129 0.0035 0.0083 0.0066 0.0078 0.0056 1.1780
Peptide CC3 (1583.75 Da)
True 0.33 0.8581 0.4119 0.1428 0.0396 0.0098 -
Est. 0.3318 0.8615 0.4056 0.1309 0.0411 0.0099 7.8289
SE 0.0068 0.0020 0.0045 0.0038 0.0042 0.0031 0.6704

we do not include their estimates in Table 2, but we provi@ertin Table 2 in the
Appendix.

The results for peptides CC2 and CC3, shown in Table 2, confirm that the esti-
mated relative abundancgis in agreement with the targeted valué)af3. Equally,
the estimates of the isotopic ratios are virtually identiodaheir theoretical values.
Thus, the model seems to adequately describe the dataednigly, the estimated
value of A7 is similar for the two peptides, suggesting a similar incogbion rate.

For example, in order to test if the relative abundagcef peptide CC2 is
different from;ene, we calculate thescore:

(0.3340 — 1)
0.0129

For at-distribution withd = 6 x 10 — (2 + 6 + 10 — 5) = 47 degrees of freedom,
the t-score corresponds tozavalues 0f2.3797 x 10-%3. At a significance level
of 5%, we can reject the null hypothesig, : (@ = 1. However, for peptide
CCl1, the estimated relative abundance markedly deviaies(fi33. The estimated
isotopic ratios for peptide CC1 are also statistically gigantly different from the
theoretical values. Moreover, for a peptide within this mesnge, we expect the
isotopic ratios to decrease monotonically. The estimateRable 2 show a clear
deviation from monotonicity. This non-conformity of thestepic distribution can
be used as an indicator for model misspecification or methddré. Finally, the
residual error variance® and reference intensities (see Table 2 in the Appendix)
are markedly different from the corresponding values fatiges CC2 and CC3.

— —51.6279 . (21)
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Table 3: Results of the application of the Eckel-Passbwal. (2006) model based
on Averagine (left-panel) and naive isotope ratios (rigatel) to the six technical
replicates of the tryptic bovine Cytochrome C. Mean valogsy the six replicates,
of the estimates of) and \r.

Eckel-Passow Naive ratio
Parameter CC1 CcC2 CCs3 CC1 CC2 CC3
Q 0.5671 0.2838 0.2856 0.5336 0.3473 0.3556
AT 2.6330

To assess the fit of the model in more detail, Figures 5, 7, and@ Appendix
presents the residuals for the analysis of the data forge@C1, CC2, and CC3,
respectively. The plots suggests that a model with a hetedasstic error structure,
in which the residual variance decreases with the meansityeof the peaks ob-
served in the joint spectrum, might be more appropriate. Aeresion of the model
to deal with such a residual variance is an important stefuftiner research.

In order to visualize the gain in stability when incorpongtimultiple spectra,
we refitted the model on all possible groupslof. ., 6 spectra for peptide CC3.
Figure 10 in the Appendix, shows how the estimate (panebfa])precision (panel
(b)) for relative abundanc€ improves when using multiple spectra. Regardless
of the number of spectra used, the algorithm converged Igwifhe same results
are observed for peptide CC1 and CC2 (data not shown). Fiidisplays the
Q-Q plot for the estimates of the relative abunda@ceeference intensity/, and
peptide-specific incorporation rakdor the six spectra fitted individually. The three
outliers at the left of theyfigure are originating from the saspectrum. Disregard-
ing the outliers, the distributional assumptions seendvali

We mentioned earlier, that the model structure is rigid aguktids on the num-
ber of observed peptide peaks in a joint spectrum. To inyatithe consequence
of missing the last peptide peaks, we refitted the model basesix replicates for
peptide CC3 form = 6,...,10 observed peptide peaks. The result is shown in
Figure 11 in the Appendix. It follows that ignoring the awdile information alters
the structure of the model, which violates the observed. diités leads to biased
estimates. Therefore, it is important to use all availabfermation.

