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Abstract

Annotated relational databases can be queried either by simply making the anno-
tations explicitly available along the ordinary data, or by adapting the standard
query operators so that they have an implicit effect also on the annotations. We
compare the expressive power of these two approaches. As a formal model for the
implicit approach we propose the color algebra, an adaptation of the relational al-
gebra to deal with the annotations. We show that the color algebra is relationally
complete: it is equivalent to the relational algebra on the explicit annotations. Our
result extends a similar completeness result established for the query algebra of the
MONDRIAN annotation system, from unions of conjunctive queries to the full re-
lational algebra. We also show that the color algebra is non-redundant: no operator
can be expressed in terms of the other operators. We also present a generalization of
the color algebra that is relationally complete in the presence of built-in predicates
on the annotations.
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1 Introduction

Recently, much attention has been paid to annotated databases [18,6,3,8,12,11,9,5,13].
In querying annotated databases, there are two distinct approaches:

(1) In annotation propagation [18,6,10,3,9,5,13], queries are directed primar-
ily at the ordinary data, not the annotations: the latter are merely prop-
agated to the query results. For example, when joining two relations, the
annotations of two joined tuples would become annotations of the new
joint tuple.

(2) In annotation querying [12,11,8], queries can be directed to the anno-
tations as well as to the ordinary data. For example, when joining two
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relations, two tuples might be considered joinable only if they have a
common annotation. Such join queries are outside the scope of annota-
tion propagation.

Of course, these two approaches are not competing; it is simply that in some
applications we want annotation propagation, while in other applications we
want to really query on the basis of annotations. As a matter of fact, an-
notation propagation can be precisely characterized as that part of anno-
tation querying that is invariant under arbitrary re-annotations, even those
re-annotations that replace two different annotations by the same one [5].

In the present paper, we are concerned with full annotation querying, and here
one can again distinguish two approaches: explicit and implicit.

(1) In explicit querying, we simply make the annotations explicitly available
along with the ordinary data; any standard query language can then
be used to query the database. For example, suppose we want to join
annotated relations R(A,B) and S(A,C) not only on their common A-
attribute, but also on common annotations. Then we simply model R as a
relation R(A,B,N), where N is an extra column holding the annotations,
and likewise model S as S(A,C,N), and write in SQL:
select R.*, S.*

from R, S

where R.A=S.A and R.N=S.N

A similar feature is provided by the ANNOT operator of the pSQL lan-
guage in DBNotes [8], where we would write:
select R.*, S.*

from R, ANNOT(R) N1, S, ANNOT(S) N2

where R.A=S.A and N1=N2

(2) In implicit querying, which is more in the spirit of annotation propa-
gation, annotations are not explicitly addressed in query formulations.
Rather, the standard query operators are adapted so that they have an
effect not only on the ordinary data but also on the annotations. For
example, in the query algebra of MONDRIAN [12], one would write the
above join query as

µσR.A=S.A(R× S),

where
• the Cartesian product operator × is adapted so as to keep, for each

joint tuple r∪s ∈ R×S with r ∈ R and s ∈ S, two sets of annotations:
the annotations that r already had in R, and the annotations that s
already had in S;
• the selection operator σ simply propagates these sets of annotations;
• the new merge operator µ intersects the two sets of annotations.
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A natural question now arises as to the relative expressiveness of explicit ver-
sus implicit annotation querying. This question was already addressed for the
MONDRIAN query algebra, which has been shown to be equivalent to the
positive relational algebra on explicit annotations [12]. In the present paper,
we continue this investigation and extend it to the full relational algebra (as
opposed to its positive fragment, which does not have the difference opera-
tor). Recall that the relational algebra is much more powerful and complicated
than its positive fragment [1]. For instance, in the positive algebra only unions
of conjunctive queries can be expressed, and containment and equivalence of
queries is decidable; in the full relational algebra, all first-order logic definable
queries can be expressed, and equivalence (let alone containment) is undecid-
able.

We will introduce color relations as a simple but general abstraction of an-
notated databases. A color relation is a standard database relation, where
additionally every tuple is annotated by some set of “colors”. Moreover, we
will introduce the color algebra (CA), an adaptation of the relational algebra
to deal with color relations. CA is inspired by, but different from, the MON-
DRIAN query algebra. The operators of CA always produce color relations as
output; in particular, in CA one cannot compute intermediate results that ex-
plicitly relate the colors of different tuples (by having multiple color columns).
Nevertheless, we will prove that CA can still express any expression of the
full relational algebra on explicit annotations, as long as the latter expression
starts from color relations and finally ends up in color relations (relations with
a single color column).

We also show that the color algebra, like the relational algebra [7], is nonre-
dundant: no operator can be expressed in terms of the other operators.

We conclude the paper by extending the equivalence between explicit versus
implicit querying in the presence of built-in predicates on annotations. Con-
sider again the above explicit querying example. Suppose that annotations
are equipped with a linear order. We may want to join annotated relations
R(A,B,N) and S(A,C,N) on their common A-attribute, provided that the
annotation in R is less than the annotation in S. Explicitly, this query can be
expressed in SQL as follows:

select R.*, S.*

from R, S

where R.A=S.A and R.N < S.N

To express such annotation queries implicitly, we extend the color algebra with
a generalized color join and show that the resulting generalized color algebra
again is as powerful as the full relational algebra with built-in predicates on
explicit annotations.
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Our results, while answering natural questions, are mainly of theoretical in-
terest. Yet, good theoretical underpinnings of new database management fea-
tures, such as annotations, are important. We feel that our proposed for-
malisms are elegant and we hope they can serve as a guide to the understand-
ing and design of annotation query languages.

2 Color relations

We assume as given an infinite set of attributes, an infinite set D of data values,
and an infinite set C of colors. The sets D and C are disjoint; colors serve as
an abstraction for annotation values.

(1) A relation schema is a finite set R of attributes.
(2) A tuple over R is a mapping t : R→ D.
(3) A relation over R is a finite set of tuples over R.
(4) A coloring of a relation r is a subset r′ of r×C, i.e., a set of tuple–color

pairs where the tuples come from r, such that every tuple of r appears
in r′, i.e., every tuple of r gets at least one color.

(5) We call r the underlying relation of r′. We agree that whenever we de-
note a coloring by a primed letter, the unprimed letter stands for the
underlying relation.

(6) Colorings of relations over R are also called color relations over R.
(7) A database schema S consists of a finite set of relation variables x, each

with an associated relation schema S(x). (Relation variables will also be
called relation names.)

(8) A color database D over S consists of a set of color relations D(x), one
for each relation variable x of S, such that D(x) is a color relation over
S(x).

