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Abstract

The enzymatic 18O-labeling is a useful quantification technique to account for between-
spectrum variability of the results of mass spectrometry experiments. One of the important issues
related to the use of the technique is the problem of incomplete labeling of peptide molecules,
which may result in biased estimates of the relative peptide abundance. In this manuscript, we
propose a Markov-chain model, which takes into account the possibility of incomplete labeling
in the estimation of the relative abundance from the observed data. This allows for the use of
less precise but faster labeling strategies, which should better fit in the high-throughput proteomic
framework. Our method does not require extra experimental steps, as proposed in the approaches
developed by Mirgorodskaya et al. (2000), López-Ferrer et al. (2006) and Rao et al. (2005),
while including the model proposed by Eckel-Passow et al. (2006) as a special case. The method
estimates information about the isotopic distribution directly from the observed data and is able
to account for biases induced by the different sulphur content in peptides as reported by Johnson
and Muddiman (2004). The method is integrated in a statistically sound framework and allows for
the calculation of the errors on the parameter estimates based on model theory. In this manuscript,
we describe the methodology in a technical matter and assess the properties of the algorithm via a
thorough simulation study. The method is also tested on a limited dataset; more intense validation
and investigation of the operational characteristics is being scheduled.
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1 Introduction

Peptide-centric techniques are gaining a lot of interest for the search of new protein
biomarkers, surrogate endpoints, or markers for classification of diseases. Typi-
cally, such techniques extensively use liquid chromatography (LC) combined with
mass spectrometry (MS) for protein-expression profiling, because they promote the
high-throughput quantitative characterization of a proteome. By comparing the pro-
tein abundances between different samples, differentially expressed proteins can be
found. By analyzing these proteins, important informationabout, e.g., mechanisms
of disease can be obtained. However, the LC-MS measurementsare influenced by
different sources of variability, which can obstruct the detection of differentially
expressed proteins. In order to reduce the effect of the variability on the data, a
labeling approach can be considered. There are two generally accepted labeling
strategies for the relative quantification of proteins.

The first strategy is based on the principle of isobaric labeling, i.e., the reporter
protocol. In this approach, peptides from multiple samplesare coded with isobaric
mass tags (e.g., iTRAQ from Applied Biosystems, TMT from Proteome Sciences,
ExacTag from Perkin Elmer, etc.) and are mixed together. Peptides labeled with
different tags are indistinguishable in a precursor scan. To quantify the relative
abundance of a peptide in the labeled samples, an additionaltandem MS interroga-
tion is required. Quantification of the relative abundance is based on the observed
intensities of the reporter molecules.

The second strategy is based on isotopic labeling, i.e., theprecursor protocol. In
this approach, peptides are coded with stable isotope tags (e.g., ICPL from TopLab,
ICAT from Applied Biosystems, etc.) and mixed together withan unlabeled sample.
The stable isotope tag will result in an increase of the peptide’s mass. Due to this
increased mass, a peptide from the labeled sample is discernable from its unlabeled
counterpart in a precursor scan. Quantification of the relative abundance is based
on the observed intensities.

Isobaric labeling has several advantages over the isotopiclabeling strategy. For
instance, it allows for multiplexing up to eight samples in one LC-MS run. The
quantification results are also complemented by the identification of the putative
peptide. However, a disadvantage of the isobaric labeling strategy is that for the
quantification of a peptide a tandem MS fragmentation is required. The selection of
these peptides is data dependent and limited by the available amount of material and
instrument acquisition. Usually only the most abundant peptides are selected for
tandem MS and often undersampling occurs (Liet al., 2005). It is also well possible
that uninteresting peptides, which are not differentiallyexpressed, are selected.

For these reasons, we regard the isobaric labeling as highlyreliable and ex-
cellent for screening samples containing only a limited number of peptides. This
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makes the technology suited for the hypothesis-driven evaluation of differentially
expressed proteins. However, when the scope is hypothesis-generation, i.e., discov-
ery by analyzing complex proteomes, this approach is not optimal. For the screen-
ing of whole proteomes for differentially expressed proteins it would be convenient
if a thorough data analysis could indicate the peptides, which are differentially ex-
pressed prior to a second interrogation on the tandem MS. This targeted approach
should improve the dynamic range and sensitivity of the method, and should lead
to a more efficient use of the mass spectrometry device.
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Figure 1: Chemical reaction scheme for the two-step enzymatic 18O-labeling pro-
cedure.

In this respect, a relatively low-cost and open-source technique for stable iso-
tope labeling is the enzymatic18O-labeling, where the two16O oxygen atoms in
the carboxyl-terminus of a peptide are replaced with oxygenisotopes from heavy-
oxygen-water. By putting emphasis on the enzymatic aspect of the labeling, we
want to distinguish between the method considered in this manuscript and the com-
monly used proteolytic labeling. Enzymatic labeling is performed in two steps. In
the first step, protein digestion is done in normal water. In the second step, the
labeling is done in heavy-oxygen-water. The oxygen replacements in the carboxyl-
terminus are a continuous process and are enzymatically catalyzed by a proteolytic
reagent. This labeling reaction is schematically depictedin Figure 1. In princi-
ple, this reaction is the reverse of the protease-catalyzedpeptide-bond (Miyagi and
Rao, 2007). We assume that both oxygen-atoms on the carboxyl-terminus will react
equally favorable with the18O-atoms. Hence, in ideal circumstances, the labeling
should lead to an increase of the mass of the peptide moleculeby 4 dalton (Da)1.

For example, the labeled peptides from, say, Sample II, can now be pooled
together with the unlabeled peptides from, say, Sample I, and processed simulta-
neously by LC and MS. Without the enzymatic18O-labeling, the isotopic peaks,
corresponding to the isotopic distribution2 of a peptide present in both samples,
would appear at the same location in the resultingjoint mass spectrum. This is

1The term dalton (Da) is a mass unit and is defined as1/12 of the mass of an unbound atom of
12C at rest and in its ground state.

2A peptide molecule has different isotopic variants with a different mass because of the presence
of carbon (12C, 13C), hydrogen (1H, 2H), nitrogen (14N, 15N), oxygen (16O, 17O, 18O), and sulphur
(32S, 33S, 34S, 36S) isotopes. The probability of occurrence of the variants can be computed and
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Figure 2: Effect of enzymatic18O-labeling in a mass spectrum in ”stick” represen-
tation. Left panel: “sticks” can be seen as a representationof the distribution of
the isotopic variants of the peptide. Right panel: labelingcauses accumulation of
different isotopic variants in a joint spectrum.

graphically illustrated in the left panel of Figure 2. In this situation, no distinction
could be made between the contributions of the different biological samples to the
peptide peaks observed in the joint spectrum (cfr. isobariclabeling). However, with
the enzymatic18O-labeling, the isotopic peaks which correspond to the labeled pep-
tide will shift 4 Da to the right in the mass spectrum, as shownin the right-hand side
panel of Figure 2. This allows for making a distinction between the peaks related to
peptides from different samples. Consequently, a direct comparison of the peptide
abundance in the two samples is possible because the abundance measurements are
affected by the same amount of machine noise. A “naı̈ve” approach to compute the
relative abundance of the peptide in the two samples would beto take the ratio of
the heights of the first and fifth peak observed for the peptidein the joint mass spec-
trum (see the right-hand side panel of Figure 2), as these peaks would correspond
to the monoisotopic variants of the peptide in the unlabeledand labeled sample,
respectively. However, as it can be observed from Figure 2, some isotopic peaks of
the unlabeled peptide will still overlap with the monoisotopic peak of the labeled
peptide. Thus, even in this ideal setting, where a mass shiftof 4 Da is acquired, the
ratio would yield a biased estimate of the relative abundance, because it does not
take into account the overlap of the isotopic peaks.

In practice, however, there are more problems related to theuse of the enzy-
matic 18O-labeling strategy. First, the heavy-oxygen water does not contain100%
pure18O-water. It can also contain16O- and17O-atoms. We term thesewater impu-
rities. Note that, if the two carboxyl-terminus oxygen atoms are replaced by, e.g.,
17O-atoms, the peptide molecule becomes heavier by only 2, andnot 4 Da, as it

is called the isotopic distribution. When assayed by high-resolution mass spectrometry a peptide
produces a series of peaks, called isotopic peaks. The peaksare separated by approximately one
mass-unit and their intensity correspond to the isotopic distribution of the peptide. The lightest
isotopic variant of a peptide is called the monoisotopic variant.
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ideally would be the case in100% pure18O-water. Second, the speed of the enzy-
matic reaction, i.e. the oxygen incorporation rate, depends on multiple unobserved
factors and therefore can differ for different peptides. Asa result, at the end of the
enzymatic reaction, not all peptide molecules from Sample II may have been ac-
tually labeled. The isotopic peaks for these molecules willoverlap with the peaks
from Sample I, which results in a biased estimate of the relative abundance.

