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Summary. It is common practice that some or all animals in a group of animals, e.g. a herd,
are tested for their health status by using a diagnostic test to investigate whether the herd is
infected by a disease. Several obstacles complicate the estimation of herd prevalence on the
basis of test results of the animals. First, diagnostic tests are often imperfect, resulting in a
misclassification of the animal’s disease status. It is well known how to correct the animal’s
apparent prevalence by using the diagnostic sensitivity and specificity of the animal test, but
the effects on herd prevalence are less clear. Second, in practice, a herd is often defined as
positive when at least one sampled animal tested positively. This definition is ambiguous and is
also different from the herd prevalence that is based on having at least one diseased animal in
the herd.The paper provides a discussion of these aspects and proposes a method to estimate
the true herd prevalence on the basis of the health status of (all or a sample of) animals within
a herd corrected for the sensitivity and specificity of the individual test, the number of animals
that are tested in the herd and the uncertainty of the diagnostic test characteristics.

Keywords: Animal prevalence; Beta–binomial model; Diagnostic tests; Herd prevalence;
Sensitivity; Specificity

1. Introduction

The surveillance of emerging diseases in animals is a topic of great significance in veterinary
epidemiology. Examples of recent emerging diseases that are related to the animal population
are foot-and-mouth disease, classical swine fever and blue tongue (BT). Both the quantification
of occurrence of the disease and the description of risk factors affecting the health status in
the population are important characteristics in disease surveillance. A key feature in veterinary
epidemiology is that animals are grouped within herds. A possible way to quantify a disease
pattern in such a population is via animal prevalence, describing the probability that an indi-
vidual from the population is diseased. However, control programmes for infectious animal
diseases are typically based on the disease status of a herd rather than of individual animals.
Therefore, interest is also in herd prevalence, describing the probability that a randomly selected
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herd contains at least one animal which is affected by the disease. Although this is common
practice, there are several issues which complicate the estimation, interpretation and analysis
of herd prevalence.

The first complexity is the grouping of animals in the population. We can think of animals
grouped in a herd, holding, farm, flock, pen, litter or any other form of clustering. In a different
context we can think of individuals grouped in households or municipalities. Throughout the
text, the term ‘herd’ will be used for any aggregation of individuals. Because of the same envi-
ronment and same herd characteristics, animals in the same herd are possibly correlated. We
cannot ignore the possibility that animals within herds are more alike than between herds and,
consequently, the intraclass correlation should be addressed to obtain valid statistical interest
(Aerts et al., 2002; Molenberghs and Verbeke, 2005). This will be discussed in Section 2.

The second complexity when studying the prevalence of disease is that diagnostic tests are
often imperfect. Possibly, some of the diseased animals give false negative diagnostic test results,
whereas some of the healthy animals might falsely react positively to the test. The capacity of a
diagnostic test to identify the disease status of an animal correctly is indicated by the diagnostic
sensitivity and specificity of the test, being the probability that a diseased animal would give a
positive test result and that a non-diseased animal would give a negative test result respectively.
Diagnostic sensitivity and specificity can be used to calculate the true animal prevalence (the
proportion of animals that are actually infected) from the apparent animal prevalence (the
proportion of animals that tested positively) taking the test misclassification into account (Rogan
and Gladen, 1978). Of course, a misclassification of the individual’s health status implies also
a misclassification of the health status of the herd. However, the effect of the individual’s test
misclassification on herd prevalence is less clear. Herd prevalence based on aggregate testing
was studied by for example Jordan (1996), Baggesen et al. (1996), Christensen and Gardner
(2000) and Humphry et al. (2004), but these methods do not account for within-herd correlation.
A herd can be classified as positive because one of the animals sampled was correctly tested
positively, or one of the healthy animals falsely tested positively. A herd can only be negative
when all healthy animals were correctly tested negatively, and all diseased animals falsely tested
negatively. This is the topic of discussion in Sections 3 and 4. We also extend the concepts of
sensitivity and specificity of individual test results to the herd level sensitivity and specificity in
Section 5.

The third difficulty complicating the estimation of herd prevalence is the sampling design
of the survey. Often, a two-stage sampling design is used. At the first stage, herds are selected
at random from a sampling frame. At the second stage, animals from the selected herds are
randomly sampled. In such a design, we can test either all the animals in a herd (one-stage
cluster sampling) or a (small) fraction of animals in the herd. Often, a (small) fixed number of
animals per herd are tested. In the latter case, the definition of herd positivity is ambiguous. It
can be interpreted as having at least one diseased animal in the sample of animals or, as before,
as having at least one diseased animal in the full herd, resulting in two different estimates of
prevalence. This is discussed in Section 4.

In this paper, a method to estimate the true herd prevalence based on the test results of animals
is proposed. The methods proposed are used to study the disease distribution of BT in Belgium
as a result of the outbreak of the disease in 2006. BT is an insect-borne viral disease, affecting
all species of ruminants. In August 2006, very unexpectedly, BT was for the first time notified
in the Netherlands, Belgium and Germany. Later on during the epizootic episode, related cases
were also declared in France and Luxembourg. The virus was identified as BT virus (BTV)
serotype 8 (European Commission Reference Laboratory, 2006), which before this epizootic
episode had occurred only in Africa, Central America, Malaysia and India–Pakistan (Herniman



Estimating Herd Prevalence 157

et al., 1980; Hassan, 1992; Mo et al., 1994; Daniels et al., 2004; Gerdes, 2004). During the winter
of 2006–2007, it was assumed that climate conditions were unfavourable for further propagation
of BTV. A serological and virological cross-sectional survey (BT winter screening) targeting all
Belgian ruminants was undertaken in January–February 2007 to establish the true final dis-
persion of the virus across the country (Méroc et al., 2008). The objective of the study was to
provide unbiased estimates of BT prevalence in Belgium based on the winter screening. Both
animal prevalence and herd prevalence are of interest. This is illustrated in Section 6. We end
this paper with a discussion on this topic (Section 7).

