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ABSTRACT 1 
 2 
The Origin Destination (OD) matrix estimation problem is a crucial part of transportation 3 
analysis. In this research, a statistical Bayesian approach on OD matrix estimation is 4 
presented, where modeling of OD flows is related only to a set of general explanatory 5 
variables. The assumptions of a Poisson model and of a Poisson-Gamma mixture model are 6 
investigated on a realistic application area concerning the region of Flanders on the level of 7 
cities. Problems related to the absence of closed-form expressions are bypassed with the use 8 
of a Markov Chain Monte Carlo algorithm, known as the Metropolis-Hastings algorithm. 9 
Additionally, a strategy is proposed in order to obtain predictions from the Poisson-Gamma 10 
model conditional on the posterior expectations of the mixing parameters. In general, 11 
Bayesian methodology reduces the overall uncertainty of the estimates by delivering 12 
posterior distributions for the parameters of scientific interest as well as predictive 13 
distributions for future OD flows. Results indicate that the approach is applicable on large 14 
networks, with relatively low computational and data-gathering costs. Moreover, the methods 15 
presented in this study can be naturally extended in order to incorporate different sources of 16 
potential uncertainty. 17 
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1. INTRODUCTION  1 
 2 
An OD matrix contains the traffic flows between all possible pairs of zones of a specific 3 
study area. Common transportation problems usually involve study areas with hundreds of 4 
zones and the corresponding OD matrices are rarely collected by means of direct 5 
measurements due to the obvious difficulties and costs related to such undertakings (1). In 6 
addition, simple methods such as travel surveys are also not sufficient in delivering reliable 7 
OD matrix estimates (2). Therefore, in practice OD matrices are estimated from traffic counts 8 
and other available information.    9 

The conventional estimation approach is based on estimating an OD matrix from 10 
observed link flows. The problem then is that the resulting equation system is underspecified, 11 
since the number of observed link flows is in the majority of cases much smaller than the 12 
number of corresponding OD pairs and a particular set of observed link flows will result to a 13 
large number of possible solutions. Therefore, external information, which usually has the 14 
form of a “prior” OD matrix, is needed in order to cope with the under-specification problem. 15 
The aim, in this case, is to find the most “plausible” OD estimate given the link flows and the 16 
“prior” OD matrix (1). The range of approaches and methods in the relative literature is 17 
extensive. An overview of the existing methods would be out of the scope of this paper. 18 
Analytic reviews can be found initially in Willumsen (3) and more recently in Abrahamsson 19 
(1). A more philosophical categorization and discussion is provided by Timms (4). 20 
According to the general categorization of Abrahamsson (1), OD matrix estimation methods 21 
may be classified into 3 main groups; traffic-modeling based approaches, gradient-based 22 
solution techniques and statistical inference approaches which can be further organized into 23 
Maximum Likelihood methods, Least Squares and Generalized Least Squares methods and 24 
Bayesian methods. A drawback of conventional approaches is that the majority of 25 
applications is so far restricted in small or medium sized networks, with some exceptions of 26 
specific gradient-based solution methods (5, 6). In addition, implementation often involves 27 
high costs since traffic count data are required in combination with external information.    28 
 In the current study, a new, statistical, model-based approach is presented which 29 
challenges some of the practical and also methodological issues involved in OD matrix 30 
estimation, issues mainly related to costs, applicability and evaluation of uncertainty. 31 
Regarding cost-efficiency, the approach is in general not cost demanding since OD flows are 32 
explained only by means of general and easily obtainable explanatory variables. 33 
Furthermore, the applicability of the approach is tested on a realistic study area, concerning 34 
the city network of Flanders which consists of 308 cities. Finally, the approach has as main 35 
aim to reduce the overall uncertainty of estimation. To this extend, two models are 36 
investigated, a Poisson model and a Poisson-Gamma model. In addition, the estimation is 37 
purely Bayesian and the Metropolis-Hastings algorithm, a Markov Chain Monte Carlo 38 
algorithm, is used in order to acquire samples from the joint posterior distribution of all 39 
parameters. Moreover, a strategy is suggested in order to obtain accurate predictions of OD 40 
flows from the corresponding hierarchical structure of the Poisson-Gamma model.   41 
 As illustrated in the study, the proposed approach is applicable for problems of large 42 
dimensionality, while at the same time data-gathering and computational costs are low. In 43 
addition, Bayesian methodology reduces uncertainty over the randomness of OD flows in 44 
two key aspects; first information is provided for the entire posterior distributions of the 45 
parameters that influence OD flows and second prediction of future OD flows is similarly 46 
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based on predictive distributions instead of predictive point estimates. The former is useful in 1 
obtaining a wider perspective over the factors that may help explain the generation and 2 
attraction of OD trips. The latter, in combination with the inherent hierarchical nature of OD 3 
matrices, facilitates transportation policy-making by providing predictive scenarios for traffic 4 
volumes over multiple levels of aggregation and for different types of trips. Evaluation of 5 
such scenarios by policy-makers reduces the uncertainty involved in decisions related to 6 
transport infrastructure.   7 
 8 
2. DATA 9 
 10 
2.1 OD Matrix 11 
 12 
A new trend in transportation modeling is formed by the so-called Activity-Based models. 13 
The underlying assumption of Activity-Based modeling is that travel behavior is a derivative 14 
of the activities of individuals. Therefore, Activity-Based models rely on agent-based 15 
simulation or micro-simulation on the level of individual persons and/or households. The 16 
outcome of Activity-Based models is an OD matrix estimate, which is derived by 17 
aggregating the simulated activities of agents in micro-level. An analytic literature review is 18 
provided by Henson et al. (7), for a general discussion over the advantages of micro-19 
simulation models see Vovsha et al. (8). The OD matrix considered in this study, is the result 20 
of such an Activity-Based model and is regarded as the “true” or “target” matrix which will 21 
be approximated by the models presented in section 3. 22 

