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Chapter 1
Introduction

1.1 Infectious Diseases: Transmission and Im-

munology

Infectious diseases are illnesses in humans, animals or plants resulting from the pres-

ence of microbial pathogens, such as viruses, bacteria, parasites, etc. There are sev-

eral routes by which these pathogens can be transmitted from one host to the other:

e.g. airborne, droplet contact, direct or indirect physical contact, fecal-oral (contam-

inated food or water), sexual contact or vector-borne (e.g. via a mosquito). In this

dissertation, the focus is on models for human viral infectious diseases for which

the main transmission route is through non-sexual, social contacts such as airborne

transmission, droplet contact or direct physical contact.

The transmission route is called airborne when viruses travel on small respiratory

droplets that may become aerosolized when individuals sneeze, cough or talk (see

Figure 1.1, left panel). These infectious particles hang invisibly in the air and can

remain there for a long period of time and even travel over considerable distances.

Droplet contact occurs when an individual sneezes or coughs on someone else such that

infectious agents may enter the latter person’s body through his or her respiratory

system. Non-sexual, direct physical contact mainly involves skin-to-skin touching

such as shaking hands, kissing and so on. Important examples of viruses which are

spread through these social interactions are influenza, smallpox, varicella zoster virus,

measles (Figure 1.1, right panel), mumps, rubella and parvovirus B19. Some ideas

and methods discussed in this thesis may be useful for bacterial infections as well,

1



2 Chapter 1. Introduction

Figure 1.1: Left panel: aerosolized droplets resulting from a sneeze (2009), identification

number 11162, content provider: CDC/ Brian Judd, photo credit: James Gathany. Right

panel: micrograph of a single measles virus particle, identification number 10707, content

providers: CDC/ Cynthia S. Goldsmith and William Bellini. Public Health Image Library,

Centers for Disease Control and Prevention (CDC).

for example for pertussis and tuberculosis. Note that a distinction is made between

horizontal and vertical transmission of infectious diseases, the former being from any

individual to another one, independent of blood-relationships, and the latter being

from parent to child, often during pregnancy or at birth.

In general, when an individual is infected with a viral infectious disease, the adap-

tive immune system activates complex mechanisms to induce protective immunity to

the host. The adaptive immune system consists of two types of defence mechanisms:

cell-mediated immunity and humoral immunity. T cells such as cytotoxic T cells and

T helper cells, are responsible for the cell-mediated immunity. T cells are able to de-

tect suspicious viral fragments on a cell’s surface and to destroy the cell if necessary.

Cell-mediated immunity also involves the activation of macrophages and cytokines.

Humoral immunity is more relevant to our research since it is related to the pro-

duction of virus-specific antibodies, which are responsible for long term protection and

can be detected in the blood of the host. Antibodies are produced by plasma cells

that originate from B cells, and the two main types of antibodies are Immunoglobu-

lin M (IgM) and Immunoglobulin G (IgG). IgM antibodies are produced rapidly upon

infection to neutralize viral agents, but they are only present for a short period of

time. It takes a longer while until IgG antibodies are produced, but they can persist

for years after the infection. The IgG antibody response may entail lifelong immunity,

protecting the individual each time he or she is re-exposed to the infectious disease.
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In pregnant women, IgG antibodies can be transferred to protect the fetus and infant

until the infant’s immune system has matured. The principle behind vaccination is to

introduce an antigen from a pathogen in order to stimulate the immune system and

develop specific immunity against that particular pathogen without causing disease

associated with that organism (Alberts et al., 2002).

In the absence of vaccination, the presence of IgG antibodies in blood serum thus

indicates past infection with a specific virus. In this thesis, the primary source of data

are cross-sectional sets of serum samples. The IgG titer values obtained by testing

the blood samples give rise to serological data and provide information with respect

to the immunity status of the individuals. Our focus is on dichotomized serological

test results, also called current status data. For a more detailed description of the

collection and interpretation of serological data and for an introduction to the data

sets we use in this thesis, we refer to Chapter 3.

1.2 Historical Overview

This thesis has been made and founded as part of ‘Simulation models of infectious

disease transmission and control processes (SIMID), with applications to five major

health policy issues in Flanders’, a strategic basic research project (SBO) that is

funded by the Institute for the Promotion of Innovation by Science and Technology

in Flanders (project 060081). The SIMID project’s aim was to further develop the

expertise in infectious disease modelling in Flanders and to improve the overall qual-

ity of health economic evaluation capacity as applied in the Belgian context. From a

public health perspective, modelling of infectious diseases is far more complex than

that of non-infectious diseases, as interventions aimed at controlling the spread of

infectious diseases also affect individuals who are not targeted by these interventions.

The objective of this thesis was to develop statistical models funded on mathematical

modelling equations, to estimate specific parameters related to the transmission of

infectious diseases, either endemic or actively immunized, from current status data.

By ‘endemic’ it is meant that disease incidence may undergo cyclical epidemics, how-

ever fluctuating around a stationary average over time. Some concepts of statistical

inference used throughout this thesis, and an introduction to mathematical modelling

of age related infectious disease dynamics, are given in Chapter 2.

The estimation of infectious disease parameters from current status data is an

important research topic, since it helps to infer and understand age-specific patterns

of disease spread at the population level. Further, it aids in planning and monitoring
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of universal immunization programs for vaccine-preventable infections, and of con-

trol measures (school closure, antivirals, vaccines, etc.) in the event of an epidemic

outbreak. One of the key parameters is the ‘force of infection’, the rate at which an

individual acquires infection, which is the infectious disease analogue of the hazard

rate in survival theory. Hens et al. (2010a) recently presented a review paper on

75 years of estimating the force of infection from current status data. Muench (1934)

formulated the first catalytic model to estimate a constant force of infection from

serological data. Grenfell and Anderson (1985) generalized Muench (1934)’s model

to a polynomial age-dependent force of infection and derived a stepwise maximum-

likelihood approach for parameter estimation. A few years later, Farrington (1990)

was the first to consider a nonlinear model for the age-dependent force of infection and

to use constrained optimization to ensure a monotonically increasing seroprevalence

profile. He illustrated his method using pre-vaccination serological data on measles,

mumps and rubella.

Another important, related parameter in infectious disease modeling is the ba-

sic reproduction number R0, defined as the average number of secondary infections

generated by a single typical infective individual in a totally susceptible population.

Using the mass action principle, which relates the force of infection to age-dependent

transmission rates, R0 can be estimated from serological data as well, and this ap-

proach has been popularized by the book of Anderson and May (1991). Anderson

and May (1991) labelled the matrix containing the age-dependent transmission rates

as the ‘Who Acquires Infection From Whom’ or WAIFW matrix. The transmission

rates were estimated by imposing various mixing patterns on the WAIFW matrix,

which were based on prior knowledge of social mixing behavior. Greenhalgh and Di-

etz (1994) and Farrington et al. (2001) elaborated on this approach by Anderson and

May (1991) and highlighted the effect on R̂0 of the mixing pattern assumed. Whitaker

and Farrington (2004a) assessed the sensitivity of the Anderson and May (1991) ap-

proach with respect to the assumption of endemic equilibrium, more specifically, they

looked at the impact of regular epidemic cycles. The same authors also extended

the traditional method to situations in which transmission rates vary over time, by

augmenting the serological data with case reports data (Whitaker and Farrington,

2004b). Kanaan and Farrington (2005) used Bayesian methods to select the most

plausible mixing patterns for rubella and mumps from all published models in the

literature. Finally, a continuous parametric contact surface was proposed as an al-

ternative to the low dimensional mixing matrices for the age-dependent transmission

rates (Farrington and Whitaker, 2005).

Also at Hasselt University, a variety of methodological work has been done recently
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in the area of modelling infectious diseases, mostly in collaboration with the Univer-

sity of Antwerp. Shkedy et al. (2003), Shkedy et al. (2006) and Namata et al. (2007),

proposed a non-parametric, parametric and semiparametric approach to model the

seroprevalence and the force of infection by using local polynomials, fractional poly-

nomials, and penalized splines within the generalized linear mixed model framework,

respectively. Marginal and conditional models to model bivariate current status data

were studied by Hens et al. (2008), hereby exploiting the association between the

transmission routes of the two infectious diseases. Hens et al. (2010b) extended the

model of Shkedy et al. (2006) to change-point fractional polynomials to detect dis-

tortions with respect to monotonicity in the seroprevalence, which could for instance

be due to maternally-derived immunity, violation of time-homogeneity (epidemics),

or waning immunity. Bollaerts et al. (2011) investigated the effect of serological test

misclassification on the estimation of the prevalence and the force of infection, and

proposed a mixture-model based approach for continuous antibody titers to avoid the

use of thresholds. These methods have now been joined into the book of Hens et al.

(2011).

1.3 Outline of the Thesis

The mixing patterns imposed on the WAIFW matrix in the Anderson and May (1991)

approach are based on prior knowledge of age-related social mixing behavior rather

than observations. The choices of the parametric structure and the age classes are

often ad hoc and may heavily influence R̂0 (Greenhalgh and Dietz, 1994). Further

in practice, the method may entail non-realistic discontinuities due to the low di-

mension of the mixing patterns imposed. An alternative approach has been initiated

by the work of Wallinga et al. (2006), who assumed that transmission rates for in-

fections transmitted predominantly through non-sexual social contacts, are directly

proportional to rates of conversational contact, which can be estimated from a con-

tact survey. Recently, a large social contact survey was conducted in eight European

countries as part of the POLYMOD project (Mossong et al., 2008b), which allowed

us to elaborate on the method of Wallinga et al. (2006). In Chapter 3, an elaborate

description of the POLYMOD contact survey and two preliminary analyses are pre-

sented. We specifically focus on the Belgian contact survey in Chapter 4, following

Hens et al. (2009a), to discuss the recording and estimation of professional contacts,

to look for associations between different contact characteristics, to model the num-

ber of contacts using generalized estimating equations to account for the two days of
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contact recording, and to illustrate the spread of an epidemic.

In Chapter 5, a comparison is made between the traditional Anderson and May

(1991) approach and the new method of Wallinga et al. (2006) to estimate age-specific

transmission rates for the varicella zoster virus in Belgium (Goeyvaerts et al., 2010a;

Ogunjimi et al., 2009). We use a flexible, bivariate smoothing model to estimate a

continuous contact surface from the social contact survey data. In general, however,

contacts reported in such surveys are proxies of those events by which transmission

may occur and there may exist age-specific characteristics related to susceptibility or

infectiousness which are not captured by the contact rates. Therefore, in Chapter 5,

we propose to model the transmission rates as the product of two age-specific vari-

ables: the contact surface and an age-specific proportionality factor. Furthermore,

we address the impact on the estimation of R0, using non-parametric bootstrapping

to account for different sources of variability and using multimodel inference to deal

with model selection uncertainty.

