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1. INTRODUCTION 
 
In Belgium, every year approximately 50.000 injury accidents occur in traffic, 
with almost 70.000 victims, of which 1.500 deaths (Belgian Institute for Traffic 
Safety, 2000).  Not only does the steady increase in traffic intensity pose a 
heavy burden on the society in terms of the number of casualties, the 
insecurity on the roads will also have an important effect on the economic 
costs associated with traffic accidents.  In Belgium, this macro-economic loss 
due to the lack of traffic safety on the roads is estimated at 3.72 billion Euros 
per year (Dielemann, 2000).  Accordingly, traffic safety is currently one of the 
highest priorities of the Belgian government.   
 
Cameron (1997) indicates that clustering methods are an important tool when 
analyzing traffic accidents as these methods are able to identify groups of 
road users, vehicles and road segments which would be suitable targets for 
countermeasures.  More specifically, cluster analysis is a statistical technique 
that groups items together on the basis of similarities or dissimilarities 
(Anderberg, 1973).  In Ng, Hung and Wong (2002) a combination of cluster 
analysis, regression analysis and Geographical Information System (GIS) 
techniques is used to group homogeneous accident data together, estimate 
the number of traffic accidents and assess the risk of traffic accidents in a 
study area.  The results will help authorities effectively allocate resources to 
improve safety levels in those areas with high accident risk.  In addition, the 
results will provide information for urban planners to develop a safer city. 
 
Furthermore, according to Kononov (2002), it is not possible to develop 
effective counter-measures to improve traffic safety without being able to 
properly and systematically relate accident frequency and severity to a large 
number of variables such as traffic, geometric and environmental factors.  
Lee, Saccomanno and Hellinga (2002) indicate that in the past, statistical 
models have been widely used to analyze road crashes.  However, Chen and 
Jovanis (2002) demonstrate that certain problems may arise when using 
classic statistical analysis on datasets with such large dimensions such as an 
exponential increase in the number of parameters as the number of variables 
increases and the invalidity of statistical tests as a consequence of sparse 
data in large contingency tables.  This is where data mining comes to play.  
Data mining is the nontrivial extraction of implicit, previously unknown, and 
potentially useful information from large amounts of data (Frawley et al, 1991).  
From a statistical perspective it can be viewed as a computer automated 
exploratory data analysis of (usually) large complex data sets (Friedman 



(1997)).  Data sets can be much larger than in statistics and data analyses are 
on a correspondingly larger scale (Hosking et al., 1997).  In conclusion, 
statistical models are particularly likely to be preferable when fairly simple 
models are adequate and the important variables can be identified before 
modelling.  However, when dealing with a large and complex data set of road 
accidents, the use of data mining methods seems particularly useful to identify 
the relevant variables that make a strong contribution towards a better 
understanding of accident circumstances.   
 
Therefore, in this research we will identify geographical locations with high 
accident risk by means of clustering techniques and profile them in terms of 
accident related data and location characteristics by means of data mining 
techniques to provide valuable input for government actions towards traffic 
safety.  In particular, in the first part of this paper we will use latent class 
clustering (also called model-based clustering or finite mixture modelling) to 
cluster traffic roads into distinct groups based on their similar accident 
frequencies.  In the second part of this paper, the data mining technique of 
frequent item sets is used to profile each cluster of traffic roads in terms of the 
available traffic accident data.   
 
The remainder of this paper is organized as follows.  First, an introduction to 
the clustering technique and the concept of frequent item sets is provided.  
This will be followed by a description of the data set.  Next, the results of the 
empirical study are presented. The paper will be completed with a summary of 
the conclusions and directions for future research.  
 