We can view a color relation r′ alternatively as a mapping r′ from r to 2C, as
follows:

r′(t) = {c | (t, c) ∈ r′}.
Note that, since every tuple gets at least one color, r′(t) is never empty. For
any subset s ⊆ r, the restriction of the mapping r′ to s, which we denote by
r′|s, is of course a coloring of s. We will use this observation in the following
section.

In our data model, we restrict attention to the coloring of entire tuples. In
annotation systems such as DBNotes [3,8], not just tuples in relations can be
colored, but also individual components of these tuples. We can model this
by multiple color relations, one for each attribute. The system MONDRIAN
[12,11] even allows the coloring of arbitrary subsets of projections of a relation.
Even more generally, one can consider annotations of arbitrary combinations
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of records and sets [5]. Such complex structures can always be decomposed
in multiple flat relations, however, and since the focus of this paper is on
expressive power, our model of color relations is sufficient.

Our model of color relations is not sufficient, however, to capture the “inten-
sional” coloring of tuples in the result of queries [14,15]. In this approach,
instead of coloring tuples of a relation, one associates colors with views of the
relations. The querying of such color views involves the rewriting of queries
over views, which is outside the scope of this paper.

3 The color algebra

We are familiar with the classical relational algebra operations on relations:
union (∪), difference (−), natural join (1), renaming (ρ), selection (σ), and
projection (π). We now define a number of analogous operations on color
relations. The result of these operations is again a color relation. Some of the
(less obvious) operations are illustrated in Figure 1.

Let r′ and s′ be two color relations over the same relation scheme R.

Union: r′ ∪ s′ is the standard set-theoretic union. This is a coloring of r ∪ s.
Full difference: r′−s′ is the standard set-theoretic difference. It is a coloring

not of r − s, but of

(r − s) ∪ {t ∈ r ∩ s | r′(t) * s′(t)} .

For the definition of the next two operations, s′ no longer needs to be over the
same relation scheme as r′.

Tuple join: r′ � s′ equals 1

{(t1 ∪ t2, c) | t1 ∪ t2 ∈ r 1 s and c ∈ r′(t1) ∪ s′(t2)} .

It is a coloring of r 1 s.
Full join: r′ 1 s′ is defined in the same way as r�s, except that now we take

the intersection r′(t1)∩s′(t2) rather than the union. It is thus a coloring not
of r 1 s, but of

{t1 ∪ t2 ∈ r 1 s | r′(t1) ∩ s′(t2) 6= ∅} .

1 Note the union t1 ∪ t2 of two tuples t1 and t2. This is well-typed since tuples
are defined as mappings, and mappings formally are sets of pairs. Moreover, since
t1 ∪ t2 ∈ r1 1 r2, the result of the union is again a tuple (mapping).
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r′

A B

a1 b1 7→ {red, green, blue}

a2 b2 7→ {blue}

a3 b3 7→ {green}

s′

A B

a1 b1 7→ {red, yellow}

a2 b2 7→ {red}

a4 b4 7→ {green,blue}

r′ ∪ s′

A B

a1 b1 7→ {red, green, blue, yellow}

a2 b2 7→ {blue, red}

a3 b3 7→ {green}

a4 b4 7→ {green,blue}

r′ − s′

A B

a1 b1 7→ {green,blue}

a3 b3 7→ {green}

r′ � s′

A B

a1 b1 7→ {red, green, blue, yellow}

a2 b2 7→ {blue, red}

r′ 1 s′

A B

a1 b1 7→ {red}

Fig. 1. Example of the color algebra operators union (∪), full difference (−), tuple
join (�) and full join (1) on two color relations r′ and s′.

Renaming: if A ∈ R and B is an attribute not in R, then ρA/B(r′) equals

{(ρA/B(t), c) | (t, c) ∈ r′},

with ρA/B(t) = t|R−A ∪ {(B, t(A))} the classical renaming of a tuple. It is
thus a coloring of ρA/B(r).

Selection: if A,B ∈ R, then σA=B(r′) equals r′|σA=B(r′).
Color selection: if k ≥ 2 is a natural number, then σcolor≥k(r

′) equals r′|u,
where

u = {t ∈ r | |r′(t)| ≥ k},
with |r′(t)| denoting the cardinality of r′(t), i.e., the number of distinct
colors of t in r′.

Projection: if X ⊆ R, then πcol
X (r′) equals

{(t|X , c) | (t, c) ∈ r′} .

This concludes the definition of the operations of the color algebra, abbreviated
CA. We remark that most of the operators in CA are intuitive, except, perhaps,
for the color selection σcolor≥k. This operator is necessary, however, to show
the relational completeness of CA.
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r′ � s′

A B

a1 b1 7→ {red, green, blue}

a2 b2 7→ {blue}

s′ � r′

A B

a1 b1 7→ {red, yellow}

a2 b2 7→ {red}

r′ � s′

A B

a3 b3 7→ {green}

Fig. 2. Example of the derived color algebra operators � (Example 2) and tuple
difference (�) (Example 4) on the two color relations r′ and s′ given in Fig. 1.

Example 1 Consider the CA-expression

x 1 green,

where green is a color relation over the empty relation scheme. When evaluated
on a color relation r′ (for x) and the color relation over the empty relation
scheme consisting of a single ‘green’-colored (empty) tuple (for green), this
expression returns all tuples in r′ that are colored ‘green’. �

Example 2 Let us introduce the following derived CA operator: x � y is an
abbreviation for x 1 (x � y). The reader is invited to verify that r′ � s′, for
color relations r′ and s′, equals

{(t1 ∪ t2, c) | t1 ∪ t2 ∈ r 1 s and (t1, c) ∈ r′}.

Examples illustrating this operator are provided in Figure 2. The CA-expression

(x� y)− (y � x)

applied to color relations r′ and s′, returns joint tuples t1∪ t2 from the natural
join of the underlying relations r and s (with t1 ∈ r and t2 ∈ s); these joint
tuples are colored by the colors t1 has in r′, except for the colors t2 has in s′.
In particular, if t1 has only colors that t2 has too, then the joint tuple t1∪ t2 is
not returned at all, since in color relations, each tuple must have at least one
color. �

Example 3 The expression

x− σcolor≥3(x)

returns all tuples in x that have at most two colors. �

Example 4 We introduce the derived CA operator x � y that is an abbrevi-
ation for x − (y � πcol

∅ (x)) and which we call the tuple difference. Note that
r′� s′, for color relations r′ and s′, equals r′|r−s. It is thus a coloring of r− s.
An example illustrating this operator is provided in Figure 2. �
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4 CA and the relational algebra

Let us reserve a special attribute col and agree that it is never used in the
relation schemes of color relations. For any relation scheme R, we define the
relation scheme R̄ = R ∪ {col}. We can naturally view a color relation r over
R as a relation over R̄, as follows:

{t ∪ {(col , c)} | (t, c) ∈ r}.

