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Abstract

In survival analysis, the classical Koziol-Green random censorship model is commonly used to

describe informative censoring. Hereby it is assumed that the distribution of the censoring

time is a power of the distribution of the survival time. In this paper, we extend this model

by assuming a general function between these distributions. We determine this function from a

relationship between the observable random variables which is described by a copula family that

depends on an unknown parameter θ. For this setting, we develop a semi-parametric estimator

for the distribution of the survival time in which we propose a pseudo-likelihood estimator for

the copula parameter θ. As results, we show first the consistency and asymptotic normality

of the estimator for θ. Afterwards, we prove the weak convergence of the process associated

to the semi-parametric distribution estimator. Furthermore we investigate the finite sample

performance of these estimators through a simulation study and finally apply it to a practical

data set on survival with malignant melanoma.

Key words and phrases: copula, pseudo-likelihood, random censorship, asymptotic representa-

tion, consistency, weak convergence, simulation.

1 Introduction

In many industrial or clinical studies, researchers are interested in the time until an event

Y ∼ F . However, due to practical constraints, it is often not possible to fully observe
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ralaan 1, 3590 Diepenbeek, Belgium, and Katholieke Universiteit Leuven, Belgium
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this lifetime and we only have a lower bound. There exists a censoring variable C ∼ G

which censors the time until an event. We observe the couple (Z, δ) with

Z = min(Y, C) ∼ H and δ = I(Y ≤ C).

When Y and C are independent continuous random variables, Kaplan and Meier (1958)

developed a nonparametric estimator for the survival function F̄ (t) = 1−F (t) of the time

until an event. Koziol and Green (1976) described a sub-model of this general model in

which they proposed that the censoring variable contains information about the lifetime.

They assumed that the survival function of the censoring time is a power of the survival

function of the time until the event and is given by

Ḡ(t) = 1−G(t) = (1− F (t))β = F̄ (t)β , t > 0, (1)

with β > 0 a constant. Abdushukurov (1987) and Cheng and Lin (1987), independly, sug-

gested a nonparametric estimator for the distribution function in this sub-model. Csörgő

(1988) developed a test to verify whether a practical data set satisfied the conditions of

this Koziol-Green sub-model. This was done by using the characteristic of this sub-model

that assumption (1) is equivalent to

Z and δ are independent. (2)

However, in some data sets, the independence assumption between the observable random

variables is not satisfied. Therefore, we propose in this paper an extension of the classical

Koziol-Green model where we assume that the survival function of the censoring variable

is a general function of the survival function of the lifetime and is given by

Ḡ(t) = µ
(
F̄ (t), θ

)
, t > 0, (3)

with, for every value of θ, µ(w, θ) a non-decreasing function of w ∈ [0, 1], µ(0, θ) = 0

and µ(1, θ) = 1. We select this function µ(w, θ) such that the sub-distribution of the

uncensored observations is given by

Hu(t) = P (Z ≤ z, δ = 1) = Cθ (P (δ = 1), H(t)) (4)

where {Cθ : θ ∈ Θ} is a known copula family depending on some unknown parameters

from a compact parameter space Θ ⊂ IRd. Since the censoring indicator δ is a discrete

variable, we know from Sklar’s theorem (Nelsen (2006)) that this copula function is

not unique. From Genest and Nešlehová (2007), it is furthermore clear that a copula

function alone is not sufficient to describe the association structure between Z and δ.
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Their marginal distributions are also needed. However this non-uniqueness of the copula

function does not influence the model which we will describe in the next section, as long

as we take copula functions in (4) with the same vertical P (δ = 1)-section, as studied in

Klement et al. (2007).

The remaining of this paper is structured as follows. In Section 2, we first derive the

function µ(w, θ) from assumption (4). Afterwards we develop a semi-parametric estima-

tor for the distribution of the time until an event in this flexible Koziol-Green model.

Hereto we use a pseudo-likelihood method to find an estimate for the parameter θ of

the copula function. After giving some regularity conditions in Section 3, we prove

the asymptotic normality of the copula parameter θ and show the weak convergence of

the semi-parametric distribution estimator F̂ (t). In Section 4, we investigate the finite

sample performance of our estimators through a simulation study. Finally we illustrate

this extended Koziol-Green model on a practical data set on survival with malignant

melanoma in Section 5.

2 The flexible Koziol-Green model

In this section, we propose an extension for the classical Koziol-Green model. Hereto we

assume that the survival function of the censoring variable is a non-decreasing function

µ(w, θ) of the survival function of the time until an event as given in (3). We derive this

function µ(w, θ) from assumption (4). Since the time until an event Y and the censoring

variable C are independent, we have that the sub-distribution Hu(t) for the uncensored

observations is given by

Hu(t) = P (Z ≤ t, δ = 1) =

t∫

0

[1−G(s)]dF (s).