 
2. LATENT CLASS CLUSTERING 
 
As mentioned in the introduction of this paper, in this research an innovative 
method based on latent class clustering (also called model-based clustering 
or finite mixture modelling) is used to cluster traffic roads into distinct groups 
based on their similar accident frequencies.  More specifically, the observed 
accident frequencies are assumed to originate from a mixture of density 
distributions for which the parameters of the distribution, the size and the 
number of segments are unknown.  It is the objective of latent class clustering 
to ‘unmix’ the distributions and to find the optimal parameters of the 
distributions and the number and size of the segments, given the underlying 
data (McLachlan and Peel, 2000).   
 
2.1 Modelling Accident Rates with Poisson 
 
Since we do not know exactly what causes traffic accidents to happen, the 
approach is based on the idea of modelling the accident frequency as a 
Poisson-distributed random variable Y.  In general, the Poisson random 
variable Yi(t) represents the number of occurrences of a rare event in a time 
interval of length t and is therefore well suited for modelling the number of 
accidents over a certain period of time (Brijs et al, 2003).  
 



This means that we are given a number of locations (i= 1, …, n) on which the 
random variable Yi (i.e. accident rate) is measured over a certain period of 
time (t), e.g. weeks, months or years.  We assume the discrete random 
variable Yi(t) to be distributed Poisson, where yi = 0, 1, 2, … and the rate 
parameter λt >0, i.e. 
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The mean and the variance of the Poisson distribution are E(Y(t)) = λt and 
var(Y) = λt, respectively.  The fact that the mean and the variance of the 
Poisson distribution are identical is however too restrictive in many 
applications where the variance of the data may exceed the mean (Cameron 
and Trivedi, 1986).  This situation is called ‘overdispersion (McCullagh and 
Nelder, 1989) and may be due to heterogeneity in the mean event rate of the 
Poisson parameter λ across the sample.  Solutions to the problem of 
overdispersion therefore involve accommodating for the heterogeneity in the 
model. In this research, we will adopt the finite mixture specification. 
 
2.2 The Finite Mixture Specification 
 
The finite mixture specification assumes that the underlying distribution of the 
Poisson parameter λ over the population can be approximated by a finite 
number of support points (Wedel et al., 1993), which in the context of this 
study represent different segments or latent classes in the data. These 
support points and their respective probability masses can be estimated by a 
maximum likelihood approach.  
 
For instance, in the case of two-segment model, we assume that there are 
two support points. In other words, we assume there are two groups of 
locations:  

- a group of roads of size p1 whose latent accident parameter λ=θ1  
- and a second group of roads of size p2=(1-p1) whose average accident 

rate λ=θ2, where 0<pj<1, and =1 are the mixing proportions. Note 

that the mixing proportion is the probability that a randomly selected 
observation belongs to the j-th cluster.  
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Consequently, the two segment model can be formulated as: 
 
P[Yi(t)=yi] = P[Yi(t)=yi | group1]. P[group1] +  P[Yi(t)=yi | group2]. P[group2] 
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In general, the purpose of model-based clustering is to estimate the 
parameters ( p1,…, pk-1, θ1, …, θk), with k = number of segments, following the 
maximum likelihood (ML) estimation approach. This involves maximizing the 
loglikelihood. 



For the two segment model, the loglikelihood function is then defined as: 
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In this paper, we use a non-linear iterative fitting algorithm (nlp) to maximize 
the loglikelihood. To prevent the algorithm from finding a local but not a global 
optimum we use multiple sets of starting values for the algorithm and we 
observe the evolution of the final likelihood for different restarts of the 
algorithm. 
 
2.3 Determining the Number of Segments 
 
In some applications of mixture models, there is sufficient a priori information 
for the number of segments k in the mixture model to be specified with 
enough certainty. For instance, when the clusters correspond to externally 
existing groups. However, in this research, the number of segments has to be 
inferred from the data, along with the parameters.  
 