Conversely, any relation r over R̄ can be viewed as a color relation as follows:

{(t|R, t(col)) | t ∈ r}.

Beware that when we regard r as a color relation, it is a color relation over R,
i.e., r’s relation scheme is just R, because the color attribute is implicit in color
relations. Indeed, this is exactly the main feature of the color algebra: that
colors are handled automatically. When we regard r as an ordinary relation,
however, it is a relation over R̄ and the color attribute becomes explicitly
visible.

Under the view of color relations as ordinary relations, we can apply classical
relational algebra operations to color relations, and consider relational algebra
expressions with R̄ as result relation scheme to be producing color relations
over R. It then becomes apparent that the classical relational algebra can
actually simulate the color algebra. The simulation is given in Table 1. The
table shows the simulation of the individual operations; the simulation of more
complex expressions can be obtained using composition.

More interestingly, the converse simulation holds as well: every operation on
color relations that is definable in the relational algebra is already definable
in CA. More formally, to every color database schema S we can associate the
relational database schema S̄ which has precisely the same relation variables,
but when relation variable x has relation scheme R in S, then x has relation
scheme R̄ in S̄. We will establish:

Theorem 5 For every relational algebra expression over S̄ whose result re-
lation scheme is of the form R̄ for some relation scheme R, there exists an
equivalent CA-expression over S.

In proving this theorem, one cannot hope for a simple bottom-up syntax-
directed translation from relational algebra to CA, such as we had with Ta-
ble 1 for the other direction. For instance, consider in that table the line
for σcolor≥k(x), but now read from right to left. More generally, the challenge
is how to deal with relational algebra expressions that produce relations as
intermediate results that explicitly relate colors from different tuples in the
database. We will give the proof of Theorem 5 in Section 6.
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Table 1
Simulation of CA by relational algebra (RA). In the cases of x� y and σcolor≥k(x),
the letter R (S) refers to the relation scheme of the color relation x (y). Moreover,
in the simulation of σcolor≥k(x), the auxiliary attributes col i are chosen such that
they do not appear in R.

CA 7→ RA

x ∪ y 7→ x ∪ y

x− y 7→ x− y

x� y 7→ (x 1 πS(y)) ∪ (πR(x) 1 y)

x 1 y 7→ x 1 y

ρA/B(x) 7→ ρA/B(x)

σA=B(x) 7→ σA=B(x)

σcolor≥k(x) 7→ πR̄σ
∧
i 6=j coli 6=colj

(ρcol/col1(x) 1 · · · 1 ρcol/colk(x))

πcol
X (x) 7→ πX∪{col}(x)

5 Nonredundancy of CA

In this section we show that no operator of CA can be expressed in terms of
the other operators:

Proposition 6 The color algebra CA is nonredudant.

PROOF. We first show that each operator op ∈ {∪,−, ρA/B, σA=B, π
col
X } is

non-redundant by reduction to the well-known fact that their classical rela-
tional counterparts are non-redundant [7]. Denote by CAop the color algebra
from which op is removed. Denote the classical relational algebra by RA. As-
sume, for the sake of contradiction, that op can be expressed by means of
an expression eop in CAop. In particular, eop expresses op on monochromatic
databases, i.e., color databases that consists of color relations in which all
tuples are assigned the same color. Given the following observations:

(1) Monochromatic database simulate classical relational databases;
(2) The simulation of the color algebra by RA given in Table 1;
(3) σcolor≥k on monochromatic databases is always empty;
(4) � on monochromatic databases amounts to 1;

we can conclude that redundancy of op in CA would imply redundancy of op
in RA, which we know is false.

9



Note that this reduction argument does not work for the operator 1, because
1 is used in the simulation of �.

It remains to show the non-redundancy of op ∈ {�,1, σcolor≥k}. For each
of these three operators op, we establish a characteristic property Pop that
is satisfied by every expression in CAop but not by op itself. From this, the
non-redundancy of these operators is immediate.

Tuple join (�) We claim that the following property P� holds for any expres-
sion in CA�: Let R and S be the relation schemes {A} and {B}, respectively.
Let r′ be the color relation over R that consists of the single tuple (a, red) and
let s′ be the color relation over S consisting of the single tuple (b, blue), such
that a 6= b and where ‘red’ and ‘blue’ denote two distinct colors. Then, for
each e ∈ CA�, each tuple in the result of evaluating e on r′ and s′ is either
(i) the empty tuple (possibly colored with both red and blue); (ii) a tuple
consisting entirely of a’s (and colored with red only); or (iii) a tuple consisting
entirely of b’s (and colored with blue only).

The validity of the claim follows by a straightforward induction on the struc-
ture of expressions in CA�. The property is readily seen to hold for e = e1∪e2,
e = e1−e2, e = ρA/B(e1), e = σA=B(e1) and e = πcol

X (e1). For e = e1 1 e2, sup-
pose that (t1∪ t2, c) is in the result of the evaluation of e on r′ and s′. Clearly,
if a (resp. b) appears in both t1 and t2, then by induction t1 and t2 entirely
consist out of a’s (resp. b’s) and are solely colored with red (resp. blue). Hence,
also t1 ∪ t2 consists of a’s (resp. b’s) only and c = red (resp. c = blue). If a
(resp. b) only appears in t1, then t2 necessarily needs to be the empty tuple
that is colored with (at least) red. Indeed, otherwise t2 would consist entirely
out of b’s (resp. a’s) and would be colored with blue (resp. red). As a result,
t1 and t2 are distinctly colored and can therefore not be joined by 1. The case
that a (resp. b) only appears in t2 can be dealt with similarly. Finally, if both
t1 and t2 are empty tuples, then t1 ∪ t2 is the empty tuple possibly colored
with both red and blue. Hence, all cases lead to a joint tuple that satisfies
property P�.

In contrast, r′�s′ = {(a, b, red), (a, b, blue)} which does not satisfy satisfy P�.

Full join (1) Consider the color relation r′ = {(a, red), (a, blue)} over the
relation scheme {A}, and s′ = {(blue)} over the empty relation scheme, where
a is some value and ‘red’ and ‘blue’ are distinct colors. We claim the following
property P1 for any expression e of CA1 and any nonempty tuple t in the
relation underlying e(r′, s′): both (t, red) and (t, blue) belong to e(r′, s′). Note
that the property clearly holds for r′ and s′. We prove the claim by induction on
the structure of e. The only case that is not immediately clear is e = e1−e2. Let
r′1 = e1(r′, s′) and r′2 = e2(r′, s′) and let t be a nonempty tuple in the relation
underlying r′1 − r′2. Since t ∈ r1, by induction both (t, red) and (t, blue) are in
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r′1. Also, t cannot be in r2, since otherwise both (t, red) and (t, blue) would be
in r′2 and thus t would not be in the relation underlying r′1 − r′2. Hence, both
(t, red) and (t, blue) are in r′1 − r′2, as desired.

