Made available by Hasselt University Library in https://documentserver.uhasselt.be

CAPS3: context-sensitive abstract user interface specification

Peer-reviewed author version

VAN DEN BERGH, Jan; LUYTEN, Kris & CONINX, Karin (2011) CAPS3:
context-sensitive abstract user interface specification. In: Proceedings of the 3rd
ACM SIGCHI symposium on Engineering interactive computing systems. p. 31-40..

DOI: 10.1145/1996461.1996491
Handle: http://hdl.handle.net/1942/12148

CAP3: Context-Sensitive Abstract User Interface
Specification

Jan Van den Bergh Kris Luyten Karin Coninx
Hasselt University - tUL - IBBT
Expertise Centre for Digital Media
Wetenschapspark 2
3590 Diepenbeek, Belgium
{Jan.VandenBergh,Kris.Luyten,Karin.Coninx } @uhasselt.be

ABSTRACT

Despite the fact many proposals have been made for abstract
user interface models it was not given a detailed context in
which it should or could be used in a user-centered design
process. This paper presents a clear role for the abstract user
interface model in user-centered and model-based develop-
ment, provides an overview of the stakeholders that may cre-
ate and/or use abstract user interface models and presents a
modular abstract user interface modeling language, CAP3,
that makes relations with other models explicit and builds
on the foundation of existing abstract user interface mod-
els. The proposed modeling notation is supported by a tool
and applied to some case studies from literature and in some
projects. It is also validated based on state-of-the-art knowl-
edge on domain-specific modeling languages and visual no-
tations and some case studies.

Author Keywords
User interface design, modeling language, abstract user in-
terface, CAP3, graphical notation.

ACM Classification Keywords
D.2.2 Design Tools and Techniques: User interfaces.

General Terms
Design, Documentation, Human Factors, Languages.

INTRODUCTION

Abstract user interfaces have been discussed in literature for
almost 20 years, although the definition of what constitutes
an abstract user interface (AUI) has evolved over time to-

gether with advances in technology and extension of the scope.

This evolution is illustrated by the fact that Limbourg [13,
chapter 2] gives two different definitions for abstract user
interface model based on the kind of abstraction that is used;
abstraction from toolkit or abstraction from interactor type.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EICS’11, June 13-16, 2011, Pisa, Italy.

Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

In this paper, we will focus on the latter, most recent inter-
pretation of abstract user interface. The former is nowadays
usually referenced as concrete user interface.

Despite this long usage of abstract user interface models,
there does not seem to be convergence on the language of
choice. The reasons for this may be diverse. One reason
may be that the needs in different domains may differ sig-
nificantly. One domain may benefit from a large vocabulary
(e.g. interactive web applications), while another domain
may prefer a small set of abstractions (e.g. participatory tele-
vision [25]). Another reason may be that the focus of many
research efforts was not the model itself, but the potential
benefits for forward or backward engineering (in a specific
domain), leading to incomplete descriptions of the modeling
language itself in the publicly available literature. Standards
such as XForms [5] and ISO 24752:2008 [10] on the other
hand are complete but very specific for their domain (web-
sites and universal remote controls).

In this paper we propose the modeling notation (concrete
syntax) of CAP3, a new abstract user interface modeling
language that builds on previous work. It integrates struc-
tural and behavioral specification (similar to what Denim
[14] does for low-fidelity user interface sketches). CAP3
includes explicit references to models related to the abstract
user interface model, such as domain model, user model or
context model. CAP3 refers to the fact that CAP can be in-
terpreted in three different ways that are all appropriate for
the modeling language. The first is Canonical Abstract Pro-
totypes; the abstract user interface notation from which most
of its concrete syntax is derived. The second is Context-
sensitive Abstract Prototypes, which refers to the fact that it
can be used to express context-sensitive user interfaces on
an abstract level. The third is Configurable Abstract Pre-
sentation, highlighting the goal of a configurable notation
composed of a core set of symbols and a library of default
symbols that can be used when appropriate.

Before introducing the details of CAP3 itself, we present re-
lated work and how CAP3 can be used in a user-centered
software engineering approach using the MuiCSer process
framework [9]. CAP3 is validated using knowledge about
domain-specific modeling and visual languages and by dis-
cussing how it was applied or could have been applied in
some projects.