To decide on the number of components in a mixture model we use the so-
called information criteria to evaluate the quality of a cluster solution.  
Examples include AIC (Akaike information criterion), CAIC (Consistent Akaike 
information criterion) and BIC (Bayes information criterion) (Schwarz, 1978): 
 

AIC= -2Lk + 2 dk 
BIC= -2Lk + ln(n) dk 

CAIC= -2Lk + [ln(n)+1] dk 
 
These are goodness of fit measures, which take into account model 
parsimony. The idea is that the increase of the likelihood of the mixture model 
(Lk) on a particular dataset of size n, is penalized by the increased number of 
parameters (dk) needed to produce this increase in fit. The smaller the 
criterion, the better the model in comparison with another. 
 
 
3. FREQUENT ITEM SETS 
 
3.1 Association Algorithm 
 
In the second part of this study, an association algorithm is used to profile 
each cluster of traffic roads in terms of the available traffic accident data.  This 
data mining technique was first introduced by Agrawal et al. (1993).  It can be 
used to efficiently search for interesting information in large amounts of data.  
More specifically, the association algorithm produces frequent item sets 
describing underlying patterns in data.  In contrast with predictive accident 
models, the strength of this algorithm lies within the identification of accident 
circumstances that frequently occur together (Geurts et al. (2003)).  
Informally, the support of an item set indicates how frequent that combination 
of items or accident characteristics occurs in the data.  The higher the support 



of the item set, the more prevalent the item set is.  It is obvious that we are 
especially interested in item sets that have a support greater that the user-
specified minimum support (minsup).   
 
A typical approach (Agrawal et al. (1996)) to discover all frequent item sets is 
to use the insight that all subsets of a frequent set must also be frequent.  This 
insight simplifies the discovery of all frequent sets considerably, i.e.  first find 
all frequent sets of size 1 by reading the data once and recording the number 
of times each item A occurs.  Then, form candidate sets of size 2 by taking all 
pairs {B, C} of items such that {B} and {C} both are frequent.  The frequency of 
the candidate sets is again evaluated against the database.  Once frequent 
sets of size 2 are known, candidate sets of size 3 can be formed; these are 
sets {B, C, D} such that {B, C}, {B, D} and {C, D} are all frequent.  This 
process is continued until no more candidate sets can be formed.   
 
3.2 Interesting Patterns 
 
The association algorithm generates all item sets that have support higher 
than minsup.  However, a large subset of the generated rules itemsets will be 
trivial and a filter is needed to post-process the discovered item sets.  Two 
properties of the association algoritm can be used to distinguish trivial from 
non-trivial patterns.  A first, more formal method (Brin et al. (1997)) to assess 
the dependence between the items in the item set is lift (L): 
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The nominator s(X,Y) measures the observed frequency of the co-occurrence 
of the items X and Y.  The denominator s(X) * s(Y) measures the expected 
frequency of the co-occurrence of the two items under the assumption of 
conditional independence.  The more this ratio differs from 1, the stronger the 
dependence.  Table 1 illustrates the three possible outcomes for the lift value 
and their associated interpretation for the dependence between the items.   

 
Table 1: Interpretation of Lift 
 
Outcome  Interpretation 
+ ∞> L > 1 Positive interdependence effects between X and Y 
L = 1 Conditional independence between X and Y 
0 < L < 1 Negative interdependence effects between X and Y 

 
Besides ranking the item sets on their lift value, we can use a second 
measure, i.e. the interestingness measure (I) to limit the accident patterns to 
only the discriminating or useful ones (Anand et al.  (1997), Geurts et al. 
(2003)).   
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This interestingness measure is based on the deviation in support values of 
the frequent item sets discovered for two different clusters.  The nominator S1 
–S2  measures the difference in support for the accident characteristics in 
cluster1 (S1) and cluster 2 (S2).  The expression max { }21,SS  is called the 
normalizing factor as it normalizes the interestingness measure onto the scale 
[-1,1].   
 
