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ABSTRACT 
 
The abstract will follow here. 

 

1. INTRODUCTION 
 
About fifty years ago, management guru Peter Drucker, 
defined the purpose of a business as the creation and 
retention of satisfied customers (ref…). These words have 
not been widely accepted in practice for many years, and 
only very recently, customer satisfaction is becoming 
widely recognized as a most valuable asset of all 
organizations. More and more satisfaction measurement 
and management programs are introduced, both at an 
individual business level, as well as at industry and 
nation-wide level (e.g., Fornell 1992). Also, many 
conferences, research articles, and specialized journals are 
devoted to studying the phenomenon of customer 
satisfaction.  

One of the primary tasks in practical customer 
satisfaction studies pertains to determining 
product/service factors driving satisfaction and/or 
dissatisfaction (Naumann and Giel 1995; Oliver 1996; 
Hill and Alexander 1996). The managerial results of such 
a study should identify possible factors as priorities for 
improvement to focus company resources on the factors 
that require better performance on the one hand, and to 
decrease resources on those that possibly do not have a 
link with satisfaction on the other hand. In this paper we 
address this issue and present a data analysis technique, 
founded on Bayesian network technology, that allows for: 
a) identifying the derived importance of potential factors 
for (dis)satisfaction judgments, b) supporting marketing 
decisions by means of importance-performance analysis, 
and c) discovering interaction (synergy) effects among 
factors. The results of this technique have a probabilistic 
nature and are easy to interpret. 

This paper is organized as follows. In Section 2 we 
give an overview of customer satisfaction research with 
the emphasis on attribute performance analysis. Section 3 

reviews basic assumptions and principles of Bayesian 
network modelling, and presents sensitivity analysis in 
Bayesian networks. In section 4 we demonstrate how the 
findings of the sensitivity analysis can be applied in a 
customer satisfaction study. In Section 5 we illustrate the 
approach with a real-world implementation in the phone 
service industry. 
 

2. CUSTOMER SATISFACTION RESEARCH 
 
Customer satisfaction is a concern that has received 
considerable attention by scholars as well as practitioners 
and is acknowledged as a critical and central concept in 
marketing thought and especially in consumer research 
(e.g., Peter and Olson 1996; Erevelles and Young 1992). 
As such, it is frequently addressed and examined in the 
marketing literature. The studies of customer satisfaction 
are rich in theoretical and practical findings; nevertheless, 
many authors agree (e.g., Peterson and Wilson 1992) that 
they are best characterized by lack of definitional and 
methodological standardization. There is a lack of a 
widely accepted conceptual model of cognitive and/or 
affective processes that lead to customer 
satisfaction/dissatisfaction (CS/D).  Neither is there 
agreement about a precise set of responses triggering 
those processes as well as their behavioural and attitudinal 
outcomes. It is generally accepted that customer 
satisfaction has a relation with customer loyalty and 
market share, although these relations have not been 
precisely recognized and still remain to be investigated 
(Oliver 1999). For instance, Oliver (1999) argues that 
customer satisfaction is a necessary step in loyalty 
formation but it becomes less significant when other 
mechanisms, such as social bonds or personal 
determinism come into play. 

There is a plethora of satisfaction definitions in the 
marketing literature. Sample definitions include: “an 
evaluation of the perceived discrepancy between prior 
expectations and the actual performance of the product as 
perceived after its consumption” (Tse and Wilton 1988), 
“a global evaluative judgment about product 
usage/consumption” (Westbrook 1987). Oliver (1981) 



postulated that satisfaction is “a summary psychological 
state resulting when the emotion surrounding 
disconfirmed expectations is coupled with the consumer’s 
prior feelings about the consumption experience”. 
Westbrook (1981) shows that satisfaction with a retail 
store is an accumulation of separate satisfaction 
evaluations with the salesperson, store environment, 
products and other factors. Satisfaction in this view is a 
function of prior expectations, post-purchase evaluations 
of product (service) performance, and the level and nature 
of (dis)confirmation. 

There exists a discrepancy as to the nature of 
satisfaction in terms of its cumulativeness vs. single 
encounter specific. Some authors lean towards a 
cumulative conceptualisation while others favour a more 
transaction specific. Giese and Cote (2000) found that, in 
general, virtually every existing definition of satisfaction 
addresses three overall components that summarize the 
specifics of the concept. These components are: 1) a 
response (affective or cognitive), 2) the response concerns 
a particular focus (e.g. expectations, product, and 
consumption experience), 3) the response takes place at a 
particular point in time (e.g. after choice, after transaction, 
after consumption, based on accumulated experience). 

