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Abstract 
 
Various algorithms and heuristics exist for solving the vehicle routing problem. When the 
problem is enriched with time windows (either from the depot or imposed by the 
customers) the methods of finding optimal solutions become harder and most analysts turn 
to heuristics. The methods mostly assume deterministic travel times between customers, 
which might be an unrealistic assumption. Once a heuristics solution for the vehicle 
routing problem is found, the solution might be evaluated against various scenarios 
including uncertainty in travel times. The paper first models a single route as a project 
network and links the notions of slack and criticality with notions in the vehicle routing 
solution. Further evaluation of the solution is investigated if the uncertainty in travel time 
can be expressed as an interval between finite lower and upper bounds. 
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1. Introduction 
 
It is very well known that profitability is low in freight transport compared to other 
industries. Profitable companies offer value-added logistics to attain a reasonable level of 
profitability. Most customers require deliveries within pre-specified time windows, in 
which loading and unloading operations have to take place. Due to Just-in-Time and Zero 
Inventory policies those windows might be extremely strict. In other cases, time windows 
are induced due to working hours or other reasons of convenience put forward by the 



customer. In such cases, the time windows might be not so hard and even some flexibility 
in time window may be negotiated against price setting. Some customers are characterised 
by delivery time flexibility. They specify their time windows in terms of hours, or even of 
days. A carrier might use this type of flexibility order to design cost efficient routes. The 
discipline of Operations Research offers solutions to this problem, which is known as a 
special case of the standard Vehicle Routing Problem (VRP), called the Vehicle Routing 
Problem with Time Windows (VRPTW). 
  
The standard Vehicle Routing Problem (VRP) is concerned with finding a set of routes for 
a fleet of m vehicles, which have to service a number of customers n. Each of the n 
customers has a non-negative demand qi (i=1..n). The demand is served by a homogeneous 
set of vehicles all having capacity Q. In general, the objective is to minimize the cost of 
serving all customers. This cost is measured as total travel time or total travel distance. 
Vehicle routing problems arise in many real-life applications such as school bus routing, 
postal deliveries and food distribution. Transportation costs represent a non-negligible 
fraction of the purchase price of many products and services. Consequently, an efficient 
distribution of goods and services is of paramount importance. 
 
This paper considers the Vehicle Routing Problem with Time Windows (VRPTW). Time 
constraints may be related to service requests. A time window then represents the time 
interval in which the service at a customer must take place. It has a lower bound and an 
upper bound. Savelsbergh and Sol (1995) mention the existence of implicit time windows. 
These time windows refer to the desired delivery time of customers. Customer 
inconvenience can be controlled by taking the implicit time windows into account. Taillard 
et al. (1997) further distinguish between soft and hard time windows. When the time 
window is soft, the vehicle can arrive before the lower bound or after the upper bound. If 
the vehicle arrives early, it has to wait to start its service. If a vehicle is late, a penalty for 
tardiness is incurred. When the time window is hard, late services are not allowed. In our 
discussion we assume the existence of hard time windows. Time constraints may also be 
related to vehicles. In reality vehicles are not available all the time. A vehicle departs from 
and arrives at a single depot. In this case a time window refers to the time interval in which 
the vehicle is available. We refer to both types of time constraints respectively as customer 
windows and depot windows. In the VRPTW, the total cost does not only include the total 
travel time, but also the waiting time incurred when a vehicle arrives early at a customer, 
and the service time at the customer’s site (loading or unloading).  
 
The VRPTW has been subject of intensive research. As solving the NP-hard VRPTW to 
optimality remains hard, research has focussed on heuristic approaches. Bräysy et al. 
(2004) divide these heuristics in three categories. First, construction heuristics build routes 
sequentially or in parallel until the vehicle’s capacity is reached, without violating time 
window constraints. A second class consists of improvement heuristics. These heuristics 
try to improve the incumbent solution. Construction and improvement heuristics are 
discussed in detail in Bräysy and Gendreau (2005). Finally metaheuristics are used to guide 
construction and improvement heuristics to escape local optima. More details can be found 
in a recent survey on metaheuristics by Bräysy and Gendreau (2005).  
 