2. Beta–binomial model to estimate animal and herd prevalence

In this section, the basic approach to estimate simultaneously the animal and herd prevalence
on the basis of an aggregate of tests applied to all animals in a herd is explained. This basic
model assumes that the diagnostic test is perfect and that all animals in a herd are sampled
(one-stage cluster sampling). In Sections 3 and 4, the effects of violating these assumptions are
described and extensions of the basic method are proposed.

We shall first introduce some notation, of which an overview is given in Table 1. Assume
that there are ni animals in herd (group) i .i= 1, . . . , N/, of which zi tested positively for some
disease. Let πA denote animal prevalence, describing the probability that an animal is diseased.
πH denotes herd prevalence, defined as the probability of having at least one diseased animal in
a herd.

In this paper, we propose the use of the beta–binomial model to estimate both the animal and
the herd prevalence (Skellam, 1948; Kleinman, 1973; Williams, 1982). This model allows that
animals within the same herd are more alike than animals from different herds. Other models
for correlated binomial data are candidate models as well. A possible alternative is the Bahadur
(1961) model, which is also known as the correlated binomial distribution, which leads to very
elegant closed form expressions for the likelihood but suffers from computational drawbacks due
to the highly restrictive form of the parameter space (Declerck et al., 1998; Aerts et al., 2002).
The beta–binomial model has some advantages in terms of analytical expression, marginal
interpretation and use of conjugate priors making it robust against misspecification of the prior
(Bolstad, 2005). The beta–binomial model assumes that the number of positively tested animals
Zi follows a binomial distribution with probability θi. To account for clustering of animals in a

Table 1. Explanation of the notation used in the text

Notation Description

ni Number of animals in herd i
zi Number of positively tested animals in herd i
πA True animal prevalence
πH True herd prevalence
Se Sensitivity of a single test
Sp Specificity of a single test
pA Apparent animal prevalence (proportion of animals tested positively)
pH Apparent herd prevalence (proportion of herds tested positively)
SeH Herd sensitivity
SpH Herd specificity
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herd, the underlying disease probabilities θi are assumed to vary within a herd according to a
beta distribution beta.α, β/ with parameters α=πA.1=ρ− 1/ and β = .1 −πA/.1=ρ− 1/. As a
result, the beta distribution has mean πA and determines the strength of within-herd correlation
ρ. This leads to the beta–binomial distribution of the number of positive test results Zi in herd
i with probability density function given by

f.zi;πA, ρ, ni/=
(

ni

zi

)
B{πA.ρ−1 −1/+ zi, .1−πA/.ρ−1 −1/+ni − zi}

B{πA.ρ−1 −1/, .1−πA/.ρ−1 −1/} , .1/

where B.·, ·/ denotes the beta function (Skellam, 1948; Kleinman, 1973; Williams, 1982), and
can be rewritten as

f.zi;πA, ρ, ni/=
(

ni

zi

)
zi−1∏
k=0

(
πA + kρ

1−ρ

)
ni−zi−1∏

k=0

(
1−πA + kρ

1−ρ

)
ni−1∏
k=0

(
1+ kρ

1−ρ

)−1

:

The moments of the beta–binomial distribution are

E.Zi/=niπ
A,

var.Zi/=niπ
A.1−πA/{1+ρ.ni −1/}:

Note that the beta–binomial model reduces to the familiar binomial model when there is no
within-herd correlation (ρ = 0). When for example a stratified sampling design with unequal
sampling probabilities is used to select the herds, it might be necessary to account for the sam-
pling design. A weighted log-likelihood can then be used where each contribution from a herd
is weighted with the inverse of the sampling probabilities. Estimation of this model can be per-
formed by using maximum likelihood, where the maximum likelihood can be derived directly
from equation (1), or can be handled in the Bayesian framework, where the binomial likelihood is
combined with a beta distribution as a prior. Because of its flexibility, we have used the Bayesian
framework for illustration of the application in this paper and programmed all models in the
software package WinBUGS (Lunn et al., 2000). WinBUGS performs Bayesian inference by
using Gibbs sampling. Some of the code is given in Appendix A.

On the basis of the beta–binomial model, it is easy to derive the herd prevalence πH from
the animal prevalence πA and the within-herd correlation ρ. The probability that at least one
animal in a herd of size n is affected by the disease is equal to

P.Z> 0|n/=1−P.Z =0|n/

=1− B{πA.ρ−1 −1/, .1−πA/.ρ−1 −1/+n}
B{πA.ρ−1 −1/, .1−πA/.ρ−1 −1/} :

This expression can be written as (Aerts et al., 2002)

P.Z> 0|n/=1−
n−1∏
k=0

{
1−πA + kπAρ

1+ .k −1/ρ

}
: .2/

Note that this probability depends on the herd size n, the animal prevalence πA and the within-
herd correlation ρ. For a fixed animal prevalence and within-herd correlation, the probability
that at least one animal is infected increases with the size of herd. The herd prevalence πH is
obtained from this formula by integrating out the herd size n. Considering all possible herd sizes
ni in the population of herds, with corresponding probabilities P.ni/, this leads to
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πH =
∞∑

ni=0
P.ni/P.Z> 0|ni/

=
∞∑

ni=0
P.ni/

[
1−

ni−1∏
k=0

{
1−πA + kπAρ

1+ .k −1/ρ

}]
, .3/

where πA is the animal prevalence corrected for the within-herd correlation ρ in the data, on the
basis of the beta–binomial model. A plug-in estimate of πH can be obtained by plugging in the
maximum likelihood estimates of πA and ρ, or, in the Bayesian framework, by sampling from
the posterior distribution. An advantage of the Bayesian framework is that we account for the
full posterior distributions of πA and ρ to obtain the posterior distribution of πH.

In a regression context where for example we wish to correct the prevalence for known herd
characteristics, the model needs to incorporate covariates. To model the marginal parameters
πA and ρ we use a composite link function. An appropriate choice is given by the following
generalized linear regression relationships:

ln
(

πA
i

1−πA
i

)
=X1iβ1,

ln
(

1+ρi

1−ρi

)
=X2iβ2,

with β1 and β2 the vectors of unknown regression coefficients, and X1 and X2 design matrices
corresponding to the covariate values of the herd. Subscript i reflects the dependence on herd-
specific covariates of herd i. Derivations of the herd prevalence can be conducted in a similar
way as before.

