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ABSTRACT 1 
Few studies have modeled the effects of policy measures on population exposure. In this work we 2 

assess for the first time the impact of a policy measure on population exposure to NO2 by using the 3 

activity-based model ALBATROSS. Activity-based (AB) models can be of great value in evaluating 4 

the effect of integrated policies and measures that have no obvious relation with transport or air 5 

quality at first sight.  6 

The scenario considered in this study concerns changing the opening hours of shops and allows 7 

shopping earlier in the morning and later in the evening. Both emissions and population distribution 8 

of this policy measure can be derived from the activity-travel behavior predicted by the AB model. 9 

We found that widening opening hours changes the activity pattern of the adult population in the 10 

Netherlands. Approximately 6% more non-daily and 0.5% more daily shopping hours are predicted. 11 

The change in activity pattern results in more transport (+0.5% more vehicle kilometers driven). As a 12 

consequence of this, emissions and air pollutant concentrations were also altered. When matching the 13 

concentration maps with the dynamic population, we observe an increase in population exposure to 14 

NO2. Absolute differences are small (up to 0.40 µg/m³). On an average weekday NO2 exposure 15 

increases by 0.15 µg/m³. The relative change in exposure on an average weekday is 0.4%. In certain 16 

neighborhoods and on certain hours a more substantial increase can be observed.  17 
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INTRODUCTION 1 
Numerous studies have already emphasized the importance of transport sources for exposure to air 2 

pollutants. Transport not only affects exposure of people living nearby but also those working or 3 

shopping in the vicinity. Often it is overlooked that participating to traffic also influences personal 4 

exposure and may entail health impacts (1, 2). Policy measures, e.g. introduction of congestion 5 

charging, changes in work duration, or facilitation of tele-working, are able to change an individual’s 6 

activity pattern and the derived traffic participation. Will this impact population exposure as well? 7 

The classical way of looking at exposure is by multiplying population density, based on 8 

residential addresses, with concentrations measured at a nearby fixed monitoring station (3, 4). When 9 

using this approach several unrealistic assumptions are made. Everyone in the population is assumed 10 

to be at their home location all the time. This may be true for approximately 70 to 80% of the time; 11 

but many researchers acknowledge that the short time spent in a non-residential microenvironment 12 

(e.g. in transport) may account for a large fraction of the accumulated exposure (5, 6, 7). Further, 13 

using concentrations measured at fixed monitoring stations to estimate personal exposure is 14 

unrealistic in a way that concentrations of air pollutants, especially traffic related pollutants like NO2, 15 

differ substantially on a local scale. By using interpolation methods like universal and ordinary 16 

kriging, inverse distance weighting, land use regression or emission- and dispersion modeling, the 17 

spatial resolution can be improved. 18 

A decade ago Shiftan (8) already explored the advantages of activity-based (AB) modeling 19 

for air-quality prediction purposes. An AB model basically predicts a diary for every individual in a 20 

population: which activities will be performed where and for how long and if a trip is involved which 21 

transport mode will be used (9, 10). By using an AB transportation model we can improve on both of 22 

the issues stated above: we can use dispersion modeling based on more accurate emission estimates of 23 

modeled trips and we can model the location of every individual for every hour of the day. This way a 24 

truly dynamic exposure analysis can be made by geographically matching hourly concentrations and 25 

hourly population densities. Moreover, we are able to differentiate between different subpopulations 26 

and different activities allowing a more detailed exposure analysis. 27 

This methodology has the potential to provide valuable information for air pollution 28 

epidemiology (11) and policy purposes (12). To reduce population exposure to air pollution, policy 29 

makers can cut down emissions or lower concentrations. However to enable a durable change in 30 

population exposure, policy measures should affect the driving forces of the DPSIR framework (13). 31 

