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ABSTRACT 

 

We define the generalized Wu- and Kosmulski-indices, allowing for general parameters of 

multiplication or exponentiation. We then present formulae for these generalized indices in a 

Lotkaian framework.   

Next we characterise these indices in terms of their dependence on the quotient of the average 

number of items per source in the m -core divided by the overall average ( m  is any generalized 

Wu- or Kosmulski-index). 

As a consequence of these results we show that the fraction of used items (used in the definition 

of m ) in the m -core is independent of the parameter and equals one divided by the overall 

average. 
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Introduction 

 

The Hirsch-index (or h -index) is well known (Hirsch (2005)) and defined to be the largest rank 

r h  such that all papers on ranks 1,...,r  received at least r  citations (here papers are ranked in 

decreasing order of the number of received citations).  

Since the h -index can be applied to other source-item situations (other than source = paper and 

item = received citation) (see Egghe (2010) for a review on the h -index and other h -type-

indices, up to (and including) 2008), we will henceforth use this more general source-item 

terminology.  

 

There exist many papers describing advantages and disadvantages of the h -index (see again 

Egghe (2010) for a review). In this paper we discuss generalizations of two indices: the Wu-index 

(Wu (2010)) and the Kosmulski-index (Kosmulski (2006)).  

 

The w -index of Wu (see Wu (2010)) is defined as the largest rank r wsuch that all sources on 

ranks 1,...,r  all have at least 10w  items. With this index, Wu wants to focus on the sources with 

many items (or in Wu’s terminology: on the widely cited papers). Since the number 10  is rather 

arbitrary, we replace it by the parameter 1a , thereby generalizing the w -index to the aw -index. 

This index was already introduced in van Eck and Waltman (2008). In the next section we prove a 

formula for the aw -index in the Lotkaian framework. 

 

The 
 2

h -index of Kosmulski (see Kosmulski (2006)) is defined as the largest rank 
(2)r h  such 

that all sources on ranks 1,...,r  all have at least  
2

(2)h  items. With this index, Kosmulski wants 

to have an index similar to the h -index but requiring less ranked sources. Also here, the number 2 

is rather arbitrary. Therefore we replace it by 1a , hence defining the generalized Kosmulski-

index 
 a

h . Since the notation 
( )ah  is somewhat heavy (certainly in calculations) we will replace it 

by ah . Also in the next section we will prove a formula for the ah -index in the Lotkaian 

framework.  
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In Levitt and Thelwall (2007) (see also Egghe (2010)) one defines the “Hirsch k -frequency” 

 f k  being the number of sources with at least kh items ( h = h -index). Hence, in our notation, 

 1af h  is the number of sources with at least 
ah  items. So  1 a

af h h . 

Reversely, for every 1k , there exists an 1a  such that 
1 ak h  (since 1h ), namely 

ln
1

ln

k
a

h
  . This means that ah  is equivalent with Levitt and Thelwall’s Hirsch k -frequencies.  

 

The main disadvantage of the h-index is that it does not use the number of citations, above h , to 

the h  most cited papers. The (generalized) Wu- and Kosmulski-indices use more citations of the 

aw  or ah  most cited papers, but again, the citations above aaw  (for aw ) and above  
a

ah  are not 

used. Also, since for 1a  , aw  and ah  are smaller than h , these new indices use less cited papers 

which is considered in Wu (2010) and Kosmulski (2006) as an advantage, for calculatory reasons: 

a smaller list of papers in decreasing order of their received citations is needed.  

 

In the third section we prove characterizations of the generalized Wu- and Kosmulski-indices. The 

results are as follows. Let us define the r -core as the set of sources on the first r  ranks. Denote 

by r  the average number of items in these r  sources and by   the overall average number of 

items per source.  

 

We prove that  

 rr
a




  (1) 

 

 if and only if ar w . Similarly, we prove  

 

1

a
rr





 
  
 

 (2) 

 

if and only if ar h . Since for 1a   we have a aw h h  , the h -index, the above results reprove 

the characterization of the h -index, proved in Jin, Liang, Rousseau and Egghe (2007): 

 

 rr



  (3) 
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if and only if r h  (note that h  is denoted A  in Jin et al. (2007) and called the A -index). 

 

As a corollary of results (1) and (2) we prove that the fractions of used items of the items in the 

aw - or ah -core are independent of a  (“used” means: used in the definition of the aw -index and 

ah -index: for the aw -index we use aaw  items in the first aw  sources and for the ah -index we use 

 
a

ah  items in the first ah  sources).  

These fractions of used items are not only independent of a ; they are even equal for the aw - and 

the ah -index, being 
1


. 

 

The paper then closes with some conclusions and open problems.  

 

We close this introductory section by repeating some results of Lotkaian informetrics that we need 

here. They can also be found in Egghe (2005) and Egghe and Rousseau (2006) (in which also a 

proof is given).  

 

We consider the size-frequency function f , where 

 

 ( )
C

f j
j

  (4) 

 

 0, 1, 1C j    . Here f  is a decreasing power law (the law of Lotka) being the density of 

the sources with item-density j .  

