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ABSTRACT 
 
Activities of a project often have random durations. This 
makes the estimation of the total project more difficult. 
Simulation, approximation and bouding techniques help the 
project manager in formulating these estimates. This paper 
focuses on formulating an upper bound on the project length 
based on the fact that an activity network can be represented 
as a stochastic marked graph. The bound, however, includes 
a part which requires that the distributions of the activity 
durations are fully specified. As many times, only 
incomplete information is available on these durations like 
the interval, the mean, the mode or the standard deviation, 
this research investigates how the bound should be computed 
including only incomplete information. 
 
INTRODUCTION AND LITERATURE REVIEW 
 
Scientifically it has become a challenge to develop a model 
guaranteeing a successful project. But the reality is different: 
project activities use all available time; activities are finished 
for 90% during 90% of their time; a carelessly planned 
project  takes three times the time as planned, a carefully 
planned project only twice (Shtub et al., Chapter 1, 1994). 
These thoughts might sound humorous, but the fact is that, 
however, dedicated project management suffers from 
uncertainties. The effect is even stronger because a project 
manager cannot have everything under control. Finally, a 
project which should not have been started cannot be ended 
successfully by whatever excellent project manager .  
  
Project network analyses concentrate mostly on the total 
project time (or makespan in a scheduling context). 
Management is interested in two types of questions: “What 
is the expected total project time?”, and “Which activities 
are critical in obtaining this total project duration?” Research 
into finding out which activities ‘most probably’ lie on the 

critical path is done by Dodin and Elmaghraby (1985). 
Projects are confronted in an extended way with the 
following objectives: be completed by a certain date, for a 
certain amount of money, within some level of performance 
(Tuman, 1986). A project can be planned according to a 
minimum cost criterion, but it can take more time and maybe 
not reach the required quality or conformance to the 
specifications. Avots (1984) suggests that time planning is of 
greater importance in the earlier stages of the project; during 
the project cost becomes of more importance and, after the 
project, only the technical quality matters. 
 
Risk in project management exists in all of the three building 
blocks: time, cost and quality. The project manager has to 
cope with risk in subsequent steps: first risk identification, 
then risk management and reduction, and finally risk 
evaluation (Ho, 1992). All steps make part of a decision-
making process. The decision-maker has to judge whether a 
part of the inherent risk can be avoided, reduced or accepted. 
 
The most widely studied type of risk is time risk. Time risk 
exists due to uncertainties in the duration of some activities. 
Most studies assume that all activities of the project are 
known, that the precedence relations are known, but their 
durations are not fully known. Less attention has been paid 
to cost risk. The reason is that cost risk is not at all specific 
for project management. The problem is easier than the time 
risk due to the additivity of the individual components. In 
the literature hardly any articles exist on the analysis of 
quality risk. However, it has been found that many projects 
fail because the technical contents of the project have not 
been controlled sufficiently or not enough at an early stage 
(Morris, 1988). Time risk is certainly of a more complex 
nature than cost risk, but still has the advantage that 
techniques exist to approximate or to simulate the 
uncertainties. In quality risk measures have to be compared 
which are not additive because they are expressed in 
different measuring units. 
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Duration of activities in a project network is mostly of 
random nature. Due to the fact that a project is unique, no 
historical data exist to provide information regarding the 
probability distribution of an activity duration. In the 
analyses it is common to estimate a number of moments of 
the duration of the individual activities. Hardly anyone tries 
to obtain a full distribution. An a priori-distribution is 
chosen:  most authors choose for a Beta-distribution. 
However, in the context of simulation other distributions 
have been proposed such as the triangular distribution, 
because random numbers from these distributions can be 
drawn in a more efficient way. It is of greater importance 
whether the choice of the distribution is of any importance. 
However, MacCrimmon and Ryavec (1964) have shown that 
the choice of the distribution hardly influences the total 
project time, except for some very extreme types of 
distributions. 
 