RELATED WORK

MARIA [23] is an XML-based user interface description
language that can be used to describe task models, abstract
user interface models and concrete user interface models for
service-oriented applications. The description language can
be used both at design-time (through a custom editor) and
at runtime. The abstract user interface model allows a spec-
ification of the dialog (dynamic behavior), the presentation
and references to the manipulated data (datatypes are defined
ad-hoc through XML Schema [4].) The dynamic behavior is
expressed using events, ConcurTaskTrees [18] temporal op-
erators such as concurrency, mutual exclusive choice or se-
quentiality and event handlers. The presentation of a user in-
terface is described using a composition of interactors. Most
of the interactor types are further refined depending on their
role or the type of data they are manipulating!. The MARIA
editor uses an enhanced tree control to modify abstract user
interface models and the interactors are abstractions of wid-
gets (as opposed to activities).

UsiXML [13, chapter 3] is also an XML-based user interface
description language that can describe user interface models
at different levels of abstraction. One of these models is the
abstract user interface model. It only discerns two types of
abstract interaction objects (aio): abstractContainer and ab-
stractIndividual Component (aic). Instead of defining differ-
ent subtypes of aic, it can contain multiple facets but discerns
four different types of facets exist (see Table 1). Five differ-
ent types of relations can exist between the abstract interac-
tion objects: abstractContainment, abstractAdjacency, spa-
tioTemporal, auiDialogControl and mutualEmphasis. The
UsiXML AUI model has a graphical notation [16] that is
limited to the structural aspects of the abstract user interface.

Canonical abstract prototypes [6], CAP, is a graphical ab-
stract user interface description language that was created
based on practical experience in industry to ease the transi-
tion from task models to concrete user interface prototypes.
Instead of focusing on making an abstraction of widgets in-
dependent from platform and modality, CAP abstracts user
activities. Since it is positioned as an alternative to or refine-
ment of paper prototypes during the user interface design
process it does not have any formal meta-model, the seman-
tics of each component is defined clearly, but leaves room
for some semantic variation. CAP is restricted to the presen-
tation submodel. One can make annotations, to define some
behavioral aspects of the user interface.

The MetaSketch editor [20] demonstrated graphical nota-
tions for the two major components of the abstract user inter-
face model: the abstract presentation model and the dialog
model. A meta-model for these two submodels was real-
ized by extending the UML metamodel [22]. The graphi-
cal notation for the presentation model was derived from the
Canonical Abstract Prototypes [6] notation, while a custom
notation was created for the dialog model. The semantics
for the dialog model were derived from the ConcurTaskTrees
(CTT) notation [18] while the symbols in the graphical nota-

'A detailed overview of the interactors can be found in Table 1.

tion were inspired by the UML activity diagram but retained
the hierarchical, tree-like structure of CTT.

UMLi [7] specifies an extension of UML (both abstract and
concrete syntax) for the specification of user interfaces. It
uses a specific new notation for abstract presentations and an
extended version of UML 1.x state machines for the speci-
fication of the dialog model. UMLi contains six types of
abstract interactors, shown in Table 1. It thus supports a
set of interactors that is similar to those used in Teallach
[1]. The UMLi dialog specification contains specific control
flow constructs and explicitly links interactors (and domain
objects) to actions and FreeContainers to activities. The
types of links include presentation (FreeContainer), interac-
tion (interactors), confirmation, cancellation and activation
(ActionInvoker).

CUP 2.0 [26] extends the UML 2 meta-model through a set
of stereotypes. It uses similar set of abstractions as UMLI
but only contains one type of container and the detailed se-
mantics and syntax are significantly different. It also allows
to encode richer relations between interactors, such as up-
date and activate.

ArtStudio [24] has a limited abstract user interface model
that consists of abstract workspaces that only defines struc-
tural properties.

XForms [5] is an official recommendation of W3C that has a
similar level of abstraction as abstract user interface models
and was created to embed specification of manipulation and
presentation of (complex) system state to XML-documents
using the Model-View-Controller architecture. It has a rich
feature-set with seven different interactors (see Table 2). These
interactors can be logically arranged in groups. Specific
structures for conditional or repeated display of components
are also provided. Fifteen different kinds of actions are pro-
vided to handle the effect of specific events on the user in-
terface.

ISO 24752 [10] has a much more limited scope (universal re-
mote controls) and defines a set of interactors that resembles
that of XForms. Similar to MARIA, there is also a number
of interactors that are aimed to manipulate a certain type of
data.

Other approaches, such as PUC [19] or Supple [8], focus
more on a description of the state of the application and the
commands that can be given to it, complemented with the
appropriate labels, to generate appropriate user interfaces
and thus differ significantly from the above-mentioned ab-
stract user interface descriptions, although they also describe
the user interface on an abstract level.