Specifically, the OD matrix is the outcome of a simulation run in micro-level from 23 
the Agent-Based simulation platform FEATHERS (9). The simulation covered half the 24 
population of Flanders, corresponding to approximately 3 million agents. The OD matrix 25 
contains the total number of daily trips for a normal weekday and for all travel modes. In 26 
addition, information is provided on a highly analytic level, that is, the city network of 27 
Flanders which consists of 308 zones. The resulting OD matrix contains 94864 cells. 28 

An important feature of OD matrices is their inherent hierarchical structure. An OD 29 
matrix may be aggregated on different levels according to different geographical and/or 30 
municipal classifications. For the region of Flanders, there are several levels of aggregation 31 
that may be of interest; from the analytic level of cities to the more general levels of cantons, 32 
districts, arrondissements and finally provinces. The hierarchical structure of Flanders is 33 
represented below; on the higher level of cities the OD matrix has 308 zones and 94864 OD 34 
pairs whereas on the lower level of provinces there are only 5 zones and 25 possible OD 35 
pairs, in between we find the levels of cantons, districts and arrondissements. The downward 36 
direction of the arrows implies that each lower level is the result of an aggregation on the 37 
immediately higher level. Therefore, having an OD estimate on a high level of analysis is 38 
immediately advantageous, since it leads to direct OD estimates for all the lower levels, 39 
whereas the opposite is not true.  40 

Another characteristic of OD matrices is that the flows are usually inflated across the 41 
main diagonal. The cells in the main diagonal correspond to “internal” trips; these are the 42 
trips that are made within the same zone where there is no distinction between origin and 43 
destination. 44 
 45 

 46 
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Cities  308×308 (94,864 cells) 1 
↓ 2 

Cantons 103×103 (10,609 cells) 3 
↓ 4 

Districts 52×52 (2,704 cells) 5 
↓ 6 

Arrondissements 22×22 (484 cells) 7 
↓ 8 

Provinces 5×5 (25 cells) 9 
 10 

As expected, given the size of the matrix on city-level, the OD flows are sparsely 11 
distributed. Approximately, 31% of the cells in the matrix are zero-valued and 50% of the 12 
cells take a value smaller than 7. In addition the data are clearly over-dispersed, since the 13 
mean of the OD flows equals 62.894 while the variance is much larger, equal to 343,406.2. 14 
Finally, the cells across the main diagonal correspond to approximately 23% of the total OD 15 
flows of the matrix and the maximum value which is equal to 135456 is observed in the 16 
diagonal cell belonging to Antwerp, the capital and largest city of Flanders.          17 
   18 
2.2 Explanatory Variables 19 
 20 
The selection of the explanatory variables is a combination of variables that can be derived 21 
immediately from the hierarchical structure of the OD matrix and of continuous explanatory 22 
variables. The second category consists of variables such as population densities, relative 23 
length of road networks, perimeter lengths of cities and yearly traffic in highways, provincial 24 
roads and city roads. The set of explanatory variables is listed below. 25 
 26 
[1]   dum.prov: dummy variable for internal-province trips  27 
[2]   dum.arron: dummy variable for internal-arrondissement trips  28 
[3]   dum.dist: dummy variable for internal-district trips  29 
[4]   dum.cant: dummy variable for internal-canton trips 30 
[5]   dum.city: dummy variable for internal-city trips  31 
[6]   cities.cant: total number of cities between the cantons of origin and destination 32 
[7]   cities.dist: total number of cities between the districts of origin and destination 33 
[8]   cities.arron: total number of cities between the arrondissements of origin and destination 34 
[9]   cities.prov: total number of cities between the provinces of origin and destination 35 
[10] pop.dens.o: population density of origin-city (thousand inhabitants per square km) 36 
[11] pop.dens.d: population density of destination-city (thousand inhabitants per square km) 37 
[12] road.length.o: length of road network relative to surface of origin-city (km per square km) 38 
[13] road.length.d: length of road network relative to surface of destination-city (km per square km) 39 
[14] perim.o: perimeter of origin-city (in km’s) 40 
[15] perim.d: perimeter of destination-city (in km’s) 41 
[16] HWT.o: km’s driven per year in highway roads of origin-city (in millions) 42 
[17] HWT.d: km’s driven per year in highway roads of destination-city (in millions) 43 
[18] PRT.o: km’s driven per year in provincial roads of origin-city (in millions)  44 
[19] PRT.d: km’s driven per year in provincial roads of destination-city (in millions) 45 
[20] CRT.o: km’s driven per year in city roads of origin-city (in millions) 46 
[21] CRT.d: km’s driven per year in city roads of destination-city (in millions)  47 
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The variables which are extracted directly from the hierarchical structure of the OD matrix 1 
are [1]-[9]. In particular, variables [1]-[5] are dummy variables indicating whether a trip is 2 
internal or not for each level of aggregation, respectively. These variables are multiplied by 3 
100 so that they correspond to a difference of one hundred journeys. Variables [6]-[9] 4 
correspond to the total number of cities belonging to the specific cantons, districts, 5 
arrondissements and provinces of each OD pair. The rest [10]-[21], are the external 6 
explanatory variables, which come in pairs, since they relate to origin as well as destination. 7 
Finally, variables [6]-[21] are transformed in logarithmic scale, so that the multiplicative 8 
interpretation of the models presented next remains on natural scale. 9 