Historically, the earliest attempts to capture the 
phenomenon of customer satisfaction were directed at a 
conceptual model, which postulated a direct causal link 
between the performance of product/service attributes and 
overall state of satisfaction (Oliver 1996). According to 
this representation, there is actually no intermediate 
psychological state, nor cognitive process that mediates 
the formation of (dis)satisfaction judgments. The 
approach can thus be summarized as “a black-box” model 
of customer satisfaction (Oliver 1996), because consumer 
thought processes are not taken account of as a part of this 
phenomenon. This approach however has been questioned 
by most scholars, and is rather neglected in today’s 
advanced customer satisfaction research as it is missing 
good theoretical groundings. Nevertheless, it still remains 
applied by many companies in traditional attribute 
performance analysis (Naumann and Giel 1995, Oliver 
1996). 

Therefore, nowadays, the primary thread of debate in 
the satisfaction literature is focused on the nature of the 
cognitive and affective processes that result in the 
consumer’s state of mind referenced to as satisfaction. In 
line with this stream of research, the two dominant 
approaches compete whether satisfaction can be best 
described as an evaluation process (e.g. Fornell 1992; 
Oliver 1981; Yi 1990) or as an outcome of an evaluation 
process (Tse and Wilton 1988).  

With regard to the view of satisfaction as an outcome 
of evaluation process, customer satisfaction is viewed as a 
state of fulfilment that is associated with reinforcement 
and arousal. In the “satisfaction-as-states” framework 

developed by Oliver (1989), several types of satisfaction 
have been identified as a potential state, including: 
“satisfaction-as-pleasure”, “satisfaction-as-relief”, 
“satisfaction-as-novelty”, “satisfaction-as-surprise”, and 
“satisfaction-as-contentment”. In line with this paradigm, 
satisfaction is defined as “a pleasurable level of 
consumption-related fulfilment” (Oliver 1996). 

The second, and more prevailing (Oliver 1999), 
mainstream of research on CS/D as an evaluation process 
is based on the paradigm of disconfirmation (Oliver 1980; 
Churchill and Suprenant 1982). Its central assumption is 
that consumers form prior expectations (e.g., caused by 
commercials, advertisements, experience etc.) towards 
product/service performance, which later serve as 
standards against which actual product/service 
performance is evaluated. A comparison of expectations 
and actual perceived performance results either in 
confirmation or disconfirmation. In case prior 
expectations are exactly met, a mere confirmation takes 
place. Otherwise, disconfirmation occurs, i.e. the 
perception of a discrepancy between performance and 
expectations. Within disconfirmation, two types, positive 
and negative, may be identified. Positive disconfirmation 
occurs when perceptions exceed expectations and 
negative disconfirmation occurs when expectations 
exceed perceptions. According to this paradigm, 
satisfaction is the result of positive disconfirmation and 
confirmation, whereas negative disconfirmation leads to 
dissatisfaction. Moreover, it is also believed that 
expectations have an indirect influence on satisfaction via 
disconfirmation, whereas performance can have both an 
indirect via disconfirmation, as well as direct effect on 
(dis)satisfaction. The application of process definitions is 
regarded relevant for brief service encounters as well as 
for services that are delivered or consumed over a certain 
period of time (Oliver 1996; De Ruyter and Bloemer 
1998). However, the two different types of 
conceptualisations may be jointly applied to a particular 
context enhancing thus predictive power of satisfaction as 
a measure related to loyalty (Rust and Oliver 1994). 

In this paper we lean towards the conceptualisation as 
an evaluative process. According to this paradigm, 
customer satisfaction should be operationalized by 
measuring customer expectations, product/service 
features’ performance, and degree of discrepancy between 
expectations and perceived performance, although some 
authors signal that measurement of expectations is 
pointless, because the whole effect of expectations is 
absorbed by (dis)confirmation. In practical CS/D 
measurement studies, it is however approved to measure 
satisfaction directly (Naumann and Giel 1995), therefore 
in this paper we assume the traditional, non-mediated 
model of satisfaction, allowing thus for direct links from 
product/service attributes’ performance to 
(dis)satisfaction. With this end in mind, we carry out 



product/service feature performance analysis by means of 
Bayesian network methodology. In the next chapter we 
briefly present overview of our data analysis approach. 

 
3. BAYESIAN NETWORKS 

 
Probabilistic modelling methods have recently gained 
wider acceptation and use in marketing applications. 
Among these models, directed acyclic graphs, also known 
as Bayesian networks, have proven to be successful in 
modelling various systems in medicine, agriculture, and 
printer troubleshooting. They were popularised in 
artificial intelligence community by the work of Pearl 
(1988), and advanced since. Recently, Bayesian network 
models have been increasingly attracting attention and use 
in business and marketing research communities (e.g., 
Shenoy and Shenoy 1999; Anderson and Lenz 2001; 
Alexander 2000; Blodgett and Anderson 2000). Blodgett 
and Anderson (2000) modelled consumer complaint 
process for explanation and prediction of consumer 
behaviour after experiencing dissatisfaction with a 
product. Anderson and Lenz (2001) applied Bayesian 
networks in a study of organizational impact of change. 