Bounding techniques are also useful in terms of 
approximation. Most textbooks today still use the 
approximation by the authors of the original formulation 
Malcolm et al. (1959). They estimated the expected project 
duration as the length of the longest path through the 
deterministic network obtained by replacing each random arc 
length by its expected value. 
 
A next review (Adlakha and Kulkarni, 1989), covering the 
literature from 1966-1987, deals with stochastic PERT 
networks: they stress the risk aspect with subjects as 
estimates, errors, bias and Monte-Carlo simulation 
approximations. 
 
The PERT approach has proposed to collect information 
from experts in the form of three estimates for the duration: 
an optimistic, most likely and pessimistic estimate. From 
these estimates formulae for the expected value and the 
variance are proposed. The formulae are based on the 
assumption that a Beta-distribution might be underlying the 
duration, with the optimistic and pessimistic as the upper and 
lower bound of the range on which the distribution is 
defined. The most likely estimate corresponds to the modal 
value of the distribution (in case it is in fact unimodal). 
 
Some criticism has been formulated on this approach as 
some combinations of the three estimates with the proposed 
formulae may lead to bimodal types of the Beta-distribution 
(Pagnoni, Chapter 4, 1990). The triangular distribution might 
be a valid alternative with the same interpretation of the 
three estimates. Any distribution on a finite range is valid as 
long as the interpretation of the three estimates leads to a 
unimodal distribution. However the largest type of criticism 
relates to the determination of the project length distribution 
in terms of its expected values, its variance or its tail 
probabilities. To simplify the computation of the expected 
value of the total project time and its variance, some 
additional assumptions are made within the PERT-approach. 
They are: (1) one single path dominates all others. This 
means that the probability is very low that another path 
becomes the critical path; and (2) the activity durations are 
independent random variables.  
In the PERT approach the path with the longest 
(approximate) expected value is chosen as the critical path. It 

is assumed that the activity durations are independent of 
each other meaning that the expected total project time and 
its variance can be obtained by summing the expected values 
resp. variances of the activities on the critical path. On basis 
of the central limit theorem it is assumed that the total 
project length follows a Normal distribution. These 
assumptions are used to make statements on the completion 
of the total project within a required deadline. The PERT 
approach leads to an optimistic value (a lower bound) on the 
expected value of the project length. Also the normal 
character of the project length can be questioned. Even if the 
lengths of the individual paths follow a Normal distribution, 
the project length is Normally distributed only if the 
dominance assumption is valid  (Elmaghraby, 1977). 
Therefore a lot of research has been spent on finding 
approximations which are more realistic or to bounds on the 
project length’s expected value. 
 
In this paper we determine bounds on the expected value of 
the project length. The lower bound is quite trivial. In the 
next section it is shown how a project network can be 
modeled as a stochastic marked graph (SMG).  Through an 
optimisation problem on the SMG, an upper bound on the 
expected project length is obtained without assuming 
independence of paths or neglecting some paths. It however 
does not provide a measure of variability in order to evaluate 
the risk on the project duration. 
 
A PROJECT NETWORK AS A STOCHASTIC 
MARKED GRAPH 
 
The activity-on-arc and activity-on-node network 
representations are two classical representations of a project 
network.  
 
Petri nets are an established model to represent and analyze 
concurrent systems. A Petri net is a collection of directed 
arcs connecting places and transitions. These arcs have a 
default capacity of one unless stated otherwise. Places can 
contain tokens, and the assignment of tokens to places is 
called the state or marking of the net. Arcs can only connect 
places to transitions and vice versa. A transition is said to be 
enabled if the number of tokens in its input places is at least 
equal to the arc weight going from the input places to the 
transition. Once enabled, a transition can fire. When fired, 
the tokens in the input places are moved to output places, 
according to the arc weights and place capacities.  
 