The set of the explanatory variables is in general simple, costless and also easy to 10 
obtain. As mentioned, part of the explanatory variables is immediately derived by the 11 
structure of the OD matrix. Variables related to populations, surfaces and perimeters are 12 
usually available in transportation research centers and institutes. Finally, variables related to 13 
length of road networks were obtained by the Belgian governmental website for statistics 14 
(10). 15 
 16 
3. MODELS 17 
 18 
In this section, a brief description of the Poisson and Poisson-Gamma likelihood assumptions 19 
is presented along with the selection of the corresponding prior distributions. Expressions for 20 
the posterior distributions are then derived from the application of Bayes’ theorem. For 21 
computational and notational convenience the OD flows are represented as a vector. Let n 22 
denote the data size and p the number of explanatory variables. In addition, let 23 

1 2( , ,..., )T
ny y yy  denote the vector of OD flows, 0 1 2( , , , ..., )T

p   β  the vector of 24 
unknown parameters and X  the design matrix of dimensionality ( 1)n p  , containing the 25 
intercept and the p explanatory variables, with 0 1 2( , , ,..., )T

i i i i ipx x x xx  being the i-th row of 26 
X related to OD flow iy  and 1, 2,...i n . 27 
 28 
3.1 The Poisson Model 29 
 30 
The likelihood assumption is that the OD flows are independently Poisson distributed, that is 31 

| ~ ( )i iy Pois β  for 1, 2,...i n , where i  is the Poisson mean for iy , related  to the 32 
explanatory variables through the log-link function log( ) T

i i  x β . The log-link function 33 
implies the assumption that the effects of the explanatory variables are linear to the log-mean 34 
of iy . Consequently, the effects are exponential on natural scale, since  exp T

i i  x β . The 35 
complete likelihood is given by  36 
 37 

    
1

exp exp exp
( | )

!

iyT Tn i i

i i

p
y




x β x β
y β .                                    (1) 38 

 39 
Poisson regression is a common option when modeling count data and it is frequently used in 40 
practice. Nevertheless, Poisson models usually do not perform well in cases of over-41 
dispersed data, since a strong restriction of Poisson modeling is that the mean is equal to the 42 
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variance of the data, that is      | | exp T
i i iE y Var y β β x β . Properties and estimation 1 

procedures for Poisson regression can be found in Agresti (11) and McCullagh and Nelder 2 
(12), Bayesian applications are presented in Ntzoufras (13). 3 

A non-informative prior is assigned for parameter vector β . Specifically, the 4 

multivariate normal prior ~ ( , )p+1 ββ N 0 Σ , with   1 310Tn


  βΣ X X  as discussed in 5 
Fernández et al. (14). This prior distribution has the form 6 

 7 

 
' 1

1 2( 1) 2

1 1( ) exp
22 p

p





   
 

β

β

β β Σ β
Σ

.                                    (2) 8 

 9 
By applying the Bayes’ theorem, the posterior  distribution of |β y  is proportional to 10 

( | ) ( | ) ( )p p pβ y y β β . From expressions (1) and (2) the resulting posterior distribution is   11 
 12 

      1

1

1( | ) exp exp exp exp .
2

i
n yT T T

i i
i

p 



          
 ββ y x β x β β Σ β                 (3) 13 

 14 
Sampling directly from the posterior distribution is not feasible, since expression (3) does not 15 
result to a known distributional form.  16 
 17 
3.2 The Poisson-Gamma Model 18 
 19 
The Poisson-Gamma model is a mixed Poisson regression model, where the mixing density 20 
is assumed to be a Gamma distribution. Mixed Poisson models incorporate over-dispersion 21 
and are frequently used as alternatives to the simple Poisson model (15). The likelihood 22 
assumption is | , ~ ( )i i i iy u Pois uβ , for 1, 2,...i n  , where i  is again the part of the Poisson 23 
mean related to the explanatory variables through the log-link function log( ) T

i i  x β  and 24 

1 2( , ,..., )T
nu u uu  is a vector of random deviations or random intercepts distributed as 25 

| ~ ( , )iu Gamma    with 0  , so that   1iE u   . The Poisson likelihood is the 26 
conditional likelihood of y given the vector u; the complete conditional likelihood is given by   27 
 28 

     
1

exp exp exp
( | , )

!

iyT Tn i i i i

i i

u u
p

y




x β x β
y β u .                             (4) 29 

 30 
From a Bayesian perspective the Poisson-Gamma model is an hierarchical model, since the 31 
mixing distribution is regarded as a 1st level prior distribution for u and parameter   is 32 
assigned a 2nd level prior distribution (13).  33 

