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Selection and Evaluation of Gene-specific
Biomarkers in Pre-clinical and Clinical

Microarray Experiments

Summary

Biomarker discovery has become one of the major drivers of pharmaceutical re-
search and drug development. Over the last five years, microarray experiments have
become an increasingly common laboratory tool allowing investigation of the activity
of thousands of genes simultaneously (Amaratunga and Cabera 2004). This enables
the determination of genomic biomarkers using microarray experiments. In these ex-
periments, some responses are measured indicating the outcome of the treatments. In
such situations, the primary question of the study is whether the gene expression can
serve as a biomarker for the responses or not. In this paper, we distinguish between
two types of biomarkers: in the first type, the association between the gene expression
and the response with adjustment for treatment effect can be captured by a straight
line, while in the second type, the treatment effect both on the gene expression and the
response plays a central role. We propose a joint model for the gene expression and
the response, which allows the investigator (1) to detect differentially expressed genes
as biomarkers and (2) to identify genes associated with the response.

Keywords: Joint Model; Microarray Experiments; Biomarkers; Differentially Ex-
pressed Genes.

1 Introduction

Biomarkers play an increasingly important role in improving the effectiveness of drug re-

search and development in pharmaceutical industries. In both pre-clinical and clinical trials,

biomarkers have the potential to encourage innovation, improve efficiency, save costs, and

gain research organizations a valuable advantage over their competitors. In this paper, we

focus on the microarray setting, in which data are available from a single trial. For each
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subject, microarray data (X) together with a (clinical/experimental) response variable (Y)

are available under various conditions/treatments (Z).

Several authors have discussed the issue of using gene expression data to predict a specific

response. In particular, Nguyen and Rocke (2002) discussed the case, in which gene expres-

sion data are used as predictors in a Cox proportional hazard model. Dimension reduction of

gene expression data is done by applying the partial least squares method which maximizes

the covariance between the response Y and a linear combination of the gene expression data.

Tan et al. (2006) similarly used the partial least squares method, for data reduction in the

context of cytotoxicity experiments. More recently, Bair et al. (2006) used supervised prin-

cipal components analysis to predict a survival response using gene expression as predictors.

The analysis presented in this paper aims at finding a subset of genes, that are associated

with the response and can be used as biomarkers, which follows similar lines as the one pre-

sented in the the case studies of Nguyen and Rocke (2002) and Bair et al. (2006). However,

we should take into account that both gene expression and the response are influenced by

the treatment that was administrated to the subjects before and after the experiment.

In what follows, we focus on continuous responses and we employ two case studies to il-

lustrate two types of genes, that can serve as biomarker for the response. The first one

was carried out in a clinical trial with 19 depressed patients followed up by anti-depressant

treatments; the Hamilton Depression (HAMD) score of each patient was recorded as the

primary clinical outcome. The second study involved 24 rats in two treatment groups and

the response of primary of interest is the distance traveled by the rat on the experimental

surface. In both examples, we address two questions of primary interest (1) which genes are

differentially expressed (i.e., the treatment has a significant effect on the gene expression)

and (2) which genes are associated with the response (i.e., whether the investigator can draw

any conclusions about the distance traveled by the rats and the HAMD scores, based on the

gene expression data).

A detailed introduction of the joint model to evaluate the association between the gene

expression and the response after adjusting for the treatment effect in pre-clinical and clinical

microarray experiments is given in Section 3.1. A graphical interpretation of the relationship

between biomarker genes and the response is given in Section 3.2. We distinguish between

two types of relationship: in the first type (prognostic biomarker) the correlation between the
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gene expression and the response can be summarized by a straight line, while in the second

type (therapeutic biomarker) the focus is on the effect of treatments on the response and the

gene expression. As the gene-specific joint model for the gene expression and the response

of primary interest is fitted, the adjusted association, proposed by Buyse and Molenberghs

(1998), which can be derived from the covariance matrix of the error component, is used to

test for the first type of association. Moreover, for the case that the association between

gene expression and the response is not linear, we propose two new measures, (1) the relative

deviance reduction, which is used, in analogy with the adjusted association, to evaluate the

quality of a second type of biomarker with therapeutic treatment effect and (2) R2 by using

the support vector regression methodology in Section 3.3. In Section 4, the results obtained

using the methods above to the case studies are presented. The paper ends with some

discussions and conclusions in Section 5.