Using assumptions (3) and (4), we get that,

t∫

0

µ
(
F̄ (s), θ

)
dF (s) = Cθ

(
p1, 1− F̄ (t)µ

(
F̄ (t), θ

))
, t > 0

where we denote the probability of an uncensored observation by p1 = P (δ = 1). To

solve this integral-equation for the unknown function µ(w, θ), we change the integration

variable and set µ(w, θ) = exp(ν(w, θ)). We obtain,

1∫

w

exp(ν(s, θ))d(s) = Cθ (p1, 1− w exp(ν(w, θ))) , w ∈ [0, 1].
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Differentiating the above equation with respect to w and solving for ν(w, θ) gives

ν ′(w, θ) =
1

w

(
1

C2
θ (p1, 1− w exp(ν(w, θ)))

− 1

)
(5)

with ν ′(w, θ) = ∂
∂w

ν(w, θ) and C2
θ (u, v) = ∂

∂v
Cθ(u, v). Let us define a non-decreasing

function m(w, θ) = w exp(ν(w, θ)) = wµ(w, θ) and m′(w, θ) = ∂
∂w

m(w, θ). We get from

(5) that

m′(w, θ) =
m(w, θ)

wC2
θ (p1, 1−m(w, θ))

. (6)

Using the theory of differential equations, we solve (6) under the conditions thatm(0, θ) =

0 and m(1, θ) = 1 to obtain

w = k (m(w, θ), θ, p1) = exp


−

1∫

m(w,θ)

C2
θ (p1, 1− s)

s
ds


 . (7)

The function µ(w, θ) in (3) which links the survival function of the censoring variable to

the survival function of the time until an event is given by

µ(w, θ) =
m(w, θ)

w
(8)

where m(w, θ) is the solution of equation (7). Note that when we assume that Z and

δ are independent, we get the classical Koziol-Green model with µ(w, θ) = w
p0
p1 and

p0 = P (δ = 0).

Next we propose an extension of the classical Koziol-Green model. Since the time until

an event Y and the censoring time C are independent, we get that the survival function

of the observed time until an event Z is equal to

H̄(t) = 1−H(t) = (1− F (t))(1−G(t)) = F̄ (t)µ
(
F̄ (t), θ

)
= m

(
F̄ (t), θ

)

where µ(w, θ) is given by (8). Solving this equation for F̄ (t), we can write the distribution

function of interest as

F̄ (t) = k(H̄(t), θ, p1) = exp


−

1∫

H̄(t)

C2
θ (p1, 1− s)

s
ds


 . (9)

To estimate the survival function F̄ (t) we substitute estimators for H̄(t), p1 and θ into

(9). Let (Z1, δ1), . . . , (Zn, δn) be an i.i.d. sample of the observed couple (Z, δ). We

estimate H̄(t) and p1 by their empirical counterparts defined as

̂̄H(t) =
1

n

n∑

i=1

I(Zi > t) and p̂1 =
1

n

n∑

i=1

I(δi = 1).
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To estimate the unknown parameter θ, we define the likelihood function in this flexible

Koziol-Green model and get

L(θ) =

n∏

i=1

C2
θ (p1, H(zi))

δi
(
1− C2

θ (p1, H(zi))
)1−δi

.

In this function we note that p1 and H(t) are unknown and replace them by estimators.

This leads to the following pseudo-likelihood function,

L(θ) =

n∏

i=1

C2
θ

(
p̃1, H̃(zi)

)δi (
1− C2

θ

(
p̃1, H̃(zi)

))1−δi
(10)

where p̃1 =
n

n+1
p̂1 and H̃(t) = 1

n+1

n∑
i=1

I(Zi ≤ t) = n
n+1

Ĥ(t) are rescaled empirical estima-

tors to avoid complications at the end points of the support of the copula family. Note

that H̃(z1), . . . , H̃(zn) are normalized ranks of Z1, . . . , Zn. We estimate the parameter θ

by maximizing (10) and denote the pseudo maximum likelihood estimator by θ̂.

When we substitute the estimators for H̄(t), p1 and θ into (9), we get an estimator for

the survival function of the time until an event which is given by

̂̄F (t) = k( ̂̄H(t), θ̂, p̂1) = exp


−

1∫

̂̄H(t)

C2
θ̂
(p̂1, 1− s)

s
ds


 .

Some remarks:

1. This estimator reduces to the classical Koziol-Green estimator when Z and δ are

independent. In this case, we note that the vertical p1-section of the copula family

in (4) is given by

Cθ(p1, v) = p1v, ∀v ∈ [0, 1].

2. This model is more general than the semiparametric random censorship model of

Dikta (1998). He assumes a parametric model for the conditional probability of an

uncensored observation, given the observed lifetime. In this flexible Koziol-Green

model, we have a semiparametric model for this conditional probability which is

given by

P (δ = 1|Z = z) = C2
θ (p1, H(t)) .

3. In many generalizations or alternatives for the Koziol-Green model, like for exam-

ple, Beirlant et al. (1992), Gupta et al. (1998) and Gupta and Gupta (2007), a
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known non-decreasing function µ(w, θ) with µ(0, θ) = 0 and µ(1, θ) = 1 is assumed

which relates the survival function of the censoring time to the survival function of

the lifetime. We can show that these models are special cases of our model since

this function µ(w, θ) uniquely determines the p1-section of a copula family Cθ in

(4). For v ∈ [0, 1], we define this section as

Cθ(p1, v) =
1∫

w

µ(s, θ)ds

with w ∈ [0, 1] the solution of

v = 1− wµ(w, θ).

