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SLIDER: a generic metaheuristic for the discovery
of correlated motifs in protein-protein interaction

networks
Peter Boyen, Dries Van Dyck, Frank Neven, Roeland C.H.J. van Ham, and Aalt D.J. van Dijk

Abstract—Correlated motif mining (CMM) is the problem
of finding overrepresented pairs of patterns, called motifs, in
sequences of interacting proteins. Algorithmic solutions for CMM
thereby provide a computational method for predicting binding
sites for protein interaction. In this paper, we adopt a motif-
driven approach where the support of candidate motif pairs
is evaluated in the network. We experimentally establish the
superiority of the Chi-square-based support measure over other
support measures. Furthermore, we obtain that CMM is an NP-
hard problem for a large class of support measures (including
Chi-square) and reformulate the search for correlated motifs
as a combinatorial optimization problem. We then present the
generic metaheuristic SLIDER which uses steepest ascent with
a neighborhood function based on sliding motifs and employs
the Chi-square-based support measure. We show that SLIDER
outperforms existing motif-driven CMM methods and scales to
large protein-protein interaction networks.

The SLIDER-implementation and the data used in the experi-
ments are available on http://bioinformatics.uhasselt.be.

Index Terms—Graphs and networks, Biology and genetics

I. INTRODUCTION

LARGE-SCALE biological networks describing interac-
tions between proteins are available for several organ-

isms [16]. Such data demonstrate how proteins function as
part of an interaction network, but provide no insight into how
interactions are encoded in protein sequences. In particular,
it is unknown which part of the sequences correspond with
physical interaction sites. Unfortunately, the discovery of these
sites requires laborious and expensive biological experiments.
In fact, it is estimated that at the present rate of protein
structure determination, it would take 20 years to determine
all interaction types using current experimental techniques [2].
Moreover, even if this would be accomplished, one would still
have to deal with predicting for a given interacting sequence
to what interaction type it adheres. Therefore, several compu-
tational approaches have been proposed to locate binding sites
by mining overrepresented pairs of patterns, called motifs, in
the sequences of interacting proteins [11]–[14], [17]. Corre-
lated motif mining (CMM) is an approach to identify binding
sites by looking for a consensus pattern in one set of proteins
which interact with (almost) all proteins which contain another
consensus pattern. If so, both patterns are likely to represent a
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Fig. 1. Compatible binding sites 1, A and 2, B as correlated motifs in
sequences.

part of the surface of the molecules which makes interactions
possible through a physical binding. For instance, in Fig. 1
the patterns {1, A} and {2, B} represent two such correlated
motifs. In particular, there is an undirected edge between two
protein sequences when the first one contains motif 1, and the
second one motif A, and similarly for motif 2 and B. Currently,
despite the development of several algorithms (see below) it is
unclear which fraction of interfaces can be described by such
correlated motifs. However, results from existing approaches
clearly indicate that correlated motifs do contain information
about interfaces [11]–[14], [17].

These methods can be subdivided into two classes:
(i) interaction-driven [12]–[14], and (ii) motif-driven ap-
proaches [11], [17]. Interaction-driven methods mine for
(quasi-)bicliques, i.e., subsets of vertices for which (almost)
every vertex from one set is connected to (almost) all vertices
of the other set. Such subgraphs exhibit a type of all-versus-all
(or most-versus-most) interaction. A motif pair representing
the corresponding interaction sites is then derived from the
sequence carried by the vertices. The motif-driven approach,
in contrast, starts from candidate motif pairs whose support is
then evaluated in the network. Although both approaches have
shown to produce biologically meaningful results, the second
approach has several conceptual advantages over the first: (i)
motif pairs are mined directly, not derived; (ii) all proteins
containing one of the motifs, and not a subset, are taken
into account; and, (iii) if the interactions between two sets
of proteins are a consequence of multiple compatible binding
sites, such as {1, A} and {2, B} in Fig. 1, the interaction-driven
method necessarily merges them into one motif pair.

In this article, we study the motif-driven approach towards
CMM for which currently only two techniques have been
introduced and implemented. Unfortunately, both methods
differ not only in the mining method but also in the used notion
of support for correlated motifs. The first method by Tan et
al. [17], called D-STAR, uses a χ2-based scoring function
to determine the support, but the underlying mining method



2

does not scale to networks containing more than 250 proteins.
As contemporary biological networks contain up to thousands
of proteins (see Section VI), scalability is an increasingly
important issue. The second method, called MotifHeuristics,
employs a different, probabilistically motivated notion of
support called p-score. This method is developed by Leung
et al. [11] and does scale to larger networks. Although the
authors argue in their paper that MotifHeuristics is superior to
D-STAR, it remains unclear if the latter is due to the different
support measure or the underlying mining method. Moreover,
an in-depth study of support measures as such has never been
undertaken.

A first contribution of this paper is a thorough, empirical
study of the effectiveness of various notions of support for
correlated motifs. We evaluate them in terms of precision and
recall on artificial networks with implanted motifs at different
noise levels. These experiments clearly show that the χ2-
based support measure is vastly superior in discovering highly
interaction-descriptive motif pairs.

As a second contribution, we formally prove, under reason-
able assumptions concerning the used notion of support, the
complexity of the correlated motif mining problem is NP-hard
and its associated decision problem is NP-complete. We there-
fore approach the problem as a combinatorial optimization
problem.

More specifically, as the third and main contribution of this
work, we present SLIDER, a generic metaheuristic containing
two steepest ascent1 methods, the key components of which
are their neighborhood functions, based on viewing a motif
as a window that slides over the amino acid sequence of one
of the proteins. In contrast with more common neighborhood
functions, they have a clear biological interpretation: they are
based on the philosophy that if a motif overlaps with part of a
binding site in a sequence, it should be able to slide towards
the binding site in a few steps. So both neighborhood functions
want to find neighboring motifs that could be close to each
other on actual proteins. The difference is that one considers
as neighbors of a motif all motifs which could theoretically
be near it on any protein whereas the other only takes motifs
actually nearby on a single selected protein. Although SLIDER
can be used with an arbitrary support measure, we use the
χ2-based support measure, as the empirical study in the first
contribution of this paper clearly indicates this is the best
support measure known so far.

We validate SLIDER by showing its methods outperform all
existing motif-driven approaches on retrieving implanted motif
pairs from artificial networks. Furthermore, our experiments
show that SLIDER is able to tackle CMM on large protein-
protein interaction networks.

This article expands upon an earlier conference paper [5]
by the following additional elements:

1) We present a more thorough treatment of the complex-
ity of CMM. In particular, we formally prove, under
reasonable assumptions concerning the used notion of

1In contrast with [5], we use the term steepest ascent instead of local
search here because the latter is also used to refer to all metaheuristics which
are based on the notion of a neighborhood function.

support, the NP-hardness of CMM for biclique-maximal
measures, which includes χ2, by proving that even a
simplified version of the associated decision problem is
NP-complete.

2) We introduce a new version of SLIDER which uses an
improved neighborhood function to explore the search
space and yields significantly better results.

3) We present a more thorough experimental validation
of both variants of SLIDER using more data and more
experiments. In particular, we present an in-depth assess-
ment of the biological relevance of our results by looking
if the motif hits overlap with known interaction sites in
protein structure data. This allows us to assess not only
the biological usefulness of our methods but also of the
(`, d)-CMM model itself, by considering the best motif
pairs found by brute force — as far as we know, the
latter has never been done before on a genome-wide
scale.

4) We discuss in depth our choice for steepest ascent over
more advanced metaheuristics.

Outline. In Section II, we formally define CMM and in Sec-
tion III we discuss support measures. In Section IV, we prove
CMM to be NP-hard for a large class of support measures. In
Section V, we introduce the generic SLIDER metaheuristic. In
Section VI, we introduce our artificial and biological datasets
on which the effectiveness of our methods is assessed in
Section VII. We discuss related work in Section VIII and
conclude in Section IX.