2 Data

2.1 Case Study I: Clinical Study of Depression

The first of two case studies is a clinical depression study involving one hundred partici-

pants (66% females) with major depression (50 from Sydney, New South Wales and 50 from

Adelaide, South Australia). Participants have been referred from the practicing general

practitioners and psychiatrists. In addition, 31 patients have been followed up 4-6 weeks

after commencement of treatment with antidepressants. However, out of the 31 depressed

patients which had measurements after treatment, there are only 19 patients available for

both the gene expression and HAMD score. There were a total of 17,502 genes measured for

each patient using microarray Affymetrix chips. In addition to the gene expression, storage

time of the samples, age, gender, and season when the samples were collected and wether or

not the subjects fasted were recorded for each patient. The response of primary interest is

the change from the baseline HAMD score.

Figure 1a shows the change in HAMD score before and after the anti-depressant treatments.

In Figure 1b we have genes with strong association with the HAMD score after correcting for

the different confounding effects as can be seen from the linear pattern in the plot. Figure 1c

gives an example of a gene that has shown weak association with the response as the points
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form a cloud with no apparent pattern. As stated earlier the objective is to find genes

which have strong association irrespective of the effect of treatment and other confounding

variables.

Figure 1 about here.

2.2 Case Study II: Behavioral Experiment of Distance Travel by
Rats

The second case study was obtained from a behavioral experiment, in which 24 male, ex-

perimentally naive Long-Evans rats obtained from Janvier (France), weighing 300–370 g at

the start of the experiment were randomized into two treatment groups (12 rats in each

group). Quinpirole hydrochloride (Sigma-Aldrich) was dissolved in physiological saline and

administered at a dose of 0.5 mg/kg administered s.c. (the method used by Szechtman et al.

1998). Equivalent volumes of saline were used in solvent injections. Animals were tested in

a large open field. Two data sets also encompassed behavioral data; in addition, microarray

data were collected. Rat behavior data parameters, suggested by Szechtman et al. for the

definition of compulsive checking, were recorded systematically. In particular, the parameter

of primary interest is defined as the distance traveled by the rats. The active response to

the treatment doses is expected to increase this distance. After dose administration, rat

microarray chips were taken through cutting the rat’s brain into the frontal, striatum, and

thalamus parts. Thus, there are three microarray chips for each animal, and thousands of

gene expressions are measured within each chip. Each chip measured the expression levels

of 5644 genes for each rat. All microarray related steps, including the amplification of total

RNAs, labeling, hybridization, and scanning were carried out as described in the GeneChip

Expression Analysis Technical Manual, Rev.4 (Affymetrix 2004). For the illustration pur-

pose, we use microarray data of the thalamus part for analysis.

Figure 2a shows the boxplot for the total distance traveled by rats in each treatment group,

Figure 2b shows a boxplot of gene expression (for gene 345), and Figure 2c, a scatterplot for

the response and the gene expression (for gene 345), where the response, distance traveled

by rats under two treatment conditions, is statistically significant (p < 0.0001), as obtained

from a two-sided t-test. Note that, after adjusting for the treatment effect, the association
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between the residual response and residual gene expression does not seem to be linear in

Figure 2d. This is in contrast with the pattern revealed by gene 331, shown in Figure 2e,

whose association seems to be linear in the scatterplot after adjusting for the treatment

effect, as shown in Figure 2f .

Figure 2 about here.

3 Methods

3.1 A Gene-specific Joint Model

In this section, we discuss a joint model for the gene expression and the response, which

allows us to test the two questions of primary interest, namely, which gene is differentially

expressed and which gene can serve as a biomarker. Following Buyse et al. (2000), we define

a gene-specific joint model, in which the linear predictors of the response and the gene

expression are given by

E(Xij|Zi) = Ziαj, j = 1, . . . , m ; i = 1, . . . , n,

E(Yi|Zi) = Ziβ.
(1)

Here, Zi is a known design matrix of intercept and treatments, αj is a gene-specific parameter

vector for gene j, and β is the parameter denoting the treatment effect upon the response.

Note that (1) is a gene-specific model and, in practice, is fitted for each gene separately, a

procedure often termed “gene-by-gene” analysis. It is further assumed that the two outcomes

are normally distributed:
(

Xij

Yi

)
∼ N

((
Ziαj

Ziβ

)
, Σj =

(
σ

jj
σ

jY

σ
jY

σ
Y Y

))
. (2)

In the context of surrogate-marker evaluation in randomized clinical trials, Buyse and Molen-

berghs (1998) proposed the adjusted association as a measure of association, a coefficient

derived from the covariance matrix of gene-specific joint model (2):

ρj =
σ

jY√
σ

jj
σ

Y Y

. (3)

Indeed, ρj = 1 indicates a deterministic relationship between the gene expression and the

response, in the sense that, given gene expression, a perfect prediction of the HAMD score
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is possible. Note that, ρj can be equal to 1 even if the gene is not differentially expressed as

we will illustrate in the next section. For the special case that the only covariate included

in the model is a treatment variable, as in the behavioral experiment, joint model (1) can

be rewritten as

E(Xij|Zi) = µj + αjZi, j = 1, . . . , m ; i = 1, . . . , n,

E(Yi|Zi) = µY + βZi.
(4)

Here, αj and β are the gene-specific and the outcome treatment effects, respectively. Condi-

tioning on a specific gene, (4) is equivalent to the surrogacy model for a single trial, proposed

by Burzykowski et al. (2005).