 

The total number T  of sources equals (if 1  ) 

 

  
1 1

C
T f j dj





 
  (5) 

 

and the total number of items equals (if 2  ) 

 

  
1 2

C
A jf j dj





 
  (6) 
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From this it is clear that  , the average number of items per source, equals (if 2  ) 

 

 
1

2

A

T







 


 (7) 

 

Further, Lotka’s law is equivalent with Zipf’s law: 

 

  
B

g r
r

  (8) 

 

( , 0,0 )B r T     and we have  

 

 

1
1

1
1

1

C
B T







 

  
 

 (9) 

 

and 

 

 
1

1






 (10) 

 

Here  g r  is the density of the items in source density r .  

 

In terms of the function  g r , r  (defined above) can be expressed as 

  
0

1
' '

r

r g r dr
r

    (11) 

 

 

The generalized Wu-index and Kosmulski-index 

 

Definition 1: The generalized Wu-index, denoted aw , for 1a   is the largest rank ar w  such 

that all sources on ranks 1,...,r all have at least aaw  items.  
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Note that 
aw h , the h -index, for 1a  . We have the following formula for aw  in the Lotkaian 

framework. 

 

Proposition 1: In the notation of the introductory section, we have, if 1  , 

 

 

1 1 1

aw T a ha
 

  

 

   (12) 

 

Proof: The proof is an extension of the one in Egghe and Rousseau (2006) where we proved 

 

 

1

h T   (13) 

 

, showing already that (11) and (12) are equivalent. Now, if 1   

 

   1 1

1n

C
f j dj n Tn 




  

  (14) 

 

is the total number of sources with item density larger than or equal to n . Now replacing n  by 

an  yields the definition of the aw -index: an w  for 

 

  
1

T an n

  

 

Hence 

 

 
1

aTa w    

 

, yielding (11).    □ 

 

Note that aw h  since 1a   and 1  . If 1a   then aw h . In Wu (2010) one uses 10a   and 

one finds 104h w . According to our model (12) this leads to 

 

 

1
1

10
4

h
h 



  

 
or 
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10

1
2.5129416

1 log 4
  


 

 

For the “classical” value 2   we have 

 

 

1

2

10 10w h


  

 
or 

 

 
10 010 3.1622777h w w   

 

 

In general we have for 2   

 

 
a

h
w

a
  

 

Definition 2: The generalized Komulski-index, denoted ah , for 1a   is the largest rank ar h  

such that all sources on ranks 1,...,r  all have at least  
a

ah  items.  

 

Note that ah h  for 1a  . We have the following formula for ah  in the Lotkaian framework. 

 

Proposition 2: In the notation of the introductory section, we have, if 1  , 

 

 
 
1

1 1a

ah T
 

  (15) 

 

Proof: Using again (14) (with n  replaced by 
an ) in the previous proof, we have that an h if  

 

  
1

aT n n


  (16) 

Hence 

 

 
(1 )a

a aTh h


  
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yielding (15).      □ 

 

Note that, in (15), 

1

ah h T    for 1a  . 

 

 

Characterizations of the generalized Wu-index wa and 

the generalized Kosmulski-index ha 

 

We have the following characterization of the generalized Wu-indices aw .  

 

Proposition 3: Let 2  . The following assertions are equivalent: 

 

(i) rr
a




  

 

(ii) ar w  

 

with r  and   as in the introductory section. 

 

Proof: (ii) (i)  

We have to show that  

 aw

aw
a




  (17) 

 

By definition of 
aw we have (see (11)) 

 

  
0

1 a

a

w

w

a

g r dr
w

    (18) 

 

where  g r  is Zipf’s law (8). 
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Since 2   we have that 0 1   and hence 

 

 
11

1aw a

a

B
w

w







 

 

 

1 2

1 1
1 1

2aw a

a

T w
w



 







 





 

 

 

1 2

1 1
1

aw a

a

T w
w



  


   (19) 

 

by (7), (9) and (10). In order to prove (17) we have to show, by (19), that 

 

 

1 2

1 1
1

a a

a

aw T w
w



 



   

or 

 

 
1

1

1
aa T w









  

 

But (11) yields 

 

 

1 1 1 11
1 1 1

aw T T a T a


  
    


 

  
 

  
 

 

 

(i) (ii)  

The function 

 rr r
a




   

 

is strictly decreasing in r (by definition of r  or just calculate the derivative of the function r  

 

  
0

1 r

r g r dr
r

    

 

which is  
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   

0

2
0

r

r

rg r g r dr

r


 
  


 

 

since  g r strictly decreases).  

 

Hence, since (i) supposes that there exists an r such that  

 

 0r r
a




   

 

then this r  must be unique. But (17) implies that there is a solution in ar w . Hence ar w .   □ 

 

We have the following characterization of the generalized Kosmulski-indices ah . 

 

Proposition 4: Let 2  . The following assertions are equivalent: 

 

(i) 

1

a
rr





 
  
 

 

 

(ii) ar h  

 

with r  and   as in the introductory section. 