AUI IN A USER-CENTERED PROCESS

The role of abstract user interfaces in a development process
has been discussed in the context of the unifying reference
framework by Calvary et al. [3] or as part of usage-centered
design [6]. Calvary et al. mention that AUI are an intermedi-
ary model to develop multi-device user interfaces. In many

Requirements

Scenario Storyboard

~

Structurethinteraction
analysi

Final user interface

)\ N

s
test p yping

Task model
Low fidelity

prototyping

— Lab
test
‘:> Evaluation # Process execution =2 Generate / Inform / Evaluate

Figure 1. The role of AUI using the MuiCSer process framework.

approaches it is used as a step between the task model (and
related models) and the final user interface as discussed by
Limbourg [13, chapter2].

In usage-centered design, Canonical Abstract Prototypes (CAP)

are used to ease the transition from very abstract specifica-
tions to concrete user interface designs. They mention that
CAP’s graphical notation is useful because it allows to spec-
ify the layout as well as the functionality provided by the
user interface. This does not mean however that concrete
designs must completely follow the layout of the CAP dia-
grams, but it shows some possibility to use this property to
generate pleasing default layouts for the final user interface.

Figure 1 further clarifies the role that an AUI plays in dif-
ferent approaches described in literature by positioning into
the MuiCSer process framework [9] for user-centered soft-
ware engineering. This process framework emphasizes both
aspects from user-centered design, such as user evaluations
and prototypes at different scales of fidelity, and aspects from
(model-based) software engineering, such as structured spec-
ifications in e.g. the form of models. An AUI is used as a
means to do structured analysis, during the generation, cre-
ation or evaluation of prototypes and the final user inter-
face. Some approaches described in literature also gener-
ate an AUI directly from an existing final user interface and
then use the resulting model to create a user interface for a
different platform or interaction paradigm.

Figure 1 also shows that (potential) users of the AUI can
have diverse profiles. The professionals involved in creat-
ing AUI can be interaction designers, information architects,
software engineers or developers. Other users of the mod-
els include designers, who establish concrete designs, and
finally also clients and managers, who review the models.
This means that the concrete syntax of an AUI should be
accessible and readable to people from very diverse back-
grounds.

CAP3

Structural Specification

Our CAP3 notation and meta-model builds upon CAP [6]

for the specification of the structural aspects. One of the rea-

sons for this decision is motivated that usability of the nota-

tion was important from the earliest design of the language,

which is important when considering the diverse backgrounds
from the potential users of the language as discussed in the

previous section.

Another reason to choose for CAP as an AUI is its expres-
siveness. Table 2 and Table 1 show a comparison of the ab-
stract interactors supported by the different languages. Each
row in the Table refers to another type of abstract interactor.
For all languages that have a (partial) graphical notation, the
symbols for the different kinds of abstract interactors (and
facets) are shown in Table 1. The icons for CAP and CUP
2.0 are added in the top-left corner of a rectangle that indi-
cates the actual abstract interactor. The icons for the abstract
interactors and facets of UsiXML are shown in the lower-
left corner of rounded rectangles. The outline of the rounded
rectangle of abstract interactors and facets differs in texture.
The symbols for UMLi are the full representation of the ab-
stract interactors; they are not contained in any bounding
box.

The columns with vertical text for CAP and MARIA indicate
more generic types that are available. In CAP, these more
generic types (fool, container, active material) can be used
directly in a diagram. It is however unclear whether MARIA
allows the more generic types (such as only_output) to be
used directly in a model. This unclarity and other unclar-
ities in the support for an abstract interactor are indicated
by a gray background in the Table. The vertical text ab-
stractIndividualComponent in Table 1 is added for UsiXML
to indicate that all facets are part of the abstractindividual-
Component.

One limitation of CAP is that it has no real knowledge about
datatypes, although these can be indicated using appropriate
naming. Furthermore, CAP offers no dedicated support for
a secret interactor (used to model e.g. a password field) nor
does it make a distinction between single selection and mul-
tiple selection. All these issues can be resolved when trans-
forming CAP from a diagramming notation into a modeling
language by adding the necessary attributes to some meta-
classes. The latter two issues can be resolved by adding
an attribute isSecret to the meta-class Input and an attribute
maxSelectedElements to SelectableCollection). Knowledge
about datatypes is added in a similar fashion. It is also im-
portant to note that one cannot choose freely between submit
and trigger for XForms in Table 2, when considering equiv-
alents for a fool in CAP.