In this paper a sensitivity analysis of a solution obtained by one of the existing heuristics is 
proposed. The solution has been obtained using deterministic, known travel times. 
However travel times may be uncertain due to traffic jams, weather conditions or 
unexpected situations. By allowing some variability in travel times in a route, we 



investigate the effect on total route time and feasibility of the service on that route. The 
main idea behind this approach is to offer a help in designing robust routes instead of 
optimal routes in terms of a specific objective, like total travel time or distance. Travel 
times are given interval numbers, i.e. a finite interval containing possible durations of the 
travel time between two customers. The proposed sensitivity analysis can be used as a 
management tool to support negotiations with customers concerning purchase conditions.  
 
This paper is organised as follows. In the next section it is shown how a route, the 
customer time windows and the depot window can be represented as a project network. 
Also an interpretation is given of the critical activities and of slack. In section 3, an 
illustration of the procedure is given. In section 4, dealing with uncertainty in travel times 
is discussed. Finally, some conclusions are formulated and directions for further research 
are indicated. 
 

2. A network representation of a vehicle routing solution 
 
In this section we show that the solution of a VRPTW may be represented as a set of 
project networks. Each project network represents a single route. First, a short introduction 
to project networks is given. Then, the modelling of routes as project networks is described 
and an example is given. 
 
A project network is a directed, connected, acyclic graph G(A,V). In this graph V is a set of 
nodes and A ⊂ V x V is a set of arcs. Two alternative representations of project networks 
are available: activity-on-arc project networks and activity-on-node project networks. In an 
activity-on-arc project network, each activity is represented by an arc. A node represents 
an event. An activity-on-node project network represents each activity by a node. The 
notion of event does not exist here. In this paper, we use the activity-on-arc project 
network representation. Two nodes are specified in the graph G: a start node and a finish 
node. 
 
A path in G is defined as a path from start node to finish node. Let us denote by P(n) the 
set of all paths in G from start node to finish node. A deterministic duration time t ij is 
associated with each activity (i,j) ∈ A. The length of a path is the sum of the (estimated) 
durations of the activities on the path. The minimum time for completion of the project is 
equal to the length of the longest path through the project network. A path p ∈ P(n) is 
critical if and only if it is the longest path in the graph G.   
 
A route is defined as a sequence of customers to be visited by a single vehicle. Each route 
may be modelled as a project network. The activities of a vehicle include travel and 
service. A route is a sequence of (travel, service)-pairs of activities. Waiting times are 
introduced due to the synchronisation with the customers’ time windows. The opening and 
closing times can be expressed as pairs of virtual activities in the network. A special path 
exists from the start node to the finish node expressing the time window of the depot, 
defining the earliest leaving time and latest arrival time of a vehicle. In any feasible 
solution this path should be the critical path (or one of the critical paths) in the network. In 
case the time window of the depot is not the critical path or one of the critical paths, it 
means that the total time of the route exceeds the time window of the depot, which does 
not lead to a feasible solution. 
 



Let the set of nodes V = {v1, v2, …, v2k} represent events, which start an activity of either 
of two types: a travel activity or a service activity. Denote the set of events related to travel 
activities as Vt and those related to service activities as Vs, where st VVV U=  and 

φ=∩ st VV . Further kVV st == . Two special nodes are defined in V: v1 is a source 

node denoting start of the travel activity from the depot, and v2k is a sink node denoting 
start of the service activity at the depot( which in fact means the end of the travel activity 
towards the depot). The set of arcs A consists of several subsets related to various concepts 
of the route and its customer. A partition A = (Aa, ,Ad,Ace,Acl) is defined where: 
Aa :  the set of arcs related to travel activities and to service activities, with 
 Aa ⊂ ( st VXV ) ∪ ts VXV  
Ad: a singleton representing the opening time of the depot (depot time window), 
Ace: the set of arcs related to the earliest service times of the customers (lower bound of 
the customer time window), 
Acl: the set of arcs related to the latest service times of the customers (upper bound of 
the customer time window). 
 
The procedure to construct the network consists of the following steps: 

1. Construct the backbone of the network (Aa) 
2. Add the depot time window to the network (Ad) 
3. Add the earliest customer arrival times to the network (Ace) 
4. Add the latest customer arrival times to the network (Acl). 

 
The backbone of the network is made up of arcs belonging to Aa. The backbone consists of 
alternating travel and service activities. The weights of the arcs correspond to resp. travel 
times or service times. 
 
The depot time window is represented by a single arc Ad

= (v1, v2k). The weight of the arc is 
equal to the opening time of the depot. 
 