Alternatively, one may work with the marginal form of the model by integrating over 34 
the mixing density; the integration      | , | , |p p p d  y β y β u u u  results to a Negative-35 
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Binomial marginal likelihood, that is | , ~ ( , )i iy NB  β , with  exp T
i i  x β  for 1 

1,2,...i n . The complete marginal likelihood then, is 2 
 3 

 
 

 
  1

exp
( | , )

! exp

i

i

yTn
ii

yTi i i

y
p

y








 




 


 


x β
y β

x β
.                                  (5) 4 

 5 
The mean of the data in this case is    | , exp T

i iE y  β x β , while the variance is 6 

      2 1| , exp expT T
i i iVar y       β x β x β . Note that the variance now is not a linear 7 

function but a quadratic function of the mean. Thus, Negative-Binomial regression 8 
incorporates over-dispersion, since the assumed variance always exceeds the assumed mean. 9 
Information for the Negative-Binomial model can be found in Agresti (11) and McCullagh 10 
and Nelder (12). A general Expectation-Maximization (EM) algorithm for obtaining 11 
Maximum Likelihood (ML) estimates for mixed Poisson models, with emphasis on the 12 
Poisson-Gamma case, is provided by Karlis (15). Within the Bayesian framework, Ntzoufras 13 
(13) presents descriptions and applications for both the hierarchical and the marginal 14 
formulations of the model.      15 
 By means of Bayesian methodology, one might choose to fit either the hierarchical 16 
either the marginal form of the model. In both cases, the estimates for the parameters of main 17 
scientific interest, β and  , will be the same due to the equivalence of the two formulations. 18 
The hierarchical Poisson-Gamma model provides additional information over the posterior 19 
distribution of u but it also requires estimation of the full set of parameters ,   and  β u . The 20 
marginal Negative-Binomial model on the other hand is simpler to fit, since estimation is 21 
restricted to the reduced set of parameters   and  β . Due to the large size of the OD matrix, 22 
fitting the hierarchical model in our case would prove to be a very difficult task which would 23 
require estimating all of the 'siu  that correspond to the 94864 random intercepts. Instead, we 24 
choose to work with the simpler Negative-Binomial distribution. As we will see in section 25 
5.2, information over the vector u is not completely lost and prediction from the hierarchical 26 
structure is still feasible conditional on the posterior expectation of u. 27 
 Independent, non-informative priors are adopted once again for parameters β and  . 28 
For parameter vector β , the same multivariate normal distribution defined in expression (2) 29 
is used. Regarding, parameter   a non-informative ( , )Gamma a a  distribution, with 310a  , 30 
as presented in Ntzoufras (13) is chosen. The prior of   is given by 31 
 32 

 1( ) exp
( )

a
aap a

a
   


.                                                 (6) 33 

 34 
The joint posterior distribution of , |β y  is now proportional to 35 

( , | ) ( | , ) ( ) ( )p p p p  β y y β β , which leads to expression 36 
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 
 

 
  

 
'

' 1 1

'1

exp 1( , | ) exp exp .
2exp

i

i

y
n

ii a
y

i
i

y
p a






  

 
 




 
               

 β

x β
β y β Σ β

x β
   (7) 1 

 2 
Inference from the posterior distribution is again not straightforward, since expression (7) 3 
does not have a closed form solution. In the following section, we describe a Markov Chain 4 
Monte Carlo method known as the Metropolis-Hastings algorithm, which is utilized in order 5 
to generate samples from the posterior distributions in expressions (3) and (7).   6 
 7 
4. METROPOLIS-HASTINGS IMPLEMENTATION 8 
 9 
Markov Chain Monte Carlo (MCMC) methods are frequently used within the Bayesian 10 
framework and are mainly employed in situations where the posterior distribution is not of 11 
known form. The basic idea of MCMC is to initiate a Markov process from a specific starting 12 
point and then iterate the process over a sufficient period of time. Due to the properties of 13 
Markov processes, the resulting chain eventually converges to a stationary distribution which 14 
is also the “target” posterior distribution. Once this is accomplished, an initial part of the 15 
chain is discarded as part of the so-called “burn-in” period of the chain, which is the period 16 
that the Markov chain has not yet reached convergence. The final result of MCMC is a 17 
dependent sample from the posterior distribution, from which one may acquire summaries 18 
for any posterior quantity of interest. Analytic information over the theoretical background 19 
and applications of various MCMC algorithms can be found in Gamerman and Lopes (16) 20 
and Gilks et al. (17). 21 
 Among the different types of MCMC methods, the Metropolis-Hastings (M-H) 22 
algorithm is the most general method. The M-H algorithm is an iterative method, which 23 
requires initially, specification of proposal distributions and of starting values for all 24 
parameters included in a given model. The iterative procedure follows; at each iteration 25 
draws of parameters are generated first from the proposal distributions, the draws are then 26 
accepted or rejected according to a certain transition or acceptance probability. An extensive 27 
description of the M-H algorithm is provided by Chib and Greenberg (18). 28 

In particular, an independence-chain M-H algorithm is utilized where the location and 29 
scale parameters of the proposal distribution remain fixed. The large data size results to 30 
considerable time-consuming calculations and independence-chain M-H simulation proves to 31 
perform faster than random-walk-chain M-H or other types of Metropolis-within-Gibbs 32 
algorithms. The choice for the proposal distribution of parameter β , common in both the 33 
Poisson and the Negative-Binomial model, is a multivariate normal distribution, 34 