Although our proposed language, CAP3, follows the con-
ventions of CAP in most cases, there are a couple of devia-
tions:

Repetition Repetition is indicated in CAP by a downwards
pointing triple chevron in an inferactor that contains other

CAP MARIA UsiXML CUP 2.0 UML.i
A
£ start/goTo
4 stop/end/complete naviaator Navigator
A perform(&return) g
~ view S
—_— Q
S all select £ g EactionComponent Actionlnvoker
2| create S £ [>
#X delete/erase 2
o~ modify activator Command
« move
© duplicate
L toggle
conceptual group . . .
= grouping AuiContainer groupComponent
ol | element é_ text Output outputComponent |/\ Displayer
= 3 object
‘g > description
°© S alarm
[notification
feedback outputComponent
=l collection * * outputComponent, *
interactive_ - * *
Al description
=] input/accepter \/ Inputter
position_edit | S
Q
text_edit ©
o
object_edit £
) edit . —15
— |#2 editable element numerical_edit | <
8 numerical_edit_ Input
D
¥ full . .
E numerical edit inputComponent <> Editor
(3] — —
% in_range
© 4] editable collection *
c
=]
=) selectable collection| B single_choice Selection
& | multiple_choice

=] selectable action set

*

Commands or
Navigators

#F] selectable view set

Navigators

Table 1. Comparison of abstract interactors among languages. * denotes that a construct is supported through a combination of abstract interactors.
A gray background denotes an unclear support.

Standards
CAP Xforms ISO/IEC 24752:2008
2
~ start/goTo send
A stop/end/complete -
perform(&return) 2
” view %
s Ll select g’v sgtlndex Triggerlnteractor
e ol create S insert TimedTriggerInteractor
5 setvalue
A& delete/erase ‘g delete
~ modify S [_setvalue
~ move
~ duplicate copy
w toggle toggle
conceptual group group Group
[Group
g (O element output Outputinteractor
[
§ 1 notification Action + message ModalDialoglnteractor
= collection *
Al
input/accepter Inputlinteractor
input secret SecretInteractor
,f_:ti] editable element textarea range [type]Interactor
2 Rangelnteractor
E % editable collection *
= . select SelectInteractor
§ A8 selectable collection selectl Selectlinteractor
#=] selectable action set .
HE] selectable view set

Table 2. Comparison of abstract interactors between CAP and two
standardized languages: XForms and ISO 24752-3:2008. * denotes that
a construct is supported through a combination of abstract interactors.
A gray background denotes an unclear support.

interactors. It is however not clear whether the repeti-
tion applies to all contained interactors. In Figure 7(a),
for example, it is not clear whether only the information
about the film should be repeated or also the tools that
allow to add or remove film clips. To make it easier to
discern that certain elements are repeated they are all con-
tained in a RepeatedConceptualGroup, which is depicted
by a dashed rectangle (in common with a CAP conceptual
group) with a triple downpointing chevron below it. Fig-
ure 7 shows this difference between the CAP notation and
the CAP3 notation in the interactor Film Clips.

Presentation units A presentation unit, which corresponds
to a window in a graphical user interface, is depicted in
CAP with a rectangle with a flipped corner. In CAP3,
every interactor that is not contained in another interac-
tor can indicate a presentation unit. In most cases, this
top-level interactor will be a container (as is the Film Clip
Viewer in Figure 7), but is not necessarily the case. User
interfaces on e.g. smart phones may at times only display
a single interactor at a time. In CAP3, this single inter-
actor can be a top-level interactor. An example of this is
shown in Figure 8.

[choicel [choice2
=
Az | |Ab Ada | |Adb
| [
]]
n—fs [Oe][oc
S
(a) (b)

Figure 2. Choice representation using CTT (a) and CAP3 (b).

(b)

Figure 3. Enabling representation using CTT (a) and CAP3 (b).

In order to keep the language as lean as possible, only the
three base interactors (Tool, Container and ActiveMaterial)
are considered as required interactors. All other interactors
are optional and can be considered part of a standard library
rather than part of the language itself. This choice does not
conflict with ideas from CAP, which also state that these
three interactors can replace all other interactors (see Table
1). Furthermore, Gayos et al. argue that the resulting lack of
a selection interactor, which is also the case in their model-
ing language, can even be beneficial [8].

Similarly additional symbols, such as the ParticipantEle-
ment and ActiveParticipantCollection as used in SPieLan
[25] could be placed in a specific library complementing the
interactors provided within CAP3 itself. Given appropriate
tool support, this enables the creation of reusable modeling
language extensions similar to the way reusable extensions
are created for programming languages; through the creation
of additional libraries.