To compare the obtained results with other methods, we ingechodel devel-
oped by Eckel-Passoet al. (2006) based on Averagine. We fitted it to each of
the six technical replicates separately, as the model datescocommodate multiple
spectra. The mean values of the estimate%0f 6., and K ..t, which correspond
to  and A7 in our notation, are displayed in the left part of Table 3. peptides
CC2 and CC3, the method seriously underestimates theveelaliundances and
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failed to compute a value fdk..t. For peptide CC1, the relative abundance is over-
estimated even more than in the case of the estimate showabie Z. We found
this method very sensitive regarding the assumed isotagtickalition.

A naive approach to calculate the relative abundance iskittee ratio of the
fifth and the first peak in a joint spectrum. By doing so, we obtae results
displayed at the right-hand part of Table 3. For peptides @u2 CC3, the esti-
mates of the relative abundance are, on average, furtherfasva the true value of
0.33 than the estimates given in Table 2. However, it should bedttat, in this
case, the results from the naive approach are acceptaldesfiitient'®*O-labeling
(overnight) and the use of highly purified heavy-oxygen wétepensive) caused
a clear separation between the labeled and unlabeled apedtich justifies the
naive assumptions. In a realistic setting, however, laetight be inefficient and
it would be cost-efficient to use less purified oxygen lab&lsich is taken care of
by the presented method.

4 Discussion

As we have mentioned in the introduction, several methods blaeady been pro-
posed to analyze data from enzymafi©-labeling experiments, (Mirgorodskaya
al., 2000; Raaal., 2005; Lopez-Ferreal., 2006; Eckel-Passowl., 2006). Most
of them, however, postulate the use of additional experialesteps, which is an
important limitation. Our method does not require suchstédfpis similar in spirit
to the approach developed by Eckel-Passbal. (2006). In fact, we can show that
the Markov-model, which we propose, includes the model ldpesl by Eckel-
Passowet al. for the probabilities of particular mass shifts of the laakepeptide
molecules (see equations (1) and (2) in their paper). Horveue model extends in
several ways the one used by Eckel-Passbal. First, Eckel-Passowt al. suggest
to estimate the isotopic distribution of a peptide by usimg @average distribution
developed by Senket al. (1995). Although, the actual isotopic distribution of a
peptide can markedly deviate from the average one whentleegpeptide contains
sulphur atoms (Johnson and Muddiman, 2004; Valkenkeo ., 2007). Instead,
we propose to estimate the parameters of the isotopiclalision directly from the
observed data. The advantage of this solution is that tleerrdtion about the ratios
can be used to automatically annotate whether the obseevied 8f mass spectrum
peaks are truly generated by a peptide (Valkenlebed.,, 2008a) or originating from
noise. Note, however, that it is also possible to use our inwitle a fixed isotopic
distribution. Second, it allows the model to account for plessible presence of
17O-atoms in the heavy-oxygen water, although the bias iotred by!”O-atoms
is expected to be minor. Finally, we developed a unified moddramework, in
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which all parameters of interest, like the relative abureap, isotopic ratiosk,
and the peptide-specific incorporation rateare simultaneously estimated from the
data. It can easily accommodate different parameterizgtiand provide necessary
estimates of precision. It can also be scaled up to more doatptl experimental
designs, with several groups of samples with technical aokbdical replicates,
etc.

We studied the performance of the proposed approach by noéarsmulation
study and by a controlled MS experiment. The simulationltesadicate satisfac-
tory properties of the estimates obtained from the mode¢uitsl correct specifica-
tion. They point to the importance of the peptide-specifeonporation rate\ for
the performance of the labeling strategy:\ifs too low, the incomplete labeling
may cause bias in the estimation of the relative abundanbés underscores the
importance of a careful choice of the duration of the lalgpérperiment. From this
point of view, the possibility of using the model to obtainralpminary estimate of
A from, e.g., a limited pilot-experiment, is an important adtage when optimizing
the experimental protocol. The influence of the purity of hieavy-oxygen water
and the duration of the reaction on the optimal model peréoree for, e.g.) or @,
is a topic for further research.