 
4. DATA 
 
This study is based on a data set of traffic accidents obtained from the 
National Institute of Statistics (NIS) for the region of Flanders (Belgium) for the 
years 1992-2000.  The data are collected by means of the Belgian “Analysis 
Form for Traffic Accidents” that should be filled out by a police officer for each 
traffic accident that occurs with injured or deadly wounded casualties on a 
public road in Belgium.  These traffic accident data contain a rich source of 
information on the different circumstances in which the accidents have 
occurred: course of the accident (type of collision, road users, injuries, …), 
traffic conditions (maximum speed, priority regulation, …), environmental 
conditions (weather, light conditions, time of the accident, …), road conditions 
(road surface, obstacles, …), human conditions (fatigue, alcohol, …) and 
geographical conditions (location, physical characteristics, …).  On average, 
45 attributes are available for each accident in the data set.  More specifically, 
this analysis will focus on 19 central roads of the city of Hasselt for 3 
consecutive time periods of each 3 years:1992-1994, 1995-1997, 1998-2000.   
 
 
5. EMPIRICAL STUDY 
 
5.1 Clustering Traffic Roads 
 
5.1.1 3-Variate Poisson Distribution with Common Covariance 
 
As explained in the previous section, the number of accidents on 19 (n = 19) 
similar roads in Hasselt (Belgium) are considered for 3 following time periods 
of each 3 years.  Therefore, a 3-variate Poisson distribution (Y1, Y2, Y3) with 
one common covariance term is defined (Li et al., 1999): 
 

Y1=X1 + X123  
Y2=X2 + X123 
Y3=X3 + X123 

 
with Yi = the number of accidents in period i and all X‘s independent univariate 
Poisson distributions with respective parameters (λ1, λ2, λ3, λ123).  
 
Furthermore, this model does not assume conditional independence within 
each latent class, which would imply the restriction of mutually independent 
accident rates for the different time periods within each cluster. This 
assumption is too restrictive since it can easily be seen that the occurrence of 
accidents over several time periods may be related (e.g. due to bad 



infrastructure).  Therefore, correlations between the observations in each 
latent class cluster are allowed by identifying the parameter λ123, which  can be 
considered as a covariance factor that measures the risk of the area common 
to all time periods (Karlis, 2000).   
 
5.1.2 Mining the Algorithm 
 
The algorithm is sequentially applied to the data for 1 to 5 segments (k =1, 
…,5). Furthermore, in order to overcome the dependence on the initial starting 
values for the model parameters, different sets of starting values for pi and λi 
are chosen. However, results show that dependencies on the initial starting 
values only occur for large values of k, while for smaller values of k the 
algorithm terminates at the same solution with the same parameter values.  
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Figure 1: Loglikelihood against the number of segments for the 3-variate Poisson Mixture 
Model with common Covariance 
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Figure 2: AIC, CAIC and BIC against the number of segments for the 3-variate Poisson 
Mixture Model with common Covariance 



Figure 1 and figure 2 show the evolution of respectively the loglikelihood and 
the information criteria for different segments (k=1, …,5) of the 3-variate 
Poisson Mixture Model with common Covariance. 
 
These figures indicate the use of the goodness of fit measures to determine 
the number of segments: although the loglikelihood of the model increases 
when the number of segments increases, the information criteria will not 
choose the maximum possible segments to cluster the data. Considering the 
model complexity, the AIC selects 3 segments whereas the CAIC and the BIC 
select only 2 segments. This difference can be explained by the fact that the 
AIC does not consider the size of the dataset, whereas the CAIC and the BIC 
do penalize for this factor.   
 
5.1.3 Parameter Estimates 
 
Table 1 and table 2 contain the parameter estimates for the model with 2 and 
3 segments respectively. One can see that the cluster solutions are different.  
 
In the 2-components common covariance model the average number of 
accidents increases per period for the first cluster and decreases per period 
for the second cluster. Furthermore, the observed average accident rate per 
period for cluster 1 is mainly dependent on the average accident frequency of 
the concerning period and less on the covariance factor. For cluster 2, the 
covariance term does play an important role in the observed average accident 
rate per period. This can be explained as for this cluster there is a strong 
common factor in all periods that has to do with the accident risk on these 
roads. 
 