These problems imply that the peaks, observed for a peptide in a joint spectrum,
will correspond to a complex mixture of shifted and overlapping isotopic peaks that
are related to the isotopic distributions of the peptide molecules in the unlabeled and
labeled samples. In order to obtain an unbiased estimate of the relative abundance
of the peptide in the two samples, the overlap of the isotopicpeaks has to be taken
into account (Yeet al., 2009).

Several methods have been proposed to deal with the issue. Onone hand, ef-
forts aimed at the optimization of the labeling process, have been undertaken. For
instance, methods that prohibit the back-exchange have been investigated (Storms
et al., 2006; Staeset al, 2004). Alternatively, techniques that only allow for the
incorporation of a single18O-atom have been proposed (Raoet al., 2005).

On the other hand, approaches that address the issue at the data analysis stage
have been developed. Mirgorodskayaet al. (2000) have formulated a regression
approach, which uses information about the isotopic distribution and about the la-
beling efficiency of the labeled peptide. The information isextracted from an addi-
tional mass spectrum of the labeled peptides, obtained before mixing the unlabeled
and labeled sample. This extra MS step complicates the conduct of the experi-
ment. López-Ferreret al. (2006) and Raoet al. (2005) have suggested to identify
the amino acid sequence of the peptide via an additional MS identification (tandem
MS). Consequently, they can calculate the isotopic distribution of the peptide. The
extra MS identification and the calculation of the isotopic distribution are compu-
tationally involved and require extra mass spectrometer time. Eckel-Passowet al.
(2006) have proposed a regression approach similar in spirit to the method of Mir-
gorodskayaet al. (2000). They have used the method of Senkoet al. (1995) to
estimate the average isotopic distribution. This method isfast and does not need
extra MS steps. However, it can lead to biased relative abundance estimates, as the
actual isotopic distribution of a peptide can substantially deviate from the average
isotopic distribution when, e.g., the peptide contains sulphur atoms (Johnson and
Muddiman, 2004; Valkenborget al., 2007). Other methods treat the problem as a
normalization issue similar to the one related to microarray data, but by doing so
they ignore valuable information regarding the labeling processes.

In this manuscript, we rigorously describe an alternate, model-based approach
to estimate the relative abundance of a peptide from enzymatically 18O-labeled MS
data. The approach uses the regression framework, considered by Mirgorodskaya
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et al. and combines the framework with a probabilistic model, which describes
the kinetics of the enzymatic18O-labeling reaction. An important advantage of
the method is that it allows to estimate the peptide’s isotopic distribution directly
from the observed data, which in turn can be used to validate if the peaks are in-
deed originating from a bonafide peptide (Valkenborget al., 2008a). This implies
that no additional MS steps are required for quantification,while the information is
unbiasedly extracted from the observed spectra. The methodis able to accommo-
date additional joint mass spectra for a given peptide, which can arise from, e.g.,
neighboring LC-fractions or technical replicates. Further, we extended the method
such that it can account for the possible presence of17O atoms in the heavy-oxygen
water. The proposed method is integrated into a sound statistical framework and
the properties are thoroughly evaluated by means of a simulation study. A con-
trolled MS experiment, limited to one commercially available purified protein, is
conducted in order to demonstrate the correct functioning of the method on mass
spectrometry data. More complex experiments are being set up in order to further
investigate the operational characteristics of the method.

2 Methods

We assume that, prior to the statistical analysis of a seriesof peaks observed in
a MALDI-TOF spectrum, the spectrum was appropriately pre-processed. To this
aim, we use the strategy proposed by Valkenborget al. (2009; 2008b). The pre-
processing strategy extracts the information about the mass location and the height
(intensity) of peaks, which are most likely due to a peptide.Thus, we represent the
peaks in a mass spectrum by “sticks”, disregarding their shape.

In what follows, we present the development of our approach.In the first sub-
section, we describe the basic model for peptide peaks observed in a joint mass
spectrum obtained from an enzymatic18O-labeling experiment. The observed peaks
are expressed in terms of the unobserved isotopic peaks in both samples before la-
beling. Unfortunately, the model is not practical, as it is over-parameterized. To
address the issue, in the second subsection, we formulate a parsimonious model
for the kinetics of the enzymatic reaction, which drastically reduces the number of
parameters in the basic model and makes the latter estimable.

In developing the model, we assume availability of a single joint spectrum.
However, in practice, multiple spectra, resulting from analysis of, e.g., several repli-
cated measurements for the same or different biological samples will usually be
available. Thus, in the third section, we discuss how the inclusion of multiple spec-
tra can be handled via the construction of the log-likelihood function. Finally, in
the last subsection, we discuss the issues related to the numerical algorithms used
for the practical implementation of the model.
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Figure 3: The height of the fifth peak of the observed joint spectrum can be defined
in terms of the unobserved peptide peak intensities before labeling and the mass
shift probabilities. Due to the imprecise labeling of a peptide, five potential mass
shifts can occur,P0, P1, P2, P3 andP4. In this way, the set of isotopic peaks from
the labeled peptide can contribute to the fifth peak in the joint spectrum via the
earlier defined mass shift probabilities.

In this manuscript, various assumptions are made during theconstruction of the
model. In order to improve the understanding of the method, aguideline to evaluate
the validity of the assumptions is added to the Appendix.

2.1 A model for the joint spectrum

As it was mentioned in the introduction, the heavy-oxygen water contains water
impurities. We denote the proportions of16O, 17O, and18O atoms in the heavy-
oxygen water byp16, p17, andp18, respectively, withp16 + p17 + p18 = 1. Due to
water impurities, the carboxyl-terminus of a peptide can contain different isotopes
of oxygen. Let us consider the triplet(n16, n17, n18), wheren16, n17, andn18 de-
note the number of16O, 17O, and18O atoms in a carboxyl-terminus, respectively.
Clearly, n16 + n17 + n18 = 2. The possible isotope combinations can now be
expressed as follows:

X(1) = (2, 0, 0), X(3) = (1, 0, 1), X(5) = (0, 1, 1),

X(2) = (1, 1, 0), X(4) = (0, 2, 0), X(6) = (0, 0, 2), (1)

For example, configurationX(3) = (1, 0, 1) indicates that one of the carboxyl-
terminus oxygen atoms was replaced by an16O-atom, while the other was replaced
by an18O-atom.

For different configurations in (1), peaks corresponding tothe isotopic distribu-
tion of a labeled peptide will shift with multiples of1 Da. The mass shift depends
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on the configuration. The probability of a particular mass shift follows from the
probability distribution of the six possible configurations of the carboxyl-terminus:

P0 = P{X(1)}, P2 = P{X(3)}+ P{X(4)},
P1 = P{X(2)}, P3 = P{X(5)}, P4 = P{X(6)}, (2)

where the index of the probability indicates the mass shift which ranges from0 to 4
Da. It should be noted that we define the mass shifts relative to a carboxyl-terminus,
which contains two16O-atoms. The probabilitiesP0, . . . , P4 can also be interpreted
as a neutron count, where the index denotes the number of additional neutrons due
to the presence of oxygen isotopes in the carboxyl-terminus.

Figure 3 illustrates a single joint mass spectrum for a certain peptide. It presents
how the fifth peak of the observed joint spectrum at the right-hand side is composed
out of the unobserved isotopic variants of the peptide in Sample I and Sample II at
the left-hand side before the labeling. Note that the first five isotopic variants of the
peptide in Sample II (labeled sample) contribute to the fifthpeak of the observed
joint spectrum via the mass shift probabilities induced by the labeling. Hence,
in order to estimate the relative abundance of the peptide inthe two samples, we
need to retrieve the information about the unobserved abundances of the isotopic
variants before the labeling. To this aim, we propose a model, which expresses the
m observed peak intensitiesyj in the joint spectrum as a function of the abundance
of thel unobserved isotopic variants of the peptide in Sample I and Sample II before
the labeling. The function is parameterized in terms of the mass shift probabilities,
defined in (2). Note that the observed peak intensitiesyj in a joint mass spectrum
are most likely also affected by instrument noise. Therefore, we need to consider a
model that incorporates an error structure. Thus, we assumethat

yj = xj + εj , (3)

with εj ∼ N(0, σ2) and thatεj ’s are independent. A correlated, heteroscedastic
error structure for the random error termsεj might also be plausible, but this leads to
a more complex model and is a topic of further research. The indexj = 1, 2, . . . , m
denotes the position of the peak in the observed series of peaks in a joint spectrum
(see Figure 3), withj = 1 referring to the first peak in the joint spectrum.