The earliest service times are represented by a set of arcs Ace. The start of a service at a 
customer’s site, earlier than the lower bound of its time window, is prohibited (in a feasible 
network) by adding an arc from the depot node v1 to the node starting a service activity at a 
customer’s site. This means that Ace ⊂ ( sVXv1 ). The weight of the arcs corresponds to 
the lower bound of the customer window, under the assumption that the opening time of 
the depot is put equal to zero.    
 
The latest service times are represented by a set of arcs Acl. The start of a service at a 
customer’s site, later than the upper bound of its time window, is prohibited (in a feasible 
network) by adding an arc from  the node starting a service activity at a customer’s site to 
the depot node v2k. This means that Acl ⊂ ( k

s vXV 2 ). The weight of the arcs corresponds 
to the difference between the closing time of the depot and the upper bound of the 
customer window, under the assumption that the opening time of the depot is put equal to 
zero.    
 

3. Illustration of the procedure for building a VRP-network 
 
In Figure 1 a small network is described with one depot and three customers. A route is 
shown in which the vehicle moves from the depot to customer K1 (10 time units travel 



time),  to customer K2 (12 time units travel time), to customer 3 (8 time units travel time) 
and back to the depot (26 time units travel time). The service time at all customers is equal 
to 5 time units. The customer and the depot have time windows as shown in Table 1. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A single route visiting three customers 
 

 
 
 
 
 
 
 

Table 1: Time windows 
 

The route in Figure 1 can be represented as a sequence of activities. This is shown in the 
lower part of Figure 2.  In the upper part of the same figure, the depot window is added to 
the network. In Figures 3 and 4 the customer windows are introduced: the earliest arrival 
times (denoted as ETK) and the latest arrival times (denoted as LTK) as given in Table 1. 
The latest arrival time for the customer K1 is equal to 50, which means the vehicle has to 
arrive before the time unit 50. The arcs, added in Figure 4, indicate the time left between 
the latest arrival of the vehicle and the upper bound of the depot window. For the customer 
K1 this means the arc has weight 100-50 = 50 time units. 
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Figure 2: Travel and service activities and the Depot window introduction 

Location ETK LTK 
K1 0 50 
K2 10 50 
K3 20 100 

Depot 0 100 
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Figure 3: Customer window introduction: the earliest arrival time 
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Figure 4: Customer window introduction: the latest arrival time 
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The first three columns in Table 2 show the information from Figure 5 in a form as 
required by a project planning algorithm. The last three columns show part of the output 
produced by such an algorithm. Table 2 shows that activity DW, indicating the depot 
window, forms the critical path and is the only critical path. This means that this solution is 
feasible in terms of the depot window. 
 

 
Activity Immediate 

Predecessors 
Expected  
Time 

Earliest 
Start 

Latest 
Start 

Slack 

DW - 100 0 0 0 
D/K1 - 10 0 23 23 
ETWK1 - 0 0 33 33 
ETWK2 - 10 0 40 40 
ETWK3 - 20 0 49 40 
SK1 D/K1,EWTK1 5 10 33 23 
LTWK1 D/K1,EWTK1 50 10 50 40 
K1/K2 SK1 12 15 38 23 
SK2 ETWK2,K1/K2 5 27 56 29 
LTWK2 ETWK2,K1/K2 50 27 50 23 
K2/K3 SK2 8 32 61 29 
SK3 K2/K3,EWTK3 5 40 69 29 
LTWK3 K2/K3,EWTK3 0 40 100 60 
K3/D SK3 26 45 100 29 

 
Table 2: Route information ready to use in project network analysis 

 
The project network offers a framework building scenarios for sensitivity analysis, for 
example by introducing other values for travel times to investigate their effect on 
feasibility. As an example, assume that the travel time from the depot to customer K1 takes 
33 instead of 10 time units. A second critical path is found. The activities D/K1, SK1, 
K1/K2 and LTWK2 become the activities on the second critical path. The solution is still 
feasible, but several activities loose slack. When, for instance, the travel time, due to some 
uncertainty, from the depot to customer K1 takes more than 33 time units, the vehicle 
arrives late at customer K2. There is no more slack to counter uncertainty in the travel 
times from the depot to customer K1 and from customer K1 to customer K2. The latest 
arrival time at customer K2 has become critical.  
 

4. Dealing with uncertainty in travel times 
 
When representing the route as a project network, the essential assumption is that the 
duration times (either travel times or service times) are deterministic and known. In 
practice, this assumption is many times not fulfilled and the analyst should look for a 
representation with nondeterministic duration times represented with random variables or 
fuzzy numbers. 
 