By changing the activity patterns, trips can become unnecessary. In our modeling framework, policy 32 

measures impact the AB model (and effects propagate further through the emission and dispersion 33 

model). As an example of this approach we present a scenario (widening of shop opening hours) and 34 

evaluate the effects of the scenario on population exposure using an AB model. 35 

 36 

METHODOLOGY 37 
The modeling framework consists of three models which run subsequently: the output of one model 38 

serves as the input of the following model. The three models used here are: the AB model 39 

ALBATROSS, the emission model MIMOSA and the dispersion model AURORA. This chain of 40 

models provides a flexible framework. It is possible to replace each of the models by a comparable 41 

model, e.g. substitute the AB model for the Netherlands with an AB model for a different region. An 42 

extensive description of the complete framework can be found in Beckx et al. (5, 14). 43 

When calculating the effects of a scenario on population exposure, the modeling framework is 44 

run through twice: before the introduction of a policy measure and after the introduction of the policy 45 

measure. The outcome of the first model run is then compared to the results ex post. 46 

 47 

Activity-Based Transportation Model 48 
The AB transportation model ALBATROSS (an acronym for A Learning Based Transportation 49 

Oriented Simulation System) was used to predict activity-travel patterns for the Dutch population (15, 50 

16). The model first establishes a synthetic population using demographic and socio-economic 51 

geographical data from the Dutch population and attribute data of a sample of households originating 52 

from a national survey including approximately 67,000 households. Every adult inhabitant of the 53 

Netherlands (or more precisely, household head), is incorporated in the synthetic population. The 4-54 

digit postal code area (4PCA) was chosen as the spatial unit for the ALBATROSS model. 55 
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Activity-travel schedules are then simulated for all the individuals by using decision trees 1 

representing each choice (e.g. a stochastic choice of activity type, duration of activity, choice of 2 

location, transportation mode involved, etc.). While making these decisions several constraints, e.g. 3 

institutional constraints and household constraints, are taken into account to make resulting activity 4 

diaries more realistic. We used the output of one run of the model representing one-day diaries across 5 

all days of the week of all people in the study area. Thus, the activity patterns should be representative 6 

for an entire week. Although ALBATROSS is a stochastic model we have used only one model run 7 

(implicitly assuming it to be a deterministic model) because the subsequent modeling steps are very 8 

computer intensive. 9 

Presently, possible seasonal differences in weekly activity patterns are not captured by the 10 

model. To assess the traffic flows, we extract the Origin-Destination (OD) matrices from the 11 

simulated activity patterns. Predicted car trips for the entire population are assigned to a road network 12 

(‘Basisnetwerk’) by using an all-or-nothing assignment (shortest path in distance). Because 13 

ALBATROSS does not estimate freight traffic a more advanced network assignment taking into 14 

account capacities (or possible congestion) was not possible. Passenger car trip matrices were 15 

analyzed for different time periods, to account for intraday and intraweek differences in travel 16 

behavior, and for various trip motives with a focus on shopping. 17 

 18 

Emission Model 19 
Traffic flows are converted into vehicle emissions by applying the emission factor approach from the 20 

MIMOSA emission model following the procedure described by Beckx et al. (17). Hourly, 21 

geographically spread, emissions were calculated with a classical approach. MIMOSA belongs to the 22 

macroscopic `average speed emission models', that express emission and fuel consumption rates for 23 

each trip as a function of average speed. The model was adapted to calculate emissions and emission 24 

reduction scenarios for larger areas by Schrooten et al. (18). The emission factors used within the 25 

MIMOSA model are mostly based on the Copert-III report (19). For missing data (some specific 26 

pollutants and particulate matter (PM) emissions), emission functions from MEET (20) were applied 27 

and some data were extracted from experimental on-road measurements (21). In order to calculate the 28 

vehicle emissions for passenger car trips in the Netherlands, the latest MIMOSA version was 29 

extended with information regarding the Dutch vehicle park and road conditions (17). Further, the 30 

settings within the model were altered to benefit maximally from the information provided by the AB 31 

approach. These new characteristics make the model suitable for the emission estimations at the 32 

national level, on the basis of the output of an AB model. The basic version of MIMOSA predicts 33 

hourly traffic emissions based on peak-hour traffic flows. The time dependency of the emissions is 34 