Bayesian networks are tools used to concisely 
represent a joint probability distribution for a certain 
domain, and what makes their use even more attractive is 
the fact that any marginal probability of interest can be 
asked of and efficiently provided. In Bayesian networks, 
random variables accounted for in a study are portrayed as 
nodes, and qualitative assertions of direct probabilistic 
dependence among variables are depicted with arrows. 
Each node in a network corresponds to a particular 
variable of interest. In discrete Bayesian networks nodes 
are defined as a collection of exhaustive and mutually 
exclusive states. Each child node holds a table of 
conditional probability distributions for every possible 
combination of parent nodes’ states. Those local 
conditional distributions are estimated on the basis of 
empirical data. 

The construction of Bayesian network models follows 
the following guidelines (Heckerman 1994). The first step 
consists in enumerating potential variables of interest to 
the modeller, selecting the most relevant ones and 
defining them in terms of potential states they can take on. 
Then, the task is to capture the graphical network model 
of dependencies among the variables included in the 
model. The variables that have direct causal influence on 
some particular variables are called parents and the ones 
that are directly influenced are child nodes. Once the 
structure is provided, the next step in construction is 
quantitative parameterisation, which consists in estimation 
of the numerical characteristics of these local 
dependencies by means of conditional probabilities. The 
probabilities are stored in conditional probability tables, 
usually called CPT’s, in which the entries correspond to 

each state of a child node and all possible combinations of 
states for parent nodes. The construction of the models 
can be based either entirely on the domain knowledge of 
the modeller, automatically resolved from a dataset, or can 
be a combination thereof. 

The output of Bayesian network model is usually 
presented with tables containing series of prior and 
posterior (conditional) probabilities. In contrast, in this 
study we apply the procedures of sensitivity analysis to 
diagnose the dependencies in a way that they are 
represented with algebraic functions - often resembling 
linear regressions - which are more familiar than numbers, 
i.e., conditional probabilities alone. Such a representation 
yields easier interpretation of the numerical facet of 
dependencies, for example, by showing their strength, and 
providing a simple yet rich source for enquiry. The 
functional form of dependencies lends itself to be 
portrayed using informative charts and plots. The results 
of the analysis can be revealed with respect to prior 
probabilities as well as probabilities conditional on some 
specific assumptions of interest. Motivations for the use of 
Bayesian networks in domain of customer satisfaction 
research are the following: 1) our knowledge about 
customer satisfaction is uncertain and not complete, 2) we 
assume that the domain of customer satisfaction is 
probabilistic in nature, 3) model’s outputs, in form of 
conditional probabilities, are easy to interpret for a wide 
audience, 4) Bayesian networks allow for optimal use of 
all available data, and 5), relevant efficient algorithms and 
software are readily available. Furthermore, customer 
satisfaction researchers can apply Bayesian networks for 
descriptive, as well as for predictive and normative 
modelling. Last but not least, it should be of interest to a 
marketing modeller that estimation of the model’s 
parameters can be achieved either by judgment-based 
subjective parameterisation, or entirely based on historical 
data. In addition, the two types of knowledge, i.e., 
subjective and objective, can be also coupled to refine the 
model’s parameters. 
 

4. SENSITIVITY ANALYSIS  
 
One of the fundamental functions of Bayesian networks is 
to take advantage of the efficient representation scheme of 
the joint probability space over the modelled system and 
exploit it to calculate some probabilities of interest. For 
example, the primary use is to retrieve a probability 
distribution for some nodes of interest, called target node, 
conditional on some set of nodes, called explaining nodes, 
when their values become available. Other potential use is 
to find the probability of some specific configuration of 
nodes’ values. The results of such calculations can be 
achieved automatically by means of probabilistic 
inference algorithms that are typically implemented in the 
Bayesian network-enabled software. The user can simply 



enter queries to the Bayesian network by identifying 
target nodes, and assigning values (states) to explaining 
nodes. The question that often arises in this respect is how 
sensitive those resultant posterior probabilities are to 
changes in the numerical strengths of the dependencies. 
This is where the issue of sensitivity analysis comes into 
play. 

On the whole, sensitivity analysis in a mathematical 
model pertains to investigation of the effects of the 
inaccuracies in the model’s parameters on its output by 
systematic variation of the model’s parameters. For a 
Bayesian network model in particular, sensitivity analysis 
can be approached twofold: empirically and theoretically 
(Kipersztok and Wang 2000). The empirical approach 
investigates the effects of variation in the model’s 
parameters on the model’s output by entering evidence 
and assessing its weight with respect to the output 
somehow, for instance by measures like value of 
information (Pearl 1988), or weight of evidence (Madigan 
et al. 1997). In this paper we apply the theoretical 
approach to sensitivity analysis in Bayesian networks to 
acquire analytical knowledge from the model. The 
theoretical methods aim at expressing the model’s output 
as an algebraic function in the model’s parameters. If the 
model’s output in focus is marginal probability P(Y=y) 
that the random variable Y takes value y, then this 
approach tries to establish a function f(x), such that 
 , (1) P( )  ( )Y y f x= =
where x is a model’s selected parameter. 