In contrast, r′ 1 s′ = {(a, blue)} does not satisfy property P1.

Color selection (σcolor≥k) We claim that the following property Pσcolor≥k holds
for any expression in CAσcolor≥k : Let R be the empty relation schema and let
r′k be the color relation over R consisting of the empty tuple colored with k
distinct colors. Then for each e ∈ CAσcolor≥k we have that (i) e(r′k) = ∅ iff
e(r′k−1) = ∅; and (ii) e(r′k) = r′k iff e(r′k−1) = r′k−1; and (iii) no other possible
cases than (i) and (ii) exist.

We verify that any expression e in CAσcolor≥k satisfies Pσcolor≥k by induction on
the structure of e. Suppose that e = e1 ∪ e2. From the induction hypothesis
(applied to e1 and e2) we obtain the following possible outcomes for e(r′k) and
e(r′k−1):

e(r′k) e1(r′k) ∪ e2(r′k) e1(r′k−1) ∪ e2(r′k−1) e(r′k−1)

r′k r′k ∪ r′k ⇔ r′k−1 ∪ r′k−1 r′k−1

r′k r′k ∪ ∅ ⇔ r′k−1 ∪ ∅ r′k−1

r′k ∅ ∪ r′k ⇔ ∅ ∪ r′k−1 r′k−1

∅ ∅ ∪ ∅ ⇔ ∅ ∪ ∅ ∅

The case e = e1− e2 is analogous. For e = e1� e2, we observe that e is equiv-
alent to e1∪ e2 when working on nullary color relations, i.e., on color relations
over the empty relation schema. The case that e = e1 1 e2 is equivalent to
e = e1 ∩ e2 which can be dealt with in an analogous way as ∪. We observe
that renaming, selection and projection do not have any effect on nullary color
relations and therefore can be omitted from this case analysis. Therefore, the
last remaining case is e = σcolor≥`(e1). We distinguish between the case that
(i) ` < k and (ii) ` > k. By the induction hypothesis (applied on e1) we obtain
the possible results for e(r′k) and e(r′k−1) as shown in the table on the left for
case (i) and on the right for case (ii).

e(r′k) e1(r′k) e1(r′k−1) e(r′k−1)

r′k r′k ⇔ r′k−1 r′k−1

∅ ∅ ⇔ ∅ ∅

e(r′k) e1(r′k) e1(r′k−1) e(r′k−1)

∅ r′k ⇔ r′k−1 ∅

∅ ∅ ⇔ ∅ ∅

In contrast, σcolor≥k(r
′
k) = r′k while σcolor≥k(r

′
k−1) = ∅. Hence, σcolor≥k does not

satisfy property Pσcolor≥k . �
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Note the use of the empty relation scheme in the proof. This is a feature
of the proof, in that non-redundancy involving the empty relation scheme
implies non-redundancy involving non-empty relation schemes. An interesting
question that we leave open is whether the color algebra is also non-redundant
if we are only interested in the expression of yes/no queries.

6 Simulation of the relational algebra by the color algebra

In this section, we prove Theorem 5. It is actually sufficient to do this for
a restricted fragment of the relational algebra, which we call the color-typed
relational algebra, denoted by RAc. In order to define this fragment, we must
first go from our one special color attribute col to an infinite set C of color
attributes, and agree that these are, like col , never used in relation schemes
of color relations. Of course we put col ∈ C. The color-typed restriction now
only lies in a condition imposed on selections and renamings. Specifically, if e
is an expression, then σA=B(e) and ρA/B(e) are only allowed if either A and
B are both color attributes, or are both not color attributes. Expressions of
the form e1 ∪ e2, e1 − e2, e1 1 e2, or πX(e) can be constructed just like in the
classical relational algebra.

Of course, every RAc expression is a finite expression and uses only finitely
many of the color attributes, but there is no fixed bound on this number over
all possible expressions. Note that something similar happens in the general
relational algebra when used to query color relations. Indeed, such expressions
can perform arbitrary renamings on the col attribute.

A result on the first-order completeness of many-sorted logic [17] implies that
every relational algebra expression over a database schema S̄ with result rela-
tion scheme of the form R̄ can be expressed in RAc. (We point out that this
depends crucially on the disjointness of the universes D of data values and C
of colors.) So, we indeed only have to prove Theorem 5 for RAc.

Our proof uses the following technical notions:

Let R be a relation scheme.

(1) An R-parameterized monadic database schema is a relational database
schema where every relation name has the same relation scheme R̄. (Equiv-
alently, it can be viewed as a color database schema where every relation
name has the same relation scheme R.)

(2) An RAc-expression f over an R-parameterized monadic database schema
is called R-uniform if it satisfies the following:
• f uses only renamings ρA/B and selections σA=B where A and B are
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color attributes;
• all projections πX appearing in f satisfy R ⊆ X.

The intuition is that an R-uniform expression does not explicitly work with
the attributes in R; these attributes are merely dragged along as parameters.

We now show that CA can simulate R-uniform RAc, in the following sense:

Lemma 7 Let f be an R-uniform RAc-expression over the R-parameterized
monadic database schema S. Let S be the result relation scheme of f .

• If S ∩ C = ∅, i.e., S = R, then there exists a CA-expression sim(f) such
that f(D) equals the relation underlying sim(f)(D), for each color database
D over S.

• If S ∩ C 6= ∅, then for each equivalence relation E on S ∩ C, there exists a
finite set simE(f) of mappings from S ∩ C to CA, such that f(D) equals

⋃
E

⋃
τ∈simE(f)

σ∧
(col′,col′′)∈E col ′=col ′′

σ∧
(col′,col′′)/∈E col ′ 6=col ′′ 1

col ′∈S∩C
ρcol/col ′(τ(col ′)(D))

PROOF. Assume that S consists of the relation names z1, . . . , zn. We begin
by refining the classical correspondence between the relational algebra and
the relational calculus (first-order logic, FO) to R-uniform RAc. The corre-
sponding fragment of FO, which we denote by FOc

R, is obtained as follows.
Let R = {A1, . . . , Am}. We use the Aj’s, plus all color attributes, as first-order
variables. The allowed atomic formulas are of two forms:

(1) zi(A1, . . . , Am, col ′) with col ′ ∈ C. We abbreviate such formulas by zi(R, col ′).
(2) col ′ = col ′′ with col ′, col ′′ ∈ C.