Behavior Specification

Before adding a dynamic behavior specification to CAP, we
considered it good practice to first consider how the dynamic
behavior is specified in other abstract user interface languages.
UsiXML [13], MARIA [23], and Nobrega et al. [20] all use
a similar set of temporal operators. This set is based on, but
different from the temporal operators of LOTOS [2]. Differ-
ences with LOTOS include, but are not limited to the intro-
duction of new operators such as suspend/resume (| >) and
deterministic choice (7). UMLIi [7] defines its own set of
temporal operators but is explicitly mapped to LOTOS spec-
ifications.

In this section we introduce how the behavior of the most
commonly used temporal operators can be specified in the
proposed notation. Each proposal is compared with a min-
imal task specification with LOTOS operators. We do not

|:| Parallel
| |M]b

(a) (b)

@_[::_E.:f [Dissbling
/\ ‘ Aa | |O0b 4«

(a) (b)

Figure 5. Disabling representation using CTT (a) and CAP3 (b).

discuss the unary optional operator from CTT as an optional
interaction task is probably always represented in the user
interface, unless a specific constraint is attached. At this
moment, we do not consider a specific graphical notation
for this operator. The repetition operator is only represented
in the graphical notation when it results in a repetition of the
interactors, which is not always the case. For example, in
the AUI represented in Figure 7, the Find interactor may be
modeled in a task model as a repeatable task, but it will only
be represented using a single interactor.

Figure 2 shows how the choice operator is represented in
ConcurTaskTrees notation (CTT) and CAP3. Figure 2(b)

shows two options to represent a choice, depending on whether

a transition between states is invoked by a and b or there is
no dialog transition as a consequence of an invocation of task
a or b as in Figure 2(a). The former can happen when the
parent task of a and b enables another task or when a and b
are further decomposed into two or more subtasks connected
by an enabling operator.

Notice that for both cases we use a notation inspired on UML
[22]. The activation of another abstract interactor is based
on the UML notation for state transitions, while the notation
used in choice?2 is based on the xor-relation, which is used
in the UML version of CTT used by Nunes [21]. Instead of
relying on a textual notation, we enhance the difference with
the other relations through the usage of color (red). We thus
increase the number of visual variables we use in the nota-
tion, which should make it easier to recognize the relation.

The Activate relation (Figure 3(b)) corresponds to the en-
abling operator in CTT (see Figure 3(a)). Notice that this
relation can also be used within a Container to denote intra-
dialog transitions (see Figure 5(b)) or from a Tool or Active-
Material contained in a Container to an abstract interactor
outside that Container (see Figure 2(b)).

[Suspend/Resume [Od

Ala Ok & c

=] has
timeout

(b)

Figure 6. SuspendResume representation using CTT (a) and CAP3 (b).

The parallel temporal operator from CTT (Figure 4(a)), as
well as the order independence operator are translated into a
single relation CAP3 (Figure 4(b)). As this relation is nat-
urally expressed by containment in the same Container in
CAP, we keep this notation.

The End tool from CAP is especially useful when specify-
ing a disabling relationship as shown in Figure 5(b). This
tool disables the complete container in which it is directly
contained.

The PerformReturn tool is similarly helpful (Figure 6(b)) to
specify the suspend/resume temporal operator (Figure 6(a)).
Note that reverse direction does not need to be explicitly de-
fined. In Figure 6(b), a notification is shown, which auto-
matically disappears after a certain period. When the no-
tification disappears, the Suspend/Resume presentation unit
becomes active again.

Inspired by the UML statecharts specification and CAP it-
self, we decided to use separate notations for information
exchange. We still use to convention from CAP to embed a
tool in a Container to denote that the function in the applica-
tion core, triggered by the tool Use this information. For in-
dicating the other direction, we use an Update relation. The
notation is inspired on, but different from the UML notation
for object flow. We opt for a thicker dotted line and a full ar-
row head instead of a dashed line and an open arrow head to
make the conceptual difference also visually clearer. Figure
7(b) shows several examples of information flow. There is a
relationship from the Find Tool to the Film Clips to indicate
the former update the latter.

When we compare Figure 7(b) with its original specification
in CAP, shown in Figure 7(a)?, we notice that there is also
a difference for the behavior specification: The rather infor-
mal notation between parentheses is replaced by an Update
relationship.

Figure 7(b) also shows another use of a conceptual group;
it provides some syntactic sugar to reduce the number of

This diagram is recreated after [6, Figure 2].