 ( ) ~ ( , )q βp+1β N β V , where β  is the ML estimate of β  and  βV  is the estimated covariance 35 
matrix of β . For parameter   of the Negative-Binomial model, the proposal distribution is 36 
defined as ( ) ( , )q Gamma a b  , where parameters a  and b  are set to satisfy  /a b   and 37 
  2

/a b Var   with   being the ML estimate of  . Having specified the proposal 38 

distributions, the M-H algorithm for each model proceeds as presented below.  39 
 40 
 41 
 42 
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To simulate a M-H sample of size N for the Poisson model: 1 
 2 

1) Set initial value 0β  3 
2) For iterations 1,2,...,t N : 4 

a. Generate *β  from the proposal ( )q β  5 

b. Calculate the transition probability 
* 1

1 *

( | ) ( )min ,1
( | ) ( )

t

MH t

p qa
p q





 
  

 

β y β
β y β

 6 

c. Generate a uniform random number u from (0,1)U  7 

d. Set 
*

1

   , if  

 , if  
MHt

t
MH

u a
u a

  


β
β

β
 8 

 9 
To simulate a M-H sample of size N for the Negative-Binomial model:  10 
 11 

1) Set initial values 0β  and 0  12 
2) For iterations 1,2,...,t N : 13 

a. Generate *β  from the proposal ( )q β  and *  from the proposal ( )q   14 

b. Calculate the transition probability 
* * 1 1

1 1 * *
( , | ) ( ) ( )min ,1
( , | ) ( ) ( )

t t

MH t t
p q qa
p q q

 
 

 

 

 
  

 

β y β
β y β

 15 

c. Generate a uniform random number u from (0,1)U  16 

d. Set 
* *

1 1

( , )     , if  
( , )

( , ) , if  
MHt t

t t
MH

u a
u a




 

  


β
β

β
 17 

 18 
 After certain preliminary tests, 5000 iterations for the Poisson model and 11000 19 
iterations for the Negative-Binomial model were used in the final M-H runs, with resulting  20 
acceptance ratios of 95% and 67%, respectively. The first 1000 iterations were discarded as 21 
the “burn-in” part for both models. Convergence checks were based on the methods of 22 
Raftery and Lewis (19), Geweke (20) and Heidelberger and Welch (21).  The sample of the 23 
Poisson model passed all the diagnostics, but due to memory limitations in calculations every 24 
4th iteration was kept, resulting to a final sample of size 1000. Regarding the Negative-25 
Binomial model, the diagnostic of Raftery and Lewis (19) indicated autocorrelation 26 
problems. Thinning the sample with an interval equal to 20 resolved the problem and for the 27 
final sample of 500 draws all lag 1 autocorrelations were below 0.05.  28 
 29 
5. RESULTS 30 
 31 
In this section, results from the Poisson and Negative-Binomial regressions are summarized. 32 
Posterior summaries, model comparison and plots of the posterior distributions are presented 33 
first. A strategy for the Negative-Binomial model is suggested next, which allows to obtain 34 
predictions from the corresponding Poisson predictive distribution. Several goodness-of-fit 35 
tests are applied on the predictions and finally examples of predictive inference are 36 
presented.   37 
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5.1 Posterior Inference 1 
 2 
The results presented in this section, apply to the exponential parameters, exp( )j jB   for 3 

0,1, 2,...21j  . The effect of these parameters on the mean OD flows is multiplicative on 4 
natural scale and therefore interpretation is straightforward. For instance, posterior means 5 
greater than 1 correspond to an increasing multiplicative effect, whereas posterior means less 6 
than 1 have a decreasing multiplicative effect.  7 

Posterior means, standard deviations and 95% probability intervals for parameters jB  8 
and parameter   are summarized in Table 1.  9 
 10 
TABLE 1 Posterior Means, Standard Deviations, 95% Probability Intervals and the Values of 11 
DIC for the Poisson and Negative-Binomial Models 12 

Poisson Negative-Binomial Parameter Mean SD 95% P.I. Mean SD 95% P.I. 
0B ; intercept  1.322 0.030 (1.266 – 1.383) 0.013 0.006 (0.005 – 0.029) 

1B ; dum.prov      1.013 0.001 (1.012 – 1.013) 1.014 0.001 (1.014 – 1.015) 

2B ; dum.arron  1.018 0.001 (1.018 – 1.018) 1.018 0.001 (1.017 – 1.019) 

3B ; dum.dist      1.018 0.001 (1.017 – 1.018) 1.019 0.001 (1.018 – 1.020) 

4B ; dum.cant       1.023 0.001 (1.023 – 1.024) 1.025 0.001 (1.024 – 1.027) 

5B ; dum.city   1.048 0.001 (1.048 – 1.049) 1.051 0.001 (1.049 – 1.054) 

6B ; cities.cant    0.879 0.001 (0.877 – 0.882) 0.753 0.017 (0.720 – 0.789) 

7B ; cities.dist     1.120 0.002 (1.117 – 1.123) 1.097 0.033 (1.034 – 1.164) 