The only variables that can be quantified are color attributes. It is then readily
seen that R-uniform RAc corresponds to FOc

R under the active-domain seman-
tics, with the understanding that, when evaluating a formula in a database
D, the tuple of free variables A1, . . . , Am is only instantiated by R-tuples that
actually appear in D.

We next apply the well-known quantifier elimination method for monadic first-
order logic to FOc

R [2,4]. Concretely, this gives us that every FOc
R formula can

be written without quantifiers if we additionally allow predicates of the form
|zα(R)| ≥ ` in formulas, where ` ≥ 1 is a natural number, and α is a nonempty
subset of {1, . . . , n}. The meaning of such a predicate, for a given tuple t over
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R, is that |zα(t)| ≥ `, where zα(t) equals

{t′ ∈
⋃
i

zi | t′|R = t and
∧
i∈α

t′ ∈ zi and
∧
i∈α̂

t′ /∈ zi},

where α̂ abbreviates {1, . . . , n} − α.

Putting the quantifier-free formula in disjunctive normal form, and simplifying
each conjunction, we obtain a disjunction of conjunctions of factors of the
following possible forms:

• If S ∩ C = ∅, then each factor of the conjunction is of one of the following
three forms: (i) |zα(R)| ≥ 1: this can be expressed in CA by 1i∈α zi−

⋃
i∈α̂ zi;

(ii) |zα(R)| ≥ ` with ` ≥ 2: this can be expressed in CA by σcolor≥`(|zα(R)| ≥
1); and (iii) ¬(|zα(R)| ≥ `): this can be expressed in CA by

⋃
i zi�(|zα(R)| ≥

`). Recall that � is the tuple difference introduced in Example 4.
• If S ∩ C 6= ∅, then factors may additionally be of the following possible

forms: (iv) zi(R, col ′) for some color attribute col ′: this can be expressed in
CA by zi; (v) ¬zi(R, col ′): this can be expressed in CA by

⋃
j zj − zi; and

(vi) equalities and inequalities among color attributes.

Without loss of generality, we may assume that in each conjunction γ, the set
of equalities and inequalities among color attributes is maximally consistent,
involving all color attributes in S ∩ C. Such a maximally consistent set gives
rise to an equivalence relation Eγ on the color attributes.

We now construct, for each conjunction γ, the following mapping τ from S∩C
to CA and put it in simEγ (f). For each color attribute col ′, we take the CA-
expressions for all factors of types (i)–(iii) above, together with the expression⋃
z∈S π∅(z), and conjoin them all using �. Observe that the tuple join with⋃
z∈S π∅(z) assigns all tuples the same set of colors, i.e., all colors that appear

in any of the relations in S. In order to obtain the correct set of colors, we fur-
ther take the CA-expressions for all factors of types (iv)–(v) that concern the
particular color attribute col ′, conjoining these with each other and with the
previous part using 1. The resulting CA-expression then equals τ(col ′). �

We illustrate Lemma 7 with the following example:

Example 8 Let R = {A} and S = {z1, z2} (hence n = 2). Furthermore, let
f be the R-uniform RAc-expression over S:

πA,col
(
σcol 6=col ′(z1 1 ρcol/col ′(z1)

)
1 ρcol/col ′′(z2),

with result relation schema S = {A, col , col ′′}. We now closely follow the proof
of Lemma 7 to obtain a simulation of f by the color algebra. We first translate
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f into the calculus FOc
R resulting in

∃col ′ (z1(A, col) ∧ z1(A, col ′) ∧ col 6= col ′) ∧ z2(A, col ′′).

This expression, after the quantifier is eliminated, is equivalent to the disjunc-
tion γ1 ∨ γ2 ∨ γ3, where:

γ1 := z1(A, col) ∧
(
|z{1}(A)| > 2

)
∧ z2(A, col ′′)

γ2 := z1(A, col) ∧
(
|z{1}(A)| > 1 ∧ |z{1,2}(A)| > 1

)
∧ z2(A, col ′′)

γ3 := z1(A, col) ∧
(
|z{1,2}(A)| > 2

)
∧ z2(A, col ′′).

In the proof of Lemma 7, we assume that in each conjunction γi, the set of
equalities and inequalities among color attributes in S ∩ C = {col , col ′′} is
maximally consistent. Therefore, we complete the conjunctions γi, for i =
1, 2, 3, as follows. Observe that γi = (γi ∧ col = col ′′) ∨ (γi ∧ col 6= col ′′).
Hence, we obtain an equivalent set of expressions γ′1 = γ1 ∧ col = col ′′, γ′2 =
γ1∧col 6= col ′′, γ′3 = γ2∧col = col ′′, γ′4 = γ2∧col 6= col ′′, γ′5 = γ3∧col = col ′′,
and finally, γ′6 = γ3 ∧ col 6= col ′′.

In the current example, the equalities and inequalities on S ∩ C induce two
equivalence relations E1 and E2, corresponding to col = col ′′ and col 6= col ′′,
respectively. The conjunctions γ′i are partitioned accordingly.

Before we instantiate simE1(f) and simE2(f), observe that the factors in the
conjunctions γ′i, for i ∈ {1, . . . , 6}, are translated into the color algebra ac-
cording to following translation rules:

z1(A, col) 7→ z1

z2(A, col ′′) 7→ z2

|z{1}(A)| > 1 7→ z1 − z2

|z{1}(A)| > 2 7→ σcolor≥2(z1 − z2)

|z{1,2}(A)| > 1 7→ z1 1 z2

|z{1,2}(A)| > 2 7→ σcolor≥2(z1 1 z2).

We are now ready to define simE1(f). As noted above, the conjunctions γ′1,
γ′3 and γ′5 correspond to the equivalence relation E1. Consider first γ′1 =

z1(A, col) ∧
(
|z{1}(A)| > 2

)
∧ z2(A, col ′′) ∧ col = col ′′. We need to add the

following mapping τ1 (from {col , col ′′} to CA) to simcol=col ′′(f), defined by

τ1 :

 col 7→ σcolor≥2(z1 − z2)� (π∅(z1) ∪ π∅(z2)) 1 z1

col ′′ 7→ σcolor≥2(z1 − z2)� (π∅(z1) ∪ π∅(z2)) 1 z2
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Similarly, the following mappings are added to simE1(f): For γ′3:

τ3 :

 col 7→ (z1 − z2)� (z1 1 z2)� (π∅(z1) ∪ π∅(z2)) 1 z1

col ′′ 7→ (z1 − z2)� (z1 1 z2)� (π∅(z1) ∪ π∅(z2)) 1 z2,

and finally, for γ′5:

τ5 :

 col 7→ σcolor≥2(z1 1 z2)� (π∅(z1) ∪ π∅(z2)) 1 z1

col ′′ 7→ σcolor≥2(z1 1 z2)� (π∅(z1) ∪ π∅(z2)) 1 z2

The mappings τ2, τ4 and τ6 inserted in simE2(f) corresponding to γ′2, γ′4 and γ′6,
respectively, are similar. Hence, the final expression simulating f then consists
of

⋃
i=1,3,5

σcol=col ′′τi(col) 1 ρcol/col ′′(τi(col ′′))∪
⋃

i=2,4,6

σcol 6=col ′′τi(col) 1 ρcol/col ′′(τi(col ′′))

�

Our second lemma connectsR-uniform expressions to general RAc-expressions.