It should be noted that there is a special relation between them observed peaks
in a joint mass spectrum and thel unobserved isotopic variants. For example, con-
sider a peptide, which hasl ≥ 5 isotopic variants3 (including the monoisotopic

3A sensitive mass spectrometer is able to visualize up to five isotopic variants for a peptide.
However, low-abundance and low mass peptides can have isotopic variants which, fall under the
limit of detection. The structure of the model can be easily adjusted to accommodate for this.
Generally, the value ofm ranges between 9 and 11.
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variant). Based on this information, we can calculate the number of observed peaks
expected in a joint mass spectrum. Enzymatic18O-labeling and mixing of such a
peptide with its unlabeled counterpart will result in an observed joint spectrum of
m = l + 4 peaks, due to the mass shift of4 Da. Equivalently, in order to determine
the structure of the system of equations in (5) for an observed joint spectrum, we
need to specifyl = m − 4 for a series ofm ≥ 9 peaks.

The mean intensity,x1, of the first peak in the joint mass spectrum can now be
expressed as

x1 = HI
0 + P0H

II
0 , (4)

whereHI
0 is the unobserved abundance of the monoisotopic variant in Sample I

(unlabeled) andP0H
II
0 denotes the contribution of the monoisotopic variant from

Sample II (labeled) before the labeling. It should be noted that P0 indicates the
probability that a peptide will not receive an isotope label, i.e, does not shift to a
higher mass. Now, for the expected intensities of a series ofpeaks observed in the
joint spectrum, we can write down such a decomposition, which describes how the
unobserved isotopic variants of both samples before the labeling contribute to them:

x2 = HI
1 + P0H

II
1 + P1H

II
0 ,

x3 = HI
2 + P0H

II
2 + P1H

II
1 + P2H

II
0 ,

x4 = HI
3 + P0H

II
3 + P1H

II
2 + P2H

II
1 + P3H

II
0 ,

... (5)

xm−4 = HI
l−1 + P0H

II
l−1 + P1H

II
l−2 + P2H

II
l−3 + P3H

II
l−4 +

P4H
II
l−5,

xm−3 = P1H
II
l−1 + P2H

II
l−2 + P3H

II
l−3 + P4H

II
l−4,

xm−2 = P2H
II
l−1 + P3H

II
l−2 + P4H

II
l−3,

xm−1 = P3H
II
l−1 + P4H

II
l−2,

xm = P4H
II
l−1.

TermsP0, . . . , P4 denote the contributions of the unobserved isotopic variants from
Sample II to the observed peaks from the joint spectrum. The contributions depend
on the mass shift probabilities, which were defined in (2). Note that, for the peaks
(m−3) to m, there are no contributions from the unobserved isotopic variant of the
peptide in Sample I (unlabeled).

We can reduce the number of parameters, involved in (5), by exploiting the
fact that the isotopic distribution of a peptide is the same for the two samples, dis-
regarding the oxygen atoms in the carboxyl-terminus. It follows that the ratio of
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abundance of any of the unobserved isotopic variants of the peptide should be the
same in both samples. Thus, let us define the set ofisotopic ratiosas

Ri =
HI

i

HI
0

=
HII

i

HII
0

, (6)

with i = 1, . . . , (l − 1) = (m − 5). The abundances of the isotopic variants can be
written as a function of the isotopic ratiosRi and the abundances of the monoiso-
topic variantsHI

0 andHII
0 . Obviously, the ratioR0 is equal to one.

As we are mainly interested in the relative abundance of a peptide present in
Samples I and II, we further reparameterize the abundances of the monoisotopic
variantsHI

0 andHII
0 as

HI
0 = H and HII

0 = HQ , (7)

whereH is called the reference intensity andQ = HII
0 /HI

0 is the relative abun-
dance. By combining (6) and (7) with (5), we obtain the systemof equations de-
picted in (8) with5 + 2 + (m − 5) = m + 2 parameters. Note, however, that this
still is more than the number of observed peaksm. Thus, we need to consider some
additional simplifying assumptions. These are discussed in the next section.

x1 = H + P0HQ,

x2 = HR1 + P0HQR1 + P1HQ,

x3 = HR2 + P0HQR2 + P1HQR1 + P2HQ,

x4 = HR3 + P0HQR3 + P1HQR2 + P2HQR1 + P3HQ,
... (8)

xm−4 = HRl−1 + P0HQRl−1 + P1HQRl−2 + P2HQRl−3 +

P3HQRl−4 + P4HQRl−5,

xm−3 = P1HQRl−1 + P2HQRl−2 + P3HQRl−3 + P4HQRl−4,

xm−2 = P2HQRl−1 + P3HQRl−2 + P4HQRl−3,

xm−1 = P3HQRl−1 + P4HQRl−2,

xm = P4HQRl−1.

2.2 A model for the enzymatic 18O-labeling

A way to further reduce the number of parameters is to assume amodel for the
enzymatic18O-labeling reaction, such that the shift probabilitiesP0, . . . , P4 can be
replaced by a smaller number of parameters. To this aim, we consider a Markov-
model.
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Figure 4: Possible transitions between the carboxyl-terminus states in the Markov-
chain.

In equation (1) we introduced different configurationsX(.), indicating the com-
bination of oxygen isotopes present at the carboxyl-terminus of a peptide. We will
refer to the configurations as states. As argued in the previous section, we assume
that the carboxyl-terminus of all isotopic variants of a peptide from Sample II be-
fore the labeling contains two16O-atoms, i.e., it is in stateX(1). This is depicted
in Figure 4, where the white circle denotes stateX(1). After one oxygen-atom
replacement (k = 1), the peptide’s carboxyl-terminus will stay with certain prob-
ability in stateX(1) or moves to statesX(2) or X(3). The probability depends
on the proportions of the heavy-oxygen water impuritiesp16 andp17 (see previous
section). The new states are indicated by the light gray color in Figure 4, where the
arrows indicate the possible direction of transitions. After two oxygen replacements
(k = 2), the probabilities for the carboxyl-terminus to remain instatesX(1), X(2),
or X(3) will change. Moreover, three additional states can be reached, namely,
X(4), X(5), andX(6) (see the dark gray circles in Figure 4). A third oxygen-
replacement reaction (k = 3) will allow for eight new transitions, indicated by the
black arrows in Figure 4, and so on. This process can be seen asa discrete-time
Markov-chain, with the discrete time steps interpreted as the oxygen replacements.

The Markov-chain can now be defined more formally. Given the transition prob-
ability matrixT , the state probabilities can be expressed as follows:

S
′
k = S

′
0T

kP (k) , (9)
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k (k = 0, 1, . . .) oxygen replacements andP (k) denoting the probability thatk
replacement reactions will take place. Under the assumption that at the beginning
of the labeling process the isotopic variants of a peptide inSample II contain100%
16O-atoms at the carboxyl-terminus, the6 × 1 initial state vector is given byS0 =
(1, 0, 0, 0, 0, 0)′.

Recall that we assume that the enzymatic reaction is equallylikely on both
reaction sites of the carboxyl-terminus. We also assume that previous oxygen re-
placements do not influence the enzymatic reaction for future oxygen replacements,
i.e., that the transition probabilities, specified in matrix T , are independent of the
number of oxygen replacementsk. The transition probability matrixT with transi-
tion probabilitiesPab can then be constructed in the following way from the known
water impurities,p16 andp17:

















p16 p17 p18 0 0 0
p16

2
p16+p17

2
p18

2
p17

2
p18

2
0

p16

2
p17

2
p16+p18

2
0 p17

2
p18

2

0 p16 0 p17 p18 0
0 p16

2
p16

2
p17

2
p17+p18

2
p18

2

0 0 p16 0 p17 p18

















, (10)

Row (a = 1, . . . , 6) and column (b = 1, . . . , 6) indices correspond to statesX(1)
to X(6), respectively. The transition probabilitiesPab give the probability to move
from stateX(a) to stateX(b). For example, the probability to move from state
X(3) = (1, 0, 1) to stateX(1) = (2, 0, 0) equalsP31 = p16/2, because only if
the 18O-atom in stateX(3) is replaced by an16O-atom, we reach stateX(1). The
chance that a carboxyl-oxygen is replaced with an16O-atom depends on the water
impurity p16 of the heavy-oxygen water. We assume that the concentrationof water
impurities is constant over time. This achieved by performing the enzymatic reac-
tion in an abundance of heavy-oxygen-water, such that dilution by exchanged16O
is negligible.

Term P (k) in (9) represents the probability ofk oxygen replacements. The
number of oxygen replacementsk during the labeling reaction is unknown and de-
pends on the reaction speed and duration. The duration of theenzymatic reaction is
usually known and kept constant across multiple labeling experiments. We will de-
note the duration byτ . The reaction speed depends on many factors and is specific
for a peptide. We express the speed as the peptide-specific incorporation rateλ,
which gives the number of reactions per time unit. We assume that, for a particular
peptide,λ is constant over time.