Analogously, the results for the 3-components common covariance model can 
be analysed. One should remark that the value for λ1 in cluster 1 and λ2 in 
cluster 2 will be very small, meaning that the total average accident frequency 
for cluster1 in the first period and cluster 2 in the second year will mainly be 
influenced by the overall accident risk on the roads.  
 

Table 1: Estimated parameters for the 2-components common covariance model  
 

 Parameters 
Cluster λ1 λ2 λ3 λ123 p 

1 0,631 0,930 1,089 0,005 0,688 

2 4,149 3,490 1,790 3,726 0,312 

 
 

Table 2: Estimated parameters for the 3-components common covariance model  
 

 Parameters 
Cluster λ1 λ2 λ3 λ123 p 

1 0,000 1,041 0,991 0,104 0,506 
2 1,819 0,000 0,790 0,675 0,229 
3 4,518 4,106 1,930 4,042 0,265 

 
 



5.2 Profiling Traffic Roads 
 
In the last part of this paper, we will use frequent item sets to profile each 
cluster of traffic roads.  More specifically, we will focus on the results of the 2-
components common covariance model which groups the traffic roads in two 
clusters.  Since these clusters show different results for the overall accident 
‘risk’ on the roads, one could expect that not every accident variable will be of 
equal importance when describing the different groups of traffic roads. 
Therefore, a comparative analysis between the accident characteristics of the 
different clusters is conducted, which provides new insights into the 
complexity and causes of road accidents.   
 
We distinguish different steps in the mining process: a pre-processing step 
and a transformation step in which the available data are prepared for the use 
of the mining technique, a mining step for generating the frequent item sets 
and a post-processing step for evaluating and interpreting the most interesting 
patterns.   
 
5.2.1 Pre-processing and Transforming the Data Set  
 
Two data sets of traffic accidents are defined according to the traffic roads 
belonging to cluster 1 and cluster 2.  This resulted in a total of 35 traffic 
accident records that were included for the analysis of cluster 1 (13 traffic 
roads) and 107 traffic accidents that were included for the analysis of cluster 2 
(6 traffic roads).  By comparing the results from these two analyses, we can 
determine the discriminating character of the accident characteristics for the 
two clusters.   
 
Some variables have a continuous character.  Discretization of these 
continuous variables is necessary, since generating frequent item sets 
requires a data set for which all items are discrete.  The intervals for these 
variables were created on the basis of expert knowledge on traffic safety 
issues such as traffic rush hours, types of road users (drivers license) in 
Belgium.  For example, six new attributes were created from the continuous 
variable ‘time of accident’: morning rush hour (7am-9am), morning (10am-
12am), afternoon (1pm-3pm), evening rush hour (4pm-6pm), evening (7pm-
9pm) and night (10pm-6am).  A second example includes the variable age for 
which six new intervals were created: age between 0 and 17, age between 18 
and 29, age between 30 and 45, age between 46 and 60 and age over 60.  
For variables where no domain knowledge for grouping the attribute values 
could be found, we used the Equal Frequency Binning, a discretization 
method to generate intervals containing an equal number of observations 
(Holte, 1993).   
 
Furthermore, attributes with nominal values had to be transformed into binary 
attribute values.  This means that dummy variables were created by 
associating a binary attribute to each nominal attribute value. 
 



Finally, irregularities such as data inconsistencies, missing values, redundant 
variables and double counts are tracked, listed and removed from the data 
sets.   
 
5.2.2 Generating Association Rules  
 
A minimum support value of 30 percent was chosen for the analysis.  It could 
be argued that the choice for the value of this parameter is rather subjective. 
This is partially true, however a trial and error experiment indicated that 
setting the minimum support too low, leads to exponential growth of the 
number of items in the frequent item sets. Accordingly, the number of rules 
that will be generated will cause further research on these results to be 
impossible due to computer memory limitations. In contrast, by choosing a 
support parameter that is too high, the algorithm will only be capable to 
generate trivial rules.  
 