The results of the application to the controlled MS experhweere consistent
with the true parameter values for two out of three analyzeptides. For one
peptide, however, the results were biased both for our maxielfor the method
of Eckel-Passovet al. (2006). As we encountered issues with the quality of MS-
measurements in the available spectra, it is possiblellbdiias may be caused by
some experimental factors unknown to us. On the other h&wedmibdel, which
we have developed, entails several assumptions. It is c@ide that, e.g., the
chemical composition of the peptide (arginine/lysine @ri@us) causes a violation
of some of these assumptions. For instance, it could belgegbat some peptides
are not amenable to any further reaction after receivingoxygen-isotope. This
would imply that transition matrif’, which assumes that such reactions take place,
is misspecified. Also, the assumption regarding the Poipsocess, which imply
that subsequent oxygen replacements are independentloéaar, could be an
issue. These topics are subject to further investigation.

Several extensions of the proposed methodology can bedmesi. For in-
stance, inclusion of heteroscedastic and/or seriallyetated errors might be achieved
by using appropriate variance- and correlation functiéhst{eiro and Bates, 2000).
Also, the possibility of including random effects, which wd allow estimating,
e.g., the between-sample biological variability, can lmaight of. These extensions
require the use of more advanced estimation methods anthevdbddressed in the
future.
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Finally, mathematical methods to derive accurate quaatifio from incom-
plete labeled peptides are very important, but the incotepébeling described in
this manuscript is not restricted tdO-labeling. Other types of stable isotope la-
beling such as the more popular SILAC, ICAT andll labeling all suffer from es-
sentially the same phenomenon of incomplete labeling, lagicttore the described
method could be modified to be more generally applied to aliojgic labeling
strategies. The necessary modifications will include,, élge adaptation of the
Markov-model to the particular features of the labeling-tian.

The method presented in this manuscript is implemented aati@abAtoolbox
and is available on request. The method is computafionalafas can evaluate
approximatelyl 00 peptides based on two technical replicates, i.e., two gpattra,
in one second on a standard laptop (Dell Latitude E6500).

Appendix

Example

Assume we have observed a seriesrof= 11 peaks in the joint mass spectrum
from an enzymatid®O-labeling experiment with water impuritiess = 4% and

pir = 1% and a duration of = 120 minutes. This series can be generated by a
peptide which has= m — 4 = 7 seven isotopic variants or, equivalentlysotopic
ratios. The function:(Q, H, Ry, ..., Rg, \) can be expressed as a matrix which
takes the following form:

H
o 100000O0|/P 0 0 0 0 0 0 Zgl
s 01 0000CO0C/P P O 0 0 0 0 HRQ
T3 0010000 P P 0 0 0 0 HR3
4 0001000O0|Ps P, P, , 0 0 0 HR‘*
s 0000100/P PP P B 0 0 R
zw |=10000010/0 P P4 P, , B, 0 HQ‘)
Ty 00000010 0 P P, P, P, P HOR
s 00000O00/0 0 0 P P, P, P, HQRl
g 00000000 0O 0 0 P P P HQRQ
10 00000000 0 0 0 0 P P HQR3
11 00000000 0O O 0 0 0 P HQR;‘

HQRg

wherez;(60) in equation (13) denotes thiéh element of the above result vector.
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From this set of equations it should be observed that theixnatrthe right-
hand side has a special structure. The structure of thisxnsdry A, is completely
determined by thé1 observed peaks in the joint spectrum. More generally, when
m peaks are observed from the joint spectrum, the madrcan be represented as

follows:
I, _
A= ( ! me(m—4) > )

045 (m—a)

with I,,,_, denoting the identity matrix of dimensigm —4) x (m—4) and0., (,,—4)
denoting a matrix of zeros's of dimensidnx (m — 4). Matrix L has a dimension
of m x (m — 4) and has a banded diagonal structure.