Under these assumptions, the probability fork oxygen replacements can be
modeled by a Poisson process with rateλ and timeτ . As a result, after summing

with Sk denoting a6 × 1 column vector containing the state probabilities after

11

Valkenborg and Burzykowski: A Model-Based Approach for Analyzing Stable Isotope Labeled Mass Spectra



over all possible values ofk and rearranging terms, equation (9) can be expressed
as follows:

S
′(λ, τ, p16, p17) = S

′
0e

−λτeT λτ , (11)

whereS
′(λ, τ, p16, p17) is the vector containing the state probabilities for the iso-

tope combination on the carboxyl-terminus of a peptide withincorporation rateλ
after a reaction timeτ in heavy-oxygen water with impuritiesp16 andp17. Note
that, to simplify notation, we will suppress the use ofτ , p16, andp17 in subsequent
formulae.

The terme− λτeT λτ in equation (11) can be seen as a transition matrix result-
ing from a solution of the Kolmogorov backward equation for acontinuous-time
Markov model with generatorQ = λ(T −I6), whereI6 is the6×6 identity matrix
andT as defined in (10).

Now, the probabilities of the mass shifts, defined in (2), arecomputed as fol-
lows:

P0(λ) = S1(λ), P2(λ) = S3(λ) + S4(λ),

P1(λ) = S2(λ), P3(λ) = S5(λ), P4(λ) = S6(λ), (12)

where the index denotes the element of the state probabilityvectorS(λ).
Figure 5 shows the values of the mass shift probabilities as afunction ofλ for

a labeling reaction ofτ = 120 in heavy-oxygen water with impuritiesp16 = 4%
andp17 = 1%. Note that, forλ ≥ 0.1, the shift probabilities are basically constant.
A similar plot would be obtained for the dependence of the probabilities on the
reaction duration. It follows that, for a peptide withλ ≥ 0.1, the enzymatic reaction
is basically completed after120 time units, e.g., minutes; extending the duration
does not change the mass shift probabilities, because the reaction has reached a
stationary condition. This means that, if we consider a peptide with λ = 0.1, after
τ = 120 minutes, only89.8% of the molecules will receive two18O-atoms on their
carboxyl group in the current setting. In other words, the isotopic peaks of only
89.8% of the peptide molecules from Sample II will shift by 4 Da to the right in
the joint mass spectrum. Further, the peaks of1.89%, 8.04%, 0.08%, and0.18% of
the labeled molecules will shift by 3, 2, 1, and 0 Da, respectively. The analysis of
a labeled mass spectrum should correct for these different overlaps to avoid biased
estimates of the relative peptide abundance. Further, it should be stressed that the
presence of the17O-isotope may lead to mass shifts of 1 and 3 Da. Although17O is
a non-abundant isotope of oxygen, its contribution to the bias may not be ignorable.
In the case of1% 17O contamination, this leads to1.97% of the peptides labeled
with 17O.
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Figure 5: Shift probabilitiesP0, P2, P3 andP4 as a function ofλ for an enzymatic
reaction of120 minutes with heavy-oxygen water impurities ofp16 = 4% andp17 =
1%. Shift probabilitiesP1 are small and not shown in this figure.

It is important to point out that the sensitivity of the estimation method with
respect to assumptions made about the percentage17O and16O contamination is
not a concern, because the degree of contamination present in the heavy-oxygen
water are measured prior to the labeling experiment.

From this perspective, by using (11) and (12), we replace thefive shift probabil-
ities by a single parameter, namely,λ. Consequently, we further reduce the number
of parameters in (5) to3+(m−5) = m−2, which is less then the number of avail-
able observationsm. This allows us to fit the model, specified by (8) and (11)–(12),
to the observed data.

2.3 Estimation and inference

As described in the previous sections, by using (8) and (11)–(12), we can express
the expected valuesxj of the peaks observed in the joint spectrum as a function
of parameter vectorθ = [Q, H, R1, . . . , Rm−5, λ]. The parameter of interest is the
relative abundanceQ, defined in (7). By using the assumed form of the model, given
in (3), the likelihood for the joint spectrum withm observed peaks of intensitiesyj

can be expressed as follows:
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L(θ) =
m
∏

j=1

1

σ
√

2π
e−

1

2σ2
{yj−xj(θ)}2

. (13)

It is difficult to express the functionxj(θ) explicitly in the general case. An example
of the model structure in matrix formulation can be found in the Appendices.

The extension of (13) to accommodate additional, sayn, spectra resulting from,
e.g., technical replicates or peptides, which appear in multiple mass spectra due to
a high-dimensional LC-step, is obvious:

L(θ) =
n

∏

s=1

m
∏

j=1

1

σ
√

2π
e−

1

2σ2
{ysj−xsj(θ)}2

. (14)

For each additional spectrums (s = 1, . . . , n), an extra reference intensity pa-
rameterHs may need to be added to vectorθ, to allow for the between-spectrum
intensity-scale variability. The reference intensities account for the relationship be-
tween the abundances in multiple mass spectra due to LC. It should be stressed that
this relationship is not additive, but multiplicative. This means that all peak heights
of a particular peptide differ by a multiplicative constantHs across the LC-runs.
Also, a separate residual variance parameterσ2

s may be used. Note that the num-
ber of observations(n × m) increases more rapidly than the number of parameters
(2 + n + m − 5) when additional mass spectra are available for a given peptide.
Thus, inclusion of additional spectra improves the efficiency of the estimation, as it
increases the number of degrees of freedom.

The estimateŝθ are found by maximizing likelihood (14). The residual vari-
ance(s) are estimated by the usual mean residual sum of squares. Under the normal-
ity and homoscedasticity assumptions, the approximate variance-covariance matrix
of the estimated parameters can be obtained by

V (θ̂) = σ̂2(J ′
J)−1 , (15)

whereJ is the Jacobian of (possibly, modified for multiple spectra)likelihood func-
tion (13), evaluated at̂θ. Moreover,

θ̂i − θi

s(θ̂i)
∼ td, (16)

whereθ̂i is theith element of̂θ, s(θ̂i) is the standard deviation of̂θi, andtd is the
t-distribution withd = n × m − (2 + n + m − 5) degrees of freedom.
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In the context of the proposed model, inference is especially important for the
parametersQ andλ. It is straightforward to assignp-values to the obtained esti-
mates. For example, if we want to test whether the relative abundanceQ, differs
significantly from one (H0 : Q = 1), we calculate following statistic:

tscore =
Q̂ − 1

s(Q̂)
. (17)

Thep-value can now be calculated from thet-score using the cumulativet-distribution
with d degrees of freedom.

As mentioned earlier, the structure of the model is rigid andis determined by the
number of observed peptide peaksm. Parameters which are found non-significant
by previously described test will not restrict the model.

2.4 Practical implementation of the estimation procedure

Practically, the maximum likelihood estimateŝθ are obtained by minimizing the
term

n
∑

s=1

m
∑

j=1

(ysj − xsj)
2 (18)

in function of parametersθ = [Q, H1, . . . , Hn, R1, . . . , Rm−5, λ]. Because function
xsj(θ) is non-linear in the parameters and because the parameters are constrained
to positive values, minimizing (18) becomes a constrained non-linear optimization
problem. In order to transform this to an unbounded optimization problem, the
logarithm of the parameters can be estimated. This is sufficient for all parameters
except forλ, because the derivatives of the shift probabilities are near zero for large
values ofλ. This can be observed in the example of Figure 5. To avoid numerical
instability during the minimization, parameterλ should be constrained to an upper
bound. For instance, we propose an upper bound forλ equal to20/τ . This upper
bound was implemented via an extension of Box’s idea:

λ =
20/τ exp(λ′)

exp(λ′) + 1
, (19)

with the inverse transformation given by

λ′ = log

(

λ

20/τ − λ

)

. (20)

The transformation is depicted in Figure 6 forτ = 120. It can be observed thatλ′

can take any real value, whileλ lies between0 and0.166. From Figure 5, it can be

15

Valkenborg and Burzykowski: A Model-Based Approach for Analyzing Stable Isotope Labeled Mass Spectra

lucp1372
Cross-Out

lucp1372
Inserted Text
,

lucp1372
Inserted Text
,



−8 −6 −4 −2 0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

lambda’

la
m

bd
a

Figure 6: Transformation (19) ofλ

seen that for largeλ-values (λ > 0.1), the shift probabilitiesP0, . . . , P4 stabilize.
Thus, in a steady-state, largerλ-values do not influence the shift probabilities much.
Therefore, it is reasonable to assume an upper bound forλ equal to0.166.