In Chapter 6, we explore the hypothesis of waning IgG antibodies for parvovirus

B19 (PVB19) (Goeyvaerts et al., 2010b), motivated by the decrease or plateau ob-

served in the seroprevalence profiles between the ages of 20 and 40, in each of 5

European countries. We investigate whether secondary infections are plausible, and

whether natural boosting of immunity by exposure to infection may occur. Several

immunological scenarios are tested for PVB19 by fitting different compartmental dy-

namic transmission models to serological data using data on social contact patterns.

We assess whether different views on the evolution of the immune response to PVB19

infection may lead to altered estimates of R0, the age-specific force of infection and

the associated risk in pregnancy.

Finally, in Chapter 7, we discuss the work of Gay (2000) and Altmann and Alt-

mann (2000) on the estimation of trivalent vaccination coverage from trivariate sero-

logical data. We extend the estimation method of Gay (2000) to incorporate the

dependency between the probabilities of acquiring natural infection with each of the

three diseases for the non-vaccinated population. The method is developed within a

likelihood-based marginal model framework, and applied to trivariate current status

data for measles, mumps and rubella in Belgium and Ireland (Goeyvaerts et al., 2011).



Chapter 2
Basic Concepts

In this chapter, basic terminology and fundamental concepts which are used in the

field of mathematical modelling of infectious disease dynamics, are introduced. Fur-

ther in Section 2.2, the main statistical methods used throughout the thesis for param-

eter estimation, construction of confidence intervals, model selection and multimodel

inference, are briefly described.

2.1 Mathematical Models for Infectious Disease

Transmission

Deterministic models which describe infectious disease dynamics by partitioning the

population into different disease states or compartments, were already used centuries

ago. The first model dates back to 1760 when Bernoulli aimed to demonstrate the

benefits of variolation against smallpox for the population of France (Bernoulli, 1760).

The flow between disease states is typically represented by a set of (partial) differential

equations, which yield an explicit solution for the distribution of the population with

respect to the infection status. Important contributions to epidemic theory have been

made by Kermack and McKendrick (1927), Bailey (1975), Dietz (1975) and Anderson

and May (1991), amongst others. Though deterministic models are very insightful

to study infectious disease spread in large populations, they are however less useful

for small or isolated populations. To this purpose, stochastic models were developed,

with the chain binomial model proposed by Reed and Frost in their lectures given in

1928, as the most well-known. Stochastic models make up a second important branch

7
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in infectious disease modelling and are rooted in the theory of random processes

(Becker, 1989). They are usually defined at the level of the individual and aim to

describe the stochasticity seen in real-life disease outbreaks, for instance making use

of temporal or final outcome data (O’Neill, 2010). For two more recent accounts

of stochastic epidemic modelling we refer to Daley and Gani (1999) and Andersson

and Britton (2000). In this dissertation, however, we only make use of deterministic

models since the aim is to develop methods to estimate the age-related heterogeneity

inherent to the spread of airborne infections, either endemic or actively immunized,

in large populations. In the following description of some basic concepts, we mainly

follow Anderson and May (1991).

2.1.1 Basic Deterministic Model

In general, deterministic models represent age- and time-dependent mathematical

models describing the flow of individuals through different mutually exclusive infec-

tion states. One of the most basic compartmental models for infectious disease trans-

mission is the MSIR model. Suppose we consider a large population and let µ(a, t)

denote the mortality rate depending on age a and calendar time t. The MSIR model,

which is presented in Figure 2.1, assumes that all newborns are protected by maternal

antibodies (first stage, denoted ‘M ’) until waning results in loss of passive immunity,

and the infants become susceptible to infection (second stage, denoted ‘S’). As they

age from then on, they may become infected and infectious to others (third stage,

denoted ‘I’). After the infectious stage, individuals are removed and no longer able to

transmit the disease to others (fourth stage, denoted ‘R’). Depending on the disease,

the R stage may for example correspond to recovery, immunity, isolation or death

(O’Neill, 2010). The corresponding number of individuals in each stage or compart-

ment of the MSIR model can be expressed as a function of age and time by M(a, t),

S(a, t), I(a, t) and R(a, t), respectively. As illustrated in Figure 2.1, α(a, t) denotes

the rate of losing maternal antibodies, λ(a, t) the rate of acquiring infection or the

‘force of infection’, γ(a, t) the removal rate, and υ(a, t) the disease-induced mortality

rate.

The total number of individuals of age a at time t is then defined as N(a, t) =

M(a, t) + S(a, t) + I(a, t) + R(a, t). The set of partial differential equations (PDEs)
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Figure 2.1: Illustration of the MSIR compartmental model.

describing the dynamics of the MSIR model is given by:





∂M(a,t)
∂a + ∂M(a,t)

∂t = −{α(a, t) + µ(a, t)}M(a, t),

∂S(a,t)
∂a + ∂S(a,t)

∂t = α(a, t)M(a, t)− {λ(a, t) + µ(a, t)}S(a, t),
∂I(a,t)

∂a + ∂I(a,t)
∂t = λ(a, t)S(a, t)− {γ(a, t) + µ(a, t) + υ(a, t)}I(a, t),

∂R(a,t)
∂a + ∂R(a,t)

∂t = γ(a, t)I(a, t)− µ(a, t)R(a, t),

(2.1)

with the boundary condition that all individuals are born with protective maternally

derived immunity:

M(0, t) = N(0, t) =

∫ ∞

0

f(a)N(a, t)da ≡ B(t),

where f(a) denotes the fertility in the population as a function of age a.

Demographic and Endemic Equilibrium

Throughout this work, we will make a number of simplifying assumptions to come up

with a set of equations which are computationally more feasible in order to estimate

age-specific transmission dynamics. First, we assume that mortality due to infection

can be ignored (υ ≈ 0). This is plausible for the infectious diseases studied in this

thesis, which are primarily childhood infections in developed countries. Further, we

assume that the population has reached a demographic equilibrium such that the

population age distribution is stationary. We also assume that the number of births

and deaths are constant over time and exactly balanced, entailing a constant total

population size N . Finally, we assume that the disease is in an endemic steady state at

the population level, meaning that disease incidence may undergo cyclical epidemics,

however fluctuating around a stationary average over time.

Under these assumptions, the time dependency cancels out and the set of partial

differential equations in (2.1) simplifies to a set of ordinary differential equations
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(ODEs): 



dM(a)
da = −{α(a) + µ(a)}M(a),

dS(a)
da = α(a)M(a)− {λ(a) + µ(a)}S(a),

dI(a)
da = λ(a)S(a)− {γ(a) + µ(a)}I(a),

dR(a)
da = γ(a)I(a)− µ(a)R(a).

(2.2)

Adding the four equations in (2.2) then yields the following differential equation for

the stationary age distribution N(a) of the population size:

dN(a)

da
= −µ(a)N(a),

so that

N(a) = N(0) exp
(
−Ω(a)

)
where Ω(a) =

∫ a

0

µ(u)du. (2.3)

The monotone decreasing function g(a) ≡ exp
(
−Ω(a)

)
corresponds to the well-known

survival function in survival analysis and reflects the probability of surviving to age a:

g(a) = P (T > a), where T is the time of death. 1 − g(a) is the lifetime distribution

function, such that the expected age a of dying or ‘life expectancy’ equals

L =

∫ ∞

0

−ag′(a)da = −ag(a)
∣∣∞
0

+

∫ ∞

0

g(a)da =

∫ ∞

0

exp
(
−Ω(a)

)
da. (2.4)

Making use of the boundary condition on the number of newborns and equation (2.3),

it can be easily seen that births and deaths are indeed exactly balanced, since

N(0) = B =

∫ ∞

0

µ(a)N(a)da, (2.5)

is equivalent to
∫∞

0 µ(a) exp
(
−Ω(a)

)
da = 1, which is satisfied. Since the total pop-

ulation size N equals
∫∞

0
N(a)da, it follows from (2.3) and (2.4) that the number of

newborns equals M(0) = N(0) = N/L.

In the following, as we use upper case letters to denote the total number of individ-

uals by compartment, we will use lower case letters to denote age-specific proportions

or fractions, e.g. s(a) = S(a)/N(a). It is convenient to divide each dependent vari-

able by N(a), as this eliminates the terms involving µ(a) from the set of differential

equations (2.2): 



dm(a)
da = −α(a)m(a),

ds(a)
da = α(a)m(a)− λ(a)s(a),

di(a)
da = λ(a)s(a)− γ(a)i(a),

dr(a)
da = γ(a)i(a).
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By solving the above set of differential equations, the following expressions for the

fraction of infants protected by maternal antibodies and the fraction of susceptibles

are obtained:

m(a) = exp

(
−
∫ a

0

α(u)du

)
,

s(a) =

∫ a

0

α(u)m(u) exp

(
−
∫ a

u

λ(t)dt

)
du. (2.6)

Mortality and Maternal Antibodies

In some applications, it is convenient to make simplifying assumptions with respect

to the mortality rate and the protective period of maternal antibodies. One of the

assumptions often made is that the mortality rate is an age-independent constant µ,

which is referred to as ‘type II mortality’. In this case, the survival function is of the

form g(a) = exp(−µa), which is generally not realistic for developed countries as illus-

trated in Figure 2.2. The solid line in Figure 2.2 represents ĝ(a) = exp
(
−
∫ a

0 µ̂(u)du
)
,

with the mortality rate estimated from demographical data on the number of deaths

and population sizes per age class for Belgium anno 2003, using a Poisson gener-

alized additive model. From the mortality rate µ̂(a), a life expectancy estimate of

L̂ = 78.8 years is computed using (2.4). The survival curve for type II mortality (dot-

ted line) is set to entail the same life expectancy as the survival function estimated

from the demographical data. From (2.5) it can be seen that type II mortality implies

N/L = µN , and therefore a constant mortality rate µ̂ = 1/L̂ is chosen. As is clear

from Figure 2.2, a better approximation of the population age distribution is obtained

for ‘type I mortality’ (dashed line):

g(a) =

{
1, if a < L

0, if a ≥ L,
or µ(a) =

{
0, if a < L

∞, if a ≥ L,
(2.7)

which implies that all individuals survive up to age L and then promptly die.