For the reader’s convenience, a table of major notation has
been added to the Supplementary Material.

II. CORRELATED MOTIF MINING

We model a protein-protein interaction (PPI) network by an
undirected labeled graph G = (V,E, λ) in which the vertices
V correspond to the proteins, the edges E to the interactions
and the labels of the vertices to the amino acid sequences of
the proteins. Hence, the label function λ maps each vertex
v ∈ V to a string λ(v) over the alphabet Σ = {A, . . . , Z} \
{B, J, O, U, X, Z}.

An (`, d)-motif is a string of length ` over the alphabet
Σ ∪ {x} containing exactly d x-characters. The character x

is interpreted as a wildcard-symbol, i.e., it matches with any
character of Σ. For instance, GAQPRNMY matches the (8, 4)-
motif GxxPxNxY.

A protein contains an (`, d)-motif X if its amino acid
sequence contains a substring of length ` that matches X .
Note that motifs starting and ending with a wildcard character
are redundant because, in practice, the amino acid sequences
are much longer than the motifs.

Given an (`, d)-motif X and a PPI-network G = (V,E, λ),
let VX = {v ∈ V | v contains X},

be the set of proteins in the network containing the motif
X , and EX,Y = {{u, v} ∈ E | u ∈ VX ∧ v ∈ VY } be the
set of interactions between proteins containing X and proteins
containing Y . Hence, the subgraph GX,Y selected by a motif
pair {X,Y } is then

GX,Y = (VX ∪ VY , EX,Y , λ|VX∪VY
)
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VX

VX ∩ VY︸ ︷︷ ︸

VY

Fig. 2. An example of a network selected by a complete (5,6,3)-motif pair.

with λ|VX∪VY
the restriction of λ to VX ∪ VY . Note that VX

and VY can share proteins.
A support measure f is a function mapping a motif

pair {X,Y } and a graph G to a positive real number
f({X,Y }, G). We refer to f({X,Y }, G) as the support of
{X,Y } in G. In Section III and VII-B we discuss and compare
several instances of support measures.

We next formulate the correlated motif mining problem in
a PPI-network (CMM):
• Input: a PPI-network G = (V,E, λ), `, d, k ∈ N and a

support measure f mapping a motif pair {X,Y } and a
graph G to a real positive number f({X,Y }, G).

• Output: {X1, Y1}, . . . , {Xk, Yk}, the k (`, d)-motif pairs
with highest support in G with respect to f .

III. SUPPORT MEASURES

Support measures should reflect the power of a motif pair to
describe interactions. Several considerations should be taken
into account in deciding how to measure the descriptive power
of a motif pair for a given PPI-network G = (V,E, λ): (i)
EX,Y should be significantly larger than expected given G,
VX and VY ; and, (ii) VX and VY should be large enough in
order to minimize the likelihood that the appearance of the
motif X (Y ) in the sequences of the proteins in VX (VY ) is
just by chance.

In other words, we want the motifs X and Y to truly repre-
sent an overrepresented consensus pattern in the sequences of
the proteins in VX , respectively VY , in order to increase the
likelihood that they correspond to, or at least overlap with, a so
called binding site — a site on the surface of the molecule that
makes interactions between proteins from VX and VY possible
through a molecular lock-and-key mechanism.

Before we discuss support measures in detail, we need some
more concepts from graph theory. A bipartite graph is a graph
for which the vertex set can be partitioned into two disjoint
sets B and W such that each edge connects a vertex of B
with a vertex of W . It is called balanced if |B| = |W | and
complete if each vertex of B is connected to each vertex of
W . A complete bipartite subgraph is called a biclique. The
edge density ed(G) of a graph G = (V,E) is the proportion
of edges it has of all its potential edges: ed(G) = |E|/

(|V |
2

)
.

We call {X,Y } a (kX , kY , kX,Y )-motif pair for a PPI-
network G = (V,E, λ) if |VX | = kX , |VY | = kY and
|VX ∩VY | = kX,Y . We call it complete if all vertices from VX
are connected with all vertices from VY . Clearly, a complete
(kX , kY , kX,Y )-motif pair is an ideal candidate provided that

kX and kY are sufficiently large. Fig. 2 shows an example. As
such, the maximal number of edges any (kX , kY , kX,Y )-motif
pair can have in any PPI-network is

Emax
kX ,kY ,kX,Y

=

(
kXkY −

(
kX,Y

2

)
− kX,Y

)
.

A. A χ2-based support measure

Tan et al. [17] introduced the χ2-score for statistical signif-
icance as a support measure for CMM:

fχ2({X,Y }, G) =





(|EX,Y |−EX,Y )2

EX,Y
if |EX,Y | > EX,Y

0 if |EX,Y | ≤ EX,Y
with EX,Y the expected number of interactions between VX

and VY . The value EX,Y is calculated by assuming a uniform
density of edges:

EX,Y = ed(G)Emax
|VX |,|VY |,|VX∩VY | .

If we also use the edge density of the selected subnetwork
ed(GX,Y ) = |EX,Y |/Emax

|VX |,|VY |,|VX∩VY | we can rewrite the
χ2-support of {X,Y } for which |EX,Y | > EX,Y as

fχ2({X,Y }, G) =

Emax
|VX |,|VY |,|VX∩VY |

(ed(GX,Y )− ed(G))2

ed(G)
.

As ed(G) is a constant for a fixed PPI-network, we clearly
see in this form that fχ2 uses two criteria to determine the
support of a motif pair {X,Y }:

1) the difference in edge density of GX,Y and G, which
rewards a larger EX,Y than expected; and

2) the (potential) size of GX,Y in terms of the number of
edges, which rewards larger VX and VY .

B. p-score: a probabilistic support measure

The p-score is a measure introduced by Leung et al. [11]
to evaluate the statistical significance of a motif pair {X,Y }
in a PPI-network G = (V,E, λ) by estimating the conditional
probability that there are at least |EX,Y | or more interactions
between VX and VY given the number of interactions involving
VX and assuming a uniform distribution of interactions over
all interaction partners. Motif pairs for which this probability
is small are considered to be statistically significant.

More formally, given a motif pair {X,Y } and a PPI-
network G = (V,E, λ), let N(VX) = {u | ∃v ∈ VX :
{u, v} ∈ E}, i.e., the set of all vertices connected with a
vertex from VX , and EX = {{u, v} ∈ E | u ∈ VX}, the set
of interactions involving vertices from VX .

The probability pX that there are |EX,Y | interactions be-
tween VX and VY given VX , VY , N(VX) and EX is estimated
by (see [11] for details)

pX =

Emax
X,Y∑

i=|EX,Y |

(
i−1

|N(VX)∩VY |−1
)( |EX |−i−1
|N(VX)\VY |−1

)
( |EX |−1
|N(VX)|−1

)

where

Emax
X,Y = min(|EX | − |N(VX) \ VY |, |VX ||N(VX) ∩ VY |)
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represents the maximal possible size of EX,Y . The idea is
that pX is a good estimator for the conditional probability
of |EX,Y | or more interactions between VX and VY given
VX , N(VX), EX , VY , N(VY ) and EY if |EX,Y |/EY→X is
small, with

EY→X = (|EY |/|N(VY )|)|N(VY ) ∩ VX |

the expected number of interactions between VY and N(VY )∩
VX given VY , N(VY ), EY and VX . Of course, similar formu-
las can be obtained for pY and EX→Y and the p-score based
support measure fp uses the best of both estimators:

fp({X,Y }, G) =





1− pX if EY→X ≥ EX→Y
1− pY if EY→X < EX→Y

C. Comparison of fχ2 and fp

Comparing fp with fχ2 , a major difference is that fχ2 bases
its support on the whole network G, while fp-support is based
on the statistical significance of a motif pair {X,Y } in two
subnetworks of the whole PPI-network: GX = (VX∪N(VX)∪
VY , EX) and GY = (VY ∪ N(VY ) ∪ VX , EY ). Moreover,
besides the typical edge distribution assumption, fp implicitly
makes the following additional assumptions:

1) VX and VY are disjoint;
2) every interaction from EX (EY ) can be described using

X (Y ), thus to calculate the support of {X,Y } each
protein is assumed to have only one binding site.