The minimization of (18) can now be solved as an unconstrained non-linear op-
timization problem. For this purpose, the Gauss-Newton method (Hartleyet al.,
1961) can be used. The required Jacobian matrix can be easilycalculated analyt-
ically, because the derivative of the matrix exponential in(11) has the same form
as the derivative of a scalar exponential. The Gauss-Newtonmethod converges fast
when the starting values are close to the true values of the parameters. Therefore, a
rough estimate of the parameter values is needed. The starting value for the relative
abundanceQ can be calculated as the ratio between the fifth and the first peak inten-
sity observed in the joint spectrum. The reference intensity H for the joint spectrum
is chosen as the peak intensity of the first peak. The isotopicratiosR1, . . . , Rm−5

are calculated by the method of Valkenborget al. (2008a). The starting value forλ
is chosen to be constant at the upper bound, defined in (19).

Further, in order to improve the numerical stability of the optimization problem,
the matrix exponential ofT is computed by using a scaling and squaring algorithm
with a Padé approximation (Highamet al., 2005).

3 Results

In this section, we present results of a simulation study, undertaken to check the
statistical properties and robustness of the developed model. We also show results
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of an application of the model to a controlled experiment of the enzymatic labeling
of bovine Cytochrome C peptides.

3.1 Simulation study

We considered five tryptic peptides found in human blood and identified on tan-
dem MS. The peptides were chosen such that their mass falls inthe range between
1000 Da to 3000 Da in steps of approximately500 Da. The isotopic distribution
of these peptides was calculated via the multinomial expansion, as described by
Yergey (1983). This resulted in, respectively,5, 6, 6, 7, and8 isotopic variants for
the peptides (in the order of peptides’ increasing masses).The joint spectra were
generated by using the model, defined by (3), (8), and (11)–(12). Nine different
parameter settings were considered. Relative abundanceQ was allowed to take
the values1/2, 1, and2. Peptide-specific oxygen incorporation rateλ was set at
0.08, 0.02, and0.008. The choice was motivated by the form of the plot shown
in Figure 5. The duration of the enzymatic reaction was kept constant atτ = 120
minutes. For illustration purposes, the proportions of heavy-oxygen water impuri-
ties were assumed to equalp16 = 4% andp17 = 1%. Finally, a small amount of
normal instrument noise withσ2 = 5, compatible with values observed in well-
controlled, unlabeled MALDI-TOF spectra, was added to the generated expected
values of the peaks; negative values were truncated at zero and are regarded as iso-
topic peptide variants under the limit of detection. In order to assess if inference
holds for small sample sizes, we considered only two replicates (n = 2) for this
simulation study. This means that, for each simulation setting, two joint spectra are
generated. Inter-spectra variability due to, e.g., laser fluctuations, LC-variability,
ionization efficiency or inefficient crystallization, was simulated by using different
reference intensitiesHs for the joint spectra. They took the value ofH1 = 1800 and
H2 = 2200 for Q = 0.5 and 1, andH1 = 900 andH2 = 1100 for Q = 2. In this
way, the joint mass spectra, generated forQ = 0.5 andQ = 2, should be equally
affected by the instrument noise.

The simulated data were analyzed by using the model modified for multiple
spectra, as explained in the previous section. The intention was to check the statis-
tical properties of estimation and inference under the model assumptions. We gen-
erated2500 data sets for each setting and calculated the coverage of theconfidence
intervals (CIs) of the estimated parameters, obtained by using the t-distribution
(16). Furthermore, for each of the estimated parameters, the average relative bias
b̄ and the empirical variances2

emp were computed from the2500 estimated param-
eter estimates. The average model-based variances2

mb was calculated from the
2500 model-based variances, obtained from the diagonal elements of the variance-
covariance matrix, estimated by (15). We mainly discuss theresults of estimation

17

Valkenborg and Burzykowski: A Model-Based Approach for Analyzing Stable Isotope Labeled Mass Spectra



Table 1: Simulation results for the peptide with mass1000.5 Da: estimation ofQ.
The relative bias̄b, empirical variances2

emp, and the average model-based variance
s2
mb.

Q λ b̄ × 10−5 s2
emp × 10−5 s2

mb × 10−5 CI coverage
0.5 0.008 -590.91 219.41 207.96 93.88
0.5 0.02 -63.28 3.98 4.12 95.04
0.5 0.08 -23.16 0.48 0.52 95.12
1 0.008 -165.43 107.82 103.04 94.48
1 0.02 -20.26 1.90 1.94 95.24
1 0.08 -8.18 0.27 0.28 95.08
2 0.008 -76.00 292.93 273.84 94.40
2 0.02 -16.50 6.19 6.12 95.04
2 0.08 -7.52 1.40 1.41 94.60

of parametersQ andλ for the peptide with mass1000.5 Da. The results for the
other peptides are similar.

Table 1 shows the results for relative abundanceQ. In general, the results for
λ > 0.008 are satisfactory; the estimation bias is negligible, the model-based vari-
ance is close, but slightly higher than the empirical one, and the CI coverage is close
to the desired level of95%. The standard error for the estimated coverage is equal
to

√

0.05 × 0.95/2500 = 0.004. The bias and difference between the variances
decrease withλ. For λ = 0.008, the results show a larger bias in the estimate of
Q and an underestimation of the empirical variance. In the case of Q = 0.5 and
λ = 0.008, this results in the CI coverage statistically significant smaller than the
desired level of95%. Note that, as shown in Figure 5, whenτ = 120, the incor-
poration rateλ = 0.008 leads to a very inefficient labeling. As a consequence, a
substantial proportion of labeled peptides do not receive aheavy-oxygen isotope
and there is a large overlap of isotopic peaks for the peptides from the two samples.
In such circumstances, one can expect difficulties in estimating the relative abun-
dance; in the extreme case, with a total failure of labeling,it would be impossible
to distinguish between the isotopic peaks from the two samples. In such a case the
relative abundance cannot be estimated.

In order to asses the validity of thet-distribution, we constructed Q-Q-plots
of the statistic in (16) for the relative abundance parameter Q. Figure 1 in the
Appendix displays the Q-Q-plots of the statistic against at-distribution with2 ×
9 − (2 + 2 + 4) = 10 degrees of freedom. The Q-Q-plots re-iterate the suitability
of the use of thet-distribution, perhaps with the exception ofλ = 0.008 (panels (c),
(f) and (i)).
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Table 1 in the Appendix presents the results for the peptide-specific incorpora-
tion rateλ. They indicate that the relative bias of estimates forλ decreases with
increasingQ. For Q > 1 it is below 1%, while for Q = 0.5 it is between0.5%
and7%. This trend may be seen as an expected one: a larger abundanceof peptide
molecules in Sample II results in a larger amount of ill-labeled molecules and a
larger overlap of isotopic peaks with the unlabeled peptidemolecules in Sample I.
This, in turn, has a positive effect on the estimation of parameterλ. Forλ < 0.08,
the model-based variance is close to, but slightly smaller than the empirical one.
For λ = 0.08, the empirical variance is much larger than forλ < 0.08, and it is
overestimated, on average, by the model-based estimates. As a result, forλ = 0.08
andQ = 0.5, the CI coverage is statistically significantly higher thanthe nominal
level. A fast incorporation rate (in this case,λ > 0.08) will emerge in a reaction,
which reaches its stationary condition very rapidly. This means that the labeling
reaction is complete and stable after a duration ofτ = 120 minutes forλ values
larger than0.08, as can be seen in Figure 5. In this region, the derivatives ofthe
mass shift probabilities with respect toλ are close to zero. As a consequence, there
is a degree of uncertainty and the algorithm cannot precisely determine the value of
theλ parameter. It should be noted that, in an extreme case, this can lead to uniden-
tifiability issues. On the other hand, a fast incorporation rate will often lead to a
complete reaction and this will positively influence the precision of the estimates
for the relative abundanceQ.

To check whether the peptide mass influences the precision ofestimation of
Q, we plotted the empirical and mean model-based variances for the five peptides
considered in the simulations. Panel (a) from Figure 2 in theAppendix shows the
plot for λ = 0.08. It indicates that the smallest variance is obtained forQ = 1. This
can be explained by the fact that, in this case, the influence of the instrument noise
is relatively small, because more peaks in the joint spectrahave a large intensity.
ForQ = 0.5 andQ = 2, the influence of noise is larger for the small peaks.