Film Clip Viewer
|47 Film Clip 1o/Title | | AFind | [[E] Film Clip View
E Film Clips E Frame Image

|ﬂTiHe (modifiable) | | ELengfh | /

g
v Synchronized
to selection | | T_____________________________________

|f Up 1 Frame | | f Back 1 Frame |

ESE

TEIEE

(a) Canonical Abstract Prototypes

= Resource - test/FilmViewer.cap3 - Eclipse Plaﬂunﬂ_élélg

File Edit Diagram Navigate Search Project Run Window Help

N-EB& LT AR ERE TR SRR AR & ([Resource |
Tahoma g B f | A xS~ v — v | =
[2] FilmViewer.cap3 i3 =g
:; * | e Palette [»
”@‘ [J Film Clip Viewer NCEYEE
&F] Film ClipID / Title " A Find [E] Film Clip View = [J Container w0
g [E] Frame Image [E] Frame [Element
B A= Filmn Clips [E] Collection
i : [Time [Motification
g ; B Title B Length [E] ParticipantElement
7| i ActiveParticipantColle...
= ' + A Tool
v v A] ActiveMaterial
¢ A UplFrame|| A Backl Frame , E DomainObject
pioy|[A s0r » 1} ConceptualGroup
== Connections &
8 — Activate
04 ---- MutuallyExclusive
Update
- --» Use
4 3

(b) CAP3 specification in Eclipse-based supporting tool

Figure 7. Film viewer example as specified by Constantine (a) and using our tool support (b).

interactor data display| data modification| navigation = Map
A tool X X —
£ start/goTo X
A stop/end/complete X Computed based on CurrentLocation
current location and
& perform(&return) X [3] Direction next appointment in
f: view X schedule
£ select X
o~ create X [Confirm Arrival
X delete/erase X O] Guide ... %
~ modify X Bl Message
~ move X A Mavigation Patient
72 duplicate X
w toggle X [E] TeDoltem
O container X A oK
B element X
. # Communicate Schedule
3] notification
E collection X
A active material X X =
E‘ input/accepter X X [J Communication - -
f ExpectedLocation aregivers
] editable element X x 1 1 | i Beetedlocton -
editable collection X X & Call & Caregiver I
AE] selectable collection X e !
A= selectable action set & Mesmage ’ :
A2 selectable view set % |
H
ﬂ Back A
Table 3. Capabilities of the CAP3 interactors. Caregivers W

Update relations. An Update relation leaving a conceptual
group could be replaced by Update relations from each of
the tools or active materials it contains to the target of the
Update relation. This convention is used to avoid that all
tools in the lower-right corner would have an Update rela-
tion with the Film Clip View.

Table 4 summarizes the discussion of the relations (except
containment) in CAP3. Empty cells in the Table indicate
that no constraints are defined. Table 3 lists the CAP3 inter-
actors and their capabilities (data display, data modification
and navigation).

These enumerations are the complete subset of elements as
defined in CAP. Other interactors that are not part of CAP,
can also belong to these groups of interactors. The Partici-
pantElement and ActiveParticipantCollection as defined in
SPieLan [25], for example, also belong to the interactors
that show data; they are specialisations of respectively the
Element and Collection interactors.

Relations to Other Models

With the increasing adoption of context-sensitive user inter-
faces, multi-user interfaces (such as for social applications)
and mixed initiative interfaces, one should take into account
that the state of the user interface can not only respond to
input by its user, but also by input from sensors. Since this
influence is independent of the kind of interactor, it can also
be included at the abstract user interface (AUI) level.

Figure 8. Partial specification of a dementia patient’s assistance tool
using CAP3.

In CAP3, we model this influence through the integration of
proxies to “domain objects”. Each proxy contains a refer-
ence to an element of another model. Subtypes of domain
objects can include concepts of other models and include
the human users of the modeled user interface, things and
humans in its environment, the environment itself and the
data manipulated through the user interface. These subtypes
of domain objects are also considered as library objects.

Figure 8 models the system discussed by Mahmud et al. [15]
illustrates how CAP3 can express the influence that domain
objects and the environment can have on the user interface.
It shows that the user’s current location is shown on the map
and that the message in the user interface of the communica-
tion module of the application. It shows that a list of care-
givers is shown using the ActiveParticipantCollection inter-
actor, introduced in SpleLan [25]. Figure 8 thus demon-
strates how CAP3 supports context-sensitivity on two lev-
els: it can be adapted to the modeling context by adding li-
braries that contain elements that specialize CAP3 elements,
and through the explicit coupling with other models using
“domain objects” one can model context-sensitive interac-
tive applications. Figure 8 specifies a mobile application that
is not only location-aware but also aware of the reachability
of caregivers.