The probabilities?, . . ., P, are a function of\ and can be calculated from the
state probability vecto§(\):

Py=51(\), Py=S5(\)+Si(\),
PlZSQ()\), P3:S5()\), P4:SG()\),

where the index denotes the element of the state probabddtorS(\).
The state probability vector is calculated as

S/O\) _ 5667,\120€T,\120 ’

where the initial state vector equag = (1,0,0,0,0,0)". The transition probabil-
ity matrix is obtained from the water impurities and is ectoal

.04 .01 .95 0 0 0
04 .04+.01 95 .01 95 0
p) p) 2 2 p)
04 .01 04195 (3 01 95
2 2 2 2 2
0 .04 0 .01 .95 0
0 04 04 .01 .014+.95 .95
2 2 2 2 2
0 0 .04 0 .01 .95
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Checklist assumptions

The model entails several assumptions. In this part we llish@ assumptions to
which the model is restricted. If possible, we mention hoasthassumptions can
be assessed:

The measurement error due to instrument noise is assumependent and
identically normally distributed. This can be assesseddiggitests for nor-
mality and homoscedasticity.

The number of isotope peaks for a peptide equals the obsewmater of

peaksm — 4. If you find a violation against this assumption, e.g, onlyts
of 2 Da occurred, this can be corrected by removing or addiogppe peaks
in the structure of the model.

Before labeling, the isotopic distribution for the labetad unlabeled peptide
are equal.

Water impurities are known. This is measurable.

Water impurities are constant during the reaction. Thislmamchieved by
performing the labeling in excess of heavy-oxygen-water.

Reaction time is known. This is measurable.

The two oxygen reaction sites on the carboxyl-group are lggtesvorable,

i.e., they have the same incorporation rate. A violationragdhis assump-
tion will result in a joint spectrum with a pronounced peptghift of 2 Da.

The transition matrix@” should be adjusted to account for this.

Previous oxygen replacements do not influence the enzymesition for
future oxygen replacements, i.e., the incorporation ratkthe transition ma-
trix are static. This assumption is difficult to assess. &itise model cannot
account for this type of violation, the SSE will generallgiiease.

As an initial condition, prior to labeling, we assume thag tiwo oxygen
atoms on the carboxyl-terminus af®. If the assumption is violated, the
correct distribution of oxygen isotopes on the carboxyini@us can be im-
puted inS|.
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Tables

Table 1: Simulation results for the peptide with maes0.5 Da: estimation of\.

The relative biag, empirical variance?
s, should be multiplied byt0—*.

emp’

Q A b Somp s Clcoverage
0.5 0.08 | 71.25 1985.85 2188.37 96.16
0.5 0.02 | 4.87 5.46 5.37 95.44
0.5 0.008| 60.88 12.38 11.76 93.68
1 0.08 9.76 165.07 174.82 95.80
1 0.02 0.77 0.58 0.55 94.72
1 0.008| 4.06 0.84 0.79 95.04
2 008 | 561 99.87 103.69 95.44
2 0.02 0.23 0.27 0.26 94.40
2 0.008| -2.52 0.70 0.68 94.60

and the average model-based variance

Table 2: Parameter estimates based on six technical regdifa the tryptic bovine
Cytochrome C peptides at mass67.61, 1455.66, and1583.75 Da. The values
should be multiplied by 0%.