Similar to type I mortality, one can assume that all newborns are protected

through maternally-derived passive immunity until a certain age A and then instan-

taneously become susceptible to infection. We refer to this assumption as ‘type I

maternal antibodies’:

m(a) =

{
1, if a ≤ A

0, if a > A,
or α(a) =

{
0, if a ≤ A

∞, if a > A.
(2.8)

Making use of the Dirac delta property of α·m under the assumption of type I maternal

antibodies (see Proposition 1) and equation (2.6), the proportion of susceptibles is
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Figure 2.2: Survival probability as a function of age, estimated from demographical data

using the exponential model in (2.3) (solid line), assuming type I mortality (dashed line),

and type II mortality (dotted line). Parameters are chosen such that the three models entail

the same life expectancy (78.8 years).

given by

s(a) = exp

(
−
∫ a

A

λ(u)du

)
, if a > A, (2.9)

and s(a) = 0 if a ≤ A.

Proposition 1 (Dirac delta property of α ·m for type I maternal antibodies)

For every differentiable function f on [0,+∞), the following equation holds when

α(a) and m(a) are defined as in (2.8):

∫ a

0

α(u)m(u)f(u)du =

{
0, if a ≤ A

f(A), if a > A.
(2.10)

Proof. We will only give the proof for the case a > A, since the result for a ≤ A

follows directly from (2.8). Define αε(a) and mε(a) as follows, for ε > 0 small:

αε(a) =

{
0, if a ≤ A
1
ε , if a > A,

mε(a) =

{
1, if a ≤ A

exp
(
−a−A

ε

)
, if a > A.



2.1. Mathematical Models for Infectious Disease Transmission 13

The integral in (2.10) can now be solved using the fact that α(a) = lim
ε↓0

αε(a) and

m(a) = lim
ε↓0

mε(a):

∫ a

0

α(u)m(u)f(u)du =

∫ a

0

lim
ε↓0

[αε(u)mε(u)] f(u)du

= lim
ε↓0

∫ a

0

αε(u)mε(u)f(u)du

= lim
ε↓0

∫ a

A

1

ε
exp

(
−u−A

ε

)
f(u)du

= lim
ε↓0

[
− exp

(
−u−A

ε

)
f(u)

∣∣∣∣∣

a

A

+

∫ a

A

exp

(
−u−A

ε

)
f ′(u)du

]

= f(A),

where Lebesgue’s dominated convergence theorem is used to justify the second step.�

Model Extensions

The MSIR model is just one, though fundamental, example of a deterministic model

used to describe infectious disease transmission. In practice, many extensions exist

with different numbers of compartments having various interpretations. The SIR-

model, which omits the M -compartment from the MSIR model, is the most frequently

used in the literature. In some cases, it may be of interest to account for the fact

that once infected, individuals are generally not immediately infectious to others.

After having acquired infection by exposure (E) to the disease, individuals often go

through a ‘latent period’ in which they are not yet infectious to others, thus not yet

able to transmit the disease. The SEIR-model is an extension of the SIR-model which

includes an extra E-compartment to account for this latent period. Another example

is the SIS-model which is suitable for certain sexually transmitted infections such as

gonorrhea. For these diseases, individuals become susceptible again after infection

and multiple infections during one lifetime may occur. The removed state R at the

end of the dynamical cycle is therefore implausible and replaced by a flow from the

infected state I back to the susceptible state S. In Chapter 6, we will consider other

model extensions involving waning, boosting and reinfections, to specifically infer on

parvovirus B19 transmission.
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2.1.2 Who Acquires Infection From Whom

The force of infection λ(a) can be generally written as (e.g. Anderson and May, 1991):

λ(a) =

∫ ∞

0

β(a, a′)I(a′)da′, (2.11)

where β(a, a′) denotes the transmission rate: the average per capita rate at which an

individual of age a′ makes effective contacts with a person of age a, per unit time.

The contact is called effective when the person of age a is ‘successfully’ infected by

the person of age a′, given that the first individual is susceptible and the other one

infectious. The average rate at which a susceptible of age a acquires infection per

unit time, thus roughly equals the sum of the average rates at which he/she makes

effective contact with all infectious individuals present in the population, per unit

time. This formula reflects the so-called ‘mass action principle’ and probably arose

from the law stating that the rate of any given chemical reaction is proportional to

the product of the concentrations of the reactants.

The mass action principle implicitly assumes that susceptible and infectious indi-

viduals mix completely with each other and move randomly within the population.

This brings us immediately to the main drawback of this mean-field definition (2.11):

it does not account for the fact that contacts are often directed and clustered in

e.g. households, schools or workplaces. Network-based approaches to infectious dis-

ease dynamics allow to model these aspects of social mixing behavior (e.g. Keeling

and Eames, 2005; Bansal et al., 2007). Two individuals (nodes) in a contact network

model are for example connected with an edge if they interact in such a way that an

infection could be transmitted. Each individual has its own ‘degree’, defined as the

number of edges or contacts, and the network model thus explicitly captures the de-

gree variability observed in real life (degree distribution). Since network models have

an individual-based interpretation, however, it seems less straightforward to derive

population-based estimates such as the force of infection.

Taking into account recovery (γ(a)) and mortality of the infected individuals,

formula (2.11) can be rewritten as (see Farrington et al., 2001):

λ(a) =

∫ ∞

0

{∫ ∞

0

β(a, a′ + t)e−
∫

t

0
γ(u)due−

∫
a′+t

a′
µ(u)dudt

}
λ(a′)S(a′)da′.

If the infectious period is short compared to the timescale on which transmission and

mortality rates vary, making use of (2.3), the force of infection can be approximated

by:

λ(a) =
ND

L

∫ ∞

0

β(a, a′)λ(a′)s(a′) exp

(
−
∫ a′

0

µ(u)du

)
da′, (2.12)
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where D denotes the mean infectious period:

D =

∫ ∞

0

exp

(
−
∫ a

0

γ(u)du

)
da.

The main difficulty in estimating β(a, a′) from the force of infection, is that λ(a) is a

one-dimensional projection of the transmission process, while the transmission rates

make up a two-dimensional matrix. The matrix elements βij range over age class i of

the susceptible (rows) and age class j of the infected (columns).

Anderson and May (1991) proposed to impose certain mixing patterns on this βij

matrix, which is called the ‘Who Acquires Infection From Whom’ (WAIFW) matrix,

thereby constraining the number of distinct elements for identifiability reasons, and

to estimate the mixing parameters from serological data. The mixing patterns from

the traditional Anderson and May (1991) approach are based on prior knowledge of

social mixing behavior, and typically have low dimensions which may induce non-

realistic discontinuities in the estimated βij matrix. In Chapter 5, we present an

illustration of this traditional approach for the varicella zoster virus. Further in

Chapter 5, we elaborate on the new method of using social contact surveys to infer

on transmission rates, firstly applied by Wallinga et al. (2006). Unlike the traditional

approach, strong parametric assumptions about social mixing in the population are

avoided when using data on social contacts. An introduction to social contact surveys

is given in Section 3.2.

Basic Reproduction Number

One of the most popular parameters in infectious disease epidemiology, which is di-

rectly related to the WAIFW matrix, is the basic reproduction number R0 (sometimes

called the basic reproductive ratio). R0 represents the average number of secondary

cases produced by one typical infected person during his or her entire period of in-

fectiousness, when introduced into an entirely susceptible population. For a nice

historical overview of the development of R0, which has an analogous interpretation

in demography and ecology as the expected number of female offspring born to one

female during her entire life, we refer to Heesterbeek (2002).

Figure 2.3(a) presents an illustration of the epidemiological definition for a sim-

plistic situation where R0 = 3. R0 is referred to as a ‘threshold parameter’ since the

following criterion holds for large populations: if R0 > 1, the infection can invade the

population and may become endemic, while if R0 ≤ 1, the infection will eventually

die out with probability 1. The value of R0 thus reflects the epidemic potential of

an infection, and encapsulates the interaction between the infectious organism, its
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Figure 2.3: Illustration of the basic reproduction number R0 and the critical immunization

level. (a) One infected person (black circle) is introduced into a fully susceptible population,

and infects R0 = 3 others (gray circles). (b) Same situation as (a), only now 2/3 of the

population was immunized (dotted circles) prior to introduction of the infected person. In

this case, the infection is only transmitted to Rv = 1 other person.

(human) host and the environment. As formulated by Dietz (1993), R0 depends on

the following three factors: the duration of the infectious period, the probability that

a contact between an infected and a susceptible individual leads to an infection, and

the contact rate. Additionally, the stationary age distribution of the population also

determines the value of R0.

When an infected individual of age a′ is introduced into an entirely susceptible

population, the average number of individuals of age a he/she infects during the

infectious period, equals:

G(a, a′) ≡ ND

L
exp

(
−
∫ a

0

µ(u)du

)
β(a, a′). (2.13)

The function G(a, a′) is called the next generation operator, since it expresses the age

distribution (as well as the size) of the next generation of infectious cases. Diekmann

et al. (1990) showed that the basic reproduction number R0 is the dominant eigenvalue

of this next generation operator. The leading right eigenfunction is proportional to

the distribution of infected individuals during the initial exponential growth phase of

an epidemic, and represents the ‘typical’ infected person used in the definition of R0.

Although R0 is a theoretically interesting summary measure of the WAIFW ma-

trix, its value is rarely observed in practice. The effective reproduction number Reff

is a reflection of the actual average number of secondary cases, which takes into ac-

count the fact that, when an infection emerges in a population, not all individuals

are susceptible to the infection. This indeed depends on historical immunity, the con-
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Table 2.1: Typical values of R0 and CIL for selected infections (from: Farrington, 2003).

Infectious Disease R0 CIL (%)

measles 10-20 90-95

chickenpox 5-10 80-90

mumps 5-10 80-90

rubella 4-7 75-85

smallpox 3-5 65-80

trol measures taken (such as active immunization), and the depletion of susceptible

individuals when the epidemic progresses. Hence the value of Reff is always smaller

than or equal to the value of R0. In our endemic equilibrium setting, each infectious

individual will on average infect one other individual, and thus Reff must be equal

to 1 (Farrington, 2003).

Critical Immunization Level

Another interesting parameter related to the basic reproduction number is the critical

immunization level (CIL): the minimal proportion of the population that must be

immunized by vaccination to eliminate the infection from the population. Consider

the simplistic situation where a proportion v of the population is immunized at birth

by a fully protective vaccine. The expected number of secondary cases produced

by a typical infected person when introduced into the population, assuming that all

immunity is vaccine-derived, equals Rv = (1−v)·R0. In order for Rv to be ≤ 1, v must

be ≥ 1 − (1/R0), and the latter value is then referred to as the CIL. The larger the

value of R0, the larger the CIL hence the more effort required to globally eradicate

the infection. Returning to our simple example in Figure 2.3, we observe that by

immunizing 1 − (1/3) = 2/3 of the population (dotted circles in (b)), on average

Rv = 1 secondary case is produced which will ultimately lead to elimination of the

disease due to chance fluctuations. Table 2.1 presents some values of R0 and CIL

for a selection of well-known infectious diseases, obtained from Farrington (2003).