3 Some asymptotic results

In this section, we develop the asymptotic theory for the estimators θ̂ and ̂̄F (t) in the

flexible Koziol-Green model. Hereto we use the results of Chen, Linton and Van Keilegom

(2003) who proposed conditions under which a parameter estimator that is defined via an

estimating equation depending on some nonparametric nuisance functions, is consistent

and asymptotically normal. The pseudo maximum likelihood estimator θ̂ which maximize

(10) in this model is the solution of the following score equation

n∑

i=1




δiC2′

θ

(
p̃1, H̃(zi)

)

C2
θ

(
p̃1, H̃(zi)

) −
(1− δi)C2′

θ

(
p̃1, H̃(zi)

)

1− C2
θ

(
p̃1, H̃(zi)

)



 = 0

where C2′

θ (u, v) =
(

∂
∂θ1

C2
θ (u, v), . . . ,

∂
∂θd

C2
θ (u, v)

)τ
is the vector of partial derivatives for

each component of θ. Furthermore we define

Gn(θ, p1, H) =
1

n

n∑

i=1

g(θ, p1, H, Zi, δi)

G(θ, p1, H) = E [g(θ, p1, H, Z, δ)]

where

g(θ, p1, H, z, δ) =
δC2′

θ (p1, H(z))

C2
θ (p1, H(z))

− (1− δ)C2′

θ (p1, H(z))

1− C2
θ (p1, H(z))

.

We denote by θ0, p
∗
1 and H∗(t) the true parameter values of θ, p1 and H(t). Furthermore

we see that G(θ0, p
∗
1, H

∗) = 0 and that θ̂ = argminθ∈Θ‖Gn(θ, p̃1, H̃)‖ where ‖ ‖ denotes

the Euclidean norm.
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The following notations and regularity conditions will be needed for the asymptotic

results below. We define the upper end of the support of the observed lifetime as

τH = inf{t : H(t) = 1}.

For the copula family {Cθ : θ ∈ Θ}, where Θ is a compact subset of IRd, we make the

following assumptions

(A1) The function (u, v, θ) → Ċ2

θ
(u,v)

C2

θ
(u,v)

and (u, v, θ) → Ċ2

θ
(u,v)

1−C2

θ
(u,v)

are twice continuously

differentiable with respect to u, v, and the components of θ, and all these derivatives

are continuous in (u, v, θ).

(A2) i. For all η > 0, there exists ε > 0 such that inf‖θ−θ0‖>η ‖G(θ, p1, H)‖ > ε.

ii. The matrix Γ1 := Γ1(θ, p
∗
1, H

∗) = ∂
∂θ
G(θ, p∗1, H

∗)|θ=θ0 is of full (column) rank.

In the first theorem we show that the pseudo-likelihood estimator θ̂ is asymptotically

normal. The second theorem gives an asymptotic representation for the flexible Koziol-

Green estimator ̂̄F (t) which is afterwards used to prove the weak convergence of this

estimator to a zero mean Gaussian process in l∞[0, T ], the space of uniformly bounded

real function on [0, T ] endowed with the sup-norm. The proofs of the theorems are

postponed to the Appendix.

Theorem 1. Assume (A1) and (A2). Then as n → ∞,

√
n(θ̂ − θ0) → N (0,Ω)

where Ω = (Γ−1
1 )τV Γ−1

1 with

V = Var

(
g(θ0, p

∗
1, H

∗, Z, δ) + (I(δ = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z ′, δ′)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z

′, δ′)

∣∣∣∣
v=H∗

(I(Z ≤ Z ′)−H∗(Z ′))

])
.

Hereby (Z ′, δ′) is an i.i.d. copy of (Z, δ).

Theorem 2. Assume (A1) and T < τH . Then for t < T we get that

F̂ (t)− F (t) =
1

n

n∑

i=1

g̃(t, Zi, δi)− k2(H̄
∗(t), θ0, p

∗
1)(θ̂ − θ0) + oP (n

−1)

where

g̃(t, Z, δ) = k1(H̄
∗(t), θ0, p

∗
1)(I(Z ≤ t)−H∗(t))− k3(H̄

∗(t), θ0, p
∗
1)(I(δ = 1)− p∗1)
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with k1(z, θ, p) =
∂
∂z
k(z, θ, p), k3(z, θ, p) =

∂
∂p
k(z, θ, p) and

k2(z, θ, p) =

(
∂

∂θ1
k(z, θ, p), . . . ,

∂

∂θd
k(z, θ, p)

)
.

We define higher order partial derivatives in a similar way.

Theorem 3. Assume (A1), (A2) and T < τH . Then as n → ∞,

n1/2(F̂ (·)− F (·)) → W (·) in l∞[0, T ]

where W (·) is a zero mean Gaussian process with variance-covariance function Σst given

by

Σst = Cov(g̃(s, Z, δ), g̃(t, Z, δ)) + k2
(
H̄∗(t), θ0, p

∗
1

)
(Γ−1

1 )τ

× Cov

(
g̃(s, Z, δ), g(θ0, p

∗
1, H

∗, Z, δ) + (I(δ = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z ′, δ′)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z

′, δ′)

∣∣∣∣
v=H∗

(I(Z ≤ Z ′)−H∗(Z ′))

])

+ k2
(
H̄∗(s), θ0, p

∗
1

)
(Γ−1

1 )τV Γ−1
1 k2

(
H̄∗(t), θ0, p

∗
1

)τ
+ k2

(
H̄∗(s), θ0, p

∗
1

)
(Γ−1

1 )τ

× Cov

(
g̃(t, Z, δ), g(θ0, p

∗
1, H

∗, Z, δ) + (I(δ = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z ′, δ′)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z

′, δ′)

∣∣∣∣
v=H∗

(I(Z ≤ Z ′)−H∗(Z ′))

])
.