The variances increase for decreasingλ (see panel (b) of Figure 2 in the Ap-
pendix). A smaller incorporation rate leads to inefficient labeling and it increases
the number of the peptide molecules from the labeled sample that do not receive
two 18O-atoms. As a consequence, there is a larger overlap of isotopic peaks re-
lated to those molecules with the isotopic peaks of the peptide from the unlabeled
sample. This results in a larger uncertainty about the relative abundance and a
larger variance of estimatedQ. A reverse pattern can be observed when inspecting
the variance of the estimates ofλ (see panel (a) and panel (b) of Figure 3 in the
Appendix). This is because a substantial amount of overlapping isotopic peaks is
required to accurately estimateλ. On the other hand, when estimatingQ, we want
to avoid the overlap.
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3.2 Bovine Cytochrome C data

In this section, we describe the application of the proposedmethod to a data set of
six replicated joint mass spectra obtained from the trypticpeptides of bovine Cy-
tochrome C from LC Packings. The peptide mixture was dividedinto two parts.
One part was enzymatically labeled with a stable18O-isotope, with trypsine as a
catalyst, while the other part remained unlabeled. Next, three units from the un-
labeled part where mixed with one unit from the labeled part,which should result
in the relative abundance ratio ofQ = 0.33. The composed mixture was auto-
matically spotted six times on one stainless steel plate by arobot. The plate was
processed by a4800 MALDI-TOF/TOF analyzer (Applied Biosystems) mass spec-
trometer. More details about the exact procedure can be found in the manuscript by
Staeset al.(2004). We restrict the analysis to three Bovine CytochromeC peptides,
for which joint spectra were obtained. The other Bovine Cytochrome C peptides
could not be retrieved from the spectra. The amino acid compositions of these
peptides are as follows: peptide CC1 (mass 1167.61 Da) - TGPNLHGLFGR; pep-
tide CC2 (mass 1455.66 Da) - TGQAPGFSYTDANK; peptide CC3 (mass 1583.75
Da) - KTGQAPGFSYTDANK. The data are processed by the method presented by
Valkenborget al. (2009) and the resulting joint spectra in stick representation with
m = 10 peptide peaks are displayed in panel (a) of Figures 4, 6, and 8, respec-
tively, in the Appendix. The quality of the peak selection ismanually curated in
order to confirm that all the found peaks are members of the corresponding isotopic
distribution.

Table 2 shows the parameter estimates of the model modified for multiple spec-
tra, defined by (3), (8), and (11)–(12), obtained by fitting the model to the observed
peak heights of the six joint spectra for each of the three considered peptides. The
proportions of water impurities of the heavy-oxygen water were reported by the
lab experimentalists and equal top16 = 2% andp17 = 0.9%. The true values of
isotopic ratiosRi were calculated from the atomic composition of the peptidesby
using the convolution method developed by Rockwood (1995).As we do not know
the values of the peptide-specific incorporation ratiosλ, we only estimate products
λτ .

Panel (b) of Figures 5, 7, and 9 in the Appendix display the estimated expected
values of the peaks of the joint spectra shown in corresponding panels (a). For pep-
tides CC2 and CC3, the observed and estimated peak heights seem to be in agree-
ment, while for CC1 marked differences are observed. The fluctuating reference
intensities, i.e. first peak in the joint spectrum), are worth noting, which indicate
the between-spectrum variability due to, e.g., laser fluctuations, crystallization ef-
fects, etc. For this reason, we consider the reference intensities as a nuisance and
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Table 2: Parameter estimates (Est.) and standard errors (SE) based on six technical
replicates for the tryptic bovine Cytochrome C peptides at mass1167.61, 1455.66,
and1583.75 Da.

Q R1 R2 R3 R4 R5 λτ
Peptide CC1 (1167.61 Da)

True 0.33 0.6552 0.2394 0.0631 0.0133 0.0065 -
Est. 0.5518 0.8266 0.2949 0.0318 0.0629 0.000001 4.7980
SE 0.0318 0.0119 0.0192 0.0161 0.0191 0.0154 0.3998

Peptide CC2 (1455.66 Da)
True 0.33 0.7902 0.3414 0.0947 0.0329 0.0077 -
Est. 0.3340 0.7903 0.3367 0.0966 0.0322 0.0063 7.7350
SE 0.0129 0.0035 0.0083 0.0066 0.0078 0.0056 1.1780

Peptide CC3 (1583.75 Da)
True 0.33 0.8581 0.4119 0.1428 0.0396 0.0098 -
Est. 0.3318 0.8615 0.4056 0.1309 0.0411 0.0099 7.8289
SE 0.0068 0.0020 0.0045 0.0038 0.0042 0.0031 0.6704

Appendix.
The results for peptides CC2 and CC3, shown in Table 2, confirm that the esti-

mated relative abundanceQ is in agreement with the targeted value of0.33. Equally,
the estimates of the isotopic ratios are virtually identical to their theoretical values.
Thus, the model seems to adequately describe the data. Interestingly, the estimated
value ofλτ is similar for the two peptides, suggesting a similar incorporation rate.

For example, in order to test if the relative abundanceQ of peptide CC2 is
different from one, we calculate thet-score:

(0.3340 − 1)

0.0129
= −51.6279 . (21)

For at-distribution withd = 6 × 10 − (2 + 6 + 10 − 5) = 47 degrees of freedom,
the t-score corresponds to ap-values of2.3797 × 10−43. At a significance level
of 5%, we can reject the null hypothesisH0 : Q = 1. However, for peptide
CC1, the estimated relative abundance markedly deviates from0.33. The estimated
isotopic ratios for peptide CC1 are also statistically significantly different from the
theoretical values. Moreover, for a peptide within this mass range, we expect the
isotopic ratios to decrease monotonically. The estimates in Table 2 show a clear
deviation from monotonicity. This non-conformity of the isotopic distribution can
be used as an indicator for model misspecification or method failure. Finally, the
residual error varianceσ2 and reference intensities (see Table 2 in the Appendix)
are markedly different from the corresponding values for peptides CC2 and CC3.

we do not include their estimates in Table 2, but we provide them in Table 2 in the
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Table 3: Results of the application of the Eckel-Passowet al. (2006) model based
on Averagine (left-panel) and naive isotope ratios (right-panel) to the six technical
replicates of the tryptic bovine Cytochrome C. Mean values,over the six replicates,
of the estimates ofQ andλτ .

Eckel-Passow Naive ratio
Parameter CC1 CC2 CC3 CC1 CC2 CC3
Q 0.5671 0.2838 0.2856 0.5336 0.3473 0.3556
λτ 2.6330 . . . . .

To assess the fit of the model in more detail, Figures 5, 7, and 9in the Appendix
presents the residuals for the analysis of the data for peptide CC1, CC2, and CC3,
respectively. The plots suggests that a model with a heteroscedastic error structure,
in which the residual variance decreases with the mean intensity of the peaks ob-
served in the joint spectrum, might be more appropriate. An extension of the model
to deal with such a residual variance is an important step forfurther research.

In order to visualize the gain in stability when incorporating multiple spectra,
we refitted the model on all possible groups of1, . . . , 6 spectra for peptide CC3.
Figure 10 in the Appendix, shows how the estimate (panel (a))and precision (panel
(b)) for relative abundanceQ improves when using multiple spectra. Regardless
of the number of spectra used, the algorithm converged swiftly. The same results
are observed for peptide CC1 and CC2 (data not shown). Figure12 displays the
Q-Q plot for the estimates of the relative abundanceQ, reference intensityH, and
peptide-specific incorporation rateλ for the six spectra fitted individually. The three
outliers at the left of the figure are originating from the same spectrum. Disregard-
ing the outliers, the distributional assumptions seem valid.

We mentioned earlier, that the model structure is rigid and depends on the num-
ber of observed peptide peaks in a joint spectrum. To investigate the consequence
of missing the last peptide peaks, we refitted the model basedon six replicates for
peptide CC3 form = 6, . . . , 10 observed peptide peaks. The result is shown in
Figure 11 in the Appendix. It follows that ignoring the available information alters
the structure of the model, which violates the observed data. This leads to biased
estimates. Therefore, it is important to use all available information.

To compare the obtained results with other methods, we used the model devel-
oped by Eckel-Passowet al. (2006) based on Averagine. We fitted it to each of
the six technical replicates separately, as the model does not accommodate multiple
spectra. The mean values of the estimates ofθc2s/θc1s andKcst, which correspond
to Q andλτ in our notation, are displayed in the left part of Table 3. Forpeptides
CC2 and CC3, the method seriously underestimates the relative abundances and
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failed to compute a value forKcst. For peptide CC1, the relative abundance is over-
estimated even more than in the case of the estimate shown in Table 2. We found
this method very sensitive regarding the assumed isotopic distribution.

A naive approach to calculate the relative abundance is to take the ratio of the
fifth and the first peak in a joint spectrum. By doing so, we obtain the results
displayed at the right-hand part of Table 3. For peptides CC2and CC3, the esti-
mates of the relative abundance are, on average, further away from the true value of
0.33 than the estimates given in Table 2. However, it should be noted that, in this
case, the results from the naive approach are acceptable. The efficient18O-labeling
(overnight) and the use of highly purified heavy-oxygen water (expensive) caused
a clear separation between the labeled and unlabeled spectra, which justifies the
naive assumptions. In a realistic setting, however, labeling might be inefficient and
it would be cost-efficient to use less purified oxygen labels,which is taken care of
by the presented method.