Note that the largest value of R0 in the list is for measles, while the smallest is

for smallpox; a serious, sometimes fatal disease which induced worldwide epidemics

during thousands of years. Smallpox is the only human viral infection which has been

eradicated up till now by means of vaccination.
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2.2 Statistical Inference

In this dissertation, the analyses were carried out within a frequentist framework.

In the next sections, we briefly introduce the method of maximum likelihood for pa-

rameter estimation and the non-parametric bootstrap method which we use to assess

variability. The concept of multimodel inference as a tool to conduct inference from

an entire set of candidate models, is described at the end of this chapter. Alterna-

tively, the applications presented in this thesis could have been approached from a

Bayesian perspective, though we have not explored any Bayesian methods.

2.2.1 Maximum Likelihood Estimation

Throughout this work, we will use the standard estimation method of maximum

likelihood (ML) to infer on unknown parameters for a given model. Suppose we

want to estimate k unknown parameters θ = (θ1, . . . , θk) from a set of observed

values y = (y1, . . . , yn) of a random sample Y1, . . . , Yn, from a distribution subject

to heterogeneity. Denote by fi(yi|θ) the density function of the random variable Yi.

Since Y1, . . . , Yn are independent, the likelihood function is given by:

L(θ|y) =
n∏

i=1

fi(yi|θ).

An estimate for θ can be obtained by maximizing the likelihood function over the

entire parameter space Θ, and this ML-estimate is denoted by θ̂. It is more con-

venient, however, to maximize the log-transformed likelihood function ℓ(θ|y) =

log(L(θ|y)) or ‘loglikelihood’, since this implies calculating the derivative of a sum

instead of a product. As the natural logarithm is a monotone increasing function,

this optimization is entirely equivalent. The score vector is defined as S(θ|y) =(
∂

∂θ1
ℓ(θ|y), . . . , ∂

∂θk
ℓ(θ|y)

)
, and the ML-equations which need to be solved are





S1(θ|y) = 0

. . .

Sk(θ|y) = 0.

In order for the solution θ̂ to be a maximum, the information matrix I(θ|y) which

contains the second order partial derivatives of the loglikelihood, should be positive

definite. There are several numerical techniques which can be used to solve the ML-

equations, such as Newton-Raphson or Fisher’s scoring, the EM-algorithm, and so

on. Although an ML-estimator is not necessarily unique or unbiased, it is weakly

consistent and asymptotically normal under certain regularity conditions.
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Further, we will mainly perform criterion-based model selection, and hereby focus

on two information criteria: Akaike’s information criterion (Akaike, 1973),

AIC = −2ℓ(θ̂|y) + 2 · k, (2.14)

and the Bayesian information criterion,

BIC = −2ℓ(θ̂|y) + log(n) · k, (2.15)

as proposed by Schwarz (1978). The AIC is an estimate of the expected, relative

Kullback-Leibler (K-L) distance, whereas the K-L distance embodies the information

lost when an approximating model is used instead of the unknown, true model. The

BIC originates from a Bayesian perspective and more strongly penalizes the number

of parameters in the model (factor log(n) instead of 2). Given a set of candidate

models, the ‘best’ model is the one with the smallest value for AIC or BIC. One

should keep in mind that there may exist other models, which are closer to the true

underlying model, but were not considered as a candidate. Model selection is always

conditional on the set of candidate models considered, so this set should be chosen

thoughtfully.

The profile likelihood method can be used to compute approximate confidence

intervals (CIs) for each of the parameters (e.g. Cox, 1970). This method reduces the

loglikelihood to a function of a single parameter by treating the other parameters

as nuisance and maximizing over them. The construction of the confidence interval

(CI) is then based on the asymptotic χ2
1 distribution of the likelihood ratio (LR) test

statistic. Suppose we would like to calculate a profile likelihood CI for the parameter

θj . Then define the ‘restricted’ parameter space Θj(x) = {θ ∈ Θ|θj = x}, and the

profile likelihood function:

ℓ∗j (x) = max
θ∈Θj(x)

ℓ(θ|y),

which maximizes the loglikelihood over the other k − 1 parameters while keeping θj

fixed at x. The set

{x| − 2(ℓ∗j (x)− ℓ(θ̂|y)) ≤ χ2
1,(1−α)} (2.16)

now defines a (1−α)% profile likelihood CI for θj , where χ
2
1,(1−α) denotes the (1−α)

quantile of the χ2
1 distribution. In case α = 0.05, the quantile used is χ2

1,(0.95) ≈ 3.84.

An alternative, distribution-free method to compute confidence intervals is described

in the next section.
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2.2.2 Bootstrap Inference

In 1979, Bradley Efron introduced the bootstrap (Efron, 1979) which is now a widely

used method to estimate the standard error or bias of a given parameter estimate, or

to calculate an approximate CI. For a comprehensive account of bootstrap methods,

we refer to Efron and Tibshirani (1993). The idea is that further information on

the variability of an estimator can be obtained by drawing samples with replacement

from the observed data y1, . . . , yn, i.e. one sample giving rise to many others. These

independent bootstrap samples, denoted by y∗(1), . . . ,y∗(B), usually have the same

sample size n as the original data set. Now denote θ̂
∗
(b) the bootstrap replication

of θ̂ obtained by maximizing the loglikelihood ℓ(θ|y∗(b)) for bootstrap sample y∗(b).

Note that more generally, bootstrap estimates can be obtained for any statistic of

interest from y. The bootstrap estimate for the standard error of the ML-estimate

θ̂j equals:

ŝeB(θ̂j) =

√∑B
b=1

(
θ̂∗j (b)− θ̄∗j

)2

B − 1
, where θ̄∗j =

1

B

B∑

b=1

θ̂∗j (b).

There are several bootstrap methods to calculate approximate confidence inter-

vals for model parameters. Efron and Tibshirani (1993) first present the bootstrap-t

method, which can be seen as a bootstrap version of the Student’s t CI for finite

samples. The percentiles of the Student’s t distribution are then replaced by per-

centiles of the B bootstrap versions of the statistic Z = (θ̂j − θj)/ŝe(θ̂j). In practice,

however, the bootstrap-t method can give somewhat erratic results, and can be heav-

ily influenced by outlying data points (Efron and Tibshirani, 1993, p.160). We will

therefore use the more reliable percentile-based bootstrap intervals. Let θ̂
∗(α)
j,B denote

the 100 · αth empirical percentile of the θ̂∗j (b) values, then the approximate (1− α)%

percentile CI for θj is

[θ̂
∗(α

2 )
j,B , θ̂

∗(1−α
2 )

j,B ]. (2.17)

Percentile intervals, however, may lead to undercoverage and therefore Efron and

Tibshirani (1993) proposed an extension called the bias-corrected and accelerated

method (BCa) which has better theoretical coverage properties. Since the latter

method involves an additional jackknife procedure, its computation would be much

more time consuming for the large data sets we are dealing with (see Chapter 3).

Furthermore, it is unclear how the theoretical formula for the BCa interval could be

extended to account for the multiple sources of variability we face in our applications

(see e.g. Chapter 5).
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Up till now we described the non-parametric bootstrap approach, when sampling

is based on the empirical distribution function. Alternatives are the parametric boot-

strap when samples are drawn from a specific parametric model, and the semipara-

metric bootstrap e.g. by resampling model-based residuals in a regression setting. The

latter methods require parametric assumptions about the form of the ‘true’ underlying

population, and are therefore generally less useful compared to the non-parametric

bootstrap.

2.2.3 Multimodel Inference

We already referred to model selection criteria such as AIC and BIC to select a

model from a set of candidate models. By selecting one model and base inferences

on that particular model, one implicitly discards the information contained in the

other models. Multimodel inference comprises methods for making formal statistical

inference from all the models in an a priori set, and for a comprehensive account

of the topic we refer to Burnham and Anderson (2002). Suppose we consider a

set of m candidate models, and list them according to their AIC value. Let AICmin

correspond to the model with the smallest AIC value from the set of candidate models

considered. The AIC differences ∆i = AICi − AICmin (i = 1, . . . ,m), estimate the

expected relative K-L differences. The best model has ∆min ≡ 0, and the larger the

AIC difference ∆i, the less empirical support of model i.

These AIC differences can be used to calculate Akaike weights (i = 1, . . . ,m):

wi =
exp(− 1

2∆i)
m∑
ℓ=1

exp(− 1
2∆ℓ)

, (2.18)

which can be interpreted as the weight of evidence in favor (or the probability) of a

model i being the actual K-L best model for the situation at hand, given the data

and the set of candidate models considered. Thus, the Akaike weights are model

probabilities that directly quantify the uncertainty associated with model selection.

The evidence ratio ER is then defined as wmin/wi (ER ≥ 1), and is the relative

amount of evidence favoring one model over another. The closer ER is to 1, the more

support for that particular model.

Model averaging allows to incorporate model selection uncertainty, quantified by

the Akaike weights, into parameter estimates. Suppose that each of the m candidate

models allows for an estimate of θ, the parameter of interest. If there is no single

model which is clearly superior to the others and if the parameter estimates θ̂i differ

widely between the models, it is not sensible to base prediction only on the selected
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best model. In that situation, it is more feasible to compute a model averaged estimate

of θ:

ˆ̄θ =

m∑

i=1

wiθ̂i, (2.19)

weighting the model estimates by the corresponding Akaike weights wi.



Chapter 3
Data Sources and Initial Analyses

In our applications, we will make use of two main data sources. The first are serological

data sets that, in the absence of an immunization program, represent the age-specific

prevalence of past infection in a population. In Section 3.1, the serological data sets

for varicella zoster virus in Belgium and parvovirus B19 in five different European

countries, and the trivariate data on measles, mumps and rubella from Belgium and

Ireland, are introduced. In some applications, we ‘augment’ the serological data with

contact rates obtained from social contact surveys to estimate the WAIFW matrix

(cf. Section 2.1.2). Motivational statements to use social contact data, an introduction

to the largest social contact survey conducted up till now (as part of the POLYMOD

project), and two preliminary analyses highlighting the various informational facets

of the POLYMOD contact survey, are given in Section 3.2.