CC1l(1167.61 Da)] CC2(1455.66) CC3(1583.75 Da)

0 0 se(d) |0 0 se(d) |0 0  se(d)
H, | - 7.4871 0.1147 - 2.4731 0.012Q - 2.2999 0.0061
Hy, | - 7.3349 0.1141 - 2.2359 0.0119 - 2.2414 0.0061
H; | - 6.3360 0.1107 - 2.2222 0.0118 - 2.1344 0.0060
Hy | - 7.1344 0.1134 - 2.4541 0.012Q - 2.3827 0.0062
H; | - 48485 0.1063 - 1.9640 0.0117 - 1.8532 0.0059
Hg | - 6.1656 0.1101 - 2.4405 0.012Q - 2.4591 0.0062
o? | - 230.81 - - 2.38 - - 0.67 -

http://www.bepress.com/sagmb
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Figures
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Figure 1: Q-Q-plots of the statistic in equation (16) for tieéative abundance

for the peptide with masK)00.5 Da . The quantiles of the input sample (y-axis) are
plotted against the quantiles of a t-distribution with 1gies of freedom (x-axis).
Panels (a), (b) and (c) f@p = 0.5. Panels (d), (e) and (f) fap = 1. Panels (g), (h)
and (i) for@ = 2. Panels (a), (d) and (g) for = 0.08. Panels (b), (e) and (h) for
A = 0.02. Panels (c), (f) and (i) = 0.008.
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Figure 2: Empirical variance (indicated by stars) and mdmdeled variance (indi-
cated by dots) for relative abundan@eequal tol /2, 1 and2 (denoted by blue, red
and green, respectively) based on two technical replic®asel (a): incorporation

rate \ fixed at0.08. Panel (b): incorporation ratefixed at0.02. The duration of
the enzymatic reaction is equal 120 min.
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Figure 3: Empirical variance (indicated by stars) and mdideled variance (indi-
cated by dots) for incorporation ratewith ion ratio Q equal tol/2, 1 and2 (de-
noted by blue, red and green, respectively). Panel (a)rpacation rate) fixed at
0.08. Panel (b): incorporation ratefixed at0.02. The durationr of the enzymatic
reaction is equal t@20 min.
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Figure 4. Observed (panel (a)) and estimated (panel (bR pemhts for the six
replicated spectrum for the tryptic Bovine Cytochrome CtukpCC1 with mass
1167.61 Da and@ = 0.33. Note that the peaks are grouped per isotopic peak.
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Figure 5: Residuals of peptide CC1 with ma$§7.61 Da and@ = 0.33 for the six
technical replicates grouped per peak.
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Figure 6: Observed (panel (a)) and estimated (panel (bR pemhts for the six
replicated spectrum for the tryptic Bovine Cytochrome CtaepCC2 with mass
145566 Da and@ = 0'33. Note that the peaks are grouped per isotopic peak.
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Figure 7: Residuals of peptide CC2 with mag55.66 Da and( = 0.33 for the six
technical replicates grouped per peak.
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Figure 8: Observed (panel (a)) and estimated (panel (bR pemhts for the six
replicated spectrum for the tryptic Bovine Cytochrome CtuepCC3 with mass
1583.75 Da and@ = 0.33. Note that the peaks are grouped per isotopic peak.
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Figure 9: Residuals of peptide CC3 with mas83.75 Da and( = 0.33 for the six
technical replicates grouped per peak.
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Figure 10: Estimate (panel (a)) and variance (panel (b) podimeter) for peptide
CCa3 for all possible permutations of the six replicates famups ofn = 1,... 6.
The x-axis indicates the number of replicatesSimilar results were obtained for
peptide CC1 and CC2 (data not shown).
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Figure 11: Estimate (panel (a)) and variance (panel (b) podimeter) for peptide
CC3 when leaving out the last peptide peaks. The x-axis atescthe number of
observed peaks:. Similar results were obtained for peptide CC1 and CC2 (data
not shown).
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Figure 12: Q-Q-plots of the statistic in equation (16) foe telative abundanag,
reference intensity? and peptide-specific incorporation ratefor peptide CC3.
The quantiles of the input sample (y-axis) are plotted agjdime quantiles of a
t-distribution with 47 degrees of freedom (x-axis). Theethoutlying points (left-
hand side) correspond to the same outlying spectrum.
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