3. Correcting for misclassification of diagnostic test

Typically, the tests that are used to classify whether an animal is diseased or not are imperfect.
In this section, it is explained how the true animal and herd prevalence can be derived from the
sensitivity and specificity of the diagnostic test at the individual level.

We model the number of positively tested animals zi out of ni animals in herd i by using a
beta–binomial model (Section 2):

zi|ni ∼beta-binomial.pA, ρ, ni/,

with pA the apparent animal prevalence and ρ the correlation of the test results from animals
in the same herd. The true animal prevalence πA can be derived from the apparent animal
prevalence pA by using the equation (Rogan and Gladen, 1978)

pA =SeAπA + .1−SpA/.1−πA/,

or

πA = pA +SpA −1

SeA +SpA −1
, .4/

where SeA and SpA are the sensitivity and specificity of the test at the animal level. To be a valid
estimate, the Rogan–Gladen estimate requires that the probability of a positive test result is
larger for a diseased individual than for an undiseased individual (SeA > 1 − SpA), that the
probability of a positive test result for a diseased individual is larger than the probability
of a positive test result (SeA � pA) and that the probability of a negative test result for a
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non-diseased individual is larger than the probability of a negative test result (SpA � 1 − pA)
(Rogan and Gladen, 1978).

On the basis of the beta–binomial model, the true herd prevalence πH can be derived from
the apparent animal prevalence pA by inserting equation (4) into equation (3). This yields

πH =
∞∑

ni=0
P.ni/

(
1−

ni−1∏
k=0

[
1− pA +SpA −1

SeA +SpA −1
+ k.pA +SpA −1/ρ

{1+ .k −1/ρ}.SeA +SpA −1/

])

=
∞∑

ni=0
P.ni/

(
1−

ni−1∏
k=0

[
1+ .pA +SpA −1/.ρ−1/

.SeA +SpA −1/{1+ .k −1/ρ}

])
: .5/

This equation depends on the apparent animal prevalence pA, the animal’s test sensitivity SeA

and specificity SpA and the within-herd correlation of the disease statusρ. An estimate of the herd
prevalence πH can be made by plugging in estimates of all these parameters. Using a Bayesian
analysis, the uncertainty of the parameters is taken into account by plugging in the posterior
distributions of pA and ρ. This is performed by calculating πH in WinBUGS and is illustrated
in Appendix A. Note that we make the assumption that the correlation ρ between the disease
status of different animals in a herd is equal to the correlation between the test result of different
animals in a herd. Although it is not possible to estimate the correlation between the true disease
status of different animals, because the true disease status is a latent variable, the correlation
between the test results can be estimated from the data, by using the beta–binomial model. Fig. 1
shows the apparent (broken curve) and true (full curve) probability for a herd to be infected
as a function of the size of the herd, corresponding to an apparent animal prevalence of 0.20
(Fig. 1(a)) and 0.60 (Fig. 1(b)), test sensitivity and specificity 0.80 and 0.90 respectively and
within-herd correlation 0.30. These are constructed by using expressions (2) directly (apparent
prevalence) and inserting equation (4) in equation (2) (true prevalence).

3.1. Accounting for the uncertainty of sensitivity and specificity
Typically, however, the sensitivity and specificity are not known fixed values (Bollaerts et al.,
2009). Often, confidence bounds for the sensitivity and specificity are known from the literature.
It is not always clear how to use such confidence bounds, and how to account for the uncer-
tainty of the sensitivity and specificity in the analysis. The strength of the Bayesian modelling
framework is that we can impose a prior distribution on the sensitivity and specificity, instead
of assuming a fixed value for the diagnostic test characteristics.

A possible way to quantify the prior knowledge on the sensitivity (or specificity) of the test is
the use of a beta distribution beta.a, b/. Parameters of the beta distribution can then be selected
to represent best the bounds of the sensitivity (or specificity) and the most probable value of
the sensitivity (or specificity). The parameters a and b are estimated by using the minimal (m1),
maximal (m3) and most probable (m2) value of the sensitivity (or specificity), using the equations
(three-point estimation; Grubbs (1962))

a= μ2.1−μ/−σ2μ

σ2 ,

b=a
1−μ

μ

where the mean μ and standard error σ of the beta–binomial distribution are approximated
with



Estimating Herd Prevalence 161

Herd Size N

H
er

d 
P

re
va

le
nc

e,
 g

iv
en

 H
er

d 
S

iz
e 

N

0 100 200 300

0.
2

0.
4

0.
6

0.
8

Herd Size N

H
er

d 
P

re
va

le
nc

e,
 g

iv
en

 H
er

d 
S

iz
e 

N

0 100 200 300

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

(a)

(b)

Fig. 1. True ( ) and apparent (– – –) herd prevalence corresponding to a specific size of herd for
an apparent animal prevalence of (a) 0.20 and (b) 0.60 with test sensitivity and specificity 0.80 and 0.90
respectively and a within-herd correlation of 0.30
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μ= m1 +4m2 +m3

6

and

σ = m3 −m1

6
:

Although this method is used in this paper, other methods are possible as well to obtain a prior
distribution describing the knowledge on the sensitivity and specificity.

4. Herd prevalence based on two-stage sampling design

So far, it has been assumed that all animals in a sampled herd are tested for the disease of
interest, i.e. a one-stage sampling design is adopted. In surveillance programmes, this is often
too costly and, typically, a small number of animals in a herd is sampled. In these surveys, a
two-stage sampling design is often used. In the first stage, N herds are sampled. At the second
stage, mi animals are sampled from the selected herds of size ni. Often, mi ≡m. It is important
to understand the effects of such a sampling design on animal prevalence and herd prevalence.