In this context, the model’s parameters denote some 
particular probabilities in the network – they can refer 
either to some particular entries in the conditional 
probability tables, or they can relate simply to marginal 
probabilities for some node. In this study we are mostly 
interested in the parameters as marginal probabilities for 
some nodes, that we call explaining nodes. Therefore, the 
formula (1) can be rewritten as 
 , (2) P( )  (P( ))Y y f X x= = =
where P(X=x) is a probability that the explaining random 
variable X takes value x. (x – does this make no confusion 
?) 

Often, a distinction is made with regard to the number 
of parameters taken into account. One-way sensitivity 
analysis pertains to varying value of just one parameter, 
whereas two-way sensitivity allows for examination the 
strength of influence of two parameters at a time. 
Respectively, three- and higher-level analyses are also 
considered in theory, but are less often used in practice 
due to their complexity and cumbersome interpretation. 

It has been theoretically proven (e.g., Castillo et al. 
1995) that the sensitivity functions in Bayesian networks 
can be represented accurately with algebraic functions of 
known form and unknown parameters, called in this paper 
meta-parameters in order to distinguish them from the 
parameters-probabilities of interest. 

 
4.1. One-way sensitivity analysis 
 
4.1.1 Model definition 
 
Findings from a number of studies suggest that the 
relations between features performance and overall 
satisfaction can often be non-linear and not 
straightforward. For example, Mittal et al. (1996) 
investigated this link and found that attribute-level 
performance impacts satisfaction differently based on 
whether consumer expectations were positively or 
negatively disconfirmed. In their study overall satisfaction 
was found to be sensitive to changes in low attribute 
levels, and at the same time, at high levels of attribute 
performance, overall satisfaction showed diminished 
sensitivity. Motivated with this result we approach these 
links probabilistically and express probability at each 
level of overall satisfaction in terms of probability of 
satisfactory feature performance. It has been shown that in 
one-way sensitivity analysis, target probability of interest 
can be expressed as a linear function in the parameter, and 
two meta-parameters. 
 P(Y=y)  =  a + b P(X=x) 
 So low, medium, and high satisfaction can each be 
measured with a separate function. The algebraic 
formulae looks in this case in the following way: 
 
P(Y= ‘high’) =  ah + bh  P(X=’high’) 
P(Y= ‘medium’) =  am + bm  P(X=’high’) 
P(Y= ‘low’) =  al + bl  P(X=’high’) 
 

The parameters a amount to probability of low, 
medium, or high satisfaction given the probability of 
feature satisfaction is zero. The linear coefficient b can be 
interpreted as a measure of how relevant, or important, the 
feature is with regard to satisfaction at a specific level. Of 
course, the higher the absolute value of the parameter for 
a service item, the more influential the item is with regard 
to the (dis)satisfaction. 
The relation of importance can be illustrated by portraying 
the sensitivity functions with simple graphs. For the 
example model they are presented in Fig. 1, along 
with the functional forms of dependencies. In the figure, 
X-axis relates to probability of high satisfaction with a 
feature and Y-axis is probability of relevant level of 
overall satisfaction.  
 

To complete the analysis of feature importance we 
should define a relevant feature classification scheme. 
There exists a number of studies suggesting various 
feature classification schemes (see Brandt 1988). Levitt 
(1983) suggests a four-ring conceptualisation of a 
product/service as a unitary concept, according to which 
the most inner ring represents the generic product – a 



must. The next ring defines the expected product, 
comprising dimensions acting as satisfiers/dissatisfiers. 
Augmented or enhanced product surrounds the expected 
product attributes, and acts as delights to a customer. Most 
valuable insights to a marketer are delivered however with 
the outermost ring that determines the potential product, 
i.e. the product that should contribute most to company 
success in the future. In this paper we adapt the 
classification of attributes from [] Vanhoof and Swinnen 
(1996). The categories can be constructed according to the 
value of parameter b in the functions (see formula (3)) 
representing sensitivity of low and high satisfaction. They 
are shown in Table 1. Whether the influence is zero, low, 
moderate, or large can be determined by looking at the 
absolute value of parameter b. We assume high feature 
satisfaction to have a negative (non-increasing) effect on 
low overall satisfaction, and positive (non-decreasing) 
impact on high overall perception. It is possible to 
incorporate also the feature relevance at moderate level of 
satisfaction into this analysis, however the resultant set 
may be too complex to interpret. 