Finally, we stress a design flaw in the definition of fp: the
approximation pX becomes less precise when |EX,Y |/EX→Y
becomes larger. But the latter happens precisely when the
selected subgraph contains more edges than expected, i.e.,
becomes more interesting. In addition, our experiments in
Section 7.2 confirm that fp is inferior to fχ2 in recovering
implanted correlated motifs at different noise levels.

IV. COMPLEXITY OF CMM

We will prove that CMM is NP-hard when fχ2 is used as
support measure. However, in order to make the result as
broadly applicable as possible, we will prove the NP-hardness
of CMM for a whole class of support measures and show at
the end of the section that fχ2 is a member of that class.

For technical reasons, we restrict ourselves to support
measures which abide by three reasonable conditions. Let
G = (V,E, λ) be any PPI-network and let MkX ,kY ,kX,Y

be a complete (kX , kY , kX,Y )-motif pair for G, kX,Y ≤
min(kX , kY ). We call a support measure f compliant2 if the
following conditions hold for f :

1) f is polynomial time computable in the size of G,

2The notion of compliance we use here is looser than the notion we used
in [5] which also demanded that the support must increase if there are more
proteins in VX ∩ VY .

2) for any two (kX , kY , kX,Y )-motif pairs {X,Y },
{X ′, Y ′} in G:

f({X,Y }, G) = 0

∨
(
f({X,Y }, G) > f({X ′, Y ′}, G)

⇐⇒ |EX,Y | > |EX′,Y ′ |
)
.

3) f(MkX+1,kY ,kX,Y
, G) > f(MkX ,kY ,kX,Y

, G) .

Informally, the first condition says that the support can be
computed efficiently, which is crucial for scalability reasons.
The second condition states that if the subnetworks selected
by two motif pairs differ only in the number of edges, the one
which covers more interactions has higher support. Finally, the
last condition states that the support of a complete motif pair
increases with the size of the selected subnetwork. Hence,
the last two conditions formalize the intuition that a good
support measure prefers motif pairs which select large, dense
subnetworks. On the other hand, the last two conditions also
induce some bias as they implicitly assume that the support
only depends on VX , VY , EX,Y and/or its relation to the PPI-
network as a whole.

We call a support measure f biclique-maximal if:

f(Mk,k,0, G) > f(Mk,k,k′ , G), 0 < k′ ≤ k .

We will now show that CMM is NP-hard by proving that even
a simplified version of the associated decision (D) problem is
already NP-complete. Let D-CMM be the problem to decide
whether for a given PPI-network G = (V,E, λ), natural num-
bers `, d, a real number t and a support measure f , there exists
an (`, d)-motif pair {X,Y } for which f({X,Y }, G) ≥ t.

Theorem 1: D-CMM is NP-complete for any biclique-
maximal compliant support measure f .

Proof: D-CMM is obviously in NP: since f is compliant
and thus polynomial time computable, a motif pair M for
which f(M,G) ≥ t can serve as polynomial time verifiable
certificate.

We will now describe a reduction R which transforms an
unlabeled graph G = (V,E), with V = {v1, . . . , vn}, into a
labeled graph R(G) = G′ = (V,E, λ). Afterwards, we will
show this reduction can be used to prove the NP-completeness
of D-CMM for biclique-maximal measures.

We will use the alphabet Σ = {0, 1} and label the vertices
of G′ as follows: λ(vi) = wi1 . . . w

i
n, with wii = 1 and wij = 0,

for j 6= i.
The labels of the vertices are chosen in such a way that

for any (n, k)-motif X , |VX | ∈ {0, 1, k}. Indeed, we can
discriminate the following cases:

1) if X contains at least two 1’s then VX = ∅;
2) if X contains a 1 at position i and all other non-wildcard

symbols are 0 then VX = {vi}; and,
3) if X contains only wildcard symbols and 0’s then vi ∈

VX if the symbol at position i is a wildcard symbol.
As such, ignoring the cases with VX or VY empty, and thus
EX,Y empty, every motif pair in G′ is necessarily a (1, 1, k′)-
, (1, k, k′)-, k′ ∈ {0, 1}, or a (k, k, k′)-motif pair, 0 ≤ k′ ≤
k. Moreover, for an (n, k)-motif X containing only 0’s and
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wildcard symbols, vi will be in VX if and only if position i
of X is a wildcard symbol. In other words, for any subset
W ⊆ V of size k, we can choose an X such that VX = W .

Consequently, if {X,Y } is a motif pair for which |VX | =
|VY |, VX ∩ VY = ∅ and |EX,Y | = Emax

|VX |,|VY |,0, then (VX ∪
VY , EX,Y ) is a balanced complete bipartite graph.

Given a graph G and a natural number k, deciding whether
G contains a biclique such that both parts are of size k,
is called the balanced complete bipartite subgraph problem
(BCBS). BCBS is known to be NP-complete [7]. We will now
show that we can decide BCBS on G by deciding D-CMM
on R(G) = G′ for a compliant, biclique-maximal support
measure.

Since the support measure is compliant, we know that
a complete (kX , kY , kX,Y )-motif pair will always have
higher support than any other (kX , kY , kX,Y )-motif pair. Let
MkX ,kY ,kX,Y

be a complete (kX , kY , kX,Y )-(n, k)-motif pair
for G′, kX,Y ≤ min(kX , kY ) and k ≥ 2. We know that, by
construction of G′, kX , kY ∈ {1, k}. As f is compliant and
biclique-maximal it holds that:

f(Mk,k,0, G
′) > f(M1,k,0, G

′) > f(M1,1,0, G
′)

∧ f(Mk,k,0, G
′) > f(Mk,k,1, G

′)

> f(M1,k,1, G
′) > f(M1,1,1, G

′) .

Thus, G contains a balanced complete bipartite subgraph with
both parts of size k if and only if there exists an (n, k)-motif
pair {X,Y } for which

f({X,Y }, G′) ≥ t = f(Mk,k,0, G
′) .

The proof is complete by noting that the transformation of
G into G′ and the calculation of t can be done in polynomial
time.

It is easy to see that fχ2 is compliant and biclique-maximal.
Indeed, for fixed k, the support for a complete (k, k, kX,Y )-
motif pair {X,Y } in PPI-network G is

Emax
k,k,kX,Y

(1− ed(G))2

ed(G)
,

which is maximal for kX,Y = 0. On the other hand, remark
that fp is not compliant because fp({X,Y }, G) depends on
the neighborhood of the selected subnetwork GX,Y in G (GX
and GY ).

V. OUR METHODS

Since the decision problem associated with CMM is in NP,
we can efficiently check if a motif pair has higher support than
an other which makes it possible to tackle CMM as a search
problem in the space of all possible (`, d)-motif pairs. If we
add the assumption that similar motifs can be expected to get
similar support, it has the typical form of a combinatorial opti-
mization problem. In combinatorial optimization, the objective
is to find a point in a discrete search space which maximizes
a user-provided function f . A number of heuristic algorithms
called metaheuristics are known to yield good solutions to a
wide variety of combinatorial optimization problems.

Input: PPI-network G = (V,E, λ), `, d ∈ N, d < `
Output: {X∗, Y ∗} best correlated motif pair found in G

1: {X∗, Y ∗} ← randomMotifPair()
2: maxsup← f({X∗, Y ∗}, G)
3: sup← −∞
4: while maxsup > sup do
5: {X,Y } ← {X∗, Y ∗}
6: sup← maxsup
7: for all {X ′, Y ′} ∈ N({X,Y }) do
8: if f({X ′, Y ′}, G) > maxsup then
9: {X∗, Y ∗} ← {X ′, Y ′}

10: maxsup← f({X ′, Y ′}, G)

Fig. 3. The general steepest ascent algorithm with abstract neighbor function
applied to CMM (SA-CMM).