‘simulated’ using normalized factors expressing the fluctuations of the traffic flow as a function of the 35 

time of day, the day of the week, and the month of the year. By using an AB approach, hourly traffic 36 

flows are immediately provided on all road segments. In this study we have therefore replaced the 37 

uniform traffic flow method from the basic MIMOSA model with an advanced traffic simulation 38 

procedure, allowing geographic and temporal differences in traffic flow. Only the characteristics of 39 

the passenger cars were taken into account. On the basis of statistical information on the Dutch 40 

vehicle park (including data from traffic counts and vehicle registration actions), the MIMOSA 41 

vehicle park composition was determined per road type (22). Link-specific traffic speeds were not 42 

derived from the all-or-nothing assignment but (to be consistent with Albatross) we used the same 43 

traffic speeds as used by the AB model to estimate travel time between different locations. These link-44 

specific traffic speeds refer to an average speed over the course of a day and were estimated for the 45 

Dutch road network according to expert assessment at the level of individual links derived by Arentze 46 

and Timmermans (23). By combining the hourly traffic volumes computed per road segment with 47 

fleet statistics and the corresponding emission factors, our final Dutch MIMOSA model calculates 48 

temporally and geographically distributed traffic emissions. The emissions presented in this study 49 

include hot and cold emissions of NOx. Cold-start emissions were calculated on the basis of 50 

information on the trip length and the ambient temperature. Short trips, carried out with cold engines, 51 

result in higher emissions. 52 

  53 
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Dispersion Model 1 
In a next phase the emissions are converted into pollutant concentrations. For this purpose, the 2 

AURORA model is applied to simulate the dispersion and conversion of the emissions into 3 

concentrations. AURORA (Air quality modeling in Urban Regions using an Optimal Resolution 4 

Approach), is a deterministic 3-dimensional Eulerian model of the atmosphere. The model predicts 5 

how air pollutants are transported away from their source and mixed in the air. Physical changes and 6 

chemical reactions that generate secondary pollutants are also taken into account. The model’s outputs 7 

are 3-dimensional concentration fields for the region of interest. We discuss the AURORA model 8 

briefly to enable understanding of our work but we refer the reader to De Ridder et al. (24) and Beckx 9 

et al. (5) for a full description of the model and its use in the environmental evaluation of transport 10 

scenarios. 11 

Data requirements for AURORA are difficult to meet and include the specification of 3-D 12 

fields of relevant meteorological parameters, wind vector components, friction velocity, temperature, 13 

humidity, precipitation, radiation, cloud properties, and turbulent diffusion coefficients, among others. 14 

The emissions input required by the AURORA model consists of gridded two-dimensional emissions 15 

maps on an hourly basis. Local emissions from industry, shipping and building heating were obtained 16 

from the E-MAP GIS tool. E-MAP performs a spatial disaggregation of CORINEAIR/EMEP 17 

emission inventories by using spatial surrogate data. CORINAIR (Core Inventory of Air Emissions) 18 

collects, maintains, manages and publishes information on air emissions, by means of a European air 19 

emission inventory and database system (25). A good description of these auxiliary data sets can be 20 

found in Maes et al. (26). The annual emissions are distributed temporally according to monthly 21 

(January – December), daily (Monday – Sunday) and hourly (0h – 23h) correction factors. These 22 

factors are specific to each pollutant and emission sector, and hence reflect the different energy-use 23 

time patterns. Traffic related emissions were obtained from the previously ran ALBATROSS-24 

MIMOSA model chain (also described in (17)). The remainder of the emissions for the Netherlands 25 

were taken from the national Dutch pollutant emission inventory (27), which distinguishes between 26 

various types of road transport and emissions. The Dutch emission inventory is available on a yearly 27 

basis, and has a geographic resolution of 5 x 5 km² that was transferred to the AURORA grid. 28 