From cluster 1, with a minsup=30 percent, the algorithm obtained 29415 
frequent item sets of maximum size 4.  Although these results relate to a 
relatively small number of accident records, they are quite reasonable since 
an average of 40 items is available per accident, allowing the algorithm to 
generate multiple combinations of size 4 item sets.  With the same parameter 
the second analysis resulted for cluster 2 in 28541 frequent item sets of 
maximum size 4.  These rules are further processed to select the most 
interesting rules. 
 
5.2.3 Post-processing the Frequent Item Sets 
 
As stated in the introduction of this paper, the emphasis in this part of the 
study lies on the profiling of clusters of traffic roads in terms of accident 
related data and the degree in which these accident characteristics are 
discriminating between the different clusters.  Therefore, we will first discuss 
the item sets that are frequent for both groups of accidents.  These accident 
patterns are descriptive for cluster 1 and for cluster 2.  However, the 
occurrence of these patterns will not be equally as strong in both data sets.   
 
Selecting these frequent item sets resulted in 24562 accident patterns.  The 
discriminating character of these accident patterns can be determined by 
means of the interestingness measure.  In this research, we will pay special 
attention to the item sets with a positive interest value, i.e. approximating ‘1’ 
since these accident patterns are stronger for cluster 2, i.e. the cluster with the 
highest accident risk.   
 
Accordingly, selecting the item sets with I > 0,3 resulted in 12 item sets of size 
2, 75 item sets of size 3 and 309 item sets of size 4.  Table 3 gives an 
overview of the most interesting of these frequent item sets.   
 
Results of table 3 show that the accident patterns that occur more frequently 
in cluster 2 than cluster 1 often occur on a weekday, inside the built up area 
with 2 road users [N=1], on a dry road surface [2] with one road user’s age 
being between 18 and 29 [3].  Additionally, these accidents often involve a 



female road user [4], driving a car [5].  Furthermore, one road user is 
frequently driving in a straight direction with a speed limit of 50 kilometres per 
hour in daylight [6], during normal weather on a weekday [7].  These accidents 
frequently result in a sideways collision [8, 9, 10,11].   
 
Table 3: Frequent Item Sets for Accidents in Cluster 1 and Cluster 2. 
 

N Item1 Item2 Item3 Item4 S2 Lift2 S1 Lift1 I 
1 Weekday Inside built up area 2 road users  71,96% 1,02 45,16% 0,94 0,37 
2 Dry road surface Inside built up area Weekday  57,94% 0,99 38,70% 0,84 0,33 
3 Weekday Age road user 18-29   59,81% 1,02 38,71% 0,92 0,35 
4 Weekday Inside built up area Female road user  52,33% 1,01 32,25% 0,99 0,38 
5 Weekday Inside built up area Female Road user  Car 54,20% 1,01 32,25% 0,75 0,40 
6 Straight direction 50 km/h Daylight  46,72% 1,06 32,25% 1,10 0,30 
7 Straight direction Inside built up area Normal weather Weekday 52,33% 0,97 32,25% 0,74 0,38 
8 Sideways collision 50 km/h   48,59% 1,01 32,25% 1,05 0,33 
9 Sideways collision Female road user Normal condition  55,14% 1,02 35,48% 0,88 0,35 
10 Sideways collision Inside built up area Weekday Car 57,94% 1,09 38,70% 1,03 0,33 

11 Sideways collision Inside built up area 2 road users Weekday 57,94% 1,11 38,70% 1,20 0,33 

 
These results could indicate that a great number of accidents occurring on a 
traffic road belonging to cluster 2, i. e. traffic roads with a high accident risk, 
involve young mothers bringing their children to school.  However, we do not 
have any information about the location of the schools in this area, so further 
research will be necessary to explain these accident patterns.  We can 
however find that for a number of these accident patterns the lift values for 
cluster 2 are smaller than ‘1’.  This means that these accident patterns not 
only occur more strongly for the accidents related to cluster 2 (I>0) but even 
occur less frequently than expected for the accidents related to cluster 1.  
Again, the proximity or remoteness of schools or day care centres could be a 
possible explanation for these results.   
 