To study the performance of the estimates based on a two-stage versus one-stage sampling
design, a simulation study was performed, simulating 100 herds of size ni ≡ 100. This corres-
ponds to the average size of herd of a large cattle herd (more than 60 animals) in Belgium.
The disease status of each animal in this herd was simulated by using a beta–binomial model
with a prespecified animal prevalence and within-herd correlation. The values .0:03, 0:10, 0:30/

for πA correspond to low, moderate and more severe disease occurrence scenarios. Having ρ
in the set .0:2, 0:4, 0:6/ corresponds to low, medium and high within-herd correlations. These
simulated data correspond to a one-stage sampling design, in which all animals from the herd
are being tested for the presence of the disease. In the second step, a random sample of m
animals is taken from each herd. The number of sampled animals (m) varies between 3 and
10. This corresponds to a two-stage sampling design. A perfect test is assumed in this simula-
tion (pA =πA; SeA =SpA =1). The animal and herd prevalence corresponding to each simulated
data set are estimated by using a beta–binomial model. Maximum likelihood was used to obtain
estimates of the parameters ρ and πA from the beta–binomial model. The herd prevalence is
estimated from equation (3) by plugging in the maximum likelihood estimates of ρ and πA, and
with ni replaced by the size of the sample m. Note that the herd prevalence that is obtained
from a sample of animals within a herd defines the probability of having at least one positive
sample, whereas the prevalence that is obtained from the full herd defines the probability of
having at least one positive animal in the herd. Tables 2 and 3 summarize the results. They show
the average estimate and the empirical standard errors over the 1000 simulations.

It can be concluded that the animal prevalence is very close to the true (assumed) animal
prevalence, even when a small number of animals within herds is sampled. There is, however,
a clear drop in the precision of the estimate when using a random sample of animals. This
corresponds to the larger standard errors in the two-stage sample design. On the basis of Table
3, we see that there is a clear discrepancy between the estimated herd prevalence that is based on
either the sample or the full herd. As expected, the prevalence of at least one positive sample of
a herd is not a good representative for the prevalence of at least one positive animal in the herd.
Also, the herd prevalence that is based on the two-stage sample design increases as the number
of animals sampled increases. Thus, the definition of a positive herd defined as a positive sample
should be interpreted with great care and depends on the number of sampled animals in the
herd.
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Table 2. Summary of the simulation study: estimated animal prevalence,
based on a sample of the herd (two-stage sampling) or based on all animals
in the herd (one-stage sampling)†

ρ πA Sample Estimate for Estimate for
(true) (true) size two-stage one-stage

sampling sampling

0.2 0.03 3 0.0289 (0.0110) 0.0291 (0.0074)
0.2 0.03 5 0.0306 (0.0100) 0.0299 (0.0078)
0.2 0.03 10 0.0294 (0.0088) 0.0293 (0.0075)
0.2 0.10 3 0.1004 (0.0189) 0.0995 (0.0134)
0.2 0.10 5 0.0998 (0.0168) 0.0995 (0.0131)
0.2 0.10 10 0.0986 (0.0147) 0.0989 (0.0133)
0.2 0.30 3 0.2984 (0.0311) 0.2989 (0.0208)
0.2 0.30 5 0.2965 (0.0277) 0.2982 (0.0214)
0.2 0.30 10 0.2987 (0.0237) 0.2998 (0.0205)
0.4 0.03 3 0.0302 (0.0128) 0.0294 (0.0101)
0.4 0.03 5 0.0293 (0.0121) 0.0290 (0.0103)
0.4 0.03 10 0.0288 (0.0116) 0.0285 (0.0103)
0.4 0.10 3 0.0990 (0.0232) 0.0985 (0.0183)
0.4 0.10 5 0.1005 (0.0213) 0.0991 (0.0184)
0.4 0.10 10 0.0997 (0.0207) 0.0990 (0.0186)
0.4 0.30 3 0.2979 (0.0349) 0.2987 (0.0273)
0.4 0.30 5 0.2988 (0.0329) 0.2987 (0.0283)
0.4 0.30 10 0.2990 (0.0305) 0.2995 (0.0273)
0.6 0.03 3 0.0303 (0.0150) 0.0292 (0.0125)
0.6 0.03 5 0.0287 (0.0120) 0.0262 (0.0105)
0.6 0.03 10 0.0297 (0.0133) 0.0289 (0.0123)
0.6 0.10 3 0.0997 (0.0259) 0.0994 (0.0220)
0.6 0.10 5 0.1003 (0.0246) 0.0998 (0.0219)
0.6 0.10 10 0.0970 (0.0234) 0.0969 (0.0211)
0.6 0.30 3 0.2976 (0.0383) 0.2982 (0.0322)
0.6 0.30 5 0.2997 (0.0391) 0.2994 (0.0342)
0.6 0.30 10 0.3025 (0.0368) 0.3017 (0.0339)

†The herds have a fixed size of 100 animals. Average estimates and empirical
standard errors (in parentheses) over 1000 simulations are given.

We can, however, obtain an estimate of the prevalence of at least one positive animal in the
herd from the two-stage sample (the corrected estimate column in Table 3). This is obtained from

̂P.Zi > 0/=1−
ni−1∏
k=0

{
1− π̂A + kπ̂Aρ̂

1+ .k −1/ρ̂

}
, .6/

where ni is the number of animals in a herd, π̂A is animal prevalence based on the sample of size
mi and ρ̂ is the estimated correlation between the samples. From Table 3 we see that this method
seems to work well when the sample is not too small. When the animal prevalence is small, larger
samples in the herd are needed to obtain a good estimate of the herd prevalence. The price to pay
is precision, which is much smaller compared with the estimates that are based on the full herd.

5. Herd level sensitivity and specificity

Typically, the sensitivity and specificity of a single test are known, but less information is available
on the sensitivity and specificity corresponding to the aggregate testing of animals within a herd.
Therefore, the sensitivity and specificity of a test for the disease status of a group of individuals
based on tests on the individuals separately is the topic of discussion in this section.
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Table 3. Summary of the simulation study: estimated herd prevalence†