3.1 Serological Data

The serological data presented here consist of cross-sectional sets of residual blood

samples collected from hospital laboratories and adult blood donors, which are tested

for infection-specific immunoglobulin G (IgG) antibodies using a biochemical tech-

nique called ‘enzyme-linked immunosorbent assay’ (ELISA). The IgG antibody level

is an indicator of past infection or vaccination, and the manufacturer of the ELISA-

test determines a cut-off value (or range) above which the individual is classified as

being seropositive, and below as seronegative. Provided that a serological correlate

of protection is agreed upon, the serological status is a direct measure of immunity

against the disease. An ELISA-test, however, is subject to diagnostic uncertainty and

23
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misclassification may occur, including both false negatives (seronegative individuals

with protective immunity) as well as false positives (seropositive individuals without

protective immunity). Bollaerts et al. (2011) investigated the effect of test misclassi-

fication on the estimation of the prevalence and the force of infection, and proposed

a mixture-model based approach for continuous antibody titers to avoid the use of

thresholds.

In this thesis, the focus is on dichotomized serological data (binary response vari-

able: 1 = seropositive and 0 = seronegative). These are in fact type I interval-

censored data also known as current status data: a person is only observed once and

the only information available is his/her current status with respect to the infection,

i.e. whether the individual has experienced infection before the sample was taken

or not. The seroprevalence is then the proportion of seropositives in the serological

sample, and if representative, provides crucial information with regards to disease

dynamics in the population. In this respect, it should be kept in mind that the sera

we are able to use here are residual samples, i.e. not randomly sampled from the pop-

ulation. However, to avoid bias due to immunocompromised patients, blood samples

from patients with specific known infections or disorders (e.g. HIV) or from hospital

wards such as oncology, were excluded.

Unlike incidence data such as case reports which are counts of disease notified

through passive or active surveillance systems, or laboratory reports which are cases

confirmed through laboratory identification, serological data do not suffer from bias

originating from changes in clinical awareness or underreporting e.g. due to non-

specific symptoms or asymptomatic infection. Grenfell and Anderson (1985) discussed

the advantages and disadvantages of using serological data and incidence data and

stressed that availability is the key criterion for which type of data to use.

3.1.1 Varicella Zoster Virus

The varicella zoster virus (VZV), also known as human herpes virus 3, is one of the

eight herpes viruses known to affect humans. Primary infection with VZV results

in varicella (or chickenpox) and mainly occurs in childhood. In general, the disease

is benign, however, symptoms may be more severe in adults and complications may

occur when varicella is acquired during pregnancy. Infected individuals are highly

contagious and transmission of the virus occurs through direct contact with lesions

or aerosol contact by saliva and sneezing. The incubation period varies from 13 to

18 days, and a person infected with chickenpox is able to transmit the virus for about

7 days. Antibody response following primary infection with VZV induces lifelong
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Figure 3.1: Log-transformed IgG antibody titers for VZV in Belgium plotted against age

(in years) with equivocal range in dashed lines (left panel) and corresponding seroprevalence

profile (right panel) with cubic regression spline model fit (gray solid line).

protective immunity against chickenpox. Upon recovery from varicella, the virus be-

comes dormant in the body and may reactivate years to decades later when humoral

and cell-mediated immunity levels have waned, resulting in herpes zoster (or shin-

gles). Several authors among which Brisson et al. (2002) and Thomas et al. (2002),

have shown that exposure to varicella boosts immunity to herpes zoster, which has

important implications for the evaluation of vaccination.

Two types of VZV vaccine are available: one for infants and pre-adolescents to

prevent chickenpox, and an adaptation for elderly to prevent herpes zoster. There is

no mass vaccination for VZV in Belgium, though in some countries VZV vaccination

is part of the universal childhood immunization programme, which is the case for the

United States since 1995. Colleagues from the Centre for Health Economics Research

and Modeling Infectious Diseases (CHERMID) at the University of Antwerp, are

currently investigating which (if any) universal vaccination strategy for VZV would

be (cost-)effective in a Belgian context. It is important to assess the impact of active

immunization on VZV dynamics, and in particular on the average age at primary

infection and on herpes zoster incidence, since both are associated with disease-related

burden (Brisson et al., 2003). To this purpose, pre-vaccination epidemiological data

are required.

In a period from November 2001 until March 2003, 2760 serum samples were

collected in Belgium and tested for the presence of IgG antibodies against VZV as
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part of the European Sero-Epidemiological Network 2 (ESEN2) project (Nardone

et al., 2007). Together with the ELISA test results, gender and age of the individuals

were recorded, the latter which ranged from 0 to 40 years. The resulting antibody

titers were standardized to common units and classified into positive, equivocal or

negative using an equivocal range of 50-100 mIU/ml (de Ory et al., 2006). The

log-transformed standardized titers are displayed in Figure 3.1 (left panel) and the

equivocal range is marked with dashed lines. The age-specific transmission of VZV

is studied profoundly in Chapter 5 by augmenting the serological data with data on

social contacts. The analyses described in Chapter 5 are based on the 2655 univocally

dichotomized results (seroprevalence profile in Figure 3.1 on the right), thus excluding

the 105 equivocal titers (3.8%). The results from this study served as partial input

for an extensive deterministic model evaluating the impact of mass vaccination for

VZV in Belgium.

3.1.2 Parvovirus B19

Parvovirus B19 (PVB19) was the first human parvovirus to be discovered in 1975,

causing a range of diseases among which erythema infectiosum, commonly known as

fifth disease of childhood or slapped cheek syndrome (Anderson and Cherry, 2004). In

children and teenagers, the disease is usually mild, but in adults, especially women, it

is often complicated by acute arthritis which may persist in some cases (Cohen, 1995).

PVB19 can cause transient aplastic crisis in patients with increased erythropoiesis and

chronic anemia in immunocompromised patients due to persistent infection (Young

and Brown, 2004). Infection with PVB19 during pregnancy has been associated with

intrauterine fetal death, fetal anemia and hydrops fetalis (Tolfvenstam et al., 2001).

Exposure to children, particularly in the household, has been identified as the main

risk factor in pregnant women (Valeur-Jensen et al., 1999). From the onset of rash

or arthralgia, after a period of about 17 days, the infected individual is usually no

longer contagious, which complicates the detection and control of the virus. Further-

more, subclinical PVB19 infection is a common finding in both children and adults

(Heegaard and Brown, 2002). Although it is under development, there is currently

no vaccine available for PVB19.

In Belgium (BE), England and Wales (EW), Finland (FI), Italy (IT) and Poland

(PL), a seroprevalence survey was conducted totalling 13449 serum samples collected

between 1995 and 2004 (Mossong et al., 2008a). The serum samples were tested for

the presence of IgG antibodies against PVB19, and the same batch of a commercial

immunoassay test was used for each country (Mikrogen recomWell, Martinsried, Ger-
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Table 3.1: Summary of the PVB19 serological data collection for each country, and some

figures obtained from demographic data: life expectancy L, total population size N , and

total number of live births B.

Country Serological Data Demographic Data

year of collection age range sample size L N B

BE 2001-2003 0-65 3075 79 10355197 114001

EW 1996 1-79 2822 77 51125400 649034

FI 1997-1998 1-79 2499 78 5146965 57108

IT 2003-2004 1-79 2514 81 57880478 562603

PL 1995-2004 1-79 2495 73 38651893 382002

many). The resulting antibody titers are depicted on the log scale in Figures 3.2 and

3.3 (left panels). Note that the sampled age range for Belgium was smaller than for the

other countries (X-axis). The few equivocal results, located within the cut-off range

specified by the manufacturer (dashed lines in Figures 3.2 and 3.3, left panels), are

spread over all age groups and excluded from the analyses. The univocal serological

data, of which a short summary is presented in Table 3.1, were analyzed before using

monotone local polynomials (Mossong et al., 2008a). The study indicated substantial

epidemiological differences in Europe regarding PVB19 infection.

It is generally assumed that the IgG antibodies persist for a lifetime (Young and

Brown, 2004). However, after an initial monotone increase with age, the seropreva-

lence profiles for PVB19 in these five European countries show a decrease or plateau

between the ages of 20 and 40 (Figures 3.2 and 3.3, right panels), which does not sup-

port the assumption of lifelong immunity if the infection is at endemic equilibrium.

In Chapter 6, we explore different compartmental dynamic transmission models to

investigate whether this phenomenon is induced by waning antibodies for PVB19 and,

if this is the case, whether secondary infections are plausible or whether boosting by

re-exposure may occur.

3.1.3 Modelling the Seroprevalence

As a preliminary exploration, we simply fit a flexible model to the serological data

sets for VZV and PVB19, without taking into account the underlying disease trans-

mission process. Let yi denote the binary variable indicating whether subject i had

experienced the infection before age ai or not (i = 1, . . . , n). We use a semiparametric

model with cubic regression splines (Hastie and Tibshirani, 1990) to relate the current
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Figure 3.2: Log-transformed IgG antibody titers for PVB19 plotted against age (in years)

with equivocal range in dashed lines (left panels) and corresponding seroprevalence profile

with cubic regression spline model fit as a gray solid line (right panels), for BE, EW and FI.
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Figure 3.3: Log-transformed IgG antibody titers for PVB19 plotted against age (in years)

with equivocal range in dashed lines (left panels) and corresponding seroprevalence profile

with cubic regression spline model fit as a gray solid line (right panels), for IT and PL.
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status to age in a smooth non-linear way:

g (P (Yi = 1|ai)) = η(ai) = β0 + β1ai + β2a
2
i + β3a

3
i +

K∑

j=1

β3j(ai − κj)
3
+ (3.1)

with

(ai − κj)+ =




ai − κj if ai ≥ κj

0 if ai < κj

,

where g is some link function, η is the linear predictor, and κ1, . . . , κK are the knots

for the independent variable, i.e. age. Cubic regression splines join cubic polynomials

at the knots of the spline to ensure continuity and differentiability up to degree two.

For a summary of other penalized spline models, and for an overview of different

parametric and non-parametric techniques to model the seroprevalence, such as local

polynomials, we refer to Hens et al. (2011).

We fit cubic regression spline models with a logit link to the serology, by using the

gam function from the mgcv package in R (Wood, 2006). As a default, the knots are

spread evenly throughout the covariate values, so according to the quantiles of the age

distribution. The smoothing parameter is automatically selected by either unbiased

risk estimation (UBRE) or generalized cross-validation (GCV). Figures 3.1, 3.2, and

3.3, display the fit of the cubic regression spline models to the VZV and PVB19

seroprevalence profiles (gray solid lines). For VZV in Belgium, we observe that the

proportion of seropositives increases very rapidly in young children up till the age

of 10 years. After that age, nearly everyone has experienced infection with VZV

and the prevalence stabilizes, reflected by the plateau-shape of the fitted curve. The

fitted profiles for PVB19 look very different compared to VZV. There is a less steep

increase of the prevalence in children, and the estimated proportion of seropositive

teenagers and adults is not as high as for VZV in Belgium. For each country, the

spline models estimate a decrease in the seroprevalence between the ages of 20 and 40

years, an observation we already made directly from the data. We note substantial

variability for PVB19 prevalence between the different countries. The spline models

also accentuate two limitations of the serology for adults and elderly: digit preference

due to the use of age classes for BE, and small sample sizes for the four other countries.