Alonso and Molenberghs (2007) derived an appealing expression, generalizing R2, as will be

described next. In the continuous-outcome case, it derives from the models:

E(Yi) = Ziβ, (5)

E(Yi|Xij) = Ziβ + γjXij. (6)

Here, γj is the gene-specific effect upon the outcome. Note that the gene specific model (6)

is similar to the underlying model presented in Bair et al. (2006) and it is implied by the

joint model. For the special case that the only covariate in the model is the treatment, the

joint distribution of X and Y and the mean structure in (6) implies the following conditional

model:

Yi|Zi, Xij ∼ N(δ0 + δ1Zi + δ2Xij, σ
2)

where δ0 = µY − σjY σ−1
jj µj, δ1 = β − σjY σ−1

jj αj, δ2 = σjY σ−1
jj and σ2 = σY Y − σ2

jY σ−1
jj .

Further, Alonso and Molenberghs (2007) and Tilahun et al. (2009) showed that R2
h can be

obtained from

R2
hj = 1− exp

(−G2

n

)
, (7)

where G2 denotes the likelihood ratio statistics to compare models (5) and (6), and n is the

sample size.
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3.2 Graphical Interpretation of Association Between Biomarker
and Response

Figure 3 shows scatter plots of three hypothetical examples of the relationship between

gene-expression (X) and response (Y ). Circles represent values for one treatment group and

pluses depict measurements for the other treatment group. In all examples, the treatment

effect upon response is significant. The upper three panels present the scatter plot of gene-

expression versus the response, while the lower three panels show the scatter plot of the resid-

uals (after adjusting for treatment effects) for both response and gene-expression. In panel

a, the gene is not differentially expressed, but there is a linear association of gene-expression

with response. Note that the linear pattern remains after adjusting for the treatment effect,

as shown in panel d. We term a gene with this pattern a prognostic biomarker. Panel b

shows an example in which the gene is differentially expressed, the two treatment groups are

clearly separated, but the association between gene-expression and response does not have a

linear appearance, which can be seen also in panel e. We term a gene with this type of rela-

tionship a therapeutic biomarker. Panel c shows a combination of both preceding patterns.

A gene is differentially expressed and the treatment effect upon response is significant, the

two treatment groups are clearly separated with respect to gene-expression and response,

and the association between gene-expression and response can be summarized by a straight

line. This can also be seen from panel f , which shows the same example after adjusting for

treatment effects. We term a gene with this type of relationship a prognostic/therapeutic

biomarker. It is expected that the adjusted association will capture the linear association in

panel c and f , but will not apply to the therapeutic biomarker in panels b and d.

Figure 3 about here.

3.3 Inference and Evaluation of Association Measures for Both
Types of Biomarkers

3.3.1 Adjusted Association for Prognostic Biomarkers

Within the microarray setting, we test whether or not a gene can then serve as a prognostic

biomarker, which can be used to predict the response. Thus, one needs to test the hypotheses

HB
0j : ρj = 0,

HB
1j : ρj 6= 0,

(8)
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where ρj is defined in (3). A gene is declared an up-regulated prognostic biomarker if the

null hypothesis in (8) is rejected and ρ̂j > 0, and a down-regulated prognostic biomarker

when ρ̂j < 0.

A prognostic biomarker, where ρj is found to be significant, can be evaluated using an

estimate ρ̂j, which measures the linear association between gene-expression and response,

after accounting for treatment effects. It is the square root of the R2-measure based on the

joint model in (4).

3.3.2 R2-type Measures for Therapeutical Biomarkers

A typical analysis of DNA microarrays allows monitoring expression levels of thousands of

genes simultaneously, and identifying differentially expressed genes. This type of genes has

potential to be identified as therapeutic biomarkers, for which the treatment effect on the

gene-expression can be predictive for the treatment effect on the response. For this purpose,

we test which genes are differentially expressed using (4). Hence, for each gene, we test the

hypotheses

HA
0j : αj = 0,

HA
1j : αj 6= 0.

(9)

Testing the treatment effect upon the response consists of testing H0 : β = 0 versus H1 :

β 6= 0. Note that the case, in which both HA
0j : αj = 0 and H0 : β = 0 are rejected, implies

that the gene is a potential therapeutic biomarker. In case that HA
0j : α = 0, H0 : β = 0,

and HB
0j : ρj = 0 are rejected, the gene is declared as a potential prognostic/therapeutic

biomarker.