Lemma 9 Let h be an RAc-expression over S̄ with result relation scheme S,
and let R = S − C. Then there exist a natural number n; CA-expressions e1,
. . . , en, all with result relation scheme R; and an R-uniform RAc-expression
f(z1, . . . , zn), such that the composition f(e1, . . . , en) is equivalent to h.

PROOF. By induction on the structure of h. If h is a relation name x, then
n = 1; e1 is x; and f is z1. If h is h1 ∪ h2, by induction we have, for j = 1, 2,
the natural number nj, the sequence of CA-expressions ej = ej1, . . . , e

j
nj

, and
the RAc-expression fj. Then we put

n := n1 + n2

e1, . . . , en := e1, e2

f := f1(z1, . . . , zn1) ∪ f2(zn1+1, . . . , zn).

The case where h is h1 − h2 is similar, but now f is f1 − f2.

If h is h1 1 h2, we again begin by obtaining the ingredients for h1 and h2 by
induction, as above. By Lemma 7, we can simulate f1 and f2 in CA. We now
perform a case analysis based on how the result relation schemes S1 and S2 of
h1 and h2 intersect with C. There are four cases.
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First, S1 ∩ C = ∅ = S2 ∩ C. We put

n := 1

e1 := sim(f1)(e1)� sim(f2)(e2)

f := πR(z1).

Second, S1 ∩ C = ∅ and S2 ∩ C 6= ∅. Now in this case we take n to be the
total number of expressions occurring in all sets simE2(f2), for all equiv-
alence relations E2 on S2 ∩ C. For each of those expressions g, we form
g′ := g(e2) � sim(f1)(e1), and all these expressions g′ constitute the ei’s.
(Recall the definition of the derived CA operator � in Example 2). Denoting
the relation name corresponding to g′ by zg, we can then use the following
expression for f :

⋃
E2

⋃
τ∈simE2

(f2)

σ∧
(col′,col′′)∈E2

col ′=col ′′σ
∧

(col′,col′′)/∈E2
col ′ 6=col ′′ 1

col ′∈S2∩C
ρcol/col ′(zτ(col ′)).

Third, S1∩C = ∅ and S2∩C 6= ∅. This case is symmetric to the previous case.

Fourth, S1∩C 6= ∅ 6= S2∩C. In this case we use three kinds of CA-expressions:

(1) τ1(col ′)(e1) 1 τ2(col ′)(e2), with col ′ ∈ S1 ∩S2 ∩C and τj ∈ simEj(fj), for
an equivalence relation Ej of Sj ∩ C, for j = 1, 2;

(2) τ1(col ′)(e1)�τ2(col ′′)(e2), with col ′ ∈ (S1∩C)−(S2∩C) and col ′′ ∈ S2∩C,
and τj as above;

(3) τ2(col ′′)(e2)�τ1(col ′)(e1), with col ′′ ∈ (S2∩C)−(S1∩C) and col ′ ∈ S1∩C,
and again τj as above.

So, n equals the total number of all possible CA-expressions of those three
kinds. For all these expressions, which are all of the form i 1 j or i � j,
the underlying R-parameterized monadic database schema has corresponding
relation names zi,j. The expression f then becomes:⋃

E1

⋃
E2

⋃
τ1

⋃
τ2

σ∧
(col′,col′′)∈E1

col ′=col ′′σ
∧

(col′,col′′)/∈E1
col ′ 6=col ′′

σ∧
(col′,col′′)∈E2

col ′=col ′′σ
∧

(col′,col′′)/∈E2
col ′ 6=col ′′

1
col ′∈S1∩S2∩C

ρcol/col ′(zτ1(col ′),τ2(col ′))

1 1
col ′∈(S1∩C)−(S2∩C)

col ′′∈S2∩C

ρcol/col ′(zτ1(col ′),τ2(col ′′))

1 1
col ′′∈(S2∩C)−(S1∩C)

col ′∈S1∩C

ρcol/col ′′(zτ2(col ′′),τ1(col ′)).
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If h is ρA/B(h1) with A and B not in C, then we put n := n1; ei := ρA/B(e1
i );

and f := f1.

If h is ρcol ′/col ′′(h1) with col ′, col ′′ ∈ C, then n := n1; ei := e1
i ; and f :=

ρcol ′/col ′′(f1).

If h is σA=B(h1) with A and B not in C, then we put n := n1; ei := σA=B(e1
i );

and f := f1.

If h is σcol ′=col ′′(h1) with col ′, col ′′ ∈ C, then n := n1; ei := e1
i ; and f :=

σcol ′=col ′′(f1).

Finally, if h is πX(h1), then we simulate f1 in CA according to Lemma 7. Now
if the intersection of the result relation scheme S1 of h1 with C is empty, then
we put n := 1; e1 := πcol

X (sim(f1))(e1); and f := z1. If S1 ∩ C 6= ∅, then we
take n to be the total number of expressions occurring in all sets simE(f1), for
all equivalence relations E on S1 ∩C. For each of those expressions g, we form
g′ := πcol

X−C(g)(e1), and all these expressions g′ constitute the ei’s. Denoting
the relation name corresponding to g′ by zg, we can then use the following
expression for f :

πX
⋃
E

⋃
τ∈simE(f1)

σ∧
(col′,col′′)∈E col ′=col ′′σ

∧
(col′,col′′)/∈E col ′ 6=col ′′1

col ′∈S1∩C
ρcol/col ′(zτ(col ′)).

�

We illustrate Lemma 9 with the following example.