ρ πA mi πH Results for two-stage sampling Estimate‡
(true) (true) (true) for one-stage

samplingEstimate‡ Corrected
estimate§

0.2 0.03 3 0.335 0.067 (0.025) 0.443 (0.239) 0.333 (0.048)
0.2 0.03 5 0.335 0.102 (0.029) 0.364 (0.138) 0.334 (0.048)
0.2 0.03 10 0.335 0.145 (0.034) 0.334 (0.088) 0.333 (0.047)
0.2 0.10 3 0.747 0.227 (0.037) 0.754 (0.127) 0.747 (0.041)
0.2 0.10 5 0.747 0.305 (0.040) 0.745 (0.089) 0.745 (0.040)
0.2 0.10 10 0.747 0.417 (0.044) 0.733 (0.065) 0.745 (0.041)
0.2 0.30 3 0.986 0.570 (0.046) 0.990 (0.020) 0.985 (0.006)
0.2 0.30 5 0.986 0.691 (0.041) 0.981 (0.014) 0.985 (0.006)
0.2 0.30 10 0.986 0.826 (0.031) 0.983 (0.010) 0.985 (0.006)
0.4 0.03 3 0.187 0.059 (0.023) 0.243 (0.169) 0.187 (0.039)
0.4 0.03 5 0.187 0.074 (0.026) 0.200 (0.088) 0.186 (0.040)
0.4 0.03 10 0.187 0.098 (0.030) 0.190 (0.063) 0.186 (0.038)
0.4 0.10 3 0.502 0.186 (0.038) 0.498 (0.111) 0.499 (0.048)
0.4 0.10 5 0.502 0.238 (0.041) 0.504 (0.086) 0.502 (0.050)
0.4 0.10 10 0.502 0.301 (0.045) 0.496 (0.067) 0.501 (0.048)
0.4 0.30 3 0.886 0.494 (0.047) 0.875 (0.052) 0.885 (0.027)
0.4 0.30 5 0.886 0.582 (0.045) 0.879 (0.039) 0.884 (0.027)
0.4 0.30 10 0.886 0.681 (0.042) 0.878 (0.034) 0.885 (0.027)
0.6 0.03 3 0.112 0.048 (0.022) 0.134 (0.108) 0.113 (0.031)
0.6 0.03 5 0.112 0.056 (0.020) 0.116 (0.047) 0.107 (0.029)
0.6 0.03 10 0.112 0.069 (0.024) 0.114 (0.040) 0.112 (0.031)
0.6 0.10 3 0.331 0.156 (0.037) 0.328 (0.084) 0.328 (0.048)
0.6 0.10 5 0.331 0.183 (0.039) 0.329 (0.070) 0.332 (0.048)
0.6 0.10 10 0.331 0.213 (0.042) 0.319 (0.062) 0.326 (0.048)
0.6 0.30 3 0.716 0.424 (0.049) 0.702 (0.072) 0.715 (0.042)
0.6 0.30 5 0.716 0.482 (0.050) 0.710 (0.060) 0.713 (0.044)
0.6 0.30 10 0.716 0.547 (0.049) 0.709 (0.053) 0.716 (0.045)

†The herds have a fixed size of 100 animals. Average estimates and empirical standard errors (in parentheses) over
1000 simulations are given.
‡The prevalence of a positive herd defined as having at least one infected animal in the set of tested animals.
§The prevalence of a positive herd defined as having at least one animal in the herd being infected.

Assume that either all animals in a herd or a group (random sample) of animals from a herd
are investigated. At the group or herd level, the sensitivity and specificity refer to respectively
the probability that at least one of the animals tested positively if the group or herd is infected
and the probability that none of the animals in the group or herd tested positively if the group
or herd is not diseased. The group or herd sensitivity and specificity are functions of the number
of animals in the group or herd (Martin et al., 1992). In this section, we shall always refer to a
herd, but this can also be a group of animals from a herd.

The herd specificity corresponding to m tested animals is, under the assumption of conditional
independence, equal to

SpH =P.Z =0|none of the animals is infected/

=
m∏

i=1
P.test of animal i is negative|animal i is not infected/

=
m∏

i=1
SpA =SpAm: .7/
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As a result, the larger the number of animals in a herd, the smaller the herd specificity that is
based on all individual test results. As m→∞, the herd specificity SpH →0. Fig. 2 shows herd
specificity as a function of the size of herd (i.e. the number of tested animals), for an animal’s
test specificity of 0.99 (full curve), 0.95 (broken curve) and 0.90 (dotted curve). It can be seen
that a decrease in the animal’s test specificity drastically decreases the herd specificity of the test.

Herd sensitivity is less easy to calculate because of the definition of a herd test, which is positive
if at least one of the test results of the animals is positive. However, the following equation can
be used to derive the herd sensitivity:

pH =SeHπH + .1−SpH/.1−πH/,

with SeH the herd sensitivity, SpH the herd specificity, pH the apparent herd prevalence and πH

the true herd prevalence, or

SeH = pH − .1−SpAm/.1−πH/

πH : .8/

This is similar to formula (4) where the animal characteristics are replaced by herd character-
istics corresponding to the test results of m animals. This function can be rewritten in terms of
the true animal prevalence, animal test sensitivity and test specificity by first rewriting the herd
prevalences pH and πH in terms of the animal prevalences pA and πA by using expression (2),
and then writing the animal prevalence pA in terms of πA by using the Rogan and Gladen
estimate. This yields
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Fig. 2. Herd specificity for a herd test based on individual tests from animals in the herd: , individual’s
test specificity of 0.99; — —, individual’s test specificity of 0.95; . . . . . . ., individual’s test specificity of 0.90
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SeH =
1+

m−1∏
k=0

{
1+ .ρ−1/πA

1+ρ.k −1/

}
.Spm −1/−

m−1∏
k=0

[
1+ .ρ−1/{SeπA + .1−Sp/.1−πA/}

1+ρ.k −1/

]

1−
m−1∏
k=0

{
1+ .ρ−1/πA

1+ρ.k −1/

} :

For example, if the true animal prevalence is 0.25, the within-herd correlation is 0.20, the
sensitivity of a single test is 0.97 and the specificity of a single test is 0.98 and 10 animals are being
tested, then SeH =0:94, i.e. 94% of the affected herds will have at least one positively tested animal
in the sample of 10 animals (from either a truly positive animal or a false positive animal). Thus,
in general, the herd sensitivity is a complex function of the number of animals tested (m), the
animals’s test sensitivity SeA and specificity SpA, and also of the animal’s prevalence πA and
the correlation ρ. Some special situations can be considered.

(a) When the number of animals tested is 1, the herd sensitivity SeH reduces to the animal
sensitivity SeA.