3.1.4 Measles, Mumps and Rubella

Measles, mumps and rubella (MMR) are three highly contagious viral diseases that

are transmitted from person to person through direct or aerosol contact. If mumps

is acquired by a teenage or adult male, a possible complication is painful testicular
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inflammation that in rare cases may lead to infertility. Rubella is usually mild and the

disease may pass by unnoticed, however, infection during pregnancy can cause the po-

tentially severe congenital rubella syndrome in the newborn. Before the introduction

of mass vaccination, measles, mumps and rubella were common childhood infections

spread worldwide. The level of protection required to fully prevent circulation is

supposed to be the highest for measles (Anderson and May, 1990). In Chapter 7,

we analyze two post-vaccination serological data sets for MMR from Belgium and

Ireland, which were collected as part of the ESEN2 project.

Universal, combined MMR vaccination was introduced in Belgium in 1985, and

in Ireland in 1988. In both countries, a first MMR dose is given in the second year

of life. In Belgium, from 1995 onwards, a second MMR dose was recommended

to be given at the age of 10-13 years. Similarly in Ireland in 1992, a second dose

of MMR was recommended at the age of 10-14 years, however, the target age was

reduced to 4-5 years in 1999. Since the start of universal vaccination, the incidence

of MMR declined rapidly, however, local outbreaks of measles and mumps still occur

due to suboptimal coverage. The circulating MMR vaccines are highly immunogenic,

with at least 95% of the individuals developing protective antibodies for each of the

three diseases upon vaccination. In clinical trials, the highest seroconversion rate

is observed for rubella. While for measles and rubella, vaccine-induced immunity

seems long-lasting, the vaccine efficacy for mumps declines to 75% after 10 to 20

years (Cochi et al., 1994; Davidkin et al., 2008). The infections with mumps notified

through the PediSurv surveillance network in Belgium are often in MMR vaccinated

individuals. This may be attributed to primary (failure to seroconvert) or secondary

(waning immunity) failure of the mumps vaccine (Briss et al., 1994; Vandermeulen

et al., 2004).

From November 2001 until March 2003, a total of 3378 serum samples were col-

lected in Belgium and tested for IgG antibodies against measles, mumps and rubella.

Similarly, in Ireland, a total of 2537 serum samples were collected and tested in 2003.

To adjust for laboratory and assay differences which could compromise the compar-

ison between countries, we use the standardized serological results obtained by the

method of Kafatos et al. (2005). We restrict our analyses in Chapter 7 to the age

groups who have been targeted for universal MMR vaccination. For the Belgian data

set, these individuals are 1-18 years old and belong to the birth cohorts of 1984-2001.

For the Irish data set these individuals are 1-16 years old and belong to the birth

cohorts of 1987-2002. Since the sparse structure of the data for the oldest Irish birth

cohort causes convergence issues during the analyses, the individuals aged 16 years

are left out of consideration. For each age group, the number of individuals in each



32 Chapter 3. Data Sources and Initial Analyses

Table 3.2: Number of Belgian 2002 sera in each category (seropositive or seronegative to

each of measles, mumps and rubella) by age.

Age + ++ ++− +−+ +−− −++ −+− −−+ −−− Total

[1, 2) 25 0 4 3 1 1 3 26 63

[2, 3) 58 0 11 2 1 0 1 7 80

[3, 4) 60 1 10 0 0 0 1 5 77

[4, 5) 57 1 9 0 2 0 1 10 80

[5, 6) 55 0 8 0 0 2 2 8 75

[6, 7) 46 1 11 2 0 0 2 9 71

[7, 8) 51 2 10 2 0 0 4 4 73

[8, 9) 49 0 15 1 1 0 1 7 74

[9, 10) 37 0 12 6 0 1 3 6 65

[10, 11) 56 0 13 4 0 0 1 3 77

[11, 12) 56 1 5 2 2 1 1 3 71

[12, 13) 55 1 3 4 6 1 2 2 74

[13, 14) 49 1 4 2 3 1 3 3 66

[14, 15) 54 1 1 0 4 1 3 2 66

[15, 16) 54 1 5 1 4 0 3 1 69

[16, 17) 61 0 4 0 6 1 1 1 74

[17, 18) 57 3 5 1 1 1 2 2 72

[18, 19) 103 1 15 2 4 0 6 5 136

Total 983 14 145 32 35 10 40 104 1363

72% 1% 11% 2% 3% 1% 3% 8%

of the 8 different immunity states, classified based on the univocally dichotomized

results for each of measles, mumps and rubella, are presented in Tables 3.2 and 3.3,

for Belgium and Ireland, respectively. The serum samples with at least one equivocal

test result, which are excluded because of their ambiguous interpretation, constitute

22% and 21% of the Belgian and Irish data, respectively.

3.2 Social Contact Data

Mathematical models of person to person infectious disease spread require assump-

tions regarding the underlying transmission process (cf. Section 2.1). For infections

transmitted by air, respiratory droplets, or direct non-sexual contacts, these assump-
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Table 3.3: Number of Irish 2003 sera in each category (seropositive or seronegative to each

of measles, mumps and rubella) by age.

Age + ++ ++− +−+ +−− −++ −+− −−+ −−− Total

[1, 2) 28 1 3 7 1 2 0 31 73

[2, 3) 28 3 7 0 0 0 2 12 52

[3, 4) 26 0 10 2 0 0 2 5 45

[4, 5) 36 2 8 0 0 0 3 2 51

[5, 6) 40 2 11 3 0 1 1 5 63

[6, 7) 34 0 7 0 0 0 1 6 48

[7, 8) 42 2 9 0 0 0 2 5 60

[8, 9) 22 0 4 2 0 1 0 3 32

[9, 10) 30 1 5 1 2 0 2 6 47

[10, 11) 21 2 7 2 2 0 0 4 38

[11, 12) 23 0 8 1 0 0 3 6 41

[12, 13) 34 0 2 0 0 0 0 3 39

[13, 14) 45 0 4 2 0 0 4 3 58

[14, 15) 34 0 3 0 0 1 1 1 40

[15, 16) 30 0 6 0 1 0 0 1 38

Total 473 13 94 20 6 5 21 93 725

65% 2% 13% 3% 1% 1% 3% 13%

tions are related to human social interactions of which the frequency and intensity

typically depend on age. In the traditional approach of Anderson and May (1991),

preconditioned mixing patterns in combination with age-specific incidence or serolog-

ical data, are used to estimate the WAIFW matrix. Recall that the WAIFW matrix

represents the age-specific average per capita rate at which two individuals make an

effective contact, per time unit (Section 2.1.2). The WAIFW matrix is central to dy-

namic transmission models, as are closely related parameters like the basic reproduc-

tion number R0 and the age-specific force of infection. Many authors have elaborated

on this approach of Anderson and May (1991), among which Greenhalgh and Dietz

(1994); Farrington et al. (2001); Van Effelterre et al. (2009). However, estimates of

important epidemiological parameters such as R0 turn out to be sensitive with re-

spect to the choice of the imposed mixing pattern (Greenhalgh and Dietz, 1994). An

alternative method was proposed by Farrington and Whitaker (2005), where contact

rates were modeled as a continuous contact surface and estimated from serological
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data.

3.2.1 The Quest for Mixing Patterns

The aforementioned methods to estimate age-dependent transmission rates clearly

involve a somewhat ad hoc and uncertain choice, namely the structure for the

WAIFW matrix or the parametric model for the contact surface. Since this choice

is highly influential for quantitative model projections, authors have explored sev-

eral ways to empirically inform the estimation of age-specific contact rates. Over the

last decade, several small scale social contact surveys in which participants had to

record information on conversational (and physical) contacts, were conducted to gain

more insight in social mixing behavior relevant to the spread of close contact infec-

tions: Edmunds et al. (1997); Beutels et al. (2006); Edmunds et al. (2006); Wallinga

et al. (2006); Mikolajczyk et al. (2008). Assuming that transmission rates for in-

fections transmitted predominantly through non-sexual social contacts, are directly

proportional to rates of conversational contact, Wallinga et al. (2006) were the first to

contrast social contact data against seroprevalence profiles (for mumps and pandemic

influenza). Alternatively, Del Valle et al. (2007) obtained information on mixing pat-

terns from a simulated social network, and Zagheni et al. (2008) used time-use surveys

to estimate ‘time-of-exposure’ matrices.

While the contact survey approach directly measures contact rates and assumes

that talking with or touching another person constitute the main at-risk events by

which an infection can be transmitted, the latter two methods are more indirect and

assume that being in the same location at the same time (time of exposure) is an

appropriate proxy for at-risk events. Zagheni et al. (2008) make the specific assump-

tion of ‘proportionate time mixing’ which means that, for single activity/location and

small time intervals, people allocate their time to the other participants in the activity

proportionally to their relative participation in the activity. These methods all have

their advantages and limitations, for example, contact surveys do not record events of

being in close physical proximity to other individuals and not talking to them (e.g. on

public transport), whereas the location-based approaches from Del Valle et al. (2007)

and Zagheni et al. (2008) may underestimate the level of mixing assortativeness since

the locations are generally not stratified by age. It could be interesting to compare

and combine the different methods to estimate the WAIFW matrix, however, that

was beyond the scope of this thesis.

Since the social contact surveys carried out until that time were in small or non-

representative populations, the European commission project ‘POLYMOD’ conducted
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large population-based surveys between May 2005 and September 2006 (Mossong

et al., 2008b). These prospective surveys of social contacts were held in eight European

countries: Belgium (BE), Germany (DE), Finland (FI), Great Britain (GB), Italy

(IT), Luxembourg (LU), The Netherlands (NL) and Poland (PL). For an extensive

description of the survey methodology and results from exploratory data analysis, we

refer to Mossong et al. (2008b). In the next section, a brief outline of the survey

design and the main findings from Mossong et al. (2008b) are summarized. Two

initial applications of the POLYMOD survey from Hens et al. (2009b) are described

in Sections 3.2.3 and 3.2.4. In Chapter 4, the Belgian contact survey is studied in

more detail by means of a data mining analysis.