4 A simulation study

In this section, we set up a simulation study to investigate the finite sample performance

of the flexible Koziol-Green model. Hereto we generate samples of observed couples

(Zi, δi), i = 1, . . . , n such that

Hu(t) = P (Z ≤ t, δ = 1) = Cθ(p1, H(t)).

We assume in this simulation study that the observed lifetimes Zi, i = 1, 2, . . . , n have an

exponential distribution (Zi ∼ Exp(λ)) with λ = 1.5 and the indicators δi, i = 1, 2, . . . , n
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are Bernoulli distributed with a proportion of uncensored observations of 60% (p1 =

60%). Furthermore we use the Plackett copula family and BB10 copula family for the

relationship (4) between the observed variables. These copula families are given by

Cθ(u, v) =
{

[1+(θ−1)(u+v)]−
√

[1+(θ−1)(u+v)]2−4uvθ(θ−1)

2(θ−1)
, θ > 0, θ 6= 1

uv, θ = 1
(11)

and

C(θ1,θ2)(u, v) = uv[1− θ1(1− u1/θ2)(1− v1/θ2)], 0 ≤ θ1 ≤ 1, θ2 > 0. (12)

For the Plackett copula family, we set θ = 0.2 while for the BB10 copula family we

take θ1 = 0.9 and θ2 = 0.5. We choose these copulas to investigate the influence of

respectively a real valued or vector valued copula function on the flexible Koziol-Green

model. If we consider the odds ratio of the sub-distributions of the observed

variables, we note that this odds ratio is constant over time and equal to θ in

the Plackett copula. This practical interpretation of θ is shown in more detail

in the next section. For the parameters θ1 and θ2 in the BB10 copula family

we do not have such a practical interpretation. However by considering two

parameters, we are able to model more flexible the association between the

observed variables. For a full description of these copula families we refer to Nelsen

(2006) and Joe (1997) respectively.

To generate a sample of observed couples (Zi, δi), i = 1, . . . , n we use the inverse distri-

bution function method as follows:

1. We generate two independent uniform (0, 1) samples u and t.

2. We set v = (C2
θ )

−1(t) where C2
θ = ∂

∂v
Cθ(u, v) and (C2

θ )
−1 is the inverse function of C2

θ

3. We define the observed quantities δi = I(u > 1− p1) and zi = − 1
λ
log(1− v).

In this way, we obtain for each copula choice, 100 000 replicated samples of size n.

For each of these samples, we compute p̃1 and H̃(t) and consequently obtain θ̂ as the

maximizer of the pseudo-likelihood

L (θ) =

n∏

i=1

C2
θ

(
p̃1, H̃(Zi)

)δi (
1− C2

θ

(
p̃1, H̃(Zi)

))1−δi
.

In Table 1 we report the average bias with standard deviation of the pseudo-likelihood

estimate θ̂ for different sample sizes n. From the table, we observe under each choice of
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Plackett BB10

n θ̂ θ̂1 θ̂2

15 7.4268 (902.5344) 0.0490 (0.1835) 0.5326 (4.1292)

30 0.0366 (0.1976) 0.0472 (0.1183) 0.1141 (1.5730)

50 0.0190 (0.1300) 0.0360 (0.1010) 0.0444 (0.6070)

100 0.0085 (0.0833) 0.0235 (0.0858) 0.0226 (0.2594)

200 0.0041 (0.0565) 0.0142 (0.0700) 0.0194 (0.1831)

300 0.0025 (0.0453) 0.0106 (0.0604) 0.0165 (0.1485)

500 0.0018 (0.0351) 0.0070 (0.0483) 0.0108 (0.1143)

700 0.0013 (0.0293) 0.0049 (0.0409) 0.0076 (0.0947)

900 0.0009 (0.0257) 0.0038 (0.0362) 0.0060 (0.0830)

Table 1: Average bias with standard deviation (between brackets) of the pseudo-

likelihood parameter estimates.

copula that the bias and standard deviation are decreasing with increasing sample size.

This informally suggests that the pseudo likelihood estimate of θ is consistent.

To illustrate the performance of the flexible Koziol-Green estimator

̂̄F (t) = exp

(
−
∫ 1

̂̄H(t)

C2
θ̂
(p̂1, 1− s)

s
ds

)

we further compute the bias associated with ̂̄F (t) at a pre-specified event time t = 0.5.

In Table 2, we present the absolute bias based on the 100 000 replicates. From the

table, we observe that the bias is non-increasing with increasing sample sizes under both

copula families. This suggests the consistency of the flexible Koziol-Green estimates.

Furthermore, we note that the bias is close to zero (i.e. 2 decimal places approximation).

This shows that the flexible Koziol-Green model can readily be used to approximate the

true distribution function.

5 Real data illustration: Survival with malignant

melanoma

In this section, we apply the estimator developed in Section 2 to a real data set. The data

comes from a historical prospective clinical study conducted in the period 1962-77 and is

described in Andersen et al. (1993). The study took place at the university hospital of

10



n Plackett BB10

15 0.0094 (0.1302) 0.0121 (0.1219)

30 0.0043 (0.0923) 0.0068 (0.0880)

50 0.0030 (0.0716) 0.0040 (0.0689)

100 0.0016 (0.0506) 0.0023 (0.0494)

200 0.0007 (0.0360) 0.0009 (0.0350)

300 0.0005 (0.0293) 0.0006 (0.0286)

500 0.0002 (0.0227) 0.0003 (0.0221)

700 0.0002 (0.0191) 0.0002 (0.0187)

900 0.0002 (0.0169) 0.0002 (0.0165)

Table 2: Average bias with standard deviation (between brackets) of the flexible Koziol-

Green estimate ̂̄F (0.5) under the Plackett and BB10 copulas.