 
Level of Overall Satisfaction 

Low High 
Category 

Moderate/Large Moderate/Large Satisfier/Dissatisfier 
Low/Zero Moderate Reward 
Low/Zero Large Exciter 
Low/Zero Low/Zero Non-relevant 
Moderate Low/Zero Basic 

Large Low/Zero Penalty 

Table 1. Categories of service elements with respect to influence 
they exert on overall satisfaction. 

 
As satisfier/dissatisfier can be regarded a dimension that 
affects satisfaction in its continuum, i.e. both its high and 

low levels, thus driving high levels of satisfaction when 
performed well and enforcing dissatisfaction when their 
perception falls bellows expectations. Moderate or large 
influence on high customer satisfaction, and insignificant 
effect on dissatisfaction characterizes features that can be 
termed reward, and exciter, respectively. Both reward and 
exciter are drivers of satisfaction as well, but do not 
influence dissatisfaction if their performance is low. If, in 
turn, high overall satisfaction is not affected by high 
feature perception, and if at the same time dissatisfaction 
is likely to intensify when this perception is low, the 
feature can be viewed as basic product dimension 
delivering elementary user’s requirements. If this impact 
on dissatisfaction is remarkably large, the feature can be 
classified as penalty. As the feature performance does not 
make any changes in perception of overall 
(dis)satisfaction, it can be interpreted as non-relevant. 

We can read from the graphs the boundaries between 
which specific levels of the overall satisfaction can vary 
as a result of feature performance. For instance the 
probability of high overall satisfaction varies from 16% to 
90% as a result of bad and good service quality, 
respectively. Also, due to the observation that both 
sensitivities of dissatisfaction (Fig.1a) and high 
satisfaction (Fig.1c) are sensitive to changes in service 
quality, we conclude that service quality can be classified 
as satisfier/dissatisfier, whereas image, due to the low 
impact on dissatisfaction and its moderate impact on high 
satisfaction, can be seen as reward. Nonetheless, service 
quality has a larger impact both on satisfaction and 
dissatisfaction than image has. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
4.1.1. Model definition 
 
It has been shown that in one-way sensitivity analysis, target probability of interest can be expressed as a linear function in 
the parameter, and two meta-parameters. The algebraic formula looks in this case in the following way: 
 ,  (3) P( )Y y a bx= = +
where P(Y=y) is the probability that the target node Y takes on value y, e.g., probability of overall satisfaction having state 
“high”, x is the parameter, i.e., the probability that the explaining variable takes on a specific value, e.g. satisfaction with 
customer service is high, and a and b are meta-parameters to be calculated. Calculation of the meta-parameters can be 
accomplished by performing inference twice: once for the parameter set to zero, and the other time to unity. This results in 
a system of two independent linear equations that, when solved, gives values for the meta-parameters a and b. 

The formula (3) is valid in case of a scenario a priori, e.g. when nothing is known about the customer to the system. 
There is however a possibility that in order to examine another scenario there is a need to enter some evidence yielding the 
target probability in focus conditional on the evidence. Then, if this evidence is not d-separated from the target node, the 
one-way sensitivity function takes on the following form:  

 P( )
a bx

Y y e
c dx
+

= | =
+

, (4) 

where P(Y=y) is the target probability, e is evidence entered in the network, x is the parameter, and a, b, c, d are meta-
parameters. 
 
 
 
 
4.1.2. Assessing the relevance of service elements 

  P(OS=low) = 0,35 - 0,18*P(I=high), 
  P(OS=low) = 0,63 - 0,6*P(SQ=high) 
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  P(OS=mod) = 0,17 - 0,07*P(I=high), 
  P(OS=mod) = 0,21 -  0,14*P(SQ=high)

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

(b) 

  P(OS=high) = 0,49 + 0,25*P(I=high), 
  P(OS=high) = 0,16 + 0,74*P(SQ=high) 
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(c) 
Fig. 1. Impact of image (I, dotted line), and service quality (SQ, dashed line) on (a) low, (b) moderate, and (c) high levels of overall 
satisfaction for the example model.  

In line with the findings that stated importance is often 
found confounding and misleading (Oliver 1997), with 
the presented approach we are able to derive the 
importance indirectly from the survey responses. 

In our Bayesian network model of satisfaction, the 
features are mutually independent, and in performing one-
way sensitivity analysis the effect of product/service 
dimensions on specific levels of overall satisfaction can 
be described with a simple linear function of the form (3) 
resembling linear regression function. Assuming therefore 
that these dependencies can be expressed with the 

function (3) feature and Y-axis is probability of relevant 
level of overall satisfaction. 

 
4.1.3. Intervals 
In practice it is unrealistic to assume that high satisfaction 
with features, on the average, rises above or falls below 
some threshold values. Experienced managers often 
possess some knowledge specific for their industry and do 
not expect that some excessive percentage of customers 
become loyal or satisfied with the service. For instance, it 
is rather unlikely that probability of high satisfaction with 



billing exceeded in practice a level of 40%. On the other 
hand, customer service can be found to fulfill expectations 
of as much as 70% of customer base. The reason why the 
two levels vary so remarkably can be supported by the 
assumption, that billing services are hard to delight 
customers – customers simply it ??? 
 