The R2 measure based on the linear regression models discussed in the previous section

is used to quantify the level of association between the response and the gene expression

for prognostic biomarker. In what follows, we use different predictive models, namely, the

regression tree and support vector regression in order to evaluate the quality of a candidate

biomarker in the case that the association can not be summarized by a straight line.
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3.3.3 Evaluation Using Tree-based Method

In order to evaluate the quality of therapeutic biomarkers, the adjusted association ρj is not

applicable. Thus, we follow the information-theory approach of Alonso and Molenberghs

(2007) and propose a measure for therapeutic biomarker, i.e., the relative deviance reduction.

The total variability of the response, the deviance, without any information about the gene-

expression level can be measured by

D(Y ) =
n∑

i=1

(Yi − µ̂)2 , (10)

where µ̂ = 1/n
∑n

i=1 Yi and i = 1, . . . , n indexes the arrays. For a therapeutic biomarker,

because gene-expression is differentially expressed, one can use the gene-expression level to

predict the response level. While a linear regression model is not an appropriate model for

this type of biomarker, a regression tree model (Venables and Ripley 1994), in which the

gene-expression is the only predictor, can capture the structure of the data, as shown in

Figure 4.

Figure 4 about here.

Moreover, because the gene is differentially expressed, we can restrict the tree to have only

two terminal nodes (two final homogenous groups of the response), in which the cutoff point

(or the split point) is determined only by the gene-expression level. An example of the cutoff

point is shown as the vertical line in Figure 4. Let k denote the number of terminal nodes

in the tree and let D(Y |X, k = 2) denote the sum of deviances for the terminal nodes,

D(Y |X, k = 2) = D1(Y |X) + D2(Y |X)

=
∑

Yi∈k1
(Yi − µ̂1)

2 +
∑

Yi∈k2
(Yi − µ̂2)

2 ,
(11)

where D1(Y |X) and D2(Y |X) denote the deviance in each of the terminal nodes, k1 and

k2 denote the sets of subject indices corresponding to the two terminal nodes, and µ̂1 and

µ̂2 are the mean response in the two terminal nodes. The deviance reduction, D(Y ) −
D(Y |X, k = 2), measures the gain in prediction of the response level using gene-expression,

as compared to the case where the gene-expression is not used. In other words, the reduction

in deviance measures whether information about the gene-expression is relevant for predicting

9



the response level. The relative deviance reduction, R2
D, is given by

R2
D =

D(Y )−D(Y |X)

D(Y )
=

D(Y )−D1(Y |X)−D2(Y |X)

D(Y )
,

=

∑n
i=1 (Yi − µ̂)2 − [∑

Yi∈k1
(Yi − µ̂1)

2 +
∑

Yi∈k2
(Yi − µ̂2)

2]
∑n

i=1 (Yi − µ̂)2 . (12)

Similar to R2 in linear regression, R2
D measures the proportion of variability explained by the

regression tree model. It is easy to see that R2
D, as a measure of association, is equivalent to

the variance reduction factor discussed by Alonso et al. (2003). Moreover, in the case where

the model has two terminal nodes and we fit a regression model Yi = β0 + β1Xij, one can

easily see that the R2 of the regression model and the R2
D of the regression tree are equal

(i.e., R2 = R2
D) for gene j.

Following Alonso and Molenberghs’ (2007) information-theory approach, it is easy to see

that both R2
indiv (i.e., the square of ρ (3)) and R2

D belong to the family of information-

theoretic association measures. This is a crucial point, as it implies that, although prognostic

and therapeutic biomarkers are evaluated using different validity measures (i.e., ρ and R2
D,

respectively), both measures can be interpreted in the same way. Both R2
indiv and R2

D measure

the proportion of information in the response captured by using the gene expression.

3.3.4 Evaluation Using Support Vector Regression

The term support vector machines (SVM) refers to a family of learning algorithms that is

nowadays considered as one of the most efficient methods throughout a variety of applica-

tions. In particular, in regression and time-series prediction applications, excellent perfor-

mance has been obtained (Drucker et al., 1997; Müller et al., 1997; Stitson et al., 1999;

Mattera and Haykin, 1999). SVM is a supervised learning technique for classification and

regression. The SVM algorithm is a non-linear generalization of the so-called generalized

portrait algorithm developed in the sixties by Vapnik and Lerner (1963) and Vapnik and

Chervonenkis (1964), but the first practical implementation was only published in the early

nineties. Ever since, the popularity of the method has been growing among the machine

learning and statistical communities. SVM can also be applied to regression problems by

the introduction of an alternative loss function (Smola, 1996). The loss function must be

modified to include a distance measure. SVM regression uses the ε-insensitive loss function.
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If the deviation between the predicted and actual values is less than ε, then the regression

function is considered good, which can be mathematically expressed as: −ε ≤ ω ·Xij−b−Yi.