Odense, Denmark and has information on 225 patients with malignant melanoma (skin

cancer). The main objective of this study was to access risk factors on the survival

rate following a radical operation on these patients. However, we will focus on the

estimation of the survival distribution of these patients. Also, only the 205 patients with

complete information are considered here. Of these patients, 57 (28%) had an event

(i.e. malignant melanoma related death). Whereas, 14 (7%) died from causes other than

malignant melanoma and 134 (65%) were alive at the end of the study.

In this study, we believe that death without malignant melanoma or alive at end of study

could be an indirect manifestation of the operation. Therefore, we suspect that malignant

melanoma free death time or end of study (i.e. censoring time) is informative to the

time until death from malignant melanoma (i.e. survival time) through its distribution

function. As such, the Koziol-Green model appears to be the outstanding candidate.

Estimate Std. Error P-Value

Intercept 1.8347 0.4461 < 0.0001

Observed time -0.0015 0.0002 < 0.0001

Table 3: The logistic regression model.

To investigate the Koziol-Green assumption, we use a logistic model of the observed time

on the censoring indicator. In Table 3, we observe that these two random variables are

highly related since the associated p-value is far less than the nominal 5%. This implies

that, the proportionality assumption of the classical Koziol-Green model is violated and

11
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Figure 1: Extimated lifetime distribution of the malignant melanoma patients under the Plack-

ett (left panel) and the BB10 (right panel) copulas.

that Zi and δi are not independent. As a result, we assume that the sub-distribution of

the time to death from malignant melanoma is related to the proportion of patients who

died of malignant melanoma and the probability of patients who are alive at time t after

the operation through the Plackett copula family given in (11). In this copula family we

note that the parameter θ is equal to a constant odds ratio for the sub-distributions of

the observed variables and is given by

P (Z ≤ t, δ = 1)

P (Z > t, δ = 1)

P (Z ≤ t, δ = 0)

P (Z > t, δ = 0)

=
P (Z ≤ t, δ = 1)P (Z > t, δ = 0)

P (Z > t, δ = 1)P (Z ≤ t, δ = 0)
= θ, t > 0.

In this illustration, the estimated value of θ is θ̂ = 12.62. This means that the odds

of the sub-distribution for an uncensored observation is about 13 times the odds of the

sub-distribution for a censored observation. Furthermore we can show that the sub-

distribution for an uncensored observation is larger than what we expect under inde-

pendence. This indicates that the smaller observed survival times are mainly uncensored

while the larger observed times are censored. Using this estimate (i.e. θ̂ = 12.62), we give

in Figure 1 a graphical representation of the flexible Koziol-Green model compared to the

Kaplan-Meier estimate as well as Chen and Lin version of the Koziol-Green model. In

contrast to the Chen and Lin estimate, we can observe from the figure that the Kaplan-

Meier and the flexible Koziol-Green estimates are very close to each other. This suggests

12



that the flexible Koziol-Green might be the most appropriate in this setting. Also we see

that the flexible Koziol-Green estimate is at the right end higher than the Chen and Lin

estimate. We expected this since θ̂ is larger than 1. In addition, we redo the analysis

with the BB10 (θ̂1 = 0.96, θ̂2 = 0.41) copula family, found in (12), and observe that the

estimates for F̄ based on the Plackett and BB10 copulas are very similar. Thus, this

suggests that inference from the flexible Koziol-Green model is independent of the copula

choice. Nevertheless, more future research is needed on this topic.

Appendix: Proofs

Proof of Theorem 1:

To prove the asymptotic normality of θ̂, we verify the conditions of Theorem 2 of Chen,

Linton an Van Keilegom (2003) (CLV hereafter). First we need to show that θ̂ − θ0 =

op(1). For this we verify the conditions of Theorem 1 of the same paper. Condition (1.1)

holds by definition of θ̂ while conditions (1.2) and (1.3) are satisfied by assumption (A1)

and (A2). Finally, conditions (1.4) and (1.5) are weaker than the conditions (2.4) and

(2.5) of Theorem 2 of CLV. Therefore, we will verify the conditions (2.4) and (2.5) below.

Except for conditions (1.4) and (1.5), we have verified all the conditions for Theorem 1

and get that θ̂ − θ0 = op(1).

Next, we verify the conditions of Theorem 2 to get the asymptotic normality. Condition

(2.1) is as condition (1.1) satisfied by definition of θ̂ while condition (2.2) follows from

assumptions (A1) and (A2). For condition (2.3), we have that

Γ2(θ, p
∗
1, H

∗) [p1 − p∗1, H −H∗]

= lim
τ→0

1

τ
{G (θ, p∗1 + τ(p1 − p∗1), H

∗ + τ(H −H∗))−G(θ, p∗1, H
∗)}

= E

[
∂

∂u
g (θ, u,H∗, Z, δ)

∣∣∣∣
u=p∗

1

[p1 − p∗1] +
∂

∂v
g (θ, p∗1, v, Z, δ)

∣∣∣∣
v=H∗

[H(Z)−H∗(Z)]

]