By using a dispersion model we produce high-resolution air quality maps for the Netherlands. 29 

However the air quality in the Netherlands is not only determined by emissions taking place in its 30 

territory, but also by air pollutants that are being emitted in the neighboring countries. These air 31 

pollutants were taken into account through the principle of nesting. This means that we start 32 

AURORA calculations covering a large domain at a low resolution and gradually focus on the region 33 

of interest at higher resolutions. The lateral boundary conditions of the model domain are always 34 

specified from the previous run (or from external data in the case of the outer domain).  Three 35 

different resolution steps were taken for the AURORA modeling, starting with a domain at 30km 36 

resolution (2400 km x 1500 km) through 10 km down to 3km resolution. Only results from the 3-km 37 

resolution model domain will be discussed in this paper.  38 

We have performed AURORA calculations for six months (March, April, May and 39 

September, October, November) for the year 2005 and the following pollutants were considered: NO2, 40 

O3 and PM10, because these pollutants are traffic related and important for human health. Only results 41 

for NO2 during the month of April are discussed in this paper. We refer the reader to Beckx et al. (5, 42 

14, 17, 28) for a more detailed description of the procedures followed for atmospheric modeling. 43 

 44 

Integration of the Models 45 
The goal of the modeling framework is to assess population exposure both in the base case, as well as 46 

in a scenario simulation. The predicted hourly NO2-concentration field from the ALBATROSS-47 

MIMOSA-AURORA modeling chain is combined with hourly information on people’s whereabouts 48 

to calculate their exposure. By using the population information from the AB simulation, hourly 49 

population maps are simulated and dynamic exposure values can be estimated (Figure 1). 50 

 51 
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 1 

FIGURE 1 The exposure modeling framework (adapted from Beckx et al. (28)) 2 
 3 

Each step in the process was evaluated to assess the accuracy of the predictions. The 4 

predicted results from the AB emission modeling approach were compared with travel and emission 5 

values from the Dutch Scientific Statistical Agency whose data originates from other model 6 

simulations. Of course, a good agreement between both values does not automatically indicate a good 7 

representation of the real situation, and only states the similarity between both models. Moreover, 8 

uncertainties in both simulated and reported data are not looked at. Ideally, a validation method 9 

should therefore use measurements instead of simulation values, but the procedure of comparison 10 

with other models provides useful cross-validation. Because travel and emission measurements were 11 

not available on a national level (only concentration measurements are executed), the values from the 12 

Dutch Scientific Statistical Agency were therefore considered as an acceptable alternative for the 13 

validation of the base case travel and emission data. Modeled emissions and reported emission values 14 

demonstrate good correspondence. When comparing the simulated concentrations for the base case 15 

with measured values at Dutch monitoring stations, the index of agreement varies between 0.40 and 16 

0.70 for NO2 (14), which demonstrates that the AB air quality model chain is able to simulate the 17 

hourly concentration patterns in the Dutch study area with sufficient accuracy. 18 

 19 

RESULTS AND DISCUSSION 20 
The scenario considered here involves a widening of shop opening hours for daily and non-daily 21 

shopping as described in Table 1. Daily shopping also includes service related activities, like going to 22 

a post office or a hair dresser. The new opening hours are from 6 a.m. until 10 p.m. on weekdays and 23 

Saturdays, which allows shopping earlier in the morning and later in the evening. In ALBATROSS 24 

this is implemented by changing the institutional constraints in the scheduler. The shop opening 25 

hours-law, adopted in the Netherlands in 1996, interdicts retailers to open their shops between 10 p.m. 26 

and 6 a.m.. Municipalities can deviate from this law, e.g. by enabling shops to open on Sundays. 27 