A marked graph is a Petri net in which each place has at 
most one input transition and one output transition. Marked 
graphs constitute a good formalism to model manufacturing 
systems containing parallel tasks and synchronization or to 
order activities like in PERT. They are more general than 
PERT graphs in the sense that places can contain several 
tokens. Marked graphs have been studied extensively either 
in a deterministic or in a stochastic context. One of the main 
problems of timed and stochastic Petri net models for large 
systems is the explosion of computational complexity 
algorithms to analyze performance measures (such as the 
cycle time) of marked graphs. Campos et al. (1992) 
determine upper and lower bounds on the steady-state 
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performance of marked graphs to evaluate performance in an 
efficient way. In this paper we develop a tight upper bound 
for the cycle time of a stochastic marked graph. 
 
In case the SMG is cyclic, an upper bound on the cycle time 
can be computed through an optimisation problem in which 
some function of the stochastic transition times needs to be 
determined. By connecting the start transition of the network 
with the finish transition a cycle is created. For the required 
function an upper bound can be computed depending on 
available information for the stochastic transition times, for 
example the range, mean, variance and/or mode (Janssens et 
al., 2009). In this research, the available information consists 
of the range and mode, and – in case of a specific type of 
distribution for the transition times is assumed – also a first 
and second moment of the distribution. 

 
A project can be modelled as a safe marked graph, which 
means that each place can hold at maximum one token. In a 
safe marked graph every transition must have some input 
place, which means that the graph G is covered with directed 
circuits. As the number of tokens on a directed circuit is 
invariant under firing, all transitions on token-free circuits 
are dead. Therefore, let us assume that the initial marking M0 
places at least one token on each directed circuit in G. In this 
case, the marked graph is live and, since it is safe, M0 places 
exactly one token on each directed circuit in G. 
 

 
Figure 1: An activity-on-arc network 

 
During the explanation of the theoretical development, the 
results will be illustrated by means of a project network 
example, taken from Heizer and Render (2001, Chapter 16, 
p. 674). An activity-on-arc representation of the project is 
shown in Figure 1. 
 
Its representation as an SMG is shown in Figure 2. To each 
activity is associated a transition. One transition (tZ) is added 
to produce a cyclic SMG. The concept of immediate 
predecessors is represented by forks and joins in the SMG. 
To each transition a stochastic firing time distribution is 
associated (the firing time of tZ = 0).  
 
Typically in project scheduling, the stochastic analysis is 
based on three estimates: optimistic, most probable, and 
pessimistic. The time estimates of the Heizer and Render 
example are given in Table 1. 
 

 

tA tC 

tF 

tH 

tE 

tG 

tB tD 

tZ 

Figure 2: Stochastic marked graph related to Figure 1 
 
 

Activity Optimistic Most  
probable 

Pessimistic 

A 1 2 3 
B 2 3 4 
C 1 2 3 
D 2 4 6 
E 1 4 7 
F 1 2 9 
G 3 4 11 
H 1 2 3 

Table 1: Time estimates 
 
Bounding techniques obtain lower and upper bounds for the 
expected project length. The lower bound is of less interest 
but is required to discuss as it appears in the formulation of 
the upper bound. Prior to determining the lower bound for a 
stochastic marked graph, the bound is determined for its 
deterministic counterpart. Following Magott (1984) the 
minimal cycle time can be found as the solution of a linear 
program (LP).  

A 

B 

C 

D 

E 

F 

G 

H 

 
When switching from deterministic marked graphs towards 
SMG, a similar linear optimization program has been 
formulated by Campos et al. (1992, p. 390). A lower bound 
for the mean cycle time for live strongly connected marked 
graphs can be obtained by solving such a linear program. As 
deterministic timed graphs are a special case of SMG with 
the mean transition firing time equal to the deterministic 
firing time, both types of linear programs give the same 
results in case of deterministic marked graphs.  
 
Campos et al. (1992) prove that for strongly connected 
marked graphs with arbitrary values of mean and variance 
for transition firing times, the lower bound for the mean 
cycle time obtained in their LP cannot be improved. If both 
mean and variance of the firing time of each transition are 
known, the lower  bound as obtained by the LP cannot be 
reached (unless all variances are equal to zero). 
 