From a geometric point of view, it can be seen as a band of size 2ε around the hypothesis

function and any point outside this band is considered a training error. Suppose the outcome

can be explained by a linear model; the goal is to find a fitting hyperplane 〈ω, Xij〉+ b = 0.

Formally, we need to minimize ‖ω‖2/2, subject to the constraints Yi − 〈ω,Xij〉 − b ≤ ε and

〈ω, Xij〉−Yi ≥ ε. To account for training errors and the possibility of handling non-linearity,

we can map the input data Xij into a, possibly higher-dimensional, so-called feature space

Φ(Xij) and introduce some weights into our optimization problem, which now becomes:

min
‖ω‖2

2
+ c ·

N∑
i

(ξi + ξ̂i),

subject to the constraints:

Yi − 〈ω, Φ(Xij)〉 − b ≤ ε + ξi,

〈ω, Φ(Xij)〉 − Yi ≥ ε + ξi,

ξi, ξ̂i ≥ 0.

We thus need to solve a constrained optimization problem. It turns out that, in most

cases, it can be solved more easily in its dual formulation. Moreover, the dual formulation

provides the key for extending SVM to non-linear functions. Hence, we will use a standard

dualization method using Lagrange multipliers, as described in Fletcher (1989). For more

details, we refer to Vapnik (1995). Several kernels can be used. We focus on: (1) polynomial:

(γ(〈Xij, Xkj〉 + δ)d; (2) radial basic function (RBF): exp(γ‖Xij, Xkj‖2); and (3) sigmoid:

tanh(γ(〈Xij, Xkj〉+ δ).

To select a kernel, all three kernels were tuned using cross-validation for a subset of genes

with high R2
D, and finally, the kernel, together with the set of parameters that produces the

smallest mean squared error is retained for all the genes. In this way, we controlled for the

risk of over-fitting, given that the set of parameters used to obtain the final model are selected

using a cross-validation procedure. We then go on to evaluate the model performance for

each of the observations left out in the cross-validated samples and thus the ability of the

model to generalize beyond the fitting data. In this paper, as Hsu et al. (2001) pointed

out, our choice is for the RBF kernel, which can handle the non-linear mapping and has few
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parameters to be controlled (C between 0.25 and 6, with step of 0.25 and γ between 0.5

and 50 with step of 0.5). The parameters C and γ obtained from the tuning process were

then used to estimate the measure of association. Similar to the case of regression trees, the

association measure can be computed using the ratio between the portion of the variability

not explained by the model and the total variability of the residuals from the response:

R2
SV M =

D(Y )−DSV MR(Y | X)

D(Y )
.

D(Y ) can be calculated as in (12), and DSV MR(Y | X) is the sum of the squares of the

differences between the actual value (Yi) and their estimated value obtained when the SVM

regression model is employed.

4 Application to the Data

4.1 Case Study I: Clinical Study of Depression

As mentioned in Section 2, 17,502 genes and the HAMD scores were measured before and

after the anti-depressant treatment for the 19 patients. Now, denoting the difference in

HAMD score before and after treatment by Yi, and the gene differences by Xij, the adjusted

association ρ and R2 values were computed for all genes after correcting for some other

variables, such as storage time, gender, and age of the patient using the models discussed in

the preceding sections. These values were also obtained from leave-one-out cross validation

data. Note, however, because all patients are treated, that there is no need to adjust for

treatment effect given that the treatment effect is accounted for by taking the difference

from the baseline. The results are summarized in Table 1 and Figure 5. Table 1 lists the

results for the top 20 genes with the highest R2 (i.e., the square of the adjusted association

ρ) using both the full data set and with 19 leave-one-out cross validation data sets, and

their raw p-values obtained from permutations, and BH-FDR adjusted p-values. After the

adjustment for multiplicity at the FDR of 0.05, two genes remain as significant, which are

potential prognostic biomarkers. Figure 5 depicts the scatterplot of the residuals from the

top two genes and HAMD score. It is possible to observe that there appears to be a linear

association between the HAMD score and the gene after adjusting for treatment and other

covariates. For a detailed analysis of the clinical depression study, we refer to Tilahun et al.

(2009).
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However, there are no genes found to be differentially expressed after multiplicity adjustment

(BH-FDR procedure; Benjamini and Hochberg, 1995). For an illustration of genes with

significant treatment effect, we refer to the second case study, i.e., the animal behavior

experiment.

Table 1 about here.

Figure 5 about here.