(b) If there is no correlation in the data, the formula reduces to equation (8) where we replace
pH by 1− .1−pA/n and πH by 1− .1−πA/m.

(c) When the specificity of a single test is 100% the herd sensitivity is equal to

SeH =
1−

m−1∏
k=0

{
1+Se

.ρ−1/πA

1+ρ.k −1/

}

1−
m−1∏
k=0

{
1+ .ρ−1/πA

1+ρ.k −1/

} = pH

πH :

In this situation, the true animal prevalence is always greater then the apparent animal
prevalence, and this inequality also applies to the herd prevalence, and as a result SeH �1,
as expected.

(d) When both the specificity and the sensitivity of a single test are 100%, the herd sensitivity
is also 100%.

In Fig. 3 the sensitivity of a herd test is shown as a function of the sensitivity and specificity
of a single test, the animal prevalence and within-herd correlation, and the number of tests
performed. Figs 3(a) and 3(d), 3(b) and 3(e), and 3(c) and 3(f) correspond to herd sensitivity
based on four, 10 and 50 tests respectively. In general, the sensitivity tends to increase with the
number of tests performed. Figs 3(a)–3(c) show the dependence on the sensitivity and specificity
of a single test. The sensitivity of a single test has a large effect on the herd sensitivity when only
a small-to-moderate number of tests is used, with an increase in the herd sensitivity when the
sensitivity of a single test increases. The effect of the specificity of a single test is not monotone
and depends on the interplay between the number of animals tested and the sensitivity of a single
test. Figs 3(d)–3(f) show the effect of within-herd correlation and the animal prevalence on herd
sensitivity. Larger correlations and lower animal prevalences imply a smaller herd sensitivity.

6. Estimating prevalence of blue tongue virus in Belgium

To obtain unbiased estimates of prevalence of BT in Belgium, a cross-sectional serological sur-
vey targeting all Belgian ruminants was undertaken during the vector-free season. The study
population of the winter screening consisted of dairy cattle that were more than 2 years old which
were housed in dairy farms with on-farm delivery of dairy products. A one-stage sampling design
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(a) (d)

(b) (e)

(c) (f)

Fig. 3. Herd sensitivity for a herd test based on multiple individual tests, for (a)–(c) herd sensitivity as a
function of sensitivity and specificity of a single test (the animal prevalence and within-herd correlation are
kept fixed at 0.30 and 0.20 respectively) and (d)–(f) herd sensitivity as a function of animal prevalence and
within-herd correlation (the sensitivity and specificity of a single test are kept fixed at 0.90): (a), (d) four tests;
(b), (e) 10 tests; (c), (f) 50 tests

was performed with stratification of the herds by province and proportional allocation according
to province area. An overview of the number of herds per province is given in Table 4. A total
of 344 farms were sampled and all animals that were older than 2 years old were blood tested
for the presence of antibodies against BTV serotype 8. Fig. 4 shows the distribution of herd
sizes of the farms sampled. The serum samples were assayed by using a commercially available
competitive enzyme-linked immuno-sorbent assay test kit.

Using realtime quantitative polymerase chain reaction as reference test, the diagnostic sensi-
tivity and specificity of the competitive enzyme-linked immuno-sorbent assay test was estimated
at 0.874 (95% credibility interval 0.835–0.904) and 0.990 (95% credibility interval 0.972–0.996)
respectively (Vandenbussche et al., 2007). On the basis of this information, beta distributions on
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Table 4. Overview of the sampling design of BT winter
screening

Province Number of Number of Weight
herds sampled

herds

Antwerpen 4410 35 1.08141
Brabant-Wallon 707 10 0.60679
Hinaut 4156 50 0.71339
Limburg 2972 31 0.82282
Liège 3797 44 0.74064
Luxembourg 2968 34 0.74921
Namur 2518 45 0.48025
Oost-Vlaanderen 8095 34 2.04342
Vlaams-Brabant 2789 24 0.99737
West-Vlaanderen 7669 37 1.77892

Belgium 40081 344
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Fig. 4. Observed herd size probabilities based on BT winter screening

the sensitivity and specificity parameters were constructed (as explained in Section 3.1), yielding
Se∼beta.733, 107/ and Sp∼beta.731, 9/.

The numbers of positive test results per herd (Zi) are used to estimate the apparent and true
animal and herd prevalences. It is assumed that Zi follows a beta–binomial distribution with
parameters pA and ρ, as in equation (1). Because of the unequal sampling probabilities, some
of the provinces might be overrepresented in the sample compared with the other provinces.



Estimating Herd Prevalence 169

Therefore, a weighted log-likelihood with weights equal to the inverse of the sampling proba-
bilities is used. The sampling probabilities are given by

w−1
i = ki

Ki

∑
i

Ki∑
i

ki
,

where ki denote the number of herds sampled and Ki the total number of herds in province
i. In this way, provinces which are underrepresented by the sample will receive a high weight,
whereas provinces which were overrepresented in the sample will receive a small weight. The
weights that were assigned to each province are given in the last column of Table 4. The apparent
herd prevalence is obtained from the estimated parameters, using equation (3), and the true
animal and herd prevalences are derived from the apparent herd prevalence and sensitivity and
specificity of an animal’s test result, using equations (4) and (5). This analysis was conducted in
a Bayesian framework (using WinBUGS), yielding not only point estimates of the animal and
herd prevalences derived, but also full posterior distributions from which a mean and credibility
interval for the prevalence can be estimated. This framework also allows us to specify a prior
distribution for the parameters Se and Sp easily, instead of using a fixed value for them.

Results for the overall prevalence estimates in Belgium are displayed in the top panel of Table 5.
The posterior mean and 95% credibility intervals are displayed. The correlation between the test
results of two animals in a herd was estimated as 0.30 with a credibility interval .0:27,0:34/. It is
clear that the apparent animal and herd prevalence underestimate the true prevalence of BTV,
and that such a correction cannot be ignored. The weighted and unweighted analyses give very
similar results. Thus, in this setting, it seems that the sampling design does not have a large effect.