One such metaheuristic is steepest ascent [1]. Steepest
ascent algorithms move from the current point to the best
neighboring point in the space of candidate solutions until
a locally optimal solution is found, i.e., a solution that maxi-
mizes f in its neighborhood. Hence, to apply steepest ascent
one needs to define a neighborhood function which returns
the neighbor points of each point in the search space. The
neighborhood function is a key component of the steepest
ascent method and has to be chosen carefully and fine-tuned
for the problem at hand. The initial points from where steepest
ascent is started are randomly chosen. In Section VIII, we
discuss other metaheuristics and explain the choice for steepest
ascent.

The main idea behind our steepest ascent algorithm for CMM
is illustrated by the pseudo-code in Fig. 3. To be able to specify
the difference between our two methods, we use an abstract
neighborhood function N . For reasons of clarity, we use an
abstract support measure f and focus on the case in which only
the best pair is returned (k = 1). In practice, we accumulate
the best results found over as many runs as can be completed
in a given time frame, and store the results sorted by support.

The method randomMotifPair() picks (i) a random interac-
tion {u, v}, (ii) a random position pu in λ(u) and pv in λ(v),
(iii) a random motif X by first picking d random positions in
[pu + 1, pu + ` − 1] as the wildcard positions and taking the
remaining positions as the non-wildcard positions, and; (iv) a
random motif Y from λ(v) in the same way.

In order to apply steepest ascent to CMM, we need to define
a neighborhood function which maps a motif pair {X,Y }
to its neighbors N({X,Y }) in the space of all motif pairs.
Consider a motif pair {X,Y } and the selected subnetwork
GX,Y . The main idea behind a steepest ascent algorithm is
to gradually improve a candidate solution until it becomes
(locally) optimal. Consequently, it is desirable that the subnet-
work GX′,Y ′ selected by a neighbor {X ′, Y ′} ∈ N({X,Y })
is also “close” to GX,Y in the sense that at least some proteins
and interactions are shared between GX,Y and GX′,Y ′ . That
is, we would like that the candidate solution in the dual search
space of selected subnetworks also improves gradually in order
to avoid that the algorithm jumps around in the network
selecting completely different networks in each step. Suppose
for instance that {X,Y } is a motif pair which describes (a part
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Fig. 4. Two neighboring (by Nmot) (6, 3)-motifs seen as sliding windows
on a sequence.

of) compatible binding sites in most proteins in VX and VY . If
at some point in the algorithm we reach a motif pair {X ′, Y ′}
for which a significant fraction of the motif hits of X ′ and
Y ′ overlap with the desired motifs X and Y , it would be
undesirable that X ′ is changed into a motif which has almost
no motif hits in VX .

A straightforward way to ensure that some proteins are kept,
is by only considering motifs of the form {X,Y ′} or {X ′, Y }
as candidate neighbors, such that either VX or VY remains in
GX′,Y ′ . The neighbor functions we will define in the next
sections share the principle that one motif remains fixed and
that the neighborhood of the pair is defined in terms of a
neighbor function N on the motifs, more formally: {X ′, Y ′} ∈
N({X,Y }) if X ′ ∈ N(X)∧Y ′ = Y or Y ′ ∈ N(Y )∧X ′ = X .

Hence, to ensure that GX′,Y ′ is also likely to share in-
teractions with GX,Y , it suffices to define the neighborhood
function N on motifs in such a way that VX shares proteins
with VX′ for most of the motifs X ′ ∈ N(X).

On the other hand, it is also desirable that N is powerful
enough to move from any {X,Y } to any other {X ′, Y ′} in a
reasonable number of steps, while keeping N({X,Y }) small
enough to keep evaluating all neighbors of {X,Y } tractable.

A. M-SLIDER: Sliding over motifs

In this subsection, we formally introduce a first neighbor-
hood function Nmot on motifs which will be the basis for
M-SLIDER (short for motif-SLIDER) – the method introduced
in [5]. Nmot is based on the observation that looking for a
match of an (`, d)-motif X in a protein can be seen as sliding
a window of length ` with `−d holes over the sequence until
the characters in the holes match the non-wildcard characters
of X . Hence, any motif X ′ obtained by closing one hole and
creating a new one (not too far from the other ones so as to
respect the window size `) will select the same protein we are
sliding the window over. In this way, the motif window can
slide to the left or right if the new hole is punched before the
first or after the last original character. We will call any motif
X ′ a neighbor of X , if it can be obtained from it, by replacing
one non-wildcard character with a wildcard and then adding
a new non-wildcard character making it an (`, d)-motif again.
We can see in Fig. 4 that moving from RTxTxx to KxxTxT, by
closing the hole over the R and opening a new one over the
K, shifts the window to the left. The motif RTxxxA is also a
neighbor, but does not select the same protein.

Next, we formally define Nmot. For a motif X , denote by
trim(X), the motif obtained from X by removing leading and
trailing wildcards. That is, trim(xTxTxx) = TxT. A motif
X ′ ∈ Nmot(X) if X and X ′ have the same length and

trim(Y ) = trim(Y ′) where Y is obtained from X by changing
one non-wildcard character into a wildcard, and similarly for
Y ′ and X ′. In Fig. 4, X equals RTxTxx while X ′ equals
KxxTxT. Now, X ′ ∈ Nmot(X) as X (X ′), can be transformed
into Y = xTxTxx (Y ′ = xxxTxT) by changing one non-
wildcard character into a wildcard and Y equals Y ′ after
stripping leading and trailing wildcards.

Remember that when applying Nmot to pairs of motifs,
one of the motifs remains fixed. From our experiments we
observed that fixing one motif at each step greatly improves
the effectiveness.

It is fairly easy to show that Nmot allows to reach any
{X ′, Y ′} in at most 2(` − d) steps and |Nmot({X,Y })| =
Θ(`2) which keeps evaluating all neighbors tractable for the
typical values for ` and d. Moreover, at least 2d(` − d)
neighbors will select a subnetwork that shares at least one
interaction with GX,Y (see Supplementary Material).

Definition 1: We define the method M-SLIDER as steepest
ascent with
(i) neighborhood function Nmot; and,
(ii) support measure fχ2 .

It can be formally shown that, if we assume that the
number of steps can be bound by a small constant as
observed in our experiments (for instance, in our ex-
periments the number of steps never exceeded 15), M-
SLIDER runs in time O

(
`2 (|V |2 + `|V |λmax)

)
, with λmax =

maxv∈V |λ(v)|. Remark that the former is almost linear in
the size of G, when |G| = |V |2. However, using a theoret-
ical maximum number of steps |V |5, we obtain the bound
O
(
|V |5 `2 (|V |2 + `|V |λmax)

)
(proof in Supplementary Ma-

terial).

B. SEQ-SLIDER: Sliding over sequences

Although a significant number of the neighbors of a motif
pair {X,Y } under Nmot are expected to select a subnetwork
GX′,Y ′ that is also “close” in the network in the sense that
GX,Y and GX′,Y ′ share interactions, this property is not
guaranteed for any neighbor. For that reason, we also designed
a second neighborhood function N seq which focusses on this
aspect, but does not guarantee that all other motif pairs can be
reached by moving from one neighbor to the other. The N seq

neighborhood function forms the basis of our second SLIDER
variant SEQ-SLIDER.
N seq
u defines the neighborhood of a motif X on the sequence

level by considering all (`, d)-motifs that match a region
around the motif hits of X in the sequence of one particular
protein u ∈ VX . The idea is that, in each run, after picking
a random pair {X,Y } that describes some interaction {u, v},
we only consider motif pairs based on the region around the
motifs hits of X in λ(u) and of Y in λ(v), i.e.,

N seq
u,v({X,Y }) = {{X ′, Y } | X ′ ∈ N seq

u (X)}
∪ {{X,Y ′} | Y ′ ∈ N seq

v (Y )}.