4.2 Case Study II: Animal Behavior Study

The gene-specific joint model (4) is fitted to all genes and the likelihood ratio (LR) test is

performed to test the null hypothesis H0 : ρj = 0. Figure 6 shows the top two genes with

highest adjusted associations. Table 2 presents the list of the top ten genes. After adjusting

for multiplicity controlling the FDR at 0.05 (using the BH-FDR procedure; Benjamini and

Hochberg, 1995), none of the null hypotheses is rejected.

Figure 6 about here.

Table 2 about here.

Next, we test the null hypothesis of H0 : αj = 0 for 5644 genes, among them 14 genes

are found to be differentially expressed at the FDR level of 0.05. Table 3 gives the list of

14 genes with their treatment effects α, the test statistics, the p-values and their BH-FDR

adjusted p-values, as well the R2
D using the regression tree and R2

SV M using the support

vector regression.

Table 3 about here.

Figure 7 about here.

Figure 7 shows a spectral map (i.e., a biplot of principal component analysis with special

weights on genes, Wouters et al. ()) of the top 14 differentially expressed genes. The samples
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(in squares) from the two treatment groups seem to cluster at the left (treatment group) and

right side (control group) of the plot, respectively. Genes (in circles) appearing at the left

hand side are down-regulated, while genes shown at the right hand side are up-regulated.

This result confirms the conclusion obtained from Table 3.

However, due to the small sample size, the normality assumption of test for α in model

(6) can be problematic in this setting. Therefore, a more robust test, namely, Kolmogorov-

Smirnov (K-S) tests for two sample problem can be used instead. As a result, the number of

differentially expressed genes reduces to eight, with p-values given in Table 3. In Table 3, we

also present the results of R2
D and R2

SV M using the leave-one-out cross-validation data. It is

easy to note that the R2
D and R2

SV M decrease for all these 14 genes. In particular the decrease

in R2 is more substantial for genes which are not found significant by K-S test. This may

indicate some violation of assumption in the distribution or outlying samples inducing the

treatment effect, or small variability of expression levels in either of the treatment groups.

They are examined in the following paragraphs.

Figure 8 shows the R2
D vs. R2

SV M without (panel a) and with leave-one-out cross valida-

tion (panel b). The 14 differentially expressed genes identified by the significance test of

coefficients are indicated by pluses (differentially expressed by using the K-S test) and stars

(non-differentially expressed by using the K-S test). We can observed that among 14 genes,

five genes (shown as stars in panel b) have their R2
D and R2

SV M decrease below 0.4 after cross

validation correction. These five genes are no longer called differentially expressed, by using

Kolmogorov-Smirnov tests. It is important to note that, in our dataset, as most of genes have

no association between the gene expression and response induced by the treatment effects,

it is reasonable to observe in Figure 8 that the R2 values of a large number of genes shrinks

towards to zero. Thus, this shrinkage effect of cross validation enhances the credibility of

differentially expressed genes as potential therapeutic biomarkers.

We also notice that R2
D and R2

SV M are not exactly in agreement. This is because the re-

gression tree minimizes the reduction in variance by using one cut-off value in the gene

expression, while the support vector machine maximizes the distance between two groups of

subjects through a kernel function. Nevertheless, both methods identify most of potential

therapeutic biomarker genes in the list of Table 3. Moreover, R2
D and R2

SV M seem to be in

agreement for genes with relatively high values of R2
D and R2

SV M . Note that for this group of
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genes, the regression tree tends to produces slightly better values of association as compared

to the SVM (R2
SV M ≤ R2

D). This is could be due to the fact that some therapeutic genes with

large treatment effects on gene expression and the response lacks of functional relationship

to be described by the SVM.

Figure 8 about here.

Figure 9 shows the scatter plots of treatment effects upon the gene expression versus the R2
D

using the regression tree and the R2
SV M using the SVM regression with leave-one-out cross

validation data, respectively. It is easy to note that genes with significant treatment effects

by using the K-S test (in pluses) are found to have high values of both the R2
D and R2

SV M

and relatively large treatment effects. Genes in stars are no longer differentially expressed

by using the K-S test and show small treatment effects.

Figure 9 about here.

Figure 10 shows examples of the top two genes with the highest R2
D by using the regression

tree, where the vertical lines are the cut-off values of the regression tree. Genes in the first

row are identified as differentially expressed by K-S test, listed in Table 3. Two genes in

the second row are no longer significant using K-S test. Due to the variability in the data,

the cross-validation data yield poor results for the prediction of the response using the gene

expression. However, there are some genes with small treatment effects, for examples two

genes shown in the third row of Figure 10, which seem to have high R2
D.

Figure 10 about here.

Figure 11 shows examples of the top two genes with the highest R2
SV M by using the support

vector regression with the radial kernel. Genes in the first row are identified as differentially

expressed by K-S test, as listed in Table 3. The two genes in the second row are no longer

significant using K-S test,thus yield low values of R2
SV M . The variability in the gene expres-

sion is large and causes substantial decrease in R2
SV M using the cross validation correction.