By inclusion of the province as a covariate in the model, it is possible to estimate the prev-
alence of BT per province, and as such to obtain an idea of the distribution of the disease in
different parts of the country. The results are given in Table 6. The within-herd correlation is
estimated as 0.16 with credibility interval .0:14,0:19/. There is a large variation in the animal and

Table 5. Overall prevalence estimates of BTV in Belgium, based on the
winter screening of 2006–2007†

Prevalence Mean Credibility
(%) interval

(lower,upper)
(%)

Without sampling design
Animal Apparent pA 21.57 (19.26,24.07)

True πA 23.67 (20.83,26.69)
Herd Apparent pH 82.60 (79.03,85.73)

True πH 85.27 (81.65,88.39)

With sampling design
Animal Apparent pA 21.62 (19.30,24.12)

True πA 23.73 (20.90,26.81)
Herd Apparent pH 82.57 (79.03,85.76)

True πH 85.27 (81.66,88.49)

†The posterior mean and 95% credibility intervals of the apparent (uncor-
rected) and true (corrected) animal and herd prevalences are shown. The pan-
els show the estimates without or with accounting for the sampling design.
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Table 6. True prevalence estimates of BTV per province, based on the winter screening of 2006–2007†

Province Animal prevalence (%) Herd prevalence (%) Population
mean herd

sizeMean Credibility Mean Credibility
interval interval

(lower,upper) (lower,upper)

Antwerpen 31.66 (24.54,38.90) 97.94 (95.80,99.11) 87.94
Brabant-Wallon 29.72 (17.82,42.48) 97.39 (90.82,99.68) 82.50
Hinaut 4.64 (2.44,7.22) 46.42 (28.79,62.16) 71.34
Limburg 56.37 (47.84,65.03) 99.95 (99.83,99.99) 70.42
Liège 51.52 (44.19,58.93) 99.47 (99.17,99.68) 71.55
Oost-Vlaanderen 26.53 (20.24,33.53) 95.78 (91.58,98.31) 59.97
Vlaams-Brabant 26.55 (19.03,34.67) 95.03 (90.35,97.59) 67.54
West-Vlaanderen 7.70 (4.45,11.37) 60.57 (43.01,75.00) 56.57
Luxembourg 3.88 (1.38,6.95) 40.58 (17.87,60.65) 94.18
Namur 15.20 (11.02,19.97) 87.80 (79.69,93.39) 89.78

†The posterior mean and 95% credibility intervals of the true animal and herd prevalences are shown.

herd prevalences between the provinces. The herd prevalence is a function of both the animal
prevalence and the population of herds (which is reflected in P.ni/) per province. For most of
the provinces, the herd prevalence (the probability of an infected herd) is very large. The animal
prevalence is much lower, although in some provinces also the probability that an animal is
infected is quite high.

In this survey, a one-stage sampling design was used. To reduce costs, it is of interest to know
the effect of reducing the number of animals sampled per herd. We performed a simulation
study, randomly selecting a fixed number of animals from each herd. As before, the animal
prevalence and herd prevalence can then be calculated from this sample. The correction as
proposed in Section 3 is used to obtain an estimate of the herd prevalence, which is defined
as the probability of having a herd with at least one affected animal, and which can be compared
with the prevalence that is obtained under the one-stage sampling design. Results are summa-
rized in Table 7. It can be seen that the animal prevalence is very well estimated on the basis
of the two-stage sampling design. For the two-stage design sampling five animals per herd,

Table 7. True prevalence estimates of BTV per province, based on the winter screening of 2006–2007†

Prevalence Results for 5 animals Results for 15 animals Results for 30 animals

Mean Credibility Mean Credibility Mean Credibility
interval interval interval

(lower,upper) (lower,upper) (lower,upper)

Animal pA 21.95 (18.94,24.87) 21.54 (18.96,24.27) 21.34 (18.98,24.16)
πA 24.11 (20.51,27.61) 23.64 (20.49,26.89) 23.41 (20.49,26.71)

Herd pH 49.98 (44.66,54.96) 67.52 (62.68,72.13) 75.11 (70.72,79.27)
πH 53.57 (47.53,59.10) 71.06 (65.84,75.93) 78.34 (73.76,82.59)
pH,corr 81.05 (74.53,86.45) 81.89 (77.56,85.89) 81.63 (77.59,85.31)
πH,corr 83.86 (77.61,88.92) 84.62 (80.22,88.55) 84.37 (80.34,87.97)

†The posterior mean and 95% credibility intervals of the true animal and herd prevalences are shown.
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the credibility intervals are somewhat larger compared with those from the one-stage sampling
design, but the difference is negligible when 15 or 30 animals are sampled per herd. This is in line
with our expectations, since the amount of information in a clustered data setting is bounded
(Faes et al., 2009). We can conclude that, in this setting, a sample of size 15 has almost the
same amount of information on the animal prevalence as all animals. Herd prevalence based on
the definition of at least one positive sample increases with the sample size and underestimates
the herd prevalence based on the one-stage sampling design. The corrected herd prevalence is
very close to the herd prevalence that is based on the one-stage sample. Although almost no
differences are seen in the point estimate, the precision increases as the number of animals tested
increases. Similarly to the result for animal prevalence, the difference in credibility interval with
the herd prevalence based on a one-stage design seems negligible when 15 or 30 animals are
sampled, suggesting that sampling 15 animals would be sufficient to estimate the animal and
herd prevalence appropriately.

On the basis of the results obtained for animal prevalence and correlation, we can estimate
the performance of the multiple-testing procedure, by using formulae (8) and (7). On average, 75
animals were tested per herd. With an apparent herd prevalence of 82.57% and a true herd preva-
lence of 85.27%, the herd specificity is SpH =0:9975 =0:47 and the herd sensitivity is SeH =0:88.
We note the large drop in herd specificity, with more than half of the non-diseased herds testing
positively. In comparison, the herd sensitivity stays almost constant, with 12.31% of the herds
affected falsely testing negatively.

7. Discussion

In this paper, use of the beta–binomial model is proposed to estimate the individual level and
group level prevalence simultaneously. This model allows us to correct for

(a) the within-group correlation,
(b) the diagnostic characteristics of the used test and
(c) the sampling design.