In that way, N seq
u,v guarantees that the subnetwork GX′,Y ′

selected by any neighbor {X ′, Y ′} of a motif pair {X,Y }
will always contain {u, v}.
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More formally, for an (`, d)-motif X and a protein u,
denote by pos(X,u) the set of positions of substrings in
λ(u) that match X . An (`, d)-motif X ′ ∈ N seq

u (X) if there
exist positions p ∈ pos(X,u) and p′ ∈ pos(X ′, u) such that
|p − p′| ≤ δ, where δ is some small distance bound (we use
δ = d`/3e). Hence, N seq

u,v({X,Y }) defines the neighborhood
of {X,Y } relative to u ∈ VX and v ∈ VY .

For instance, the two motifs in Fig. 4 are also neighbors
under N seq as they both have matches in the sequence within
the distance bound. The motif KYxTxx is an example of a
motif that would be a neighbor under N seq but not under Nmot

as it differs more than one non-wildcard character from the
original. In fact, it even does not share any amino acids at all
with the original motif. The motif RTxxxA on the other hand
is a neighbor using Nmot but not using N seq as it does not
have any matches within a δ-region of a match of the original
motif.

Thus, for a sufficiently high number of runs, we are likely
to have considered a local optimum under N seq

u,v for each
{u, v} in E, which gives SEQ-SLIDER a bias towards a set of
complementary best motif pairs in the sense that all of them
together are likely to cover more interactions than the set of
best motif pairs returned by M-SLIDER.

From a theoretical point of view however, SEQ-SLIDER has
some disadvantages compared to M-SLIDER: it cannot reach
every motif pair from an arbitrary motif pair and evaluating
all neighbors of a motif pair can be expensive as the number
of neighbors |N seq({X,Y })| can become as large as

(
`
d

)
(2δ+

1)(|pos(X,u)| + |pos(Y, v)|) (see Supplementary Material),
which can become prohibitive for larger values of ` and d.
Nevertheless, as we will see in the experimental section, SEQ-
SLIDER obtains significantly better results than M-SLIDER in
the same time frame for the typically small values of ` and d.

Definition 2: We define the method SEQ-SLIDER as steepest
ascent with
(i) neighborhood function N seq

u,v with δ = d`/3e ; and,
(ii) support measure fχ2 .
Let λmax = maxv∈V |λ(v)|. We formally proved that SEQ-
SLIDER runs in time O

(
δ
(
`
d

)
λmax (|V |2 + `|V |λmax)

)
, if

we again assume the number of steps is constant, and
O
(
|V |5 δ

(
`
d

)
λmax (|V |2 + `|V |λmax)

)
otherwise (proof in

Supplementary Material).

VI. DATASETS

Artificial data. To evaluate the biological relevance of the
different notions of support and the power of heuristic methods
to retrieve the best motif pairs in terms of describing interac-
tions, we created a number of artificial networks as follows.
Each network is composed of 100 proteins which are randomly
chosen out of the well-known yeast network [6]. We then
generate 50 random (8, 3)-motifs3 and implant k instances
of each motif in the sequences of randomly chosen proteins,
with k chosen uniformly from N[3, 10]. Then, we implant
motif pairs by randomly selecting two implanted motifs X

3Using entropy analysis, research has shown that the highest amount of
structural information per sequence length can be found in subsequences of
length 7 to 9 (see Fig. 1 in [20]).

and Y and connecting each protein containing X with each
protein containing Y and repeat this procedure until a chosen
minimal edge density e is obtained — we used 0.1, 0.2 and
0.3. Consequently, the network obtained is perfect in the sense
that there is an interaction {u, v} if and only if a motif pair is
present in λ(u) and λ(v). Because noise and missing data are
an important factor in biological networks, we also evaluate the
resistance to noise of both the support measures and heuristic
methods. To that end, we also created versions of each network
with added noise, by choosing a certain noise level a (from
0.05 to 0.3 in steps of 0.05) and switch the edge relation of
each pair of vertices with probability a (remove the edge if
they are connected and add one if not). We used 105 networks
in total — 5 networks for each (e, a)-combination.

We restrict ourselves to networks of 100 proteins because
this is more or less the maximum size for which we are
still able to mine the motif pairs with highest support for
each support measure by a brute force computation within
a reasonable time frame, which is necessary to evaluate the
results.

As a sanity check, we also constructed networks where only
a small portion of interactions can be explained by a motif
pair. Several tests were run which show that SLIDER performs
similarly in that case (see Supplementary Material).

Biological data. To assess the effectiveness on larger net-
works, we ran our method and MotifHeuristics on the high-
confidence PPI-network of yeast [6] consisting of 1 620
proteins and 9 060 interactions and on the human PPI-
network [15] which has 8 872 proteins and 14 230 interactions
— two of the largest and most complete interaction datasets
available. The interactions in the human network are curated
from the literature [15] and the interactions in the yeast dataset
are determined using tandem-affinity purification followed by
mass-spectrometry (TAP/MS) — a technique which is used to
determine the proteins in a complex [6]. As a consequence,
the interactions determined by TAP/MS contain both direct
and indirect interactions. For that reason, it is expected that
the human dataset contains less false positive but more false
negative interactions in comparison with yeast. Hence, these
two interaction datasets are ideal to assess our methods as they
are

1) large, which allows us to test the scalability of our
methods;

2) as complete as available at the moment, which allows
to assess if the best scoring (`, d)-motif pairs found by
our methods and by a brute force method can describe
the interactions given enough data;

3) complementary in terms of noise, which allows to assess
how the descriptive power of the best scoring (`, d)-
motif pairs of our methods and a brute force method
are affected by different kinds of noise (false positives
vs. false negatives).

VII. EXPERIMENTS

The brute force runs on yeast and human (which calculate
support for each possible motif pair) were run on a computer
cluster. All other experiments were run on a 3GHz Mac Pro
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using 2GB of RAM and 8 cores. In the following, whenever a
timing is mentioned and unless explicitly mentioned otherwise,
the experiment was run using only 1 core. Nevertheless, we
stress that our SLIDER-prototype, implemented in Java, can
use as many processors as are available. In this section, we
experimentally assess the effectiveness of (i) support measures
to assign a support to a motif pair reflecting its power to
describe interactions; and, (ii) neighborhood functions to find
the motif pairs with highest support by exploring the space of
all motif pairs. Furthermore, we compare both SLIDER variants
with other motif-driven CMM-methods. To this end, we need
a notion of precision4 that compares an ordered set of motif
pairs versus a set of motif pairs which is considered to be
the “ground truth”. Finally, we assess the effectiveness of the
SLIDER variants on the yeast and human PPI-networks.

A. Precision for motif pairs

Before we define our notion of precision, we need a similar-
ity measure to compare the found motif pairs against the im-
planted pairs. We define the similarity between an (`, d)-motif
pair {X,Y } and {X ′, Y ′} in a PPI-network G = (V,E, λ) as

s({X,Y }, {X ′, Y ′}, G) =
|EX,Y ∩pos EX′,Y ′ |
|EX,Y ∪ EX′,Y ′ |

where {v, w} ∈ EX,Y ∩pos EX′,Y ′ if there exists substrings
sv and s′v in λ(v) and sw and s′w in λ(w) such that
(i) sv matches with X and sw with Y
(ii) s′v matches with X ′ and s′w with Y ′

(iii) sv and s′v as well as sw and s′w are at the same position
in λ(v), respectively λ(w).

Let S = {M1, . . . ,Mn} be a list of motif pairs, then we
reduce S by deleting for every j from 1 to n, every Mi for
i > j such that s(Mi,Mj) = 1. We denote the reduced version
of S by S∗.