Hence, we get that

G(θ, p1, H)−G(θ, p∗1, H
∗)− Γ2(θ, p

∗
1, H

∗) [p1 − p∗1, H −H∗]

= E

[
g(θ, p1, H, Z, δ)− g(θ, p∗1, H

∗, Z, δ)− ∂

∂u
g (θ, u,H∗, Z, δ)

∣∣∣∣
u=p∗

1

[p1 − p∗1]

− ∂

∂v
g (θ, p∗1, v, Z, δ)

∣∣∣∣
v=H∗

[H(Z)−H∗(Z)]

]

13



Using a second order Taylor expansion, we find that

‖G(θ, p1, H)−G(θ, p∗1, H
∗)− Γ2(θ, p

∗
1, H

∗) [p1 − p∗1, H −H∗]‖

=

∥∥∥∥∥
1

2

∂2

∂u2
g(θ, u,H∗∗, z, δ)

∣∣∣∣
u=p∗∗

1

(p1 − p∗1)
2 +

1

2

∂2

∂v2
g(θ, p∗∗1 , v, z, δ)

∣∣∣∣
v=H∗∗

(H(z)−H∗(z))2

+
∂2

∂u∂v
g(θ, u, v, z, δ)

∣∣∣∣
u=p∗∗

1
,v=H∗∗

(p1 − p∗1)(H(z)−H∗(z))

∥∥∥∥∥
≤ c.‖(p1 − p∗1, H −H∗)‖2H

with p∗∗1 between p∗1 and p1, H
∗∗ between H and H∗, and where ‖(p1− p∗1, H−H∗)‖2H :=

max
{
|p1 − p∗1|2, ‖H −H∗‖2L2

}
with ‖H −H∗‖2L2 := E|H(Z)−H∗(Z)|2. This shows the

first part of condition (2.3). For the second part of this condition, it follows from the

proof of Theorem 2 of CLV that it suffices to show that
∥∥∥Γ2(θ̂, p

∗
1, H

∗) [p1 − p∗1, H −H∗]− Γ2(θ0, p
∗
1, H

∗) [p1 − p∗1, H −H∗]
∥∥∥

= oP (1)
∥∥∥θ̂ − θ0

∥∥∥

Using the mean value theorem and assumption (A1), we get
∥∥∥Γ2(θ̂, p

∗
1, H

∗) [p1 − p∗1, H −H∗]− Γ2(θ0, p
∗
1, H

∗) [p1 − p∗1, H −H∗]
∥∥∥

=

∥∥∥∥E
[

∂2

∂θ∂u
g(θ, u,H∗, Z, δ)

∣∣∣∣
θ=θ∗∗

(p1 − p∗1)(θ̂ − θ0)

+
∂2

∂θ∂v
g(θ, p∗1, v, Z, δ)

∣∣∣∣
θ=θ∗∗

(H(Z)−H∗(Z))(θ̂ − θ0)

]∥∥∥∥

≤ oP (1)
∥∥∥θ̂ − θ0

∥∥∥

where θ∗∗ lies between θ̂ and θ0.

For condition (2.4), we define

H1 = {x → h1(x), h1(·) is monotone and maps onto [0,1]}

and H = [0, 1]×H1.

Then P (p̃1 ∈ [0, 1]) → 1 and P
(
H̃ ∈ H1

)
→ 1, since H̃ is monotone. Moreover, we

have that

P
(∣∣√n (p̃1 − p∗1)

∣∣ > ε
)
≤ P

(√
n |p̃1 − p̂1| >

ε

2

)
+ P

(√
n |p̂1 − p∗1| >

ε

2

)
.

For the second term, we get that |p̂1 − p∗1| = oP
(
n−1/2

)
(Serfling (1980)), while for the

first term holds

P
(√

n |p̃1 − p̂1| >
ε

2

)
= P

( √
n

n+ 1
>

ε

2

)
→ 0, n → +∞.
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Hence, p̃1 − p∗1 = oP
(
n−1/2

)
. Analogously, we can show that

sup
0≤z≤T

∣∣∣H̃(z)−H∗(z)
∣∣∣ = oP

(
n−1/2

)

such that
∥∥∥(p̃1 − p∗1) , (H̃ −H∗)

∥∥∥
H
= oP

(
n−1/2

)
.

To verify condition (2.5), we use Theorem 3 of CLV, and show that

∣∣gj(θ1, p11, H1, z, δ)− gj(θ
2, p21, H

2, z, δ)
∣∣ (13)

≤ bj(z, δ)
{
‖θ1 − θ2‖+

∥∥(p11 − p21), (H
1 −H2)

∥∥
H

}

where gj(θ, p1, H, z, δ), (j = 1, 2, ..., k) is the j-th component of the function g, E [bj(Z, δ)
2] ≤

+∞ and
∞∫
0

√
logN(λ,H, ‖ · ‖H)dλ ≤ +∞ with N(λ,H, ‖ · ‖H) the covering number

needed to cover H.

By assuming (A1), we see that E [bj(Z, δ)
2] ≤ +∞ and (13) holds. For the covering

number, we know that ∀ λ > 0,

N(λ,H, ‖ · ‖H) ≤ N[ ](2λ,H, ‖ · ‖H) ≤ N[ ](2λ,H2, ‖ · ‖L2
)

where the last inequality follows from [0, 1], a compact interval in IR. N[ ](λ,H, ‖ · ‖H)
denotes the bracketing number to cover H. By Theorem 2.7.5 of Van der Vaart and

Wellner (1996), we have that

logN[ ](2λ,H2, ‖ · ‖L2
) ≤ K.