Often, the diagnostic characteristics are known only for the performance of a single test.
Sometimes, the sensitivity and specificity of the test are used to correct the herd prevalence
directly by using a Rogan–Gladen estimator. This paper shows that the test characteristics of
a single test are not the same as for a group of tests, and this ad hoc procedure would lead
to biased results. Using the beta–binomial model makes it possible to correct the group level
prevalence, which is obtained from aggregate testing of all (or a subgroup of) individuals in the
group, using the individual level characteristics of the test.

The sampling design also has a great effect on the herd prevalence. Indeed, direct calculation
of at least one positive sample in a one-stage sampling design is different from direct calculation
of at least one positive sample in a two-stage sampling design. The second calculation depends
on the number of individuals sampled per group as well as on the number of individuals per
group. This dependence makes it very difficult to compare the herd prevalences on the basis
of a two-stage sampling design, especially if unequal group sizes are present in the population.
Because of this difficulty, we recommend calculation of the herd prevalence defined as the prob-
ability of having at least one affected individual in the group from a two-stage sample. This
method corrects for the number of individuals in the group and allows us to compare herd
prevalence estimates from different sampling designs.

This paper raises questions concerning the design of a surveillance programme. In this paper
it was shown that by the use of appropriate methods one could use a two-stage sampling design
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instead of a one-stage sampling design to estimate herd prevalence. It was shown that one can
reduce costs, without loss in precision in the animal and herd prevalence, by applying a two-
stage sampling design instead of a one-stage design, as long as the number of animals sampled
is sufficiently large. The appropriate sample size to estimate both animal prevalence and herd
prevalence is an issue of interest. This concerns both the number of herds to be sampled and
the number of animals within a herd. One could opt for a sampling design with many animals
sampled in a small amount of herds, a small number of animals sampled in a large number of
herds or some design in between. Using the effective sample size, representing the amount of
information in a clustered data set (Faes et al., 2009), it can be investigated how one can optimize
the design to estimate both animal and herd prevalence. This is a topic of further research.

In this paper, we have classified a herd as positive when at least one animal in the herd (or
in the sample) tested positively. In some settings, other cut-off values are used, e.g. assuming
that a positive herd corresponds to at least two animals in the herd being positive. Although it
was not discussed in the text, the method proposed can be easily generalized to the use of other
cut-off values.
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Appendix A

The beta–binomial model can easily be programmed in a Bayesian framework, using the software package
WinBUGS. The core code used in this paper is as follows.

# Use beta-binomial model to estimate apparent animal and herd prevalence
model{
for (i in 1:344)
{
# Specification of beta-binomial model
Z[i] ˜ dbin(theta[i],N[i])
theta[i] ˜ dbeta(a,b)
# Derivation of apparent herd prevalence
for (k in 0:N[i])
{
hlp[i,(k+1)]<-log(1−paa+(k*paa*rho)/(1+(k−1)*rho))
}
q[i]<-1−exp(sum(hlp[i,1:N[i]]))
}
a<-paa*(1/rho−1)
b<-(1−paa)*(1/rho−1)
# Estimation of intraclass correlation

rho<-(exp(kappa)−1)/(exp(kappa)+1)
# Estimation of apparent animal prevalence

paa<-exp(beta)/(1+exp(beta))
# Estimation of apparent herd prevalence

pha<-mean(q[1:344])
# Specification of prior distributions for regression parameters

beta ˜ dnorm(0,0.0001)
kappa ˜ dnorm(0,0.0001)

}
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When for example a stratified sampling design with unequal sampling probabilities is used to select the
herds, it might be necessary to account for the sampling design. A weighted log-likelihood can then be
used where each contribution of a herd is weighted with the inverse of the sampling probabilities. This can
be done in WinBUGS by replacing the code

Z[i] ˜ dbin(theta[i],N[i])

in

zeros[i] <- 0
logL[i]<-weight[i]*(Z[i]*log(theta[i])+(N[i]−Z[i])*log(1−theta[i]))
phi[i] <- −logL[i] + C
zeros[i] ˜ dpois(phi[i])

where the weights are specified in the vector weight[i].
On the basis of the above programs, the apparent animal and herd prevalence is obtained, corrected

for the correlation of the test outcomes in animals from the same herd and for the sampling design of the
surveillance programme. From the apparent animal and herd prevalence, we would like to derive the true
animal and herd prevalence, correcting for possible misclassification of the test results. When Se and Sp
are assumed to be known, the true animal and herd prevalence can be derived by adding the following
equation to the code.

# Fixing the sensitivity and specificity
Se<-0.9
Sp<-0.9
# Derivation of true animal prevalence
pat<-(paa+Sp−1)/(Se+Sp−1)
# Derivation of true herd prevalence

for (i in 1:344)
{
for (k in 0:N[i])
{
hlp2[i,(k+1)]<-log(1−pat+(k*pat*rho)/(1+(k−1)*rho))
}
q2[i]<-1−exp(sum(hlp2[i,1:N[i]]))
pht<-mean(q2[1:344])
}

The true animal prevalence is derived from the Rodan–Gladen estimates (equation (4)), and the true herd
prevalence is obtained from inserting the true animal prevalence into equation (3).

When the sensitivity and specificity are not known fixed values, a prior distribution on the sensitivity
and specificity can be used instead. This can be done by replacing the code for the derivation of the true
animal prevalence in the previous code by

# Derivation of true animal prevalence
pat<-(paa+Sp.cut−1)/(Se.cut+Sp.cut−1)
# Specification of prior distribution on Se and Sp
Se.cut<-cut(Se)
Sp.cut<-cut(Sp)
Se ˜ dbeta(733.0418,107.1207)I(0.5,1)
Sp ˜ dbeta(731.12,8.88)I(0.5,1)

The cut function is used because we wish to use the prior information on the sensitivity and specificity on
the estimation of the animal prevalence but do not wish to estimate the sensitivity nor the specificity on
the basis of the test results.

References

Aerts, M., Geys, H., Molenberghs, G. and Ryan, L. M. (2002) Topics in Modeling of Clustered Data. Boca Raton:
Chapman and Hall.



174 C. Faes, M. Aerts, S. Litière, E. Méroc, Y. Van der Stede and K. Mintiens
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