Secondly, we will discuss the item sets that are unique for the accidents 
related to cluster 2.  These item sets represent very characteristic 
combinations of accident circumstances for the traffic roads with a high 
accident risk.  More specifically, we are interested in the frequent item sets 
with lift values differing from ‘1’ since these item sets represent strong 
dependencies between the different items of the item set.  However, note that 
we should not compare the absolute lift values of the item sets of different 
sizes, since the more items the item set consists of, the higher the lift value 
will become.   
 
Selecting the item sets that are unique for cluster 2 resulted in 3943 frequent 
accident patterns.  Table 4 gives an overview of the most interesting of these 
frequent item sets.   
 
Conform with the results of table 3, results of table 4 show that sideway 
collisions involving female road users are a typical accident pattern for traffic 
roads with a high accident risk [12, 13].  Again, these results indicate that this 
type of accident occurs frequently while the maximum speed limit was 50 
kilometres per hour for these accidents, while no priority is given [12, 13, 14] 
and the age of at least one road user was between 18 and 29 [15]. 
 



Table 4: Frequent Item Sets for Accidents in Cluster 2. 
 

N Item1 Item2 Item3 Item4 Support Lift 

12 Sideways collision Female road user No priority  41,12% 1,23 
13 Sideways collision Female road user No priority Crossroad 34,57% 1,58 
14 50 km/h No priority Brake  30,84% 1,40 

15 50 km/h Car 
Age road user 
between 18 and 29 

 39,25% 1,19 

16 Weekday Bicycle   33,64% 1,09 
17 Weekday Bicycle  2 road users  30,84% 1,14 
18 0 deadly injured Bicycle   36,44% 1,13 
19 1 lightly injured No cycle track   34,57% 1,08 

 
A second important accident type that is reflected in the results of table 4 are 
the accidents involving a bicycle.  These accidents often take place on a 
weekday [16] with 2 road users [17] and frequently coincide with 0 deadly 
injured victims [18].  Furthermore, these accidents more frequently than 
expected take place while the bicyclist was not riding on a cycle track and at 
least 1 person was lightly injured [19].  Note that these accident patterns are 
not very surprising as such, but remark that they do not appear for the 
accidents of cluster 1.  Therefore, one should further examine whether the 
traffic roads of cluster 2 are more dangerous for bicyclists compared to the 
traffic roads of cluster 1 or whether the intensity of the bicyclists on traffic 
roads of cluster 2 is much greater, for example due to the proximity of a 
school, recreation centre etc. … 
 
Finally, we will discuss the item sets that are unique for the accidents related 
to cluster 1.  These item sets represent very characteristic combinations of 
accident circumstances for the traffic roads with a low accident risk.  Again, 
we are interested in the frequent item sets with lift values differing from ‘1’.   
 
Selecting the item sets that are unique for cluster 1 resulted in 4879 frequent 
accident patterns.  Table 5 gives an overview of the most interesting of these 
frequent item sets.   
 
Table 5: Frequent Item Sets for Accidents in Cluster 1. 
 