4.1.4. Classification of service elements 
To complete the analysis of feature importance we should 
define a relevant feature classification scheme. There 
exists a number of studies suggesting various feature 
classification schemes (see Brandt 1988). Levitt (1983) 
suggests a four-ring conceptualisation of a product/service 
as a unitary concept, according to which the most inner 
ring represents the generic product – a must. The next ring 
defines the expected product, comprising dimensions 
acting as satisfiers/dissatisfiers. Augmented or enhanced 
product surrounds the expected product attributes, and 
acts as delights to a customer. Most valuable insights to a 
marketer are delivered however with the outermost ring 
that determines the potential product, i.e. the product that 
should contribute most to company success in the future. 

 
 
 
In this paper we adapt the classification of attributes 

from [] Vanhoof and Swinnen (1996). The categories can 
be constructed according to the value of parameter b in 
the functions (see formula (3)) representing sensitivity of 
low and high satisfaction. They are shown in Table 1. 
Whether the influence is zero, low, moderate, or large can 
be determined by looking at the absolute value of 
parameter b. We assume high feature satisfaction to have 
a negative (non-increasing) effect on low overall 
satisfaction, and positive (non-decreasing) impact on high 
overall perception. It is possible to incorporate also the 
feature relevance at moderate level of satisfaction into this 
analysis, however the resultant set may be too complex to 
interpret. 

 
Level of Overall Satisfaction 

Low High 
Category 

Moderate/Large Moderate/Large Satisfier/Dissatisfier 
Low/Zero Moderate Reward 
Low/Zero Large Exciter 
Low/Zero Low/Zero Non-relevant 
Moderate Low/Zero Basic 

Large Low/Zero Penalty 

Table 2. Categories of service elements with respect to influence 
they exert on overall satisfaction. 

As satisfier/dissatisfier can be regarded a dimension that 
affects satisfaction in its continuum, i.e. both its high and 
low levels, thus driving high levels of satisfaction when 
performed well and enforcing dissatisfaction when their 

perception falls bellows expectations. Moderate or large 
influence on high customer satisfaction, and insignificant 
effect on dissatisfaction characterizes features that can be 
termed reward, and exciter, respectively. Both reward and 
exciter are drivers of satisfaction as well, but do not 
influence dissatisfaction if their performance is low. If, in 
turn, high overall satisfaction is not affected by high 
feature perception, and if at the same time dissatisfaction 
is likely to intensify when this perception is low, the 
feature can be viewed as basic product dimension 
delivering elementary user’s requirements. If this impact 
on dissatisfaction is remarkably large, the feature can be 
classified as penalty. As the feature performance does not 
make any changes in perception of overall 
(dis)satisfaction, it can be interpreted as non-relevant. 

We can read from the graphs the boundaries between 
which specific levels of the overall satisfaction can vary 
as a result of feature performance. For instance the 
probability of high overall satisfaction varies from 16% to 
90% as a result of bad and good service quality, 
respectively. Also, due to the observation that both 
sensitivities of dissatisfaction (Fig.1a) and high 
satisfaction (Fig.1c) are sensitive to changes in service 
quality, we conclude that service quality can be classified 
as satisfier/dissatisfier, whereas image, due to the low 
impact on dissatisfaction and its moderate impact on high 
satisfaction, can be seen as reward. Nonetheless, service 
quality has a larger impact both on satisfaction and 
dissatisfaction than image has. 

 
4.2. Two-way sensitivity analysis 
 
 
It is likely that some potential determinants of overall 
satisfaction do not manifest an apparent influence when 
considering it apart from other factors. It can however 
happen to be at the same time an important factor 
catalysing the impact of other service elements. Synergy 
effects that can be observed in this situation may be either 
positive or negative. Their existence can be traced by 
means of two- and multi-way sensitivity analysis. The 
two-way sensitivity function has the following form: 
 P( )  +  +  + Z z a bx cy dxy= = , (5) 

where P(Z=z) is the target probability of interest, x 
and y are probabilities that the explaining variables are 
true, and a, b, c, and d are meta-parameters to be 
calculated by performing inference. Parameter a can be 
interpreted as a probability of high overall satisfaction, 
when neither of the services occur. Parameters b and c 
have a similar interpretation as in one-way sensitivity 
functions. The interaction effect is denoted with parameter 
d. Positive values of this parameter denote positive 
synergy, whereas negative values stand for negative 
interaction effects. Value close to zero may indicate lack 
of interaction effect between product/service dimensions. 