 

Proof: (ii) (i)  

We have to show that 

 

1

a

a
h

ah




 
  
 

 (20) 

 

By definition of 
ah we have (see (11)) 

 

  
0

1 a

a

h

h

a

g r dr
h

    (21) 
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As in the proof of Proposition 3 we have (see formula (19)) 

 

 

1 2

1 1
1

ah

a

T h
h



  


   (22) 

 

In order to prove (20) we have to show, by (22), that 

 

 

1 2

1 1
1 a

a a

a

T h h
h



 



    

 

or that 

 

2 1
1

1 1
a

ah T



 


  

   (23) 

But (15) yields 

 

 
 

   2 1 112
1

1 1 11

a
a

a

ah T

  

 

     
          

 

 
 
1 1

1 1 1

a a

a
T



 

   
 

     

 
1

1T 


  

 

proving (23), hence (20). 

 

(i) (ii)  

This proof follows the lines of the proof of (i) (ii) in Proposition 3.      □ 

 

Both Propositions 3 and 4, for 1a  , yield a new proof of the result proved in Jin et al. (2007) and 

described in Proposition 5 below (just take 1a   in Proposition 3 or Proposition 4). 

 

Proposition 5: Let 2  . The following assertions are equivalent: 

 

(i) rr



  
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(ii) r h  

 

The results in Proposition 3 and 4 imply that, for every 1a  , if 2   

 

 aw

aw
a




  (24) 

 

and 

 

1

a

a
h

ah




 
  
 

 (25) 

 

 

We have the following consequences. Since 

 

  
0

1 a

a

w

w

a

g r dr
w

    

 

we have that (24) implies that  

 

 

 

2

0

1
a

a

w

aw

g r dr 



 (26) 

 

This formula can be interpreted as follows. The left-hand side of (26) is the fraction of used items 

(in the definition of the aw -index) in the aw -core. Indeed, 
2

aaw equals the minimum number aaw  

of items in sources in the aw -core times the aw  sources in the aw -core and  
0

aw

g r dr  is the 

total number of items in the aw -core. Then formula (26) says that this fraction is independent of 

a  and equals
1


.  

 

If we look at (25) we see that  
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 

1

0

1
a

a

a

h

h

g r dr 






 (27) 

 

using that 

 

  
0

1 a

a

h

h

a

g r dr
h

    (28) 

 

Again, the left-hand side of (27) is the fraction of used items (in the definition of the ah -index) in 

the ah -core. Indeed, 
1a

ah


 equals the minimum number 
a

ah  of items in sources in the ah -core times 

the ah  sources in the ah -core and  
0

ah

g r dr  is the total number of items in the ah -core. Then 

formula (27) says that this fraction is independent of a  and, again, equals 
1


.  

 

We can conclude that the fractions of used items in the aw - and ah -core are not only independent 

of a  but are equal for the generalized aw - and ah -indices, namely 
1


. 

Note that this fraction, when taking the limit for    is 1 using (7). So the larger  , the 

larger the fraction of the used items in the aw - and ah -core (in the limit being 1).  

Note that, for   ,
1

aw
a

  (as follows from (11), since T  and a  are constant) and 1ah  , 

as follows from (15). 

 

Results (26) and (27) contradict the (intuitive) feeling that the aw - and ah -indices use (relative) 

more items from the more productive sources, when a  increases: the used fractions are the same 

for all aw - and ah -indices! In absolute terms, they even use less items for a  increasing. This 

follows from (26) and (27) and since the denominators of the left- hand sides in (26) and (27) 

decrease for a  increasing (since aw and ah  decrease for a  increasing - a logical fact which also 

follows from (12) and (15) and the fact that 1  ). 
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Concluding remarks 

 

The Wu-index and Kosmulski-index have been generalized using a general parameter a . We then 

proved formulae for these indices in a Lotkaian framework. Then these measures are 

characterized using the quotient of the average number of items per source in a certain r -core 

( r = rank) (denoted r ) and the overall average number of items per source. 

 

As a corollary (for 1a  ) we reproved the result of Jin et al. (2007), characterizing the h -index as 

the unique index h  such that 

 hh



  (29) 

 

where h  is the average number of items per source in the h -core and where   is the overall 

average number of items per source in the system (still supposing a Lotkaian framework). 

 

In this connection we can make the following remarks. 

 

It is clear that in any system (Lotkaian or not, continuous or discrete), r


 decreases in r and that 

lim 1r

r T




 .  

 

In the discrete case we define m  as the largest rank r m  such that 

 

 m m



  (30) 

 

(this rank r m  exists due to the above argument and since 1r  ). 

 

m  is a new impact measure and equals h  in the Lotkaian framework with Lotka exponent 2  .  

 

Final Remark: for the g -index (see Egghe (2006)) result (26) (or (27)) is not true since, for the 

g -index, we use all items in all sources in the g -core (except, in the discrete case, possibly a few 

items in the source on rank r g ). 
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