There are some genes, as we can observe from the plots of gene 2105 and 2104 (in the third

row of Figure 11), which show high value of R2
SV M .
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In order to overcome the fitting with some outlying sample in our case study with small

sample sizes, we use the cross-validation correction with the regression tree and support

vector regression. As a result, the prediction of the response using these two approaches

achieves reasonable good results.

Figure 11 about here.

5 Conclusion and Discussion

In this paper, we have discussed methods for identifying biomarkers in drug-discovery mi-

croarray experiments. The applied approach focused on modeling the association between

gene-expression and response, after adjusting for the treatment effect. The purpose of find-

ing biomarkers is not just limited to classify microarray samples into groups, but to predict

the clinical outcome, either continuous, categorical, or of survival type.

Because the methods for this analysis vary between type of the clinical outcomes/responses,

we have considered the response to be continuous and defined two types of biomarkers,

namely, prognostic and therapeutic biomarkers. For the first type, the gene expression can

be used to predict the level of the response through a linear association adjusting for the

treatment effect or other potential confounding variables; and hence they were evaluated

using the adjusted association proposed by Buyse and Molenberghs (1998). Using the clini-

cal depression data, we have identified two prognostic biomarkers with significant adjusted

association after multiplicity adjustment.

On the other hand, the second type of biomarker can not be captured by the linear association

using a linear regression model. We proposed two types of R2 measures to quantify the

amount of information in the response captured by the gene expression using the regression

tree and support vector regression. These two methods were similar in the sense that they

both made attempts at classifying subjects into two groups by maximizing/minimizing a

certain gain/loss function, and they both succeeded in finding genes with large treatment

effects to yield high values of R2. However, support vector regression is more flexible than

the regression tree. Because it can accommodate other type of associations. It is also

unadvantageous to some genes with large treatment but lack of functional relationship with
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the response. In the animal behavior study, we evaluated eight therapeutic biomarkers using

the regression tree and support vector machine regressions after using K-S test. The R2
D

yields slightly higher values than R2
SV M for the eight differentially expressed genes. More

importantly, the validity of these potential genes needs to be confirmed further biologically.

For both types of biomarkers, we have discussed the testing of biomarkers using the joint

modeling approach and evaluation of biomarkers using R2-type measures. Especially for

the therapeutic biomarkers, we have found that the differentially expressed genes generally

lead to high R2 for evaluation, while the non-differentially expressed genes are sometimes

possible to show high R2, because of small variability in the gene expression and/or some

outlying samples in the context of small sampling size study. In this case, the cross-validation

correction is needed to ensure a good estimate of R2 values. However, before using these

genes as biomarkers, validation procedure should be carried out, either using independent

experiments or biological validation.

In this paper, we have only considered methods for selecting individual biomarkers. Con-

structing a joint biomarker profile is the topic of ongoing research.
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Tables and Figures

Table 1: Clinical study of depression: results for top 20 Genes. R2: adjusted association
measure based on the full data; and R2

cv: adjusted association using leave-one-out cross
validation; Raw-p: Raw p-values obtained using permutations; Adj-p: BH-FDR adjusted
p-values.

Gene ID R2 R2
cv Raw-p Adj-p

736 0.75799 0.75417 < 0.0001 0.0365

2419 0.72954 0.72432 < 0.0001 0.0426

3455 0.65364 0.64771 < 0.0001 0.1553

9859 0.65074 0.64600 < 0.0001 0.1553

8427 0.59101 0.59063 0.0001 0.3142

1954 0.58815 0.58298 0.0001 0.3142

13988 0.57995 0.57829 0.0002 0.3142

6342 0.57866 0.57280 0.0002 0.3142

6119 0.57713 0.57238 0.0002 0.3142

16073 0.56329 0.55755 0.0002 0.3142

16501 0.54474 0.53802 0.0003 0.3142

16415 0.53941 0.53452 0.0003 0.3142

5543 0.53819 0.53281 0.0003 0.3142

14657 0.53768 0.53557 0.0003 0.3142

9635 0.52764 0.52479 0.0004 0.3142

6195 0.52365 0.51872 0.0004 0.3142

4900 0.51947 0.51930 0.0005 0.3142

12791 0.51780 0.51261 0.0005 0.3142

15294 0.51463 0.51233 0.0005 0.3142

4375 0.50908 0.50180 0.0006 0.3142
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Table 2: Animal behavioral experiment: results of top ten genes with highest adjusted asso-
ciation, raw p-values from permutations and BH-FDR adjusted p-values.