The asymmetric three-parameter triangular distribution 
appears in the project scheduling literature already for a long 
time. The three parameters are in a one-to-one 
correspondence with the optimistic, most probable and 
pessimistic estimates. This leads to an intuitive appeal to this 
distribution, while in reality the shape of the distribution is 
unknown. The expected value and the variance of the 
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activity durations, assuming a triangular distribution, are 
given in Table 2. 
   

Activity Expected 
value 

Variance 

A 2.0 0.167 
B 3.0 0.167 
C 2.0 0.167 
D 4.0 0.667 
E 4.0 1.500 
F 4.0 3.167 
G 6.0 3.167 
H 2.0 0.167 

Table 2: Expected value and variance  
using the triangular distribution 

 
The Critical Path Method, making use of the expected values 
from table 2 as deterministic values, a project length CT = 
16 is obtained. The same value appears as a solution of 
Magott’s linear program for the marked graph: 
 
Min CT 
subject to 
S(tA) – S(tZ) ≥ 2 
S(tB) – S(tB Z) ≥ 3 
S(tC) – S(tA) ≥ 2 
S(tD) – S(tB) ≥ 4 B

]

S(tF) – S(tC) ≥ 4 
S(tE) – S(tC) ≥ 4 
S(tG) – S(tE) ≥ 6 
S(tG) – S(tD) ≥ 6 
S(tH) – S(tF) ≥ 2 
S(tH) – S(tG) ≥ 2 
S(tZ) – S(tH) + CT ≥ 0 
 
AN UPPER BOUND ON THE PROJECT NETWORK 
LENGTH 
 
Let π(M0) be the cycle time of the SMG and πD(M0) be the 
cycle time of its deterministic equivalent, discussed in the 
previous section. Sauer and Xie (1993) prove that the 
following bound holds: 

( ) ( ) ( )[
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⎨
⎧

−+≤ ∑
∈

+

∈ Tt
ttEz

D zXEMM inf00 ππ  (1) 

where the infimum needs to be found in the set E defined as: 

( ) ( )

[ ]m

t

D
ttt

zzzz

MMzandTtmzzE

,...,,

,,.,

21

00

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Γ∈∀≤∈∀≥= ∑
∈γ

γγπ

  
The second term in the right hand side of the inequality is an 
optimisation problem where a vector z has to be determined 
within a set of linear constraints E. The objective function 
however consists of a sum of nonlinear functions in the 
elements of the vector z. In most cases the partial expectation 
function E[(Xt-zt)+] cannot be expressed analytically in zt, so 
the objective function cannot be formulated. In other cases, 
like the case when the Xt are distributed according to a 

triangular distribution, the function can be expressed 
analytically but is difficult to solve because of the sum of 
nonlinear terms (Janssens et al., 2009). In cases, in which the 
distribution is not completely specified, also no objective 
function can be formulated. 
 
A practical solution to this problem might be found in 
looking for distributions which have an upper bound on the  
the partial expectation function E[(Xt-zt)+], given a number 
of constraints like the knowledge on the interval on which 
the variable is defined, the mode, the expected value of 
higher moments, or any combination of these characteristics. 
It is of interests to investigate whether these distributions 
lead to a feasible and/or easy way to formulate the objective 
function. Such an upper bound, of course, is only of practical 
value if the bound is tight.   
 
There exists a similarity between the function of our interest 
and a function, called the stop-loss premium in insurance 
mathematics. In insurance mathematics, an insurance 
company using the option of re-insurance is confronted with 
a stop-loss premium. A stop-loss premium limits the risk X 
of an insurance company to a certain amount t. If the claim 
size is higher than t the re-insurance company takes over the 
risk X-t. The stop-loss premium is based on the expected 
value of X-t, which in case of a known claim size 
distribution may be defined as: 

( ) (∫
∞ +−

0
xdFtx )     (2) 

where F(x) represents the claim size distribution (Goovaerts, 
De Vylder, and Haezendonck 1984).  A single term of our 
objective function is the same as this integral.  
 