These exceptions cannot be included in the ALBATROSS-scheme, although it is possible on a very 28 

limited scale to enable shopping on Sundays when this is indicated in the revealed preference diaries. 29 

Even though this law now stands for over a decade, discussions on shop opening hours are still open, 30 

making this a relevant policy scenario. 31 

As a case study we model the difference in dynamic population and concentration, and the 32 

difference in population exposure for NO2. We only consider the adult population of the Netherlands 33 

(approximately 10.5 million individuals). 34 

  35 
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TABLE 1 Shop opening hours for daily and non-daily shopping in the base case and in the 1 

widening scenario 2 

Day Base case Widening scenario 

Daily (hours) Non-Daily (hours) Daily (hours) Non-Daily (hours) 

Monday 08:00 – 20:00 13:00 – 18:00 06:00 – 22:00 06:00 – 22:00 

Tuesday 08:00 – 20:00 09:00 – 18:00 06:00 – 22:00 06:00 – 22:00 

Wednesday 08:00 – 20:00 09:00 – 18:00 06:00 – 22:00 06:00 – 22:00 

Thursday 08:00 – 20:00 09:00 – 21:00 06:00 – 22:00 06:00 – 22:00 

Friday 08:00 – 21:00 09:00 – 21:00 06:00 – 22:00 06:00 – 22:00 

Saturday 08:00 – 20:00 09:00 – 17:00 06:00 – 22:00 06:00 – 22:00 

Sunday Closed Closed Closed Closed 

 3 

Results 4 
 5 

Dynamic Population 6 

The AB model ALBATROSS predicts an hourly population for every postal code area (4PC). During 7 

the day population is higher in city centers and lower in residential areas. At 4 a.m. the dynamic 8 

population approaches the residential population.  9 

As a consequence of the scenario, the ALBATROSS model predicts approximately 6% more 10 

non-daily shopping hours and 0.5% more daily shopping. In a study of Jacobsen (29) an augmentation 11 

in weekly shopping time was observed as well, both from a simple model and from empirical 12 

findings. Schwanen (30) indicates that the shopping duration is affected by temporal constraints and 13 

the activity/travel episodes conducted before or after the shopping activity. The changes in activity 14 

patterns result in more transport hours; an increase of 0.5%. Since transport is the third most 15 

important ‘activity’, next to residential activities and working, a small relative increase will have a 16 

substantial effect on total kilometers driven (and corresponding emissions). Kilometers driven by car 17 

will mainly increase in the early morning and the evening. 18 

On an average weekday, shifts are seen during the day (Figure 2). As expected, there will be 19 

more shopping in the morning and in the evening. This is offset by less time spent on in-home 20 

activities and on leisure. Between 8 a.m. and 5 p.m. there will be somewhat less shopping compared 21 

to the reference situation. Shifts between days of the week are rather limited. On Monday morning 22 

shops were closed in the base case whereas the scenario simulation allows shopping from 6 a.m. 23 

onwards. This leads to a shift between the hours of the day, but also to a shift between the days of the 24 

week. 25 

Concerning the differences in shopping behavior between men and women, we found that in 26 

the reference situation and in the scenario women execute more shopping-activities than men. 27 

However, both men and women adapt quite similarly to the new opening hours and the same temporal 28 

pattern can be observed. 29 

On Figure 4 (a) and 4 (b) the difference in population per postal code area is depicted for a 30 

random moment in time. 31 

 32 

 33 

FIGURE 2 Difference in activity pattern between scenario and reference situation on an 34 

average weekday per hour of the day (on the x-axis the hours of the day are represented) 35 
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 1 