3.2.2 POLYMOD Contact Survey

Survey participants were recruited in such a way as to be broadly representative

of the whole population in terms of age, sex, and geographical spread. Children

and adolescents were deliberately oversampled, because of their important role in

the spread of infectious agents. Only one person in each household was asked to

participate in the study. Paper diaries (excerpt in Figure 3.4) were sent by mail or

given face to face, and participants were explained by telephone or in person how

to complete the diary. For young children, a parent or exceptionally another adult

caregiver filled in the diary. Teenagers filled in a simplified version of the diary

and were closely followed up to anticipate interpretation problems. A total of 7 290

participants to the study completed the diary, recording a total of 97 904 contacts

made during one randomly assigned day. A short summary of the survey methodology

and sample sizes for each country are provided in Table 3.4.

Participant-related information such as age, gender and occupation had to be

recorded in the diary as well as details about each contact made (Figure 3.4): age

and gender of the person made contact with, location or circumstance of the contact

(multiple options possible), total duration of the contact (over the entire day), and

frequency or habitual nature of the contact. In case the exact age of the contacted

person was unknown, participants had to provide an estimated age range. In all anal-

yses requiring the age of the contacted person, the median of the age range was used

as a surrogate. Further, participants had to distinguish between two types of contact:

non-close contacts, defined as two-way conversations of at least three words in each

others proximity, and close contacts which involved any sort of physical skin-to-skin

touching. Using EUROSTAT census data on population sizes of different age by

household size combinations for the year 2000, post-stratification weights were given
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Table 3.4: Details of the survey methodology, the total number of participants, and the

total number of recorded contacts, for each country.

Country Recruitment No Professional # Participants # Contacts

(max # contact entries) Contact Recording (missing age) (missing age)

BE random digit dialling (90) if > 20 750 (0) 8880 (3)

DE face-to-face interview (73) if > 10* 1341 (46) 10659 (107)

FI population registers (34) if > 10 1006 (0) 11128 (0)

GB face-to-face interview (29) not instructed 1012 (0) 11876 (3)

IT random digit dialling (45) not instructed 849 (7) 16784 (0)

LU random digit dialling (55) not instructed 1051 (0) 18352 (0)

NL population registers (45) if > 10 269 (12) 3726 (8)

PL face-to-face interview (45) not instructed 1012 (0) 16501 (2)

Total 7290 (65) 97906 (123)

* Note that for DE no participants recorded more than 10 professional contacts.

to the participants in order to make the data representative of the different popu-

lations. In all countries except DE, single-person households were underrepresented

in the sample, which can be partially explained by the oversampling of children and

adolescents who tend to live in larger households.

The analyses conducted by Mossong et al. (2008b) showed that age-specific mix-

ing patterns and contact characteristics were very similar across different European

countries, even though the average number of contacts recorded differed. Figure 3.5

displays the contact rate matrices estimated by Mossong et al. (2008b) using a bivari-

ate smoothing approach with 5 year age bands whilst incorporating post-stratification

weights (technical details on bivariate smoothing are provided in Chapter 5). The plot

revealed a strong diagonal component: contact patterns were highly assortative with

age; particularly schoolchildren and young adults tended to mix with people of the

same age. Two secondary off-diagonals presented parent-child mixing, though the

contact rates were an order of magnitude lower than the main assortative diagonal.

A wider ‘plateau’ of adults mixing with other adults was apparent as well, and pri-

marily due to low-intensity contacts of which many occurred at work.

Interestingly, the mixing patterns displayed in Figure 3.5 are qualitatively similar

to the matrices obtained by Del Valle et al. (2007) and Zagheni et al. (2008) who used

simulated social network data and time-use data, respectively. While this is already

a first step towards validation of the survey, future research should assess whether

the results are reproducible by using other data collection methods, and whether

similar contact patterns arise when conducting the survey in other countries or parts



38 Chapter 3. Data Sources and Initial Analyses

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

BE

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

DE

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

FI

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

GB

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

IT

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

LU

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

NL

0 10 20 30 40 50 60 70

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Age of Participant

A
g

e
 o

f 
C

o
n

ta
c
t

PL

Figure 3.5: Smoothed contact matrices based on all reported contacts for BE, DE, FI, GB,

IT, LU, NL, and PL, respectively. White indicates high contact rates, yellow intermediate

contact rates, and red low contact rates, relative to the country-specific contact intensity.

of the world. In a small Australian study, McCaw et al. (2010) compared three

different methods to collect contact data using a location-based reporting design: a

pre-entry questionnaire, a paper diary, and an electronic recording device. Similar to

the POLYMOD survey, McCaw et al. (2010) found high levels of assortative mixing

and adult-child mixing within families. The participants rated the use of the paper

diary higher than the electronic recording device, an more encounters were captured

using the paper diary compared to the other methods.

Further, Mossong et al. (2008b) found that contacts lasting at least one hour or

occurring on a daily basis mostly involved close contact, while short duration and

infrequent contacts tended to be non-close. Contacts at home, school, or leisure were

more likely to be close than contacts at work or while traveling. A high degree of as-

sociation was established between close contact and other measures of more intimate

contact (e.g. of long duration, occurring frequently,. . . ), suggesting that close contacts

may serve as a proxy for high intensity contacts. Preliminary modelling indicated that

in a completely susceptible population, 5- to 19-year-olds are expected to suffer the

highest incidence during the initial epidemic phase of an emerging infection transmit-

ted through social contacts. Ultimately, the contact data should lead to improved

parametrization of mathematical models used to design intervention strategies.
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Nevertheless, it is good to bear in mind some limitations of the POLYMOD survey.

First, underrepresentation of certain groups in the population is partially accounted

for by means of post-stratification (e.g. for single-person households), however, a small

percentage of the population is not represented by the survey. In BE, IT and LU,

sampling was done through random digit dialing using land lines (Table 3.4), thus

automatically excluding people who do not have land line telephones in their house-

hold. Considering the rise of cell phone use in recent years, this sampling method

may compromise the representativeness of similar future surveys. Further, the data

are self-reported which may be a potential source of bias, particularly with regard to

underreporting of contact encounters. In countries where respondents were asked to

indicate whether they encountered problems to fill in the diary, only a small percent-

age of participants indicated that they had so. This suggests that the questionnaire

and recording instructions were readily accepted and understood by responding par-

ticipants.

Parental proxy reporting for young children may have been poor when they were

not spending time together, for instance when the child was in daycare or kinder-

garten. However, it is a practical and feasible method, and alternatives such as direct

observation by an independent observant are likely to influence the child’s (contact)

behaviour. As long as there is no important trend of contact underreporting with age,

the use of the contact data to infer on mixing patterns is still relevant since it is most

important to grasp the age-specific relative differences (heterogeneities) in contact

intensities. Also, the data are egocentric and clustering of contacts (relationships or

contacts between contacted persons etc.) was not recorded. Therefore, one cannot

directly infer on the underlying social networks, though Potter et al. (2011) developed

a latent variable method to estimate within-house contact networks from the POLY-

MOD data. Finally, comparisons between countries should be made with caution due

to the variations of survey design, recruitment, and follow-up. Harmonizing survey

methods should be a point of attention for future multi-country contact surveys.

3.2.3 Modelling the Number of Contacts

In Hens et al. (2009b), we studied the effect of participant characteristics on the total

number of reported contacts from the POLYMOD contact survey using a negative

binomial regression model. Our analysis of contact counts differed from the one in

Mossong et al. (2008b) in two ways. Professional contacts were not surveyed in the

same way for all countries. Indeed, in the diary for BE, DE, FI and NL, participants

were instructed not to list their professional contacts if their number would exceed
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a certain threshold (see Table 3.4). Instead, participants had to provide an estimate

for the average number of persons they encountered professionally each day. Whereas

Mossong et al. (2008b) based their analysis on the contact counts only encompassing

the fully recorded contacted persons, we took these ‘extra’ professional contacts into

account and thus improved the comparability of the results between countries. The

second difference is that apart from participant’s age, gender, household size, day of

contact recording, and country, we have added another covariate effect to the model,

namely whether or not the sampled day was a (school or public) holiday.

Since for some of the surveys the number of possible contact entries was limited

(see Table 3.4, max # contact entries), the number of contacts Y is right censored.

For reasons of uniformity, the minimum of these limits i.e. 29 contacts for the survey

in GB, is used for the censored negative binomial regression model. The loglikelihood

function for all n respondents is then given by:

n∑

i=1

wi



δi log

(
P (Y = yi|X i)

)
+ (1− δi) log


1−

28∑

j=0

P (Y = j|Xi)





 , (3.2)

where yi is the observed number of contacts (including work contacts) for respondent i,

wi is the post-stratification weight as described in Section 3.2.2, and Xi is the vector

of explanatory variables. Here, δi = 1 if yi < 29 and 0 otherwise, and P is the density

function of the negative binomial distribution:

P (Y = yi|Xi) =
Γ(yi +

1
α )

Γ(yi + 1)Γ( 1
α )

(
1

1 + αµi

) 1
α
(

αµi

1 + αµi

)yi

, (3.3)

where µi = exp(Xiβ) is the mean which is linked to the covariates via a log-link

function with β the vector of unknown coefficients, and α ≥ 0 is the overdispersion

parameter. The variance is then given by µi + αµ2
i , thus when α = 0, the negative

binomial distribution simplifies to the Poisson distribution. Hens et al. (2009b) com-

pared the performance of this model to a zero-inflated negative binomial counterpart

to accommodate to excess zeros amongst the contact counts, and noted that zero-

inflation was non-significant (p-value of 0.317). The more parsimonious regression

model is therefore presented in Table 3.5.

The dispersion parameter estimate equals 0.41 (95% CI: [0.40, 0.43]), indicating

the necessity of taking overdispersion into account. Participants in the 10-49 years

age-category have the highest number of contacts, while participants above the age

of 70 years have the lowest number of contacts followed by children younger than

5 years. There is no significant difference in the number of contacts made by males and

females. Respondents living in larger households have a higher number of contacts.
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Table 3.5: Weighted censored negative binomial regression model: sample mean and stan-

dard deviation (s.d.), and model-based relative number of contacts.