As the optimistic and pessimistic estimates are finite 
numbers, the distribution of the duration of an activity t can 
be represented as defined on an interval [at,bt] with 0 ≤ at ≤ 
bt < +∞. In case only this knowledge is used, the worst 
distribution would put all its mass in bt to obtain an upper 
bound: 
[ ] tttt zbzXE −=− +)( .   (3) 

This makes the second term in inequality (1) a linear 
objective, but uses minimal information on the activity 
duration.  
 
The additional use of the most probable estimate (ct) disturbs 
the linear character of the objective function. The upper 
bound is given by: 

[ ] ( )

[ ] ( ) ttttttt

tt
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tt
tt
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≤
−
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+

2
2
1)(

2
1)(

2

 (4) 

The function contains a quadratic component in the decision 
variables zt. Assuming unimodality, without specific 
knowledge of the mode ct, will lead to the case in which the 
upper bound puts all mass in bt which becomes also the 
mode and reduces the bound to equation (3).  
 
In case one has symmetric distributions in mind, the extreme 
case assigns as much as possible mass to bt while satisfying 
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the constraint of symmetry (the same mass to at). This 
assigns 50% mass to bt and leads to the upper bound: 

 [ ] )(
2
1)( tttt zbzXE −=− + .   (5) 

This leads again to a linear term and makes the optimization 
problem a linear programming problem. 
 
The knowledge of the expected value mt is also of interest. 
In that case the upper bound is found as: 

[ ] ( )
tt

tt
tttt ab

amzbzXE
−
−

−=− +)( .  (6) 

Again this leads to a linear term but, using the three 
estimates, the problem is that the expected values is not 
known. However, one might assume that the expected values 
corresponds to the one when assuming a triangular 
distribution (leaving open all distributions with variances 
different from the triangular). If one feels too restricted, the 
linear program can be run for several feasible values of mt as 
the knowledge of the mode limits its range as: 

( ) ( ttttt cbmca +≤≤+
2
1

2
1 ) .    (7) 

If the project contains many activities with random 
durations, the latter option is not efficient. 
 
In case a distribution on a finite interval with known 
expected value and variance are considered, Janssens et al. 
(2009) have also shown how to find the upper bound by 
means of a linear program. The objective function can be 
formulated as: 

( )
( )∑
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where E is defined as in equation (1). It leads to the 
following inequality for the mean cycle time: 
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It can be seen that the second term in the r.h.s. is a linear 
objective function and that the constraints set E also contains 
only linear constraints. This second term can be written as a 
constant plus a sum of terms each including one decision 
variable zt. The linear program is illustrated by means of the 
example of Figure 2: 
Min 5.962806 – 0.142857 zA - 0.142857 zB - 0.142857 zB C - 
0.142857 zD - 0.142857 zE – 0.112426 zF – 0.112426 zG – 
0.142857 zH
subject to 
zA ≥ 2 
zB ≥ 3 B

zC ≥ 2 
zD ≥ 4 
zE ≥ 4 
zF ≥ 4 
zG ≥ 6 
zH ≥ 2 
zA ≤ 3 
zB ≤ 4 B

zC ≤ 3 
zD ≤ 6 

zE ≤ 7 
zF ≤ 9 
zG ≤ 11 
zH ≤ 3 
zz + zA + zC + zF + zH ≤ 16 
zz + zA + zC + zE + zG + zH ≤ 16 
zz + zB + zB D + zG + zH ≤ 16 
 
The model leads to the following solution: zA = 2, zB = 3, zC 
= 2 , zD = 5 , zE = 4 , zF = 9 , zG =  6, zH = 2, zZ = 0. The 
objective value is equal to 1.70499, which makes the upper 
bound equal to 17.70499.  
 
CONCLUSIONS 
 
An optimization model has been formulated to compute a 
tight upper bound for the expected project time in case of 
activities with random durations. The model is useful both in 
the case when the distributions of the ectivity durations are 
fully specified or partially specified. In the former case not 
all information is used, but the model offers a tractable 
method of finding a good upper bound. In the latter case the 
model offers the best solution to obtain this bound. It has 
been shown that in some cases the model leads to a linear 
program. In other cases it leads to a mathematical 
programming model with a non-linear objective function but 
with a set of linear constraints. 
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