The interaction effects can be different for the different 
target values, so we have to calculate the following 
sensitivity functions: 

 
P(Z= ‘high’) =  ah + bh  P(X=’high’) + ch P(Y=’high’) 
                      + dh P(X=’high’) P(Y=’high’) 
P(Z= ‘medium’) =  am + bm  P(X=’high’) + cm 
P(Y=’high’) 
                      + dm P(X=’high’) P(Y=’high’) 
P(Z= ‘low’) =  al + bl  P(X=’high’) + cl P(Y=’high’) 
                      + dl P(X=’high’) P(Y=’high’) 

 
. These sensitivity functions can be represented 

graphically (see Fig.2). The probability that a customer is 
satisfied with service quality is shown on the X-axis and 
with image on the Y-axis. Simultaneous variation of both 
probabilities resulting in the same level of overall 
satisfaction is represented by the contour lines. Small 
numbers attached to the lines stand for probability of the 
relevant satisfaction or dissatisfaction level. In Fig.2a) for 
instance, the upper rightmost contour line denotes that all 
the combinations of (high) probabilities with feature 
performance located on this line result in the very low, as 
of 0.06, value of probability of low overall satisfaction. 
The shape of this line suggests furthermore that in the low 
ranges, the probability of dissatisfaction is much more 
sensitive to changes in perception of image than service 
quality. Additionally, the increasing slope of the lines 
suggests that the higher probability of overall 
dissatisfaction, the more this probability becomes 
sensitive also to service quality. Because the lines at the 
higher ranges of probability of dissatisfaction get closer to 
each other we can also infer that the worse the perception 
of both service dimensions, the faster the formation of 
dissatisfaction judgments. Fig. 2b) shows that probability 
of moderate satisfaction can vary from 0.06 to 0.24. It 
manifests strong negative synergy (the value of parameter 
d is –0.4). This effect can be read from the graph on the 
basis of observation that high probabilities of satisfaction 
are achieved if one of dimensions has high while the other 
has low performance. In contrast, a similar performance 
on both dimensions results in lower probability of 
moderate satisfaction. In Fig. 2c) the contour lines are 
drawn nearly in parallel every 0.08 and vary from 0.08 to 
0.88 implying high and constant sensitivity of high 
satisfaction to performance of the service aspects. 

 
The coefficients of the sensitivity functions can also 

be used to  classify the two-way interaction.  The main 
main focus goes to the sign and size of the interaction 
coefficient d. The coefficients b and c can be used to 
determine whether one service  element is dominant. 

 
 
 

 
 



 
 
To this end, we can express these relations with formula 
(5). 
 
 
 
 
 
 
 
 
By means of a two-way sensitivity analysis we can 
examine variation in a target probability of interest 
resulted when two other probability assessments are 
varied simultaneously. From the theoretical approach to 
two-way sensitivity analysis it is a known fact that a target 
a priori marginal probabilities of interest can be denoted 
with a function of two probabilities. The two-way 
sensitivity function has the following form: 
 P( )  +  +  + Z z a bx cy dxy= = , (5) 
where P(Z=z) is the target probability of interest, x and y 
are probabilities that the explaining variables are true, and 
a, b, c, and d are meta-parameters to be calculated by 
performing inference. In this way, we can observe the 
value of the target probability of focus when both 
explaining variables states are non-existent, i.e. when the 
parameters are equal zero, or when either of them is equal 

one. We can also, most importantly, discover the joint 
interaction effects among the parameters. Again, in case 
there is an evidence entered, the two way sensitivity 
analysis function has the form: 

 P( | )
a bx cy dxy

Z z e
e fx gy hxy
+ + +

= =
+ + +

, (6) 

where P(Z=z|e) is the target probability of interest, e is 
evidence, x and y are probabilities that the explaining 
variables are true, and a, b, c, d, e, f, g, and h are meta-
parameters. 
 
4.2.2. Assessment 
It is likely that some potential determinants of overall 
satisfaction do not manifest an apparent influence when 
considering it apart from other factors. It can however 
happen to be at the same time an important factor 
catalysing the impact of other service elements. Synergy 
effects that can be observed in this situation may be either 
positive or negative. Their existence can be traced by 
means of two- and multi-way sensitivity analysis. To this 
end, we can express these relations with formula (5). 

Assuming that x and y correspond to probabilities of 
high perceptions of image and service quality 
respectively, and p denotes probability of high overall 
satisfaction, the function can be interpreted in the 
following way. Parameter a can be interpreted as a 
probability of high overall satisfaction, when neither high 
satisfaction with tariffs nor billing services occur.
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Fig. 2. Interaction effects between service quality (X-axis) and image (Y-axis). The contour lines represent combinations of values of 
the service aspects’ ratings that result in the probability of (a) low, (b) medium, and (c), high overall satisfaction, respectively. 