1

2λ

with K a constant such that

∞∫

0

√
logN(λ,H, ‖ · ‖H) < +∞.

It remains to verify condition (2.6) of CLV. Let us consider

Gn(θ0, p
∗
1, H

∗) + Γ2(θ0, p
∗
1, H

∗)
[
p̃1 − p∗1, H̃ −H∗

]

=
1

n

n∑

i=1

g(θ0, p
∗
1, H

∗, Zi, δi) + E

[
∂

∂u
g(θ0, u,H

∗, Z, δ)

∣∣∣∣
u=p∗

1

(p̃1 − p∗1)

]

+E

[
∂

∂v
g(θ0, p

∗
1, v, Z, δ)

∣∣∣∣
v=H∗

(H̃(Z)−H∗(Z))

]
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=
1

n

n∑

i=1

g(θ0, p
∗
1, H

∗, Zi, δi) + E

[
∂

∂u
g(θ0, u,H

∗, Z, δ)

∣∣∣∣
u=p∗

1

(p̂1 − p∗1 + p̃1 − p̂1)

]

+E

[
∂

∂v
g(θ0, p

∗
1, v, Z, δ)

∣∣∣∣
v=H∗

(
Ĥ(Z)−H∗(Z) + H̃(Z)− Ĥ(Z)

)]

=
1

n

n∑

i=1

{
g(θ0, p

∗
1, H

∗, Zi, δi) + (I(δi = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z, δ)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z, δ)

∣∣∣∣
v=H∗

(I(Zi ≤ Z)−H∗(Z))

]}
+ oP

(
n−1/2

)

From the central limit theorem, we find that
√
nGn(θ0, p

∗
1, H

∗) + Γ2(θ0, p
∗
1, H

∗)
[
p̃1 − p∗1, H̃ −H∗

]
⇒ N(0, V )

with

V = Var

(
g(θ0, p

∗
1, H

∗, Z, δ) + (I(δ = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z ′, δ′)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z

′, δ′)

∣∣∣∣
v=H∗

(I(Z ≤ Z ′)−H∗(Z ′))

])
.

From Theorem 2 of CLV, we get that
√
n
(
θ̂ − θ0

)
→ N(0,Ω)

where Ω = (Γ−1
1 )τV Γ−1

1 .

Proof of Theorem 2:

We have for t < T , that

F̂ (t)− F (t) = F̄ (t)− ̂̄F (t) = k(H̄∗(t), θ0, p
∗
1)− k( ̂̄H(t), θ̂0, p̂1)

with

k(z, θ, p) = exp


−

1∫

z

C2
θ (p, 1− s)

s
ds


 .

Using a second order Taylor expansion, we get that

F̂ (t)− F (t) = −k1(H̄
∗(t), θ0, p

∗
1)(
̂̄H(t)− H̄∗(t))− k2(H̄

∗(t), θ0, p
∗
1)(θ̂ − θ0)

−k3(H̄
∗(t), θ0, p

∗
1)(p̂1 − p∗1)−

1

2
k11(H̄

∗∗(t), θ∗∗, p∗∗1 )( ̂̄H(t)− H̄∗(t))2

−1

2
k33(H̄

∗∗(t), θ∗∗, p∗∗1 )(p̂1 − p∗1)
2 − 1

2
(θ̂ − θ0)

τk22(H̄
∗∗(t), θ∗∗, p∗∗1 )(θ̂ − θ0)

−( ̂̄H(t)−H∗(t))k12(H̄
∗∗(t), θ∗∗, p∗∗1 )(θ̂ − θ0)− (p̂1 − p∗1)k32(H̄

∗∗(t), θ∗∗, p∗∗1 )(θ̂ − θ0)
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where H̄∗∗(t), θ∗∗, p∗∗1 lies respectively between ̂̄H(t) and H̄∗(t), θ̂ and θ0, p̂1 and p∗1.

Since sup
t∈[0,T ]

∣∣∣Ĥ(t)−H∗(t)
∣∣∣ = op

(
n−1/2

)
(Serfling (1980)), we have that Ĥ(T ) < 1 for a

sufficiently large n. Combining this result with assumption (A1), we get that the various

partial derivatives are continuous functions on the compact space [0, T ]×Θ× [0, 1] and

therefore are bounded. Noting also that θ̂− θ0 = op
(
n−1/2

)
and p̂1 − p∗1 = op

(
n−1/2

)
, we

get that

F̂ (t)− F (t) = −k1(H̄
∗(t), θ0, p

∗
1)(
̂̄H(t)− H̄∗(t))− k2(H̄

∗(t), θ0, p
∗
1)(θ̂ − θ0)

−k3(H̄
∗(t), θ0, p

∗
1)(p̂1 − p∗1) + oP

(
n−1
)

=
1

n

n∑

i=1

{
k1(H̄

∗(t), θ0, p
∗
1)(I(Zi ≤ t)−H∗(t))− k3(H̄

∗(t), θ0, p
∗
1)(I(δi = 1)− p∗1)

}

−k2(H̄
∗(t), θ0, p

∗
1)(θ̂ − θ0) + oP

(
n−1
)

=
1

n

n∑

i=1

g̃(t, Zi, δi)− k2(H̄
∗(t), θ0, p

∗
1)(θ̂ − θ0) + oP

(
n−1
)

where g̃(t, Z, δ) = k1(H̄
∗(t), θ0, p

∗
1)(I(Z ≤ t)−H∗(t))− k3(H̄

∗(t), θ0, p
∗
1)(I(δ = 1)− p∗1).