Example 10 Consider the following RAc-expression h

πA,col (σcol 6=col ′

h6︷ ︸︸ ︷
σA 6=B∧B 6=C (

h4︷ ︸︸ ︷
R1(A, col)︸ ︷︷ ︸

h1

1 ρcol/col ′R2(B, col)︸ ︷︷ ︸
h2

1 ρcol/col ′ρB/CR2(B, col)︸ ︷︷ ︸
h3

)

︸ ︷︷ ︸
h5︸ ︷︷ ︸

h7

),

in which various subexpressions are indicated with hi, for i ∈ {1, . . . , 7}. It
is readily verified that when applied to h1, h2 and h3, Lemma 9 results in

h1 :


n1 = 1

e1 = R1

f1 = z1

h2 :


n2 = 1

e2 = R2

f2 = ρcol/col ′(z2)

h3 :


n3 = 1

e3 = ρB/C(R2)

f3 = ρcol/col ′(z3)
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Consider next h4 = h1 1 h2. The simulation of f1 and f2 given by Lemma 7
simply consists τ1(col) = z1 and ρcol/col ′(τ2(col ′)) with τ2(col ′) = z2, respec-
tively. Hence, τ1(col)(e1) = e1 and τ2(col ′)(e2) = e2. Given that the result
schemes of h1 and h2 have no color attributes in common, we obtain that

h4 :



n4 = 2

e1
4 = e1 � e2 (with corresponding relation name zτ1(col),τ2(col ′))

e2
4 = e2 � e1 (with corresponding relation name zτ2(col ′),τ1(col))

f4 = zτ1(col),τ2(col ′) 1 ρcol/col ′(zτ2(col ′),τ1(col)).

The expression h5 = h4 1 h3 is treated similarly. It is easily verified that
the simulation of f3 and f4 given by Lemma 7 leads to τ3(col ′)(e3) = e3,
τ4(col)(e1

4) = e1
4 and τ4(col ′)(e2

4) = e2
4. Since the color attributes of h3 and h4

overlap, we obtain:

h5 :



n5 = 2

e1
5 = e1

4 � e3 (with corresponding relation name zτ4(col),τ3(col ′))

e2
5 = e2

4 1 e3 (with corresponding relation name zτ4(col ′),τ3(col ′))

f5 = zτ4(col),τ3(col ′) 1 ρcol/col ′(zτ4(col ′),τ3(col ′))

The expressions h6 and h7 are dealt with in a straightforward way:

h6 :



n6 = 2

e1
6 = σA 6=B∧B 6=C(e1

5)

e2
6 = σA 6=B∧B 6=C(e2

5)

f6 = f5

h7 :



n7 = 2

e1
7 = e1

6

e2
7 = e2

6

f7 = σcol 6=col ′(f6)

Finally, we consider h = πA,col(h7). Note that f7 is simulated by σcol 6=col ′τ7(col) 1

ρcol/col ′(τ7(col ′)) with τ7(col) = e1
7 and τ7(col ′) = e2

7. Since the projection in-
volves color attributes we therefore obtain

h :



n = 2

e1 = πcol
A (e1

7) (with corresponding relation name zτ7(col))

e2 = πcol
A (e2

7) (with corresponding relation name zτ7(col ′))

f = πA,col(σcol 6=col ′(zτ7(col) 1 ρcol/col ′(zτ7(col ′))))

Note that f is indeed an R-uniform expression with R = {A}. �

We conclude this section by showing how Lemma 7 together with Lemma 9
establish Theorem 5. Let e be an RAc-expression over S̄ with result relation
schema S = R ∪ {col}, i.e., e returns a color relation when evaluated on
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color databases. By Lemma 9, the expression e can be equivalently written
as the composition of an R-uniform RAc-expression f(z1, . . . , zn) and CA-
expressions e1, . . . , en. Lemma 7 shows that in case that S only contains a
single color attribute (as is the case here since e returns a color relation over
R), then f collapses to a union of CA-expressions of the form τ(col). Hence,
e is indeed equivalent to a CA-expression, as desired.

Example 11 Continuing with Example 10, we need to simulate the R-uniform
expression f = πA,col(σcol 6=col ′(zτ7(col) 1 ρcol/col ′(zτ7(col ′)))) over S = {zτ7(col),
zτ7(col ′)} following Lemma 7. The result, in this case, will be a CA expression
over S. To obtain the CA expression equivalent to h, it remains to substitute
zτ7(col) and zτ7(col ′) in f as follows:

zτ7(col) 7→ πcol
A (σA 6=B∧B 6=C((R1 �R2) � ρB/C(R2)))

zτ7(col ′) 7→ πcol
A (σA 6=B∧B 6=C((R2 �R1) 1 ρB/C(R2))). �

7 Completeness in the presence of built-in predicates on colors

So far, we did not assume any additional structure on the set of colors C,
except that C is a set equipped with the default equality predicate. In this
section, we consider the case that we have general built-in predicates on C. For
example, in many situations it is natural to assume that there is a linear order
< on C, e.g., when colors are of numerical type. Other examples of built-in
predicates include arithmetic operations, string comparisons and the like. In
general, let Π = {P1, . . . , Pk} be a set of built-in predicates on C, each of a
fixed arity ni.

We first recall (see Section 6) that every expression in RA can be expressed
in the color-typed relational algebra RAc. As before, we assume an infinite
set C of color attributes col . We expand RAc with the built-in predicates
in Π in the standard way and denote the resulting algebra by RAc

Π. More
specifically, RAc

Π is the same as RAc except that the selection operator σcol=col ′

for col , col ′ ∈ C is replaced with a generalized selection predicate σθ(col1,...,colm)

where col1, . . . , colm ∈ C and θ is one of the predicates Pi of Π and m =
ni. (The standard selection operator σA=B for non-color attributes remains
unchanged.)

We next define a generalization of the color algebra, denoted by CAΠ, and
show that (i) every expression in CAΠ on color relations can be simulated in
RAΠ; and (ii) every operation on color relations that is definable in RAΠ is
already definable in CAΠ. In other words, CAΠ is relationally complete in the
presence of the built-in predicates Π on C.
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The color algebra CAΠ is obtained from CA by removing �, 1 and σcolor≥k
and by adding the generalized color join operator, defined as follows. Let r′1,
. . . , r′n be color relations over relation schemas R1, . . . , Rn, respectively. Let
ϕ(X1, . . . , Xn, col) be a first-order formula over the predicates in Π and the
unary relation symbols X1, . . . , Xn, such that col is the only free individ-
ual variable of ϕ. Then the generalized color join 1ϕ{r′1, . . . , r′n} equals the
following color relation over the relation schema R1 ∪ · · · ∪Rn:

{(t1 ∪ · · · ∪ tn, c) | t1 ∪ · · · ∪ tn ∈ r1 1 · · · 1 rn
and ϕ(r′1(t1), . . . , r′n(tn), c) is true}.

Hence, when considering the joint tuple t1 ∪ · · · ∪ tn, the unary relations
Xi in ϕ are instantiated by the sets of colors associated with the tuples in
their respective relations, i.e., r′i(ti). The joint tuple is colored with all colors
c satisfying the formula ϕ evaluated on these sets. Note that we use active-
domain semantics for ϕ, i.e., c can only be a color that appears in at least one
of these sets.