8B ; cities.arron    0.874 0.001 (0.872 – 0.876) 1.135 0.026 (1.085 – 1.186) 

9B ; cities.prov    0.647 0.003 (0.641 – 0.652) 1.295 0.114 (1.082 – 1.535) 

10B ; pop.dens.o      1.504 0.002 (1.500 – 1.509) 1.595 0.031 (1.535 – 1.655) 

11B ; pop.dens.d      1.503 0.002 (1.499 – 1.507) 1.587 0.030 (1.529 – 1.650) 

12B ; road.length.o  0.927 0.002 (0.924 – 0.931) 1.085 0.026 (1.033 – 1.137) 

13B ; road.length.d  0.927 0.002 (0.923 – 0.931) 1.077 0.026 (1.025 – 1.129) 

14B ; perim.o       1.905 0.004 (1.897 – 1.913) 2.134 0.071 (1.997 – 2.274) 

15B ; perim.d       1.909 0.004 (1.901 – 1.918) 2.124 0.071 (1.983 – 2.270) 

16B ; HWT.o           1.009 0.001 (1.009 – 1.009) 1.005 0.002 (1.001 – 1.009) 

17B ; HWT.d           1.009 0.001 (1.009 – 1.009) 1.005 0.002 (1.002 – 1.009) 

18B ; PRT.o           0.950 0.001 (0.949 – 0.952) 0.960 0.011 (0.938 – 0.984) 

19B ; PRT.d           0.950 0.001 (0.948 – 0.952) 0.965 0.011 (0.943 – 0.987) 

20B ; CRT.o           1.377 0.003 (1.372 – 1.382) 1.285 0.034 (1.219 – 1.353) 

21B ; CRT.d           1.376 0.003 (1.371 – 1.381) 1.274 0.034 (1.208 – 1.341) 
    ; theta           – 0.284 0.001 (0.281 – 0.287) 

DIC 6,694,020 739,675.4 
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Statistical significance may be checked directly upon examination of the 95% 1 
posterior probability intervals. Regarding parameters jB , none of the corresponding posterior 2 
intervals includes the value of 1, consequently all parameters have significant effects in both 3 
models. For dispersion parameter   of the Negative-Binomial model, we observe that the 4 
posterior interval does not support the value of zero, therefore parameter   is also 5 
significant. Based on the posterior means of parameters jB , the parameters that seem to have 6 
a greater impact, regardless of model choice, are 10B , 11B , 14B , 15B , 20B  and 21B , which 7 
correspond to the effects of population density, of perimeter length and of traffic in small 8 
roads for the cities of origin and destination, respectively. 9 

Model comparison is based on the Deviance Information Criterion (DIC), introduced 10 
by Spiegelhalter et al. (22). The DIC is a model selection criterion, useful in determining the 11 
best model within a specific group of models. Based on the DIC support is given to the 12 
model with the lowest resulting value. The DIC values for the two models are also shown in 13 
Table 1, indicating that the value of the Negative-Binomial model is much lower than the 14 
corresponding value of the Poisson model. Consequently, according to the DIC, the 15 
Negative-Binomial model clearly outperforms the simple Poisson model. Evidently, the latter 16 
does not provide a good fit to the data due to the strong presence of over-dispersion. This is 17 
in accordance with the finding that parameter  , which accounts for the extra variability, is 18 
statistically significant.            19 

 20 
FIGURE 1 Kernel posterior distribution estimates for the parameters of the Negative-Binomial 21 
model. 22 
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In addition to posterior point estimates and intervals presented in Table 1, direct 1 
examination of the posterior distribution often provides extra information and a more 2 
comprehensive view regarding the random nature of parameters. Kernel smoothed estimates 3 
of the 23 posterior distributions for the parameters of the Negative-Binomial model are 4 
presented in Figure 1. 5 
 6 
5.2 Prediction 7 
 8 
According to a lemma provided by Sapatinas (23), if | , ~ ( )y u Pois u   and u has a 9 
probability function ( )G  , i.e. ~ ( )u G u , then, posterior expectations of u can be derived  10 
from the formula 11 
 12 

    ( )( )!|
! ( )

r G
r

G

p y ry rE u y,
y p y





 ,                                            (8) 13 

 14 
where ( )Gp   is the probability function of the corresponding mixed Poisson distribution. 15 
Expression (8) holds for all cases of mixed Poisson models. The formula is also utilized by 16 
Karlis (15) in a general EM algorithm for mixed Poisson models.  17 

In our context, the mixed Poisson distribution corresponds to the Negative-Binomial 18 
distribution, denoted previously as ( | , )p y β  and given in expression (5). It is then possible, 19 
given formula (8), to obtain a sample of posterior expectations of u; let (l) be an indicator for 20 
the 500 MCMC draws, then, by setting in (8) 1r   and by “plugging-in” the MCMC draws 21 

( )lβ , ( )l , for 1,2,...500l  , we obtain posterior expectations of u as follows 22 
 23 

 
( ) ( )

( )( )
( ) ( ) ( )

( 1)! ( 1 | , )| ,
exp( ) ! ( | , )

l l
ll

l l l
pE ,

p



 

 EXP
y y βu u y β
Xβ y y β

.                          (9) 24 

 25 
Now, predictions of OD flows can be generated from the Poisson distribution conditional on 26 
β  and  EXPu ; for each ( )lβ  and ( )l