Let T be a set of “ground truth” (`, d)-motif pairs and
let S = {M1, . . . ,Mn} be a list of (`, d)-motif pairs to be
compared against T . We define the precision of S against T
at rank k as the fraction of motif pairs Mi in S∗, 1 ≤ i ≤ k
for which there exists a motif pair MT in T such that
s(Mi,MT ) = 1. We note that, when k = |T |, the precision as
defined above also corresponds to the usual notion of recall5.

B. Evaluation of support measures

We start by assessing the effectiveness of support measures
in assigning a support to a motif pair reflecting its power to
describe interactions. Since the most descriptive motif pairs in
real PPI-networks are unknown, we measure the ability of a
support measure to assign the highest support to motif pairs
on artificial networks with implanted motifs, as described in
Section VI. We used a collection of networks Gae with edge
density e and noise level a. We compare the support measures

4The notion of precision we will use is similar to the notion of sensitivity
of a binary classifier. Specificity, however, cannot be defined for a ranking
problem such as CMM because there is no meaningful notion of true negative.

5Pathetic constructions are possible in which one motif pair is similar
to multiple “ground truth” motif pairs, but these are extremely unlikely in
practice.

by looking at the precision of the best motif pairs obtained by
a brute force method at rank m against the implanted motif
pairs on Gae , where m equals the number of implanted motif
pairs.

In order to make sure that the fχ2 and fp assign a meaning-
ful support, we also implemented two naive support measures
fc and fv . The fc-support in a PPI-network G = (V,E) is
simply the number of interactions covered: fc({X,Y }, G) =
|EX,Y | and fv({X,Y }, G) =

|EX,Y |
Emax
|VX |,|VY |,|VX∩VY | + |VX ∪ VY |

.

fv is the edge density corrected with an extra term in the
denominator to prefer larger subnetworks (Emax

|VX |,|VY |,|VX∩VY |
grows quadratically in |VX ∪ VY |). Both measures are naive
in the sense that they are independent of the interaction
distribution in G. It is straightforward to show that both
measures are compliant, thus meeting the basic requirements
of a support measure. Moreover, they are biclique-maximal.

A visual inspection of the graphs in Fig. 5 already indicates
that fχ2 globally outperforms the other support measures in
selecting motif pairs describing actual interactions. Indeed, at
every data point, the precision of fχ2 is the best value or very
close to the best value of the four support measures considered.
Moreover, comparing precision on noisy networks shows that
fχ2 is vastly more robust to noise — a crucial aspect since
contemporary PPI-networks contain large amounts of both
noise and missing data [19].

When we compare the results of the brute force runs on
yeast for fχ2 and fp, we also notice that the 1 000 best scoring
subnetworks for fχ2 , have an average edge density of 97.2%
and a minimum edge density of 64%, while those for fp have
an average edge density of 14.5% and a maximum edge density
of 16.7%. The edge density for the latter is obviously much
lower than desired.

Thus, we can conclude this experimental section by saying
that fχ2 is superior to all other support measures considered
on all merits.

C. Evaluation of neighborhood functions

We will now confirm that our neighborhood functions,
which are based on a sliding window interpretation on the
sequences, are superior to neighborhood functions which sim-
ply define small perturbations to explore the search space.

In particular, we define the following perturbations: letter
change (LC, replace one non-wildcard character by another);
swap adjacent (SA, swap an adjacent wildcard and non-
wildcard character); and, swap (S, swap an arbitrary wild-
card and non-wildcard character). We denote neighborhood
functions combining these perturbations by concatenating their
abbreviations with boolean operators. For instance, LCandSA
denotes the neighborhood function which requires a letter
change and a swap adjacent perturbation. Finally, we consider
a simple version of Nmot, denoted Nmot

	 , which forces the
motif to slide left or right by only allowing to change the
leftmost (rightmost) non-wildcard character into a wildcard
and demanding that the new non-wildcard character is added
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Fig. 5. Precision of support measures on artificial networks with implanted motif pairs and different edge densities (10%, 20%, 30%).

to the right (left) of the existing ones. The corresponding
neighborhood functions on pairs of motifs are defined sim-
ilarly: one motif is kept fixed, while the other is replaced by
a neighbor. As a naive baseline, we also compare with the
method Random, which evaluates random motif pairs using
fχ2 .

Fig. 6 displays the precision of SA-CMM with each of
these neighborhood functions on five implanted networks of
density 10% and their noisy versions. The displayed precision
is averaged over 5 SA-CMM runs. Runs on the networks of
density 20 and 30% give similar results (data not shown).
As the speed of SA-CMM is highly dependent on the cho-
sen neighborhood function, we provided each run the same
amount of time (10 minutes). In this way, faster neighborhood
functions like LCorSA can process more randomly chosen
starting motif pairs than slower functions like Nmot and N seq

(cf. Fig. 7). As can be seen from Fig. 6, N seq, and thereby
SEQ-SLIDER, outperforms the other SA-CMM variants using
other neighborhood functions, including M-SLIDER which is
second.

For the sake of completeness, we also experimented with
neighborhood functions on motif pairs where both motifs can
be replaced with a neighboring one (in contrast to the previous
neighborhood functions where one is kept fixed). Unfortu-
nately, the precision was never larger than 10%, independent
of the noise level, indicating that in those cases the merit of
a larger neighborhood is overshadowed by the time it costs to
search it.

D. Comparison with existing methods

D-STAR. Tan et al. introduced the first motif-driven method
for CMM: D-STAR [17]. In contrast with our approach, D-
STAR uses (`, d)-motifs in the mismatch model. In the mis-
match model, an (`, d)-motif is simply a string s of length
` and an amino acid sequence is said to contain the (`, d)-
motif s if it contains a substring of length ` that differs
in at most d characters from s. D-STAR is based on the
observation that two strings s1 and s2 which both differ at most
d characters from s, differ at most in 2d characters from each
other. Strictly spoken, D-STAR does not deliver (`, d)-motifs.
Instead it returns two strings sX and sY , and two sets of
proteins VX and VY together with the indices of the substring
of the amino acid sequence of each protein in VX that differs

at most 2d characters from sX , and similarly for VY and sY .
To construct the {VX , VY }-pairs, D-STAR considers for each
interaction {v, w}, each substring of length ` in λ(v) and
λ(w) as the initial strings sX and sY , determines VX and
VY , and evaluates {VX , VY } using fχ2 . As the similarity in
Section VII-A is defined in terms of positions of substrings, we
can directly use the returned subsets VX and VY to compare
with implanted motifs. Every run of D-STAR on the same
network produced the same result, consequently the running
time of D-STAR cannot be parameterized. We used the D-
STAR implementation freely available on the web.

MotifHeuristics. Another method, called MotifHeuristics,
proposed by Leung et al. [11], derives (`, d)-motifs directly
within the wildcard model and introduced the probabilistically
motivated fp-support. Although the authors do not describe
it as such, MotifHeuristics can be seen as a steepest ascent
method in which the neighbors of a motif-pair {X,Y } are all
motif pairs {X,Y ′} at odd steps and all motif pairs {X ′, Y }
at even steps. Because we could not obtain an implementation
of MotifHeuristics, we implemented our own version based
on the algorithmic description in [11] and confirmed the
correctness of the implementation by reproducing all results
on the SH3-dataset from [11].

Comparison. Given that each method relies on different
principles, it is not easy to compare them directly. Both
SLIDER variants and MotifHeuristics share the principle that
they start from a random motif pair which is improved by
local search principles. One could be tempted to compare them
by looking at the results which each method obtains using a
fixed number of motif pair seeds but such a comparison would
favor a method which considers a larger neighborhood in each
step, that is, has an expensive neighbor function. Moreover,
D-STAR is a deterministic method and as such is unable to
improve its results by using more time. For those reasons, we
believe that comparing the results obtained by each method
within a given time frame yields the fairest comparison as
time is the most important constraint for large PPI-networks
and any method method requires time to produce results.