Gene ρ Raw-p Adj p-value (BH-FDR)

4955 -0.7493 0.0005 0.1129

2841 -0.7346 0.0007 0.1129

4909 -0.7218 0.0009 0.1129

1785 0.7161 0.0009 0.1129

331 0.7028 0.0009 0.1129

2596 -0.7019 0.0009 0.1129

1844 0.6999 0.0009 0.1129

3200 0.6972 0.0010 0.1129

1796 0.697 0.0010 0.1129

554 -0.6947 0.0015 0.1129

Table 3: Animal behavioral experiment: results of 14 genes with their significant treatment
effects α, the test statistics, the p-values and their BH-FDR adjusted p-values, K-S BH-FDR
adjusted p-values, as well the R2

D and R2
D − cv with leave-one-out cross validation using

the regression tree and R2
SV M and R2

SV M − cv with leave-one-out cross validation using the
support vector regression.

ID α t stat p-value adj p-val K-S p-val R2
D R2

D − cv R2
SV M R2

SV M − cv

1962 -4.3425 -11.017 0.0000 0.0000 0.0125 0.7565 0.4446 0.6607 0.5224
345 -3.3194 -10.248 0.0000 0.0000 0.0021 0.7565 0.4829 0.6115 0.4519
4447 -0.9 -9.041 0.0000 0.0000 0.0021 0.7565 0.6318 0.7309 0.6574
60 -3.8216 -8.06 0.0000 0.0000 0.0125 0.5548 0.4620 0.5508 0.4058
662 -0.7587 -8.049 0.0000 0.0000 0.0125 0.6441 0.3417 0.6176 0.4071
486 -2.415 -7.891 0.0000 0.0000 0.0125 0.728 0.2428 0.5369 0.4513
59 -2.429 -6.957 0.0000 0.0002 0.0125 0.5548 0.4620 0.4896 0.3739
214 -0.8303 -6.416 0.0000 0.0007 0.0125 0.5548 0.4620 0.4019 0.2541
5216 0.6936 6.348 0.0000 0.0008 0.0720 0.5578 0.1705 0.6092 0.3465
2247 -0.3606 -5.344 0.0000 0.0088 0.0720 0.6122 0.5447 0.4806 0.3521
5614 1.0157 5.152 0.0000 0.0131 0.1596 0.5769 0.3360 0.4081 0.0863
158 -0.8809 -4.884 0.0001 0.0240 0.3017 0.4309 0.1812 0.2702 0.1234
4297 0.4651 4.65 0.0001 0.0405 0.3776 0.4015 0.0284 0.5414 0.2841
1316 0.6048 4.565 0.0001 0.0468 0.7272 0.4181 0.0802 0.4938 0.2652
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Figure 1: Boxplot of the HAMD score (panel a). Panel b shows a gene, whose expression
levels are strongly associated with the HAMD score, while Panel c shows a gene, with weak
association with the HAMD score after adjusting for the effect of treatments and other possible
confounding variables.
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Figure 2: Boxplot of the response (panel a) and expression of gene 345 (panel b) in the
treatment groups, scatterplot of the response and expression of gene 345 (panel c), scatterplot
of the response and expression of gene 345 showing no linear association after adjusting for
the treatment effect (panel d), scatterplot of the response and expression of gene 331 (panel
e), and scatterplot of the response and expression gene 331 showing linear association after
adjusting for the treatment effect (panel f) .
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Figure 3: Biomarker types in microarray experiment, when the response is differentially
expressed. Pluses and circles represent the two treatment groups, respectively. Upper row
(panel a, b, and c): scatterplots for the response (Y) versus gene-expression (X). Lower
row (panel d, e, and f): scatterplots for the residuals after adjusting for treatment effects.
Column 1 (panel a and d): an example of a prognostic biomarker. Column 2 (panel b and
d): an example of a therapeutic biomarker. Column 3 (panel c and f): an example of a
prognostic/therapeutic biomarker.
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Figure 6: Scatterplot of the response versus the gene expression for gene 4955 and 2841
(panel a and c). Scatterplot of the response versus the gene expression after adjusting for
the treatment effect, yielding the adjusted association of for gene 2955 and 2841, respectively
(panel b and d).
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Figure 10: Example of six genes using the regression tree, where the vertical lines are the
cut-off values of the regression tree and R2

D values are obtained by using the leave-one-out
cross validation data.
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Figure 11: Examples of six genes from the support vector machine regression using the radial
kernel. The line is the fitted values of the support vector machine regression and R2

SV M values
are obtained by using the leave-one-out cross validation data.
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Wouters, L., Göhlmann H. W.H., Bijnens, L., Kass, S.U., Molenberghs, G., Lewi, P.J..

Graphical exploration of gene expression data: a comparative study of three multivariate

methods. Biometrics, 2003; 59, 1131–1140.

31