EXPu , with 1,2,...500l  , we generate one predictive dataset 27 
( )pred ly  from    28 

( ) ( ) ( )~ ( )pred l l lPois EXPy β u .                                                 (10) 29 
 30 

Each one of the 500 'pred sy , consists of one predictive OD matrix for Flanders. Predictions 31 
from the Poisson distribution, unlike predictions from the Negative-Binomial distribution, 32 
take into account the specific random intercept of each OD flow. The proximity of these 33 
predictions with respect to the original dataset is investigated next. 34 
 35 
5.3 Goodness-of-fit 36 
 37 
In order to evaluate the goodness-of-fit of the Negative-Binomial model, several measures of 38 
fit are considered. A measure frequently used within the transportation field is initially 39 
calculated. Bayesian methodology enhances the information provided by the measure, since 40 
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the outcome is once again a distribution estimate rather than a point estimate. Evaluation of 1 
the fit is then supplemented by statistical tests based on Bayesian p-values.  2 
 The distance between the predictive datasets and the initial dataset is assessed by the 3 
Mean Absolute Percentage Error (MAPE) measure, which corresponds to an average 4 
percentage of deviation from the initial dataset. By definition, the calculation of MAPE 5 
cannot include the zero-valued cells of the OD matrix. Nevertheless, in large OD matrices, 6 
small or even medium deviations from zero-valued cells are usually not influential. If we 7 
denote with m the total number of cells which are not zero and with k an indicator 8 

1,2,...k m   for 0ky  , then, we obtain 500 corresponding MAPE values from 9 
 10 

( )
( )

1

pred lm
l k k

k k

y yMAPE m
y


 ,  11 

 12 
for 1,2,...,500l  . The resulting mean value of MAPE is 0.263, with a minimum of 0.259 13 
and a maximum of 0.266. The mean MAPE seems relatively high, corresponding to a 26.3% 14 
deviation from the initial dataset. Nevertheless, this value is slightly misleading due to the 15 
fact that MAPE is also highly influenced from small deviations in low-valued cells. 16 
Excluding categories of low-valued cells in the calculation of MAPE, reveals that the mean 17 
value decreases drastically; the value of the mean MAPE for OD flows greater than 10 is 18 
decreased to 0.115 and for OD flows which are greater than 20 the corresponding value 19 
becomes 0.096. Finally, for OD flows greater than 50 the mean is 0.074, with a minimum of 20 
0.073 and a maximum of 0.075. These results are summarized in the plots of Figure 2; as we 21 
observe in plot (c) the mean of MAPE is decreasing steadily and the deviations from the 22 
initial dataset become almost negligible for medium and large valued cells.    23 

 24 
FIGURE 2 Histogram of MAPE (a), histogram of MAPE for OD flows greater than 50 (b), plot 25 
of the mean values of MAPE resulting by excluding low-valued cells (c) and histogram of the 26 
average absolute differences for OD flows equal or less than 50 (d). 27 



Perrakis, Karlis, Cools, Janssens and Wets 15

According to MAPE the Negative-Binomial models performs well for prediction of medium 1 
and large OD flows. The 7.4% deviation for OD flows greater than 50 is already small. Yet, 2 
MAPE is not very informative concerning the fit of the model in low-valued cells, since 3 
small deviations, which may not be significant in practical terms have a high influence in the 4 
calculation of the measure. A direct way of evaluating the fit in low-valued cells is to simply 5 
calculate the absolute differences between the initial and the predictive datasets. Plot (d) in 6 
Figure 2 is a histogram with a summary of the average absolute differences for OD flows 7 
equal to or less than 50. We note that the differences are not large; the mean equals 1.53, 8 
50% are equal to or less than 1, 75% are equal to or less than 3 and the maximum absolute 9 
difference is 13. 10 
 In addition to the previous analysis, two extra measures of discrepancy between the 11 
predictions of the model and the data are considered; the  absolute distances and the squared 12 
distances of the initial and the predictive data from the corresponding expected values of the 13 
model. In Bayesian terms, the measures are identified as test quantities which are evaluated 14 
by means of Bayesian p-values. A Bayesian p-value should ideally equal 0.5, extreme values 15 
very close to 0 or 1 suggest failure of a model in the specific aspect that is investigated by the 16 
test quantity (24). The Bayesian p-value was initially defined by Rubin (25), several 17 
examples for the use of test quantities and interpretation of Bayesian p-values are presented 18 
in Gelman et al. (24). Following the terminology used by Gelman et al. (24) we denote the 19 
two test quantities as  20 