Parameters b and c have a similar interpretation as in one-
way sensitivity functions. The interaction effect is denoted 
with parameter d. Positive values of this parameter denote 
positive synergy, whereas negative values stand for 
negative interaction effects. Value close to zero may 
indicate lack of interaction effect between product/service 
dimensions. These sensitivity functions can be represented 
graphically (see Fig.2). The probability that a customer is 
satisfied with service quality is shown on the X-axis and 

with image on the Y-axis. Simultaneous variation of both 
probabilities resulting in the same level of overall 
satisfaction is represented by the contour lines. Small 
numbers attached to the lines stand for probability of the 
relevant satisfaction or dissatisfaction level. In Fig.2a) for 
instance, the upper rightmost contour line denotes that all 
the combinations of (high) probabilities with feature 
performance located on this line result in the very low, as 
of 0.06, value of probability of low overall satisfaction. 



The shape of this line suggests furthermore that in the low 
ranges, the probability of dissatisfaction is much more 
sensitive to changes in perception of image than service 
quality. Additionally, the increasing slope of the lines 
suggests that the higher probability of overall 
dissatisfaction, the more this probability becomes 
sensitive also to service quality. Because the lines at the 
higher ranges of probability of dissatisfaction get closer to 
each other we can also infer that the worse the perception 
of both service dimensions, the faster the formation of 
dissatisfaction judgments. Fig. 2b) shows that probability 
of moderate satisfaction can vary from 0.06 to 0.24. It 
manifests strong negative synergy (the value of parameter 
d is –0.4). This effect can be read from the graph on the 
basis of observation that high probabilities of satisfaction 
are achieved if one of dimensions has high while the other 
has low performance. In contrast, a similar performance 
on both dimensions results in lower probability of 
moderate satisfaction. In Fig. 2c) the contour lines are 
drawn nearly in parallel every 0.08 and vary from 0.08 to 
0.88 implying high and constant sensitivity of high 
satisfaction to performance of the service aspects. 

Additional insight might be achieved by studying 
interaction effects among a set of three parameters at a 
time. However, the outcome of more than two-way 
sensitivity analysis is cumbersome to understand and 
interpret. 
 
4.2.3. Classification 
Classification of dimensions on the basis of interaction 
effects is proposed in this section. 
 

5. EMPIRICAL VALIDATION OF THE MODEL 
 
The Bayesian network model of any system can be 
viewed as a decision model and thus validated against 
empirical data by using it as a classifying system, in 
which the value of each variable for each case in the test 
set is predicted based on values of other observed 
variables. The goodness of fit of such a system is assessed 
by measuring its predictive accuracy, i.e., percentage of 
cases classified correctly, or alternatively using quadratic 
loss (Brier) score. 

A good practice is to treat each node sequentially as a 
decision class, and use the model to predict the label of 
each case using 10-fold cross-validation. The method 
selects each time randomly 10% of the cases, uses the 
remaining cases to learn model’s parameters, and finally 
appliesd the model to classify the case based on values of 
other variables. This procedure is repeated 10 times for 
each node.  

Since each classification decision in the above 
process is probabilistic in nature, its outcome depends 
heavily on the probability distribution for states of the 
target node. To account for the uncertainty, and to 

overcome the deficiency of standard measure of predictive 
accuracy in this respect, another measure, known as Brier 
score, for assessing probabilistic decision systems was 
introduced (Brier 1950). The intuitive idea behind the 
Brier score is that in case when the posterior probability 
of a specific category of overall satisfaction is remarkably 
higher than for the other categories and the prediction is 
correct, then the quality of such a forecast is better as if 
the distribution of categories was more resembling 
uniform distribution (Gaag and Renooij 2001).  

 
6. DISCUSSION AND LIMITATIONS 

 
In the classical approach to feature performance analysis, 
factor analysis is followed by regression analysis 
(Naumann and Giel 1995; Oliver 1997). Factor analysis is 
used to construct and operationalise satisfaction at a 
higher, dimensional level of abstraction based on 
perception of the specific service/product features. Some 
features can be tested against their relevance and, 
possibly, excluded from the study as not “loading” on the 
dimension, thus non-relevant. Afterwards, linear 
relationships between each dimensions and overall 
satisfaction are examined using regression analysis. In 
comparison to the above approach, the presented 
methodology enables deeper investigation of relevance of 
dimensions at various levels of the general performance. 
All the relationships are viewed probabilistically, thus 
allowing for easy interpretation. From the managerial 
perspective, outcomes of the present technique seem to be 
of interest to a practitioner, as they indicate which 
dimensions should be taken care of, and which of them 
are less important and deserve less attention. 

One of the limitation of the presented approach is that 
it is not feasible to study the interaction of many features 
at the same time, since the conditional probability table is 
growing very fast with the number of features, and 
yielding nuisance with the model’s parametric estimation. 
Similar difficulties occur also if we use an  

A number of issues can be addressed to corroborate 
usability of the presented approach theoretically as well as 
for marketing practice. Future research may be focused on 
investigation of models involving more dimensions, to 
test sensitivity of the approach in this respect 
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