Example 12 The CA-operators 1, � and σcolor≥k are all special cases of the
generalized color join:

x� y = 1
X1(col)∨X2(col)

{x, y}

x 1 y = 1
X1(col)∧X2(col)

{x, y}

σcolor≥k(x) = 1
ϕ
{x}

where ϕ in the last equation is

∃col1, . . . ,∃colk
k∧
i=1

X1(col i) ∧
∧

1≤i<j≤k
col j 6= colk ∧X1(col). �

Example 13 Using a predicate < on C, consider the operation

1
¬∃col1(X1(col1)∧X2(col)∧col1<col)

{x, y}

When applied to color relations r′ and s′, it returns the joint tuples t1∪t2 from
the natural join of the underlying relations r and s (with t1 ∈ r and t2 ∈ s);
these joint tuples will inherit the color of t2 in s′ provided that t1 does not
appear in r′ with a smaller color. �

Since the definition of the generalized color join is readily formalized in the
relational calculus, the generalized color join is expressible in RAΠ, due to the
equivalence of relational calculus and relational algebra, which also holds in
the presence of built-in predicates [16].
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Example 14 The generalized color join from Example 13 can be expressed in
RAc

Π as follows: (R and S refer to the relation schemas of x and y respectively)

πR∪S̄(ρcol/col1(x) 1 y)− πR∪S̄σcol1<col(ρcol/col1(x) 1 y). �

We now show that CAΠ is again relationally complete, i.e., can express every
operation on color relations explicitly expressible in the relational algebra with
built-in predicates on colors:

Theorem 15 For every relational algebra expression over S̄ in RAΠ whose
result schema is of the form R̄ for some relation scheme R, there exists an
equivalent CAΠ-expression over S.

This theorem can be proven in the same general way as Theorem 5: we first
show that CAΠ can simulate R-uniform RAc

Π (suitably defined) and then show
that every RAc

Π-expression can be simulated by means of R-uniform RAc
Π-

expressions.

In order to state our first lemma, the generalized color join must be slightly
generalized (sic) to allow for multiple color attributes. This is necessary since
intermediate relations can have multiple color attributes.

Recall the definition of the generalized color join operator 1ϕ{r′1, . . . , r′n},
which returns a color relation over the relation schema R1 ∪ · · · ∪ Rn. When
we allow ϕ to have multiple, say m, free individual variables col1, . . . , colm,
we obtain an m-ary generalized color join. The result of this operation is the
following relation over the relation scheme R1 ∪ · · · ∪Rn ∪ {col1, . . . , coln}:

{(t1 ∪ · · · ∪ tn, c1, . . . , cm) | t1 ∪ · · · ∪ tn ∈ r1 1 · · · 1 rn

and c1, . . . , cm ∈
n⋃
i=1

r′i(ti) and ϕ(r′1(t1), . . . , r′n(tn), c1, . . . , cm) is true}

Note that this relation is not a color relation, unless m = 1, in which case we
revert to the ordinary generalized color join defined before and the result is
indeed a color relation over the relation schema R1∪· · ·∪Rn. In particular, the
m-ary generalized color join is not part of CAΠ for m 6= 1. Its only purpose is
to formalize the lemma below.

The notion of R-uniformity extends in the natural way to expressions in RAc
Π.

Thus, an RAc
Π-expression f over anR-parameterized monadic database schema

is called R-uniform if it satisfies the following:

• f uses only renamings ρA/B where A and B are color attributes in C;
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• f uses only selections σθ(col1,...,colm) on color attributes, i.e., f uses no selec-
tions σA=B on non-color attributes;
• all projections πX appearing in f satisfy R ⊆ X.

We are now ready to state the analogue of Lemma 7 in the presence of built-
in predicates. Since the m-ary generalized color join is quite powerful, the
generalized lemma is actually easier to state and prove than the original.

Lemma 16 Let f be an R-uniform RAc
Π-expression over the R-parameterized

monadic database schema S. Let S be the result relation schema of f . If S∩C =
{col1, . . . , colm}, then f(D) is equivalent to a finite union of m-ary generalized
joins.

PROOF. Assume that S consists of the relation names z1, . . . , zn. Analo-
gously to the proof of Lemma 7, we define FOc

Π,R as the first-order logic defined
as follows. Let R = {A1, . . . , Ak}. We use the Aj’s, plus all color attributes,
as first-order variables. The allowed atomic formulas are of two forms:

(1) zi(A1, . . . , Ak, col ′) with col ′ ∈ C. We abbreviate such formulas with
zi(R, col ′).

(2) Pi(col1, . . . , colni) for Pi ∈ Π.

Like in the proof of Lemma 7, R-uniform RAc
Π corresponds to FOc

Π,R.

For any non-empty subset α of {1, . . . , n} let paramα be the CA-expression

�
i∈α

zi �
⋃
i/∈α

zi.

It computes the tuples over R that are in all relations with indexes in α, but
that are in none of the remaining relations. Moreover, the tuples inherit the
colors from their corresponding relations.

Now let Ψ be the FOc
Π,R-formula equivalent to the R-uniform RAc

Π-expression
f from the statement of the Lemma. It is then clear that Ψ is equivalent to
the following finite union of m-ary generalized color joins:⋃

α⊆{1,...,n}
α 6=∅

1
Ψα(X1,...,Xn,col1,...,colm)

{zi � paramα | i ∈ α},

where Ψα is the formula Ψ in which zi(R, col ′) is replaced by Xi(col ′) in case
that i ∈ α and by false otherwise. �

The literal analog of Lemma 9 is the following. The proof proceeds entirely
analogously to the proof of Lemma 9, so we omit it.
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Lemma 17 Let h be an RAc
Π-expression over S̄ with result relation scheme S,

and let R = S −C. Then there exist a natural number n; CAΠ-expressions e1,
. . . , en, all with result relation scheme R; and an R-uniform RAc

Π-expression
f(z1, . . . , zn), such that the composition f(e1, . . . , en) is equivalent to h.

8 Conclusion

We conclude the paper by listing some interesting research directions: First,
in Proposition 6 we established the non-redundancy of the color algebra. It is
open, however, whether the color algebra is also non-redundant when consider-
ing the stronger notion of non-redundancy that allows the use of yes/no queries
only. Second, although it is readily verified that the translation described in
Section 6 leads to an exponential blow-up in the size of the expressions (both
the quantifier elimination and the introduction of the equivalence relations on
color attributes in Lemma 7 might incur an exponential blow-up), exact lower
and upper bounds on the translation of relational algebra expressions into
the color algebra (possibly with a different method) are, however, unknown.
Finally, it is worth exploring the extension of the color algebra with built-in
predicates on data (and not solely on colors as in Section 7).
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