N Item1 Item2 Item3 Item4 SupportLift 
20 Crossroad Priority to the right    61,61% 1,40 
21 Crossroad Priority to the right Daylight  41,93 1,47 

22 Normal weather Priority to the right 
Age road user 
between 30 and 45 

 32,25% 1,16 

23 Normal weather Dry road surface Crossroad 
Age road user 
between 46 and 60 

35,48% 1,07 

24 Car 
Age road user 
between 46 and 60 

  35,48% 1,07 

25 Inside built up area  weekend   32,25% 1,14 

 
Results of table 5 show that an important accident type for the traffic roads 
with low accident risk are the accidents on crossroads with priority to the right 
[20, 21].  These accidents take up 61,61% of all accidents on these roads.  
However, in contrast with the previous results, these accidents more 
frequently than expected involve a road user with age between 30 and 45 
[22].  Additionally, when an accident occurs on a crossroad with normal 
weather on a dry road surface, at least one road user of the age between 46 



and 60 is involved [23, 24].  These results show that the age of the road user 
is not as pronounced for the accidents occurring on the low accident risk 
traffic roads.  
 
Finally, an important accident pattern involves the accidents that occur inside 
the built up area in the weekend [25].  Note that these weekend accidents did 
not appear for the traffic roads with high accident risk.  
 
 
6. CONCLUSIONS AND FURTHER RESEARCH 
 
In the first part of this research, model-based clustering is used to cluster 19 
central roads of Hasselt into distinct groups based on their similar accident 
frequencies for 3 consecutive time periods of each 3 years: 1992-1994, 1995-
1997, 1998-2000.  Results showed that the optimal number of segments can 
vary from 2 to 3 clusters, depending on the chosen information criterion.  For 
the two components model parameter estimates show that the average 
number of accidents increases per period for the first cluster and decreases 
per period for the second cluster. Furthermore, the observed average accident 
rate per period for cluster 1 is mainly dependent on the average accident 
frequency of the concerning period and less on the covariance factor. For 
cluster 2, the covariance term does play an important role in the observed 
average accident rate per period. This can be explained as for this cluster 
there is a strong common factor in all periods that has to do with the accident 
risk on these roads. 
 
In the second part of this paper, the association algorithm was used on a data 
set of traffic accidents to profile the two clusters of traffic roads.  The analysis 
showed that by generating frequent item sets the identification of accident 
circumstances that frequently occur together is facilitated.  This leads to a 
strong contribution towards a better understanding of the occurrence of traffic 
accidents.  However, frequent item sets do describe the co-occurrence of 
accident circumstances but they do not give any explanation about the 
causality of these accident patterns.  Therefore, their role is to give direction to 
more profound research since the use of some additional techniques or expert 
knowledge will be required to identify the most important causes of these 
accident patterns, allowing governments to better adapt their traffic policies to 
the different kind of accident circumstances.  Furthermore, the results indicate 
that the use of the association algorithm not only allows to give a descriptive 
analysis of accident patterns within one cluster, it also creates the possibility 
to find the accident characteristics that are discriminating between two groups 
of traffic roads.  The most important results indicate that sideway collisions 
involving young female road users are a typical accident pattern for traffic 
roads with a high accident risk.  These results could relate to the number of 
young mothers using these traffic roads to drive their children to school.  For 
the traffic roads with a low accident risk crossroads with priority to the right are 
an important accident problem.  However, in contrast with the results for the 
high accident risk traffic roads, these accidents occur in diverse age 
categories and also in the weekend.  In conclusion, this analysis shows that a 
special traffic policy towards these clusters should be considered, since each 



cluster is characterized by specific accident circumstances, which require 
different measures to improve the traffic safety.  
 
Although the association analysis carried out in this paper revealed several 
interesting patterns, which, in turn, provide valuable input for purposive 
government traffic safety actions, several issues remain for future research.  
First, the skewed character of the accident data limits the amount of 
information contained in the dataset and will therefore restrict the number of 
circumstances that will appear in the results.  Secondly, the inclusion of 
domain knowledge (e.g. traffic intensities, a priori infrastructure distributions) 
in the association algorithm would improve the mining capability of this data 
mining technique and would facilitate the post-processing of the association 
rules set to discover the most interesting accident patterns.  Finally, the 
identified interesting accident patterns can be used in more statistical model to 
test their significance and to evaluate the difference in importance of these 
effects in the different clusters.   
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