CTT Operator Relation Source Target Parent Interactor
a>>bh Activate interactor (-) interactor
domain object
allb,al=b no relation interactor
al>b Activate PerformReturn interactor
a[>b End
af[lb MutuallyExclusive interactor interactor
ax interactor RepeatedConceptualGroup (+)
alflb Update interactor (*) | interactor (**)
/ domain object | domain object
/ Use interactor (*) | interactor (**)
domain object | domain object
(-) only interactors that can trigger navigation
(*) only interactors that can modify data
(**) only interactors that can show data
(+) only applicable when the interactor should be repeated in the user interface

Table 4. Relations supported by CAP3, the constraints that apply on the source and/or target of these relations, or on the parent interactor.

The authors believe that this very explicit integration of el-
ements of other models should be limited to cases in which
these elements actively influence the user interface without
interaction from the user, or when the type of user perform-
ing the interaction can differ and this distinction is impor-
tant (such as in the case of collaborative software). In other
cases, a more implicit integration through properties that are
displayed as part of the labels or not displayed in the dia-
gram at all seems more appropriate. This latter approach is
the only mechanism available in modeling languages such as
MARIA [23] and UsiXML [13, chapter 3].

DISCUSSION

The abstract user interface modeling language, CAP3, as
proposed in this paper demonstrates the possibility to inte-
grate both structural and behavioral aspects of abstract user
interfaces into a single consistent language. To assess the
language, its expressiveness is compared to that of several
other abstract user interface languages (see for example Ta-
ble 2 and Table 1 for interactors, and Table 4 for the be-
havior). CAP3 has only been used to describe graphical
user interfaces. These comparisons reveal that it has a sim-
ilar abstraction level as AUI languages that are also used to
semi-automatically generate multi-modal and voice user in-
terfaces, such as MARIA [23].

It was applied to some projects in which the authors were
involved or that were described in literature (such as the mo-
bile application discussed by Mahmud et al. [15]).

CAP3 (and other AUI modeling languages) were also as-
sessed using state-of-the-art knowledge regarding the con-
struction of domain-specific languages as discussed by Kar-
sai et al. [11] and the perception of visual languages for soft-
ware engineering[17]. The results of these assessments were
overall positive for CAP3. Nonetheless also some points
for improvement were identified; namely inclusion of com-

plexity management mechanisms could still improve the lan-
guage. But this point for improvement is applicable to many
software engineering languages.

Some notable positive points regarding the principles dis-
cussed by Moody [17] include that all relations differ in one
visual dimension and most in two different visual dimen-
sions (Principle of Perceptual Discriminability), an explicit
mechanism for including information from other diagrams
(Principle of Cognitive Integration) and the symbols suggest
their meaning (Principle of Perceptual Immediacy) to at least
a significant subset of CAP3’s potential users as identified in
the discussion on the role of AUI in a user-centered process.

The knowledge about the design of domain-specific languages
was applied as demonstrated by the fact that the potential
uses and users of the language were identified before the de-
sign of the notation, the language is mostly a composition of
existing languages (or language elements), it reuses the ex-
isting type system provided by EMF ECore, it allows com-
ments (as shown in Figure 8), and syntactic sugar is used
appropriately (only in one case, using the ConceptualGroup,
where it can clearly reduce clutter).

CONCLUSIONS

This paper presents CAP3, a new abstract user interface mod-
eling language to support user-centered development meth-
ods. As state-of-art knowledge on domain-specific languages
and visual sofware engineering languages propose, it was
not created from scratch, but rather builds on existing nota-
tions and modeling languages. It integrates the specification
of structural and behavioral aspects of user interfaces into a
single notation. An approach that was also taken by Denim
[14], which was however focused on informal specification
using sketches. Denim thus has no model integration, does
not allow the integration of contextual information, and uses
sketches instead of precise abstractions.

CAP3 has tool support, which is realized on the Eclipse plat-
form using Eugenia [12]. CAP3 is actively used in research
projects and validated using state-of-the art knowledge on
domain-specific languages and visual software engineering
languages.

Future work includes enhancing the tool support for model-
transformations, especially to concrete user interfaces.

ACKNOWLEDGMENTS
This work is supported by FWO project Transforming hu-
man interface designs via model driven engineering (G. 0296.08).