The uncertainty causes a problem when it comes to the notion of criticality. The PERT 
method finds critical activities using mean activity duration times. This method is a very 
simplified version of the reality and it is open to a lot of criticism. The evaluation of the 
probability with which a path is critical becomes very complicated from a computational 



point of view, even if all probability distributions of the duration times are known. The 
simplest way of representing uncertainty with respect to a duration time is by means of an 
interval. 
 
Let the route again be represented as a graph G(A,V). A travel or service activity is denoted 
by (i,j) where (i,j) ∈ A. But, in this case, duration times are given by means of interval 
numbers. The interval Iij = [aij, bij] contains possible duration times of (i,j) associated with 
a travel or a service activity. 
  
Let us use the notion of interval-criticality, as introduced by Chanas and Zielinski (2002). 
A path p is interval-critical if there exists a set of times t ij with t ij ∈ [aij, bij], (i,j) ∈ A, such 
that p is critical after replacing the interval times Iij with the exact values t ij by means of: 
 
  bij if (i,j) ∈ p 
tij =  
  aij if (i,j) ∉ p 
 
 
In a route, the depot window should be a critical path. It can be checked easily, using the 
above method, whether this path is interval-critical. But, for practical purposes, this 
analysis does not solve the problem. The backbone may be interval-critical, but other 
paths, including time windows, may also be interval-critical. That would mean that the 
route cannot be executed in a feasible way. A guarantee for feasible execution can be 
realised only when the depot window is interval-critical, but no other path is interval-
critical. The analysis would require to enumerate all paths in the route, which is a task of 
high computational complexity. 
 
From a human-computer interaction point of view, the method however can be of some 
help. When a human analyst suspects that the interaction of two uncertainties might cause 
problems of feasibility, only a limited number of paths need to be generated and tested. If 
the analyst would like to have an answer including all types of uncertainties, the method is 
not feasible. 
 

5. Conclusion and future directions 
 
It has been shown that a single route of a solution to a Vehicle Routing Problem with Time 
Windows can be represented as a project network. In such a way the feasibility of the route 
can be tested when other values of travel times are realised. The notion of criticality is the 
key to this test. Sensitivity towards travel times can be performed for only one customer 
trip at a time. When upper and lower bounds on the travel times as an interval are known, a 
method has been described to find out whether a path is interval-critical, but the decision 
whether a route can be executed in a feasible way is a task of high computational 
complexity.  
 
 
An algorithm needs to be developed in which an interval is given for each travel time and 
the feasibility of the route can be checked. The next paragraphs formulate some hints how 
a solution to this problem may be found.   
 



The dynamic behaviour of the route and the assessment of its feasibility in the case of 
uncertain travel times might be studied using the Petri net formalism. In terms of structure, 
it has been shown that a project network might be represented as a marked graph, which is 
a special case of a Petri net. Ordinary Petri nets do not include any notion of time and are 
aimed to model only the logical behaviour of systems by describing the causal relations 
existing between events. A timing specification is required if we want to consider 
performance, scheduling or real-time control. Also in our case, in the presence of time 
windows and travel times, the Petri net model has to be extended with time aspects. 

 
Two basic models for handling time have been defined: time Petri nets and timed Petri nets. A 
time interpretation can be associated with either places or transitions. The Time Petri net is 
more general (Merlin and Farber, 1976). In this case, Time Petri Nets are the most suitable 
class of Petri nets as they allow transitions to fire only within time intervals. A time 
interval includes an earliest and latest firing time, once the transition is enabled. 
 
In Petri nets without timing information, transitions, which are enabled, can fire any 
moment but will not necessarily do. It is not specified when, if ever, transitions will fire, 
and why. The occurrence of transitions is not planned. The causal structure of transitions 
- pre and post conditions - is described, but the control over the occurrence of transitions is 
not specified by the design. The Time Petri Net case is slightly different. Each transition has 
a static timing interval (αi, βi) and a transition ti may not fire for a period of time of at least αi 
after it has been enabled, and it has to fire if it has been enabled for a period of time of βi. 