4 Discussion

As we have mentioned in the introduction, several methods have already been pro-
posed to analyze data from enzymatic18O-labeling experiments, (Mirgorodskaya
al., 2000; Raoal., 2005; López-Ferreral., 2006; Eckel-Passowal., 2006). Most
of them, however, postulate the use of additional experimental steps, which is an
important limitation. Our method does not require such steps. It is similar in spirit
to the approach developed by Eckel-Passowet al.(2006). In fact, we can show that
the Markov-model, which we propose, includes the model developed by Eckel-
Passowet al. for the probabilities of particular mass shifts of the labeled peptide
molecules (see equations (1) and (2) in their paper). However, our model extends in
several ways the one used by Eckel-Passowet al. First, Eckel-Passowet al.suggest
to estimate the isotopic distribution of a peptide by using the average distribution
developed by Senkoet al. (1995). Although, the actual isotopic distribution of a
peptide can markedly deviate from the average one when, e.g., the peptide contains
sulphur atoms (Johnson and Muddiman, 2004; Valkenborget al., 2007). Instead,
we propose to estimate the parameters of the isotopic distribution directly from the
observed data. The advantage of this solution is that the information about the ratios
can be used to automatically annotate whether the observed series of mass spectrum
peaks are truly generated by a peptide (Valkenborget al., 2008a) or originating from
noise. Note, however, that it is also possible to use our model with a fixed isotopic
distribution. Second, it allows the model to account for thepossible presence of
17O-atoms in the heavy-oxygen water, although the bias introduced by17O-atoms
is expected to be minor. Finally, we developed a unified modeling framework, in

23

Valkenborg and Burzykowski: A Model-Based Approach for Analyzing Stable Isotope Labeled Mass Spectra



which all parameters of interest, like the relative abundanceQ, isotopic ratiosR,
and the peptide-specific incorporation rateλ, are simultaneously estimated from the
data. It can easily accommodate different parameterizations, and provide necessary
estimates of precision. It can also be scaled up to more complicated experimental
designs, with several groups of samples with technical and biological replicates,
etc.

We studied the performance of the proposed approach by meansof a simulation
study and by a controlled MS experiment. The simulation results indicate satisfac-
tory properties of the estimates obtained from the model under its correct specifica-
tion. They point to the importance of the peptide-specific incorporation rateλ for
the performance of the labeling strategy: ifλ is too low, the incomplete labeling
may cause bias in the estimation of the relative abundance. This underscores the
importance of a careful choice of the duration of the labeling experiment. From this
point of view, the possibility of using the model to obtain a preliminary estimate of
λ from, e.g., a limited pilot-experiment, is an important advantage when optimizing
the experimental protocol. The influence of the purity of theheavy-oxygen water
and the duration of the reaction on the optimal model performance for, e.g.,λ or Q,
is a topic for further research.

The results of the application to the controlled MS experiment were consistent
with the true parameter values for two out of three analyzed peptides. For one
peptide, however, the results were biased both for our modeland for the method
of Eckel-Passowet al. (2006). As we encountered issues with the quality of MS-
measurements in the available spectra, it is possible that the bias may be caused by
some experimental factors unknown to us. On the other hand, the model, which
we have developed, entails several assumptions. It is conceivable that, e.g., the
chemical composition of the peptide (arginine/lysine C-terminus) causes a violation
of some of these assumptions. For instance, it could be possible that some peptides
are not amenable to any further reaction after receiving oneoxygen-isotope. This
would imply that transition matrixT , which assumes that such reactions take place,
is misspecified. Also, the assumption regarding the Poissonprocess, which imply
that subsequent oxygen replacements are independent of each other, could be an
issue. These topics are subject to further investigation.

Several extensions of the proposed methodology can be considered. For in-
stance, inclusion of heteroscedastic and/or serially correlated errors might be achieved
by using appropriate variance- and correlation functions (Pinheiro and Bates, 2000).
Also, the possibility of including random effects, which would allow estimating,
e.g., the between-sample biological variability, can be thought of. These extensions
require the use of more advanced estimation methods and willbe addressed in the
future.
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plete labeled peptides are very important, but the incomplete labeling described in
this manuscript is not restricted to18O-labeling. Other types of stable isotope la-
beling such as the more popular SILAC, ICAT and15N labeling all suffer from es-
sentially the same phenomenon of incomplete labeling, and therefore the described
method could be modified to be more generally applied to all isotopic labeling
strategies. The necessary modifications will include, e.g., the adaptation of the
Markov-model to the particular features of the labeling reaction.

The method presented in this manuscript is implemented as a Matlab-toolbox
and is available on request. The method is computational fast and can evaluate
approximately100 peptides based on two technical replicates, i.e., two jointspectra,
in one second on a standard laptop (Dell Latitude E6500).

Finally, mathematical methods to derive accurate quantification from incom-

Appendix

Example

Assume we have observed a series ofm = 11 peaks in the joint mass spectrum
from an enzymatic18O-labeling experiment with water impuritiesp16 = 4% and
p17 = 1% and a duration ofτ = 120 minutes. This series can be generated by a
peptide which hasl = m− 4 = 7 seven isotopic variants or, equivalently6 isotopic
ratios. The functionx(Q, H, R1, . . . , R6, λ) can be expressed as a matrix which
takes the following form:
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wherexj(θ) in equation (13) denotes thejth element of the above result vector.
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From this set of equations it should be observed that the matrix on the right-
hand side has a special structure. The structure of this matrix, sayA, is completely
determined by the11 observed peaks in the joint spectrum. More generally, when
m peaks are observed from the joint spectrum, the matrixA can be represented as
follows:

A =

(

Im−4
Lm×(m−4)

04×(m−4)

)

,

with Im−4 denoting the identity matrix of dimension(m−4)×(m−4) and04×(m−4)

denoting a matrix of zeros’s of dimension4 × (m − 4). Matrix L has a dimension
of m × (m − 4) and has a banded diagonal structure.

The probabilitiesP0, . . . , P4 are a function ofλ and can be calculated from the
state probability vectorS(λ):

P0 = S1(λ), P2 = S3(λ) + S4(λ),

P1 = S2(λ), P3 = S5(λ), P4 = S6(λ),

where the index denotes the element of the state probabilityvectorS(λ).
The state probability vector is calculated as

S
′(λ) = S

′
0e

−λ120eT λ120 ,

where the initial state vector equalsS0 = (1, 0, 0, 0, 0, 0)′. The transition probabil-
ity matrix is obtained from the water impurities and is equalto
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Checklist assumptions

The model entails several assumptions. In this part we list all the assumptions to
which the model is restricted. If possible, we mention how these assumptions can
be assessed:

• The measurement error due to instrument noise is assumed independent and
identically normally distributed. This can be assessed by using tests for nor-
mality and homoscedasticity.

• The number of isotope peaks for a peptide equals the observednumber of
peaksm − 4. If you find a violation against this assumption, e.g, only a shift
of 2 Da occurred, this can be corrected by removing or adding isotope peaks
in the structure of the model.

• Before labeling, the isotopic distribution for the labeledand unlabeled peptide
are equal.

• Water impurities are known. This is measurable.

• Water impurities are constant during the reaction. This canbe achieved by
performing the labeling in excess of heavy-oxygen-water.

• Reaction time is known. This is measurable.

• The two oxygen reaction sites on the carboxyl-group are equally favorable,
i.e., they have the same incorporation rate. A violation against this assump-
tion will result in a joint spectrum with a pronounced peptide shift of 2 Da.
The transition matrixT should be adjusted to account for this.

• Previous oxygen replacements do not influence the enzymaticreaction for
future oxygen replacements, i.e., the incorporation rate and the transition ma-
trix are static. This assumption is difficult to assess. Since, the model cannot
account for this type of violation, the SSE will generally increase.

• As an initial condition, prior to labeling, we assume that the two oxygen
atoms on the carboxyl-terminus are16O. If the assumption is violated, the
correct distribution of oxygen isotopes on the carboxyl terminus can be im-
puted inS0.
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Tables

Table 1: Simulation results for the peptide with mass1000.5 Da: estimation ofλ.
The relative bias̄b, empirical variances2

emp, and the average model-based variance
s2
mb should be multiplied by10−4.

Q λ b̄ s2
emp s2

mb CI coverage
0.5 0.08 71.25 1985.85 2188.37 96.16
0.5 0.02 4.87 5.46 5.37 95.44
0.5 0.008 60.88 12.38 11.76 93.68
1 0.08 9.76 165.07 174.82 95.80
1 0.02 0.77 0.58 0.55 94.72
1 0.008 4.06 0.84 0.79 95.04
2 0.08 5.61 99.87 103.69 95.44
2 0.02 0.23 0.27 0.26 94.40
2 0.008 -2.52 0.70 0.68 94.60

Table 2: Parameter estimates based on six technical replicates for the tryptic bovine
Cytochrome C peptides at mass1167.61, 1455.66, and1583.75 Da. The values
should be multiplied by104.