REFERENCES
1. P. J. Barclay, T. Griffiths, J. McKirdy, J. B. Kennedy,
R. Cooper, N. W. Paton, and P. D. Gray. Teallach - a
flexible user-interface development environment for
object database applications. J. Vis. Lang. Comput.,
14(1):47-77, 2003.

2. T. Bolognesi and E. Brinksma. Introduction to the iso
specification language lotos. Computer Networks,
14:25-59, 1987.

3. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
L. Bouillon, and J. Vanderdonckt. A unifying reference
framework for multi-target user interfaces. Interacting
with Computers, 15(3):289-308, 2003.

4. W. W. W. consortium. XML Schema.
http://www.w3.0org/XML/Schema.

5. W. W. W. consortium. XForms.
http://www.w3.0org/xforms/.

6. L. L. Constantine. Canonical Abstract Prototypes for
abstract visual and interaction. In Proc. DSV-1S 2003,
Springer (2003), 1-15.

7. P. P. da Silva and N. W. Paton. User interface modeling
in UMLI. IEEE Software, 20(4):62—69, 2003.

8. K. Z. Gajos, D. S. Weld, and J. O. Wobbrock.
Automatically generating personalized user interfaces
with Supple. Artif. Intell., 174(12-13):910-950, 2010.

9. M. Haesen, K. Coninx, J. Van den Bergh, and
K. Luyten. Muicser: A process framework for
multi-disciplinary user-centred software engineering
processes. In Proc. TAMODIA/HCSE 2008, Springer
(2008), 150-165.

10. ISO JTC 1/SC 35. ISO/IEC 24752-3:2008: Information
technology — user interfaces — universal remote console
— part 3: Presentation template, 2008.

11. G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe,
M. Schindler, and S. Volkel. Design guidelines for
domain specific languages. In Proc. DSM 2009, 2009.

12. D. S. Kolovos, L. M. Rose, S. bin Abid, R. F. Paige,
F. A. C. Polack, and G. Botterweck. Taming EMF and
GMF using model transformation. In Proc. MoDELS
2010 (1), Springer (2010), 211-225.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Q. Limbourg. Multi-Path Development of User
Interfaces. PhD thesis, Université Catholique de
Louvain, 2004.

J. Lin, M. W. Newman, J. I. Hong, and J. A. Landay.
Denim: finding a tighter fit between tools and practice
for web site design. In Proc. CHI 2000, ACM Press
(2000), 510-517.

N. Mahmud, J. Voigt, K. Luyten, K. Slegers, J. Van den
Bergh, and K. Coninx. Dazed and confused considered
normal: An approach to create interactive systems for
people with dementia. In Proc. HCSE 2010, Springer
(2010), 119-134.

F. Montero and V. Lépez-Jaquero. Idealxml: An
interaction design tool. In Proc. CADUI 2006, Springer
(2006), 245-252.

D. L. Moody. The physics” of notations: Toward a
scientific basis for constructing visual notations in
software engineering. IEEE Trans. Software Eng.,
35(6):756-779, 2009.

G. Mori, F. Paterno, and C. Santoro. Ctte: Support for
developing and analyzing task models for interactive
system design. IEEE Trans. Software Eng.,
28(8):797-813, 2002.

J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K.
Harris, R. Rosenfeld, and M. Pignol. Generating
remote control interfaces for complex appliances. In
Proc. UIST 2002, ACM Press (2002), 161-170.

L. Né6brega, N. J. Nunes, and H. Coelho. The meta
sketch editor. In Proc. CADUI 2006, Springer (2006)
201-214.

N. J. Nunes and J. F. e Cunha. Wisdom - a UML based
architecture for interactive systems. In Proc. DSV-1S
2000, Springer (2000), 191-205.

Object Management Group. UML 2.2 Superstructure
Specification, 2009.

F. Paterno, C. Santoro, and L. D. Spano. Maria: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in ubiquitous
environments. ACM Trans. Comput.-Hum. Interact.,
16(4), 2009.

D. Thevenin. Adaptation en Interaction
Homme-Machine : le cas de Plasticité. PhD thesis,
Université Joseph Fourier, 2001.

J. Van den Bergh, B. Bruynooghe, J. Moons,

S. Huypens, B. Hemmeryckx-Deleersnijder, and

K. Coninx. Using high-level models for the creation of
staged participatory multimedia events on tv.
Multimedia Syst., 14(2):89-103, 2008.

J. Van den Bergh and K. Coninx. Cup 2.0: High-level
modeling of context-sensitive interactive applications.
In Proc. MoDELS 2006, Springer (2006), 140—154.

http://www.w3.org/XML/Schema
http://www.w3.org/xforms/