Proof of Theorem 3:

To show the weak convergence of the process n1/2(F̂ (·)−F (·)), we show the weak conver-

gence of the first term in the asymptotic representation in Theorem 2 and use Theorem

1 which gives the asymptotic normality of θ̂. Let us denote W̃n(t) := 1
n

n∑
i=1

g̃(t, Zi, δi).

First we show that the marginals of W̃n(t) converge weakly to a multivariate normal dis-

tribution. Hereto we take distinct time points 0 < t1 < t2 < ... < tq = T , q > 0. By the

central limit theorem, we know that
(
W̃n(t1), . . . , W̃n(tq)

)
converges to an asymptotic

normal distribution with mean zero and variance-covariance matrix equal to

Σ̃tj tk = Cov(g̃(tj, Z, δ), g̃(tk, Z, δ)) = E [g̃(tj , Z, δ), g̃(tk, Z, δ)] .

To prove the tightness for this process, we define

F = {g̃(t, Z, δ)|t ∈ [0, T ]}
=

{
k1(H̄

∗(t), θ0, p
∗
1)(I(Z ≤ t)−H∗(t))− k3(H̄

∗(t), θ0, p
∗
1)(I(δ = 1)− p∗1)|t ∈ [0, T ]

}

We note that the function z → k1(H̄
∗(t), θ0, p

∗
1)(I(z ≤ t)−H∗(t)) is uniformly bounded

over t and is a monotone function of z. Furthermore we note that the second function

k3(H̄
∗(t), θ0, p

∗
1)(I(δ = 1) − p∗1) is uniformly bounded. Thus, by Theorem 2.7.5 of van
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der Vaart and Wellner (1996), we get that the bracketing number N[ ](ε,F , L2(P )) =

O
(
exp

(
K
ε

))
with K a constant. To prove the tightness of our process, we have to verify

that the class F is Donsker. By the result 2.5.6 of Van der Vaart and Wellner, we need

to show that
+∞∫

0

√
logN[ ](ε,F , L2(P ))dε < +∞

Since the functions g̃(t, Z, δ) are uniformly bounded, we only have to consider the in-

tegration interval [0, 2M ] where |g̃(t, Z, δ)| ≤ M , for all t, z, δ. For ε > 2M , we take

N[ ](ε,F , L2(P )) = 1. Hence

+∞∫

0

√
logN[ ](ε,F , L2(P ))dε =

2M∫

0

√
logN[ ](ε,F , L2(P ))dε =

2M∫

0

√
K

ε
dε < +∞.

In this way, we have shown that the process W̃n(·) converges weakly to a Gaussian process

W̃ (·) with zero mean and variance covariance function

Σ̃st = Cov(g̃(s, Z, δ), g̃(t, Z, δ)).

Since we already proved that the estimator θ̂ for the parameter θ0 is asymptotically

normal, we find that the process n1/2(F̂ (·)−F (·)) weakly converges to a Gaussian process

W (·). To find the mean and variance function of this process, we note by Theorem 2

that

F̂ (t)− F (t) =
1

n

n∑

i=1

g̃(t, Zi, δi)− k2(H̄
∗(t), θ0, p

∗
1)(θ̂ − θ0) + oP (n

−1)

=
1

n

n∑

i=1

{
g̃(t, Zi, δi) + k2(H̄

∗(t), θ0, p
∗
1)(Γ

−1
1 )τ

[
g(θ0, p

∗
1, H

∗, Zi, δi)

+ (I(δi = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z ′, δ′)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z

′, δ′)

∣∣∣∣
v=H∗

(I(Zi ≤ Z ′)−H∗(Z ′))

]]}

+ oP (n
−1/2)

where the last equation follows from the proof of Theorem 2 in CLV. From the first term

on the right side, we get that the mean and variance function of the Gaussian process
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W (·) is given by E [W (t)] = 0 and

Σst = Cov(W (s),W (t))

= Cov(g̃(s, Z, δ), g̃(t, Z, δ)) + k2
(
H̄∗(t), θ0, p

∗
1

)
(Γ−1

1 )τ

× Cov

(
g̃(s, Z, δ), g(θ0, p

∗
1, H

∗, Z, δ) + (I(δ = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z ′, δ′)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z

′, δ′)

∣∣∣∣
v=H∗

(I(Z ≤ Z ′)−H∗(Z ′))

])

+ k2
(
H̄∗(s), θ0, p

∗
1

)
(Γ−1

1 )τV Γ−1
1 k2

(
H̄∗(t), θ0, p

∗
1

)τ
+ k2

(
H̄∗(s), θ0, p

∗
1

)
(Γ−1

1 )τ

× Cov

(
g̃(t, Z, δ), g(θ0, p

∗
1, H

∗, Z, δ) + (I(δ = 1)− p∗1)E

[
∂

∂u
g(θ0, u,H

∗, Z ′, δ′)

∣∣∣∣
u=p∗

1

]

+ E

[
∂

∂v
g(θ0, p

∗
1, v, Z

′, δ′)

∣∣∣∣
v=H∗

(I(Z ≤ Z ′)−H∗(Z ′))

])
.
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