Hourly Concentrations 2 

The ALBATROSS model predicted more kilometers driven by car in the shopping scenario; as a 3 

consequence emissions of road transport will rise (output of the MIMOSA-model) as well as the 4 

derived concentrations in ambient air (output of the AURORA-model). The activity pattern is 5 

assumed the same for every week of the year, but the meteorological conditions change so 6 

concentrations will differ from week to week. 7 

The concentration maps use a raster overlaying the Netherlands, one grid cell being 9 km² (a 8 

total of 11439 grid cells). Figure 4 (c) and Figure 4 (d) show the differences in concentration levels 9 

between the scenario and the reference situation. Absolute differences are small as expected since not 10 

only traffic emissions will determine the concentration patterns.  11 

 12 

Population Exposure 13 

Population exposure to NO2 is calculated by multiplying the dynamic population in each postal code 14 

area with the concentrations in the overlaying grid cell. This procedure is rather straightforward for 15 

most activities. For the activity ‘in transport’, we have allocated the hourly average NO2 concentration 16 

measured in the Dutch traffic-related monitoring stations following the procedure established by 17 

Beckx et al. (5). Other authors have circumvented this problem by either ignoring the transport 18 

activity (31) or by assuming that the trajectory covered a straight line between origin and destination 19 

(32). All calculations were performed for all four weeks of April 2005. 20 

Results show an increase in population exposure to NO2 (Figure 3, Table 2). On an average 21 

weekday in April exposure increased with 0.15 µg/m³. Taking the week as a whole (including the 22 

weekend) lowers this number to 0.14 µg/m³. This number is relatively stable across the days of the 23 

week and across the weeks of April. There is an increase in exposure in the morning and a clear peak 24 

in the evening; this supports our hypothesis that the exposure difference is mostly due to an increase 25 

in kilometers driven by car. Keeping in mind the already higher exposure during peak hours, the 26 

scenario will only make this trend even more apparent. At night-time and on Sundays the difference 27 

between the base-situation and the scenario is small, which is a reassuring result (since no changes 28 

were made to the institutional constraints in these periods, results should be very similar). Tested over 29 

the 4 weeks of April the relative change in exposure on an average weekday is 0.4%. In certain 30 

neighborhoods and on certain hours a more substantial increase can be observed. In order to illustrate 31 

the variation in exposure geographically Figure 4 (e) and (f) respectively present exposure in two 32 

different study areas: the city of Amsterdam and the city of Rotterdam. Similar geographic 33 

illustrations can of course be presented for any other area in the Netherlands and for any other hour of 34 

the day or day of the week. For legibility reasons a random moment in time was selected and we 35 

zoomed in on two geographical areas. 36 

 37 

 38 

FIGURE 3 Difference in exposure between scenario and reference situation on an average 39 

weekday per hour of the day for April 2005 (on the x-axis the hours of the day are represented) 40 
 41 

The increase in population exposure is statistically significant. The numbers in Table 2 are 42 

corrected for postal code areas with a low number of people residing there (less than 100) because a 43 

ratio of small values can cause inconsistent results.  44 
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TABLE 2 Difference in exposure between scenario and reference situation (April 2005) [µg/m³] 1 

 

Week 1 Week 2 Week 3 Week 4 

Average 

April 

Monday 0.1079 0.1599 0.1223 0.1441 0.1336 

Tuesday 0.1163 0.1421 0.1323 0.1487 0.1348 

Wednesday 0.1168 0.1662 0.1174 0.1232 0.1309 

Thursday 0.1122 0.1741 0.1935 0.2165 0.1741 

Friday 0.2113 0.1154 0.1852 0.2371 0.1873 

Average weekday 0.1329 0.1515 0.1501 0.1739 0.1521 

Saturday 0.1592 0.0881 0.1472 0.1696 0.1410 

Sunday 0.0614 0.0657 0.0604 0.0677 0.0638 

Average week 0.1265 0.1302 0.1369 0.1581 0.1379 

 2 

 3 

 4 

FIGURE 4 (a)-(f). Difference in population levels (a, b), ambient pollutant concentrations of 5 