CC1 (1167.61 Da) CC2 (1455.66) CC3 (1583.75 Da)
θ θ̂ se(θ̂) θ θ̂ se(θ̂) θ θ̂ se(θ̂)

H1 - 7.4871 0.1147 - 2.4731 0.0120 - 2.2999 0.0061
H2 - 7.3349 0.1141 - 2.2359 0.0119 - 2.2414 0.0061
H3 - 6.3360 0.1107 - 2.2222 0.0118 - 2.1344 0.0060
H4 - 7.1344 0.1134 - 2.4541 0.0120 - 2.3827 0.0062
H5 - 4.8485 0.1063 - 1.9640 0.0117 - 1.8532 0.0059
H6 - 6.1656 0.1101 - 2.4405 0.0120 - 2.4591 0.0062
σ2 - 230.81 - - 2.38 - - 0.67 -
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Figure 1: Q-Q-plots of the statistic in equation (16) for therelative abundanceQ
for the peptide with mass1000.5 Da . The quantiles of the input sample (y-axis) are
plotted against the quantiles of a t-distribution with 10 degrees of freedom (x-axis).
Panels (a), (b) and (c) forQ = 0.5. Panels (d), (e) and (f) forQ = 1. Panels (g), (h)
and (i) forQ = 2. Panels (a), (d) and (g) forλ = 0.08. Panels (b), (e) and (h) for
λ = 0.02. Panels (c), (f) and (i)λ = 0.008.
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Figure 2: Empirical variance (indicated by stars) and model-based variance (indi-
cated by dots) for relative abundanceQ equal to1/2, 1 and2 (denoted by blue, red
and green, respectively) based on two technical replicates. Panel (a): incorporation
rateλ fixed at0.08. Panel (b): incorporation rateλ fixed at0.02. The durationτ of
the enzymatic reaction is equal to120 min.
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Figure 3: Empirical variance (indicated by stars) and model-based variance (indi-
cated by dots) for incorporation rateλ with ion ratioQ equal to1/2, 1 and2 (de-
noted by blue, red and green, respectively). Panel (a): incorporation rateλ fixed at
0.08. Panel (b): incorporation rateλ fixed at0.02. The durationτ of the enzymatic
reaction is equal to120 min.
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Figure 4: Observed (panel (a)) and estimated (panel (b)) peak heights for the six
replicated spectrum for the tryptic Bovine Cytochrome C peptide CC1 with mass
1167.61 Da andQ = 0.33. Note that the peaks are grouped per isotopic peak.
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Figure 5: Residuals of peptide CC1 with mass1167.61 Da andQ = 0.33 for the six
technical replicates grouped per peak.
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Figure 6: Observed (panel (a)) and estimated (panel (b)) peak heights for the six
replicated spectrum for the tryptic Bovine Cytochrome C peptide CC2 with mass
1455.66 Da andQ = 0.33. Note that the peaks are grouped per isotopic peak.
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Figure 7: Residuals of peptide CC2 with mass1455.66 Da andQ = 0.33 for the six
technical replicates grouped per peak.

32

Submission to Statistical Applications in Genetics and Molecular Biology

http://www.bepress.com/sagmb



Figure 8: Observed (panel (a)) and estimated (panel (b)) peak heights for the six
replicated spectrum for the tryptic Bovine Cytochrome C peptide CC3 with mass
1583.75 Da andQ = 0.33. Note that the peaks are grouped per isotopic peak.

1 2 3 4 5 6 7 8 9 10
−250

−200

−150

−100

−50

0

50

100

150

200

peak number in joint spectrum

er
ro

r

Figure 9: Residuals of peptide CC3 with mass1583.75 Da andQ = 0.33 for the six
technical replicates grouped per peak.
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Figure 10: Estimate (panel (a)) and variance (panel (b)) of parameterQ for peptide
CC3 for all possible permutations of the six replicates for groups ofn = 1, . . . , 6.
The x-axis indicates the number of replicatesn. Similar results were obtained for
peptide CC1 and CC2 (data not shown).
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Figure 11: Estimate (panel (a)) and variance (panel (b)) of parameterQ for peptide
CC3 when leaving out the last peptide peaks. The x-axis indicates the number of
observed peaksm. Similar results were obtained for peptide CC1 and CC2 (data
not shown).
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Figure 12: Q-Q-plots of the statistic in equation (16) for the relative abundanceQ,
reference intensityH and peptide-specific incorporation rateλ for peptide CC3.
The quantiles of the input sample (y-axis) are plotted against the quantiles of a
t-distribution with 47 degrees of freedom (x-axis). The three outlying points (left-
hand side) correspond to the same outlying spectrum.
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and Vázquez, J. (2006). Quantitative proteomics using16O/18O labeling and linear
ion trap mass spectrometry.Proteomics, 6:S4-S11.

Li, X., Yi, E.C., Kemp, C.J., Zhang, H. and Aebersold, R. (2005). A software suite
for the generation and comparison of peptide arrays from sets of data collected
by liquid chromatography-mass spectrometry.Molecular & Cellular Proteomics,
4:1328-1340.

Mirgorodskaya, O.A., Kozmin, Y.P., Titov, M.I., Korner, R., Sonksen, C.P. and
Roepstorff, P. (2000). Quantitation of peptides and proteins by matrix-assisted
laser desorption/ionization mass spectrometry using18O-labeled internal stan-
dards.Rapid Communicatios in Mass Spectrometry, 14:1226-1232.

Miyagi, M. and Rao, K.C. (2007). Proteolic18O-labeling strategies for quantitative
proteomics.Mass Spectrometry Reviews, 26:121-136.

Pinheiro, J. C. and Bates, D. M. Mixed-Effects Models in S andS-PLUS. (2000).
Springer.

Rao, K.C., Carruth, R.T. and Miyagi, M. (2005). Proteolic18O-labeling by
peptidyl-lys metalloendopeptidase for comparative proteomics.Journal of Pro-
teome Research, 4:507-514.

Rockwood, A.L. (1995). Relationship of Fourier transformsto isotope distribution
calculations.Rapid Communications in Mass Spectrometry, 9:103-105.

36

Submission to Statistical Applications in Genetics and Molecular Biology

http://www.bepress.com/sagmb



Senko, M.W., Beu, S.C. and McLafferty, F.W. (1995). Determination of monoiso-
topic masses and ion populations for large biomolecules from resolved isotopic
distribution.Journal of the American Society for Mass Spectrometry, 6:229–233.

Staes, A., Demol, H., Van Damma, J., Martens, L., Vandekerckhove, J. and
Gevaert, K. (2004). Global differential non-gel proteomics by quantitative and
stable labeling of tryptic peptides with oxygen-18.Journal of Proteome Research,
3:786-791.

Storms, F.S., Heijden, R., Tjaden, U.R. and Greef, J. (2006). Considerations for
proteolytic labeling-optimization of18O incorporation and prohibition of back-
exchange.Rapid Communications in Mass Spectrometry, 20:3491-3497.

Valkenborg, D., Assam, P., Thomas, G., Krols, L., Kas, K. andBurzykowski,
T. (2007). Using a Poisson approximation to predict the isotopic distribution of
sulphur-containing peptides in a peptide-centric proteomic approach.Rapid Com-
munications in Mass Spectrometry, 21:3387-3391.

Valkenborg, D., Jansen, I. and Burzykowski, T. (2008a). A model-based method
for the prediction of the isotopic distribution of peptides. Journal of the American
Society for Mass Spectrometry, 19(5):703-712.

Valkenborg, D., Thomas, G., Krols, L., Kas, K. and Burzykowski, T. (2009). A
strategy for the prior processing of high-resolution mass spectral data obtained
from high-dimensional combined fractional diagonal chromatography.Journal of
Mass Spectrometry, 44(4):516-529.

Valkenborg, D., Van Sanden, S., Lin, D., Kasim, A., Zhu, Q. etal. (2008b). A
cross-validation study to select a classification procedure for clinical diagnosis
based on proteomic mass spectrometry.Statistical Applications in Genetics and
Molecular Biology, 7(2):Article 12.

Yergey, J. A. (1983). A general approach to calculating isotopic distributions for
mass spectrometry.International Journal of Mass Spectrometry and Ion Physics,
52:337-349.

Ye, X., Luke, B., Andresson, T. and Blonder, J. (2009). 18O stable isotope label-
ing in MS-based proteomics.Briefings in Functional Genomics and Proteomics,
8:136-144.

37

Valkenborg and Burzykowski: A Model-Based Approach for Analyzing Stable Isotope Labeled Mass Spectra