 
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 22 
The resulting Bayesian p-value is 0 for the Absolute-Distance quantity, indicating a bad fit, 23 
and 0.504 for the Squared-Distance quantity which actually suggests an ideal fit. The result at 24 
first glance seems contradictive, nevertheless it is in accordance with the previous findings. 25 
The Absolute-Distance is a strict measure which assigns more penalty to small deviations, 26 
while the Squared-Distance measure gives more weight to large deviations from the data. 27 
Like MAPE, the Absolute-Distance measure is influenced by small deviations, especially in 28 
low-valued cells. Given the size of the data, the cumulative effect of these deviations appears 29 
to be statistically significant under certain strict measures, yet in practical terms the overall 30 
effect is not significant. In our case, the Squared-Distance measure seems a more suitable test 31 
quantity for evaluating goodness-of-fit.   32 
 33 
5.4 Predictive Inference    34 
 35 
The 500 datasets generated from the predictive distribution in (10) may now be used in 36 
various types of predictions of traffic volumes. As mentioned in section 2.1, modeling on the 37 
level of cities allows for prediction on other levels of aggregation as well. For instance, 38 
predictions for OD flows between districts can be derived directly as summations of the 39 
predictions for OD flows between cities. Thus, predictive inference is not necessarily 40 
restricted on the level of cities; it can be applied on any other hierarchical level, such as the 41 
levels of cantons, districts, arrondissements and provinces. In addition, prediction may also 42 



Perrakis, Karlis, Cools, Janssens and Wets 16

be focused on specific types of traffic volumes that might be of interest, e.g. strictly in-1 
coming trips, strictly out-coming trips or just internal trips. 2 
 In Figure 3, applications of prediction on different levels of aggregation and for 3 
different types of trips are demonstrated. The applications correspond to predictions for the 4 
total number of in-coming trips from all other cities to the capital of Flanders, Antwerp, 5 
predictions for the total number of trips that occur daily in the whole region of Flanders and 6 
finally predictions for the daily internal trips that take place in each one of the five Flemish 7 
provinces. 8 

 9 
FIGURE 3 Predictive distributions for the incoming trips to Antwerp (a), for the total number 10 
of trips in Flanders (b) and for the internal trips within each of the five Flemish provinces; 11 
Antwerp (c), Limburg (d), East Flanders (e), Flemish Brabant (f) and West Flanders (g). The 12 
vertical black lines indicate the corresponding observed quantities. 13 
 14 

Similar predictive distributions can be derived for any case of specific OD flows that 15 
might be of particular interest. It is worth noting, that these predictions also serve as further 16 
goodness-of-fit tests, since in every case there is a corresponding observed quantity to 17 
compare with. In the applications above, the observed quantities are represented with vertical 18 
black lines. As illustrated in Figure 3, all observed quantities are well within high-density 19 
regions of the corresponding predictive distributions, an indication that the predictions are 20 
not extreme with respect to the initial data. 21 

In general, the predictive distributions provide all the necessary information 22 
concerning the variability of future traffic flows. The predictive effects may be examined 23 
under different assumptions; one might choose to infer based on conservative summaries 24 
such as the predictive mean or median, or one might be interested in examining the effect of 25 
more extreme summaries such as the 99th percentile or the maximum value. These alternative 26 
options reduce overall uncertainty and may serve as predictive scenarios for transportation 27 
policy-makers, e.g. in decisions concerning infrastructure expansion.  28 
 29 
 30 
 31 
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6. CONCLUSIONS AND DISCUSSION 1 
 2 
In this paper, the OD matrix estimation problem was investigated from a Bayesian modeling 3 
perspective. Applications of a Poisson model and of a Negative-Binomial model were 4 
presented for the city network of Flanders. The regression parameters of both models and the 5 
dispersion parameter of the Negative-Binomial proved to be statistically significant. Model 6 
comparison based on the DIC indicated that Negative-Binomial regression is a more suitable 7 
choice than simple Poisson regression due to the great degree of over-dispersion present in 8 
OD flows. Finally, predictions were obtained from the corresponding hierarchical structure 9 
of the Negative-Binomial model, conditional on the posterior expectation of the mixing 10 
parameters. The proximity of these predictions with respect to the initial data was evaluated 11 
according to several measures of discrepancy. The overall fit was found to be satisfactory. 12 

Novel applications emerge as direct extensions of the proposed methodology. In 13 
general, the approach can be utilized as a meta-analytic tool. Given the fact that all OD 14 
matrices are an outcome of a specific model, the methods presented in this study can be 15 
applied on other OD datasets for the region of Flanders, so that estimates of parameters and 16 
predictions can be cross-examined. That would reduce the initial uncertainty originating from 17 
the data. A further step would involve to model different datasets simultaneously and include 18 
data uncertainty in one general model, which would potentially provide more reliable 19 
estimates. 20 

Another direct application of the approach entails using the predictive output of a 21 
certain model as input to a specific assignment method. That would allow for predictions on 22 
the level of link flows and also provide the opportunity to compare the observable link flows 23 
with respect to the corresponding predictive distributions. 24 
 Future research may focus further on the selection of explanatory variables. The 25 
choice of explanatory variables used, should be viewed as a first attempt and not as a 26 
concluding proposition. Expanding the models, by including appropriate explanatory 27 
variables that influence the generation and attraction of trips, is a matter of ongoing research. 28 
For instance, variables related to distances and coordinates proved to be highly significant in 29 
experiments of smaller scale and will be included in future results. 30 
 Finally, uncertainty over model choice also provides space for further investigation. 31 
The class of mixed Poisson distributions, results to several potential models that might be 32 
reasonable candidates for OD matrix modeling. The widely used Poisson-Log Normal model, 33 
for example, appearing more frequently in the relative literature as a Poisson model with 34 
normally distributed random effects, is a possible alternative to the Poisson-Gamma model. 35 
A less known alternative belonging to the same class, is the Poisson-Inverse Gaussian 36 
regression model. 37 
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