The graph in Fig. 8 depicts the precision of the various
methods on the artificial network of density 10%, including
Random as naive baseline. D-STAR took 5 minutes to finish.
We let Random and both SLIDER variants run once for 10
and once for 20 minutes. In order to give our unoptimized
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Fig. 8. Precision of SLIDER compared
with that of D-STAR, MotifHeuristics and
Random on artificial networks.

implementation of MotifHeuristics a fair chance, we allowed
it to run for 175 minutes. The underlying reason why Mo-
tifHeuristics takes such a long time is that for every search step
a number of supports has to be calculated which approaches
the total number of motifs. The graph makes it quite apparent
that SEQ-SLIDER is vastly superior to all other methods —
the precision obtained by both SEQ-SLIDER runs are so close
to the precision obtained by brute force that they are almost
indistinguishable in the figure. M-SLIDER is second as long
as the network is not too noisy but loses to D-STAR as the
networks become more noisy. It might be noteworthy that D-
STAR finishes in more or less 5 minutes but, as mentioned
earlier, its results cannot be improved by giving it more time.
We also performed 5 minute M-SLIDER runs to make the
comparison with D-STAR more fair and in that time frame
M-SLIDER’s precision is only better than D-STAR’s for the
original networks. On the other hand, if we give M-SLIDER
more time it beats D-STAR on all noise levels. Somewhat
surprisingly, Random performs better than MotifHeuristics.
Calculating fp-support for an enormous amount of neighbors
takes so much time that our implementation of MotifHeuristics
could handle only about 120 initial motif pairs in 175 minutes.
Hence, this experiment indicates that even a random search
using fχ2 is a better approach to retrieve implanted motif pairs
than a heuristic search using fp.

Overall, both SLIDER variants are more effective and robust
than its competitors although M-SLIDER needs more time to
outclass D-STAR on these small networks.

We conclude the comparison by pointing out that both
SLIDER variants obtain a precision>80% in 20 minutes on
the original networks, which is quite fast in comparison with
the 40 hours necessary to obtain the best motif pairs by brute
force.

E. Biological validation

Next, we assess the effectiveness of SLIDER on two of
the largest real-life PPI-networks: the yeast network and the
human network.

Retrieving the best motif pairs. We will first assess if
M-SLIDER and SEQ-SLIDER are still capable of retrieving
the best motif pairs on networks of this size. As the motif

pairs which describe the interactions in the real PPI-networks
are not known, we use the 1 000 best scoring motif pairs
obtained by a brute force algorithm as the “ground truth”.
Hence, the notion “precision” is a bit misleading here because
the real motifs describing the interactions are unknown and
might not even exist because of the limitations of the (`, d)-
motif model. Nevertheless, from a purely theoretical point
of view, calculating precision against the best scoring motif
pairs is a correct and objective merit to assess the capability
of our methods to find the best motif pairs according to the
model. Moreover, because in this setting we are guaranteed to
compare against all best scoring motif pairs, we do not have
to rely on the positional similarity measure and can compare
the two sets of motif pairs directly.

To give an idea, the brute force computation for (8,3)-motif
pairs on the yeast network occupied about 100 nodes in the
cluster spanning a period of 2 weeks.

We ran M-SLIDER and SEQ-SLIDER for 20 minutes exploit-
ing all 8 cores of the Mac Pro. The average precision of the
1 000 best results returned by M-SLIDER over 5 runs is 14%,
that of SEQ-SLIDER is 74.2%. The number implies that SEQ-
SLIDER succeeds in recovering 742 of the 1000 best correlated
motifs out of a search space of 6×1015 (8,3)-motif pairs after
only a run of 20 minutes which is quite satisfactory. As SEQ-
SLIDER returns a ranked list, these 742 motif pairs occur at
the top.

Biological relevance of best motif pairs. We will now
assess the biological relevance of the results of the brute
force algorithm, SEQ-SLIDER and MotifHeuristics on the yeast
network and the human network. We used our own implemen-
tation of MotifHeuristics, but allowed it to run significantly
longer. We did not assess D-STAR, because even though D-
STAR terminated on our artificial networks within 5 minutes,
the method does not scale to larger networks. In particular,
Leung et al. [11] mention an experiment where they executed
D-STAR on the yeast network and it did not finish in 5 days.
We ourselves have run D-STAR on this network for a month
without result. We took protein structures from the protein
databank (PDB) [3] and selected only those that could be
mapped to proteins in the human and yeast networks (using
pdb_homologs.tab from yeastgenome.org for yeast
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and the GTOP database [10] for human), with blast e-value
< 1E-10. We discarded any structures where no two separate
chains of the structure could be mapped to two interacting
proteins in one of the networks, or where one or both of
those proteins didn’t contain a motif from the result. Sub-
sequently, we used NACCESS [9] to calculate relative solvent
accessibility (RSA) of each residue in the PDB structures.
The higher RSA, the more at the surface a residue is. Protein
sequences were aligned with PDB protein sequences, and in
this way the solvent accessibility of residues covered by a
correlated motif was obtained (see example in Fig. 9). This
was done two times for each residue: once in the structure of
the complex (two chains bound to each other) and once in the
free protein chain. The solvent accessibility of these residues
in the single proteins was compared with that in the protein
complex structure. Residues which have a smaller accessibility
in the complex, are considered to be at the interaction site.
For example, for the residues listed in Fig. 9, the first, second,
fourth and eighth residue, respectively R, D, P and F, have
accessibility 35.6, 39.2, 33.3 and 7.5 in the single chain, but
only 1.2, 18.0, 6.0 and 0 in the complex, which implies that
that they are indeed at the interaction site.

Unfortunately, because of the limited available structure
information, none of the proteins of the human network
survived both the PDB-mapping and motif-filtering phase for
(8,3)-motifs obtained by SEQ-SLIDER. The number of proteins
remaining for yeast is also extremely small, as can be seen
from Fig. 10. For that reason, we ran the brute force method
and SEQ-SLIDER using (the less informative) (8,5)-motifs
where we used all 8 cores of our machine for an hour and
15 minutes (for an equivalent of 10 hours of computation
on a single core) for both the yeast and human network to
increase the number of motif hits for which RSA values can
be obtained. Each of these results gave us 1 000 motif pairs
ranked by their χ2-support. We ran our own implementation of
MotifHeuristics for the equivalent of a month of computation
time.

In order to see if the current (real) motif pair interface cover-
age is statistically significant, we prepared 100 sets of random
motif pair occurrences in the sequences from the interaction
network and analyzed how many of them have more motif
pair interface coverage than the real data. These datasets were
generated from the original result set by choosing a random
new position for each motif hit in the sequence in which it
appears. Results of this comparison are shown in Fig. 10.

Both for the yeast and human network we have significantly
more overlap than random with the interface. Notably, for
the human network only 2 out of the 100 random sets have
at least 45% of their motifs overlapping with the interface
(as observed for the SEQ-SLIDER motifs). In this run, the
average of the percentage of motif hits overlapping with the
interface is 36.5 for the random motif hits and the standard
deviation 4.5. The fact that SEQ-SLIDER has more overlap
with the interaction site than brute force can be explained by
the more complementary nature of the SEQ-SLIDER motif
pairs – their motif hits cover more regions in the sequences
(see Supplementary Material).

We also ran MotifHeuristics on the large-scale networks. As

the method did not return a single motif pair after ten hours,
we allowed it to run for a full month, still producing less
motif pairs than SEQ-SLIDER in a ten-hour run. We restrict
the comparison to the same number of found motif pairs.
SEQ-SLIDER still finds a larger overlap with the interface (See
Fig.10.

Using an additional cutoff for the interface (i.e. not only
requiring change in RSA upon complexation but also that RSA
in free protein is above a cutoff) does not change much in
analysis (data not shown).

Conclusion. We find significant overlap of motif hits with
interface residues for SEQ-SLIDER, on both the yeast and
human results. That being said, the results on human are re-
markably better than those for yeast. Our experimental results
seem to suggest that the model itself is better in describing
the interactions in the human network than the interactions in
the yeast network. A possible explanation for the skewness in
these results is that the (`, d) with χ2-support model suffers
more from false positives caused by indirect interactions,
which are prominently present in the yeast network, than from
false negatives, which are assumed to be common in the human
network, as explained above.