 
Continuity, a very specific nature of time implies that an exhaustive enumeration of possible 
states (with time-information) is not possible, as it will almost always be an infinite 
enumeration. Instead of handling individual states, states can be grouped in state classes. 
Formally, the i-th state class is defined by its marking Mi and its firing domain Di , where Di 
contains all enabled transitions ti,j with their relative firing interval (αj < ti,j < βj). Classes are 
pairs (M,D) in which M is a marking and D is a firing domain. Firing rules for states classes 
and ways to compare classes for equality have been defined (Berthomieu and Menasche, 
1983). Using these state classes, a finite representation of an infinite number of reachable 
states can be generated, which will be mentioned further by the class reachability graph, 
similar to the reachability graph of states in (non-time) Petri nets. 
 
Timing aspects in Petri nets have been applied to various real-life situations with success, 
mostly in performance analysis. Examples are abundant in the area of manufacturing systems, 
either with deterministic times or with stochastic times. In time-related risk assessment, Time 
Petri nets have been applied in Leveson and Stolzy [13] and in Deceuninck and Janssens [14]. 
 
The Petri net has as many starting places as there are customers (or depot) with time 
window constraints plus one additional starting place for representing the sequence of 
travel and service activities. In the partial schedule the transitions represent events with the 
meanings: distance travelled, service started, and service ended. The places between the 
transitions can have maximally one token. If the places contain a token, they have the 
meanings: transporting, waiting, and servicing. 
 



In the paths, which model the time window progress, two transitions appear representing 
the beginning and starting events of the window. Between both transitions, a token in the 
place shows that the window is open. A second place behind the second transition indicates 
that the window is closed. This indicates the realisation of an infeasible schedule. 
Synchronisation between the partial schedule and the time window path appears as 
follows. The place with meaning ‘waiting’ and the place with meaning ‘window open’ 
appear as input places to the transition with meaning ‘service started’. If both places 
contain a token, the schedule is still feasible and the dynamic process can continue. The 
final place in the partial schedule represents the vehicle’s return at the depot.  
 
By executing the Petri net, two types of information are obtained. If the final place in the 
partial schedule is not reached, then the partial schedule belongs to a non-feasible route. If 
the final place is reached, then the execution shows all time intervals in which a service 
may be started at a customer location. Both cases have their practical application. 
 
It seems that this modelling approach might bring an answer to the feasibility question of a 
route in terms of uncertainty of travel times. The combination of representing the route as a 
project network with the inclusion of the uncertainty into the dynamical behaviour of the 
route by means of Time Petri nets will allow us to build an algorithm to solve the problem. 
The algorithm might be based on further ideas developed by Berthomieu and Diaz (1991). 
Also the complexity of the algorithm needs some further study.  
 

References 
 
Berthomieu, B. and Menasche, M. (1983) An enumerative approach for analyzing Time 
Petri Nets. In: R.E.A. Mason (ed.), Information Processing 83, North Holland, 41-46. 
 
Berthomieu, B. and Diaz, M. (1991) Modeling and verification of time dependent systems 
using Time Petri Nets. IEEE Transactions on Software Engineering 17 (3) 259-273. 
 
Bräysy, O. and Gendreau, M. (2005) Vehicle routing problem with time windows, Part I: 
Route construction and local search algorithms. Transportation Science 39 (1) 104-118. 
 
Bräysy, O. and Gendreau, M. (2005) Vehicle routing problem with time windows, Part II: 
Metaheuristics. Transportation Science 39 (1)  119-139. 
 
Bräysy, O., Hasle, G. and Dullaert, W. (2004) A multi-start local search algorithm for the 
vehicle routing problem with time windows. European Journal of Operational Research 
159 586-605. 
 
Chanas, S. and Zielinski, P. (2002) The computational complexity of the criticality 
problems in a network with interval activity times. European Journal of Operational 
Research 136 541-550. 
 
Deceuninck, W. and Janssens, G.K. (1994) Risk analysis using Time Petri Nets. 
Investigacao Operacional 14 (1) 91-102. 



 
Leveson, N.G. and Stolzy, J.L. (1987) Safety Analysis Using Petri Nets. IEEE 
Transactions On Software Engineering SE-13 (3) 386-397. 
 
Merlin, P.M. and Farber, D.J. (1976) Recoverability of communication protocols - 
Implications of a theoretical study, IEEE Transactions on Communications COM-24 
1036-1043. 
 
Savelsbergh, M.W.P. and Sol, M. (1995) The general pickup and delivery problem. 
Transportation Science 29 (1) 17-29. 
 
Taillard, E., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J. (1997) A tabu search 
heuristic for the vehicle routing problem with soft time windows. Transportation Science 
31 (2) 170–186. 