NO2 (c, d) and population exposure to NO2 (e, f) between the scenario and the reference 6 

situation. The maps on the left side present the values for the city of Amsterdam, while the maps 7 

on the right side present the values for the city of Rotterdam, each time on an average Tuesday 8 

in April 2005 at 5 p.m. 9 
 10 

Discussion 11 
Since the early 1970s, the EU has been working to improve air quality and much progress has been 12 

made since then. However, air pollution continues to be a matter of concern. Several European, 13 

national or regional policy measures explicitly aim at lowering concentrations of harmful pollutants 14 

(e.g. through legislation or vehicle technology). There is a lack of awareness that many other 15 

measures, not explicitly focusing on air quality, will significantly impact exposure and health both in 16 
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a positive and in a negative way. It may happen that expensive measures to cut emissions and lower 1 

concentrations are offset by initiatives from other policy makers who are not aware they are affecting 2 

air quality. Prolonging shop opening hours is such a measure that has an unintended negative side-3 

effect on population exposure, although the effect is clearly limited. 4 

AB transportation models are proven to be better in evaluating the effect of TDM (travel 5 

demand measures) and integrated policies because of their ability to incorporate secondary effects (8). 6 

Examples of TDM are traffic restraint measures, pricing mechanisms, telecommunication or high-7 

occupancy vehicle lanes. Next to transportation measures, AB models are able to calculate the effects 8 

of certain scenarios having no obvious relation with transport or air quality. Institutional changes (e.g. 9 

changing working hours, changing shop opening hours) or demographical changes (e.g. ageing of the 10 

population (33), changing percentage of part-time workers, more one-adult households) can be 11 

assessed with an AB model, all being evolutions relevant to policy nowadays. 12 

So far and to the best of our knowledge, there are hardly any papers on the modeled 13 

quantitative effects of policy measures on air pollutant concentrations, population exposure and health 14 

for larger geographical areas. One of the first papers of this sort looked at the effect of the Congestion 15 

Charging Scheme (CCS) in London (34) which affected an area with approximately 7 million 16 

inhabitants. This study only considered emissions and not concentration or population exposure. The 17 

health effects of the London CCS were assessed by Tonne et al. (35) and they found a decrease in 18 

population exposure to NO2 in the Greater London area of 0.10 µg/m³; in the congestion charging 19 

zone the effect was larger (-0.73 µg/m³). A similar study on the Stockholm congestion charging found 20 

effects of -0.23 µg/m³ (population exposure to NOx) (36). These resulting exposures are observed ex 21 

post; after the introduction of a policy measure. Our simulation is valuable in a way that measures can 22 

be assessed ex ante. This gives priceless information to governments who want to assess costs en 23 

benefits before a policy measure is introduced. 24 

 25 

CONCLUSIONS AND FURTHER RESEARCH 26 
To the best of our knowledge, this study is the first that has used an AB model to predict the impact of 27 

a policy measure on population exposure to an air pollutant. The chosen policy measure had, at least 28 

on first sight, nothing to do with traffic or air pollution, but nevertheless we showed that even these 29 

policy measures can have an impact: an increase in population exposure to NO2 of 0.15 µg/m³ or 30 

0.4% is associated with the widening of shop opening hours. Examples of other measures or scenarios 31 

that can be evaluated by such an approach are ageing of the population, tele-working, introduction of 32 

congestion charging, etc. 33 

The modeling framework we developed showed useful to assess population exposure. The 34 

framework is flexible; e.g. the emission and dispersion model can be replaced by a different 35 

interpolation technique as long as there is a direct input from the AB model. However, given the 36 

complexity of the models and the computer run time, we suggest replacing the emission and 37 

dispersion model with a land use regression model (LUR-model). The challenge here will be to 38 

adequately incorporate a temporal dimension into the land use regression model.  39 

Further, making the transition from population exposure to individual exposure is especially 40 

relevant when looking at health effects. In theory it is possible to use the simulated diaries on a 41 

disaggregated level to look into personal exposure instead of assessing population exposure, as we did 42 

in this paper. 43 
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