It might be worth pointing out that, as far as we know, this is
the first effort to assess if CMM is able to produce biologically
meaningful results from genome-wide PPI-networks.

VIII. RELATED WORK

Steepest ascent is not only the oldest, but also the simplest
among the known metaheuristics for combinatorial optimiza-
tion [4]. Several others exist that would avoid getting stuck
in local optima and move on to a better, global optimum.
We tried simulated annealing with several parameters for
its starting temperature, annealing schedule and acceptance
function and found no improvement upon our steepest ascent
algorithm, we even found it to generate worse results. The
more advanced metaheuristics improve upon steepest ascent by
escaping a local optimum by taking a few steps in a direction
that decreases the support to gain access to a region from
where a better local optimum can be reached. We checked if
such a search path is feasible for the neighborhood function
N seq. As N seq always takes its motifs from two proteins, we
can visualize the search space (for one starting seed) as a
2D plane. Each point (x, y) on this plane represents the best
support out of all possible motif pairs {X,Y } where X starts
at position x and Y at position y. We have visualized these
search spaces for several interacting motif pairs in the yeast
network and found that the local maxima are too far away
from each other to be reached by such an approach. We also
observed that the search space contains several positions where
all neighbors have the same support. Steepest ascent would
immediately stop at these points, where simulated annealing
would continue to walk around randomly until it has moved its
allotted steps. Hence, it appears that the search landscape of
CMM is not suitable for these more advanced metaheuristics.

At first sight the present work seems highly related to
the mining of frequent patterns in sequences (as for instance
in [8]). It is therefore tempting to think about a method which
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Fig. 9. Left: Mapping a motif hit of RDxxxxNx (rank 7, SEQ-SLIDER) in protein 18 010 of the human network to PDB 1Y8Q, chain C. The residues in
bold are at the interaction site according to the RSA values. Its partner motif GxGxxGxx also occurs at the interface of the complex. Right: Two interacting
chains C and D of PDB 1Y8Q in white and black and the two motif hits in gray.

Position in protein 321 322 323 324 325 326 327 328
Residue R D P P H N N F
Position in PDB 322 323 324 325 326 327 328 329
Residue R D P P H N N F
RSA (single chain) 35.60 39.20 8.90 33.30 21.00 1.20 0.80 7.50
RSA (complex) 1.20 18.00 8.90 6.00 21.00 1.20 0.80 0.00

Fig. 10. Occurrences at surface and at interaction site compared to random sampling.

Network (Nprot / Nint) Yeast HC (1620/9060) Human (8872/34230)

Method Brute force Brute force SEQ-SLIDER Brute Force SEQ-SLIDER

Parameters χ2, (8,3) χ2, (8,5) χ2, (8,5), 600min χ2, (8,5) χ2, (8,5), 600min

Proteinsa 252 949 949 229 229

Motif hitsb 48 5 335 1 157 188 137

At interaction site 13 (27%) 2 103 (39%) 335 (29%) 61 (32%) 62 (45%)

Random ≥ at interaction sitec 37% 48% 12% 23% 2%

Method SEQ-SLIDER MotifHeuristics SEQ-SLIDER MotifHeuristics
Parameters χ2, (8,5), 600min p, (8,5), 1 month χ2, (8,5), 600min p, (8,5), 1 month

Results used 400 400 24 24

Proteinsa 926 949 156 208

Motif hitsb 817 615 13 14

At interaction site 319 (39%) 224 (36%) 8 (62%) 8 (57%)

Random ≥ at interaction sitec 6% 50% 4% 8%

aBoth proteins of a pair should contain at least one motif from the result.
bNumber of motif-protein hits after filtering data such that only motif hits for which a complementary motif hit is present in an interacting

protein (with both protein having an associated structure) are kept.
cThe percentage of randomly generated motif hit datasets that have more hits at interaction sites than the result of the method.

first mines frequent motifs from protein sequences which are
then paired together in a second step serving as candidates for
high scoring correlated motifs. An examination of the 1 000
top correlated motifs in yeast, however, reveals that each of
the participating motifs occur only in 3 to 10 proteins, whereas
highly frequent motifs in yeast occur in up to 60 proteins as
can be seen from the histogram in Fig. 11. Therefore, mining
correlated motifs is very different from mining frequent motifs.

1 10 20 30 40 50 60

1
1
0
0

1
0
0
0
0

1
0
0
0
0
0
0

Fig. 11. Number of (8,3)-motifs (y-axis) selecting a given number of proteins
in the yeast network (x-axis).

IX. CONCLUSION

This work lays the foundation of motif-driven CMM in
establishing an adequate support measure and determining the
complexity of the general problem. The novel generic meta-
heuristic SLIDER based on the sliding window neighborhood
function outperforms existing motif-driven CMM algorithms
and shows a very promising behavior on real-world PPI-
networks. Of course, there is still room for improvement.
There are several directions for future work such as inves-
tigating candidate generation for motif pairs. A detailed com-
parison with interaction-driven approaches [12]–[14] should
be done, although this would require a new type of arti-
ficial networks. Maybe ideas from both paradigms can be
successfully combined into a hybrid method. Furthermore,
we only considered the very simple model of (`, d)-motifs
and our results suggest that this model suffers from false
positives caused by indirect interactions. Although more ex-
pressive models exist (e.g., Position Weight Matrix or Hidden
Markov Model), (`, d)-motifs are very common in the field of
bioinformatics. Moreover, Van Dijk et al. [18] already showed
how motifs generated by D-STAR can be used to predict
protein interactions in small networks. Using SLIDER rather
than D-STAR, the same methodology can be applied to larger
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networks. Nevertheless, it would be worthwhile to investigate
more expressive motifs.

Finally, we mention that we could not confirm the claimed
superiority in [11] of MotifHeuristics over D-STAR. In fact,
our results clearly show that fp is inferior to fχ2 in recovering
implanted motifs. These tests should be repeated on real world
data, but as long as only few biological correlated motifs are
known this is not possible.
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[20] M. Šikić, S. Tomić, and K. Vlahoviček, ”Prediction of protein-protein
interaction sites in sequences and 3d structures by random forests,”
PLoS Comput Biol, 5(1):e1000278+, 2009.

Peter Boyen received the BSc degree in computer
science from Hasselt University in 2005 and the MSc
degree in computer science from Hasselt University
in 2007. He is currently a PhD student with the
Department of Computer Science at Hasselt Univer-
sity. His research interests include protein interaction
networks and graph alignment.

Dries Van Dyck received his PhD degree in com-
puter science from Ghent University in 2004 and
currently holds a position at Hasselt University as
postdoctoral teaching assistant. His main research
interests are algorithmic graph theory, heuristics for
hard (graph) problems, graph mining and mining
biological data. For his PhD, he also worked on
graph structural properties of cubic graphs.

Frank Neven received his PhD degree in Com-
puter Science from Limburgs Universitair Centrum
in 1999. Since 2001, he is a professor at Hasselt
University. His main research interests are databases
and data mining, formal languages and automata,
and logic in computer science.

Roeland C.H.J. van Ham received his PhD degree
in Biology from Utrecht University in 1994. At
present, he is group leader Bioinformatics at Plant
Research International, Wageningen, and associate
professor Bioinformatics at Wageningen University.
His research interest is broadly in plant bioinfor-
matics and methodology for integrative analysis of
omics data.



14

Aalt D.J. van Dijk received his PhD degree in
Chemistry from Utrecht University in 2006. At
present, he is a researcher in the Bioinformatics
group at Plant Research International, Wageningen
University and Research Centre. His main research
interests are protein-protein interactions, transcrip-
tion factor - DNA interactions, computational struc-
tural biology, and modelling the dynamics of net-
works of interacting proteins.