Covariate Category Sample Size Mean (s.d.) Relative # Reported

Contacts [95% CI]

Age < 5 660 10.21 (7.65) 1.00

5-9 661 14.81 (10.09) 1.42 [1.27, 1.56]

10-14 713 18.69 (13.40) 1.76 [1.58, 1.94]

15-19 685 19.93 (21.14) 1.79 [1.61, 1.97]

20-29 879 17.18 (25.72) 1.66 [1.51, 1.81]

30-39 815 17.83 (21.68) 1.63 [1.49, 1.78]

40-49 908 17.51 (23.29) 1.57 [1.43, 1.70]

50-59 906 15.96 (20.84) 1.48 [1.35, 1.62]

60-69 728 10.51 (14.47) 1.10 [1.00, 1.21]

70+ 270 7.71 (10.97) 0.81 [0.73, 0.89]

missing* 65 10.40 (12.78) 0.94 [0.65, 1.23]

Gender female 3808 16.13 (21.93) 1.00

male 3429 15.14 (15.57) 0.97 [0.94, 1.01]

missing** 53 10.92 (8.60) 1.60 [1.06, 2.14]

Household size 1 749 11.23 (18.26) 1.00

2 1645 13.32 (17.89) 1.20 [1.13, 1.27]

3 1683 14.67 (16.44) 1.23 [1.15, 1.31]

4 2041 17.71 (17.67) 1.38 [1.29, 1.47]

5 814 19.49 (29.12) 1.44 [1.34, 1.55]

6+ 358 19.30 (13.14) 1.63 [1.48, 1.79]

Day of the week Sunday 862 11.98 (14.54) 1.00

Monday 1032 16.36 (27.65) 1.35 [1.26, 1.45]

Tuesday 1116 16.69 (20.16) 1.40 [1.31, 1.50]

Wednesday 1017 16.93 (18.39) 1.40 [1.31, 1.50]

Thursday 1069 16.86 (16.31) 1.41 [1.31, 1.51]

Friday 1122 17.00 (18.25) 1.42 [1.33, 1.52]

Saturday 936 12.85 (14.52) 1.19 [1.11, 1.28]

missing*** 136 12.85 (12.26) 1.44 [1.20, 1.68]

Country BE 750 19.30 (24.31) 1.00

DE 1341 7.95 (6.26) 0.49 [0.46, 0.53]

FI 1006 18.46 (32.15) 0.86 [0.80, 0.93]

GB 1012 11.74 (7.67) 0.72 [0.67, 0.77]

IT 849 19.77 (12.27) 1.18 [1.08, 1.27]

LU 1051 17.46 (12.81) 1.02 [0.94, 1.09]

NL 269 24.92 (42.70) 1.41 [1.25, 1.56]

PL 1012 16.31 (11.45) 0.97 [0.89, 1.04]

Period regular 6106 16.15 (19.64) 1.00

holiday 1048 12.93 (16.46) 0.91 [0.86, 0.96]

missing*** 136 12.85 (12.26) 1.09 [1.01, 1.16]

Overdispersion α 0.41 [0.40, 0.43]

* Missing age was equally distributed over the other variables.

** Missing gender was associated with weekday, regular period and household size 1-4.

*** Missing day of the week/period was associated with DE, GB, LU and household size 2-4.
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Participants have a larger number of contacts on weekdays compared to the weekend,

and significantly fewer contacts on Sunday in comparison to Saturday. IT and NL

have a relatively high number of contacts compared to BE, LU and PL whereas DE,

FI and GB have a relatively low number of contacts. The mean number of contacts for

DE, GB, IT, LU and PL are the same as published by Mossong et al. (2008b), however,

there is a pronounced rise for BE, FI and NL by inclusion of contacts at work. The

number of reported contacts is significantly lower during the holiday period compared

to the regular period. The differences between the sample estimates (mean and s.d. in

Table 3.5) and the model-based relative number of reported contacts indicate that it

is important to control for the different participant characteristics.

3.2.4 Impact of School Closure on Disease Transmission

The POLYMOD contact survey allowed us to investigate the relative change in the

basic reproduction number R0 during the week versus weekends and during regular

versus holiday periods, encompassing both school as well as public holidays (Hens

et al., 2009b). As schools are closed during weekends and holiday periods, the rela-

tive change in R0 provides an indication of the impact collective school closures and

prophylactic absenteeism may have during a pandemic (see e.g. Cauchemez et al.,

2008). Prophylactic absenteeism means ‘healthy people avoiding social contact as a

means of protection, including absence from work and school’, and it reflects the role

of public perception and confidence.

To this purpose, we relied on the social contact hypothesis introduced by Wallinga

et al. (2006), which states that the age-specific transmission rates are directly pro-

portional to the age-specific rates of making social contact (denoted by c(a, a′)):

β(a, a′) = q · c(a, a′). (3.4)

In subsequent Chapters, we will also refer to this assumption as the ‘constant propor-

tionality’ assumption, since q represents a constant disease-specific proportionality

factor. Assuming type I mortality (2.7), the relative change in R0 i.e. the dominant

eigenvalue of the next generation operator (2.13), was estimated from the smoothed

contact rate matrices C as follows:

R0,1

R0,2
=

max eigenvalue
(
ND
L qC1

)

max eigenvalue
(
ND
L qC2

) ,

where indices 1 and 2 refer to the contacts recorded during the weekend (Saturday

and Sunday) and the entire week (Monday to Sunday), or during the holiday and the
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regular period, respectively. It is straightforward to see that the constants ND
L q cancel

out and that the ratio only relates to the contact matrices. For further methodological

details we refer to Hens et al. (2009b).

Table 3.6 presents the resulting estimates for the weekend-week comparison to-

gether with 95% bootstrap-based percentile CIs (2.17). Extra professional contacts

were not taken into account in the analysis due to the lack of covariate information.

Based on all recorded contacts, a significant decrease in R0 of at least 12% up to 26%

during the weekend when compared to the entire week was shown in all countries, ex-

cept for DE and FI. For close contacts, these differences were less pronounced and the

significantly lower R0 were again observed for BE, GB, IT, LU, NL and PL, ranging

from 5% to 21% (Table 3.6).

Here, we do not present the results of the holiday versus regular period comparison,

since it was only possible for half of the countries and somewhat compromised by

regionally divergent holiday periods. For these results together with a visualization

of the change in contact behavior via ‘score matrices’, we refer to Hens et al. (2009b).

In short, the results revealed that social contact patterns differed substantially when

comparing the week to the weekend and regular to holiday periods, and that this was

mainly due to the reduction in work and/or school contacts. For most countries the

basic reproduction number decreased by about 21% and 17%, respectively, although

for some no significant decrease was observed.

School closure thus could have a substantial impact on the spread of a newly

emerging infectious disease that is transmitted via non-sexual social contacts. On

the other hand, House et al. (2010) showed for the UK that local, reactive school

closures would require considerable coordination to achieve a substantial reduction in

the number of hospitals that are over intensive care unit capacity at the peak of an

influenza pandemic. Furthermore, there is an ethical tradeoff which needs to be made

since school closures could result in severe economical costs due to childcare (Sadique

et al., 2008; Cauchemez et al., 2009; Smith et al., 2009; Keogh-Brown et al., 2010).
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Table 3.6: Relative change in R0 for the weekend versus the week for all contacts and close

contacts. ‘*’ indicates a significant relative change in R0.

Country Sample Size All Contacts Close Contacts

weekend/week rel. change R0 95% CI rel. change R0 95% CI

BE 202/746 0.78* [0.64, 0.94] 0.88* [0.86, 0.93]

DE 266/1307 1.02 [0.83, 1.21] 1.03 [0.68, 1.39]

FI 283/999 0.78 [0.73, 1.16] 0.88 [0.85, 1.18]

GB 258/968 0.88* [0.69, 0.90] 0.95* [0.74, 0.97]

IT 226/840 0.80* [0.63, 0.82] 0.79* [0.68, 0.99]

LU 205/993 0.74* [0.70, 0.74] 0.88* [0.66, 0.89]

NL 68/257 0.78* [0.59, 0.79] 0.79* [0.62, 0.81]

PL 280/1002 0.77* [0.66, 0.89] 0.84* [0.71, 0.86]



Chapter 4
Mining the Belgian Contact Survey

The POLYMOD contact survey from Belgium differs from the surveys conducted in

the other countries in several aspects. First, each participant recorded contacts dur-

ing two randomly assigned days instead of one (random order): one weekday and

one day in the weekend (Saturday or Sunday). The bivariate contact counts allow

to estimate within subject contact correlation. Second, participants can be linked

to their geographical location, enabling the comparison of contact behavior between

different Belgian regions. Third, the sampling period included a school holiday pe-

riod, which facilitates simulations of the impact school closure may have during an

epidemic outbreak (cf. Section 3.2.4). Finally, to reduce reporting bias, participants

with more than 20 professional contacts were requested not to record them in the

diary (Table 3.4), but to separately give summary estimates in terms of number and

age of the contacts instead. Mossong et al. (2008b) did not take these four aspects

of the Belgian contact survey into account, and for reasons of comparability they

analyzed a subsample containing one randomly selected day per participant.

In this chapter, we give a detailed description and thorough data analysis for the

complete Belgian contact survey, and hereby closely follow Hens et al. (2009a). Sec-

tion 4.1 completes the data collection description from Section 3.2.2 specifically for

the Belgian situation, and introduces the imputation method we will use to augment

the data with the extra professional contacts. In Section 4.2, we conduct data mining

analyses using association rules and classification trees to discover patterns of con-

tact characteristics. Generalized estimating equations are applied in Section 4.3 to

regress the contact counts on participant-related information, taking into account the

correlation between the bivariate contact counts. Finally, we make use of the next

45
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generation matrix in Section 4.4 to mimic the spread of a newly emerging infection

in Belgium. We finish the chapter with some concluding remarks.

4.1 Belgian Contact Survey

4.1.1 Data Collection

In a period from March until May 2006, 750 persons living in Belgium were recruited

by random digit dialing on fixed telephone lines. The respondents were asked to

anonymously complete a paper booklet (referred to as the ‘diary’) containing a ques-

tionnaire and a contact diary, without changing their usual behaviour. No persons

were subject to interventions and no physical samples were collected as part of the

study. The study protocol was approved by the ethical committee of the Antwerp

University Hospital. Three different types of diaries were spread accommodating for

the age of the respondent: children (< 9y), teenagers (9-17y), and adults (≥ 18y). In

addition to a pilot study in Luxembourg, specific Belgian Dutch and French language

versions of each type of diary were made and tested in Belgium (Beutels et al., 2006;

Mossong et al., 2008b).

The diaries were sent and collected by mail. Each participant was reminded by

phone that they had to fill in the diary, one day prior to each assigned day, and was

followed up after the first day to check whether they had. If they had not filled in

the diary, they were assigned to a new random day. If they had not returned the

diary, they were reminded by a maximum of three follow up calls to send it in. If

participants repeatedly failed to fill in the diary on their assigned day, they were

excluded, and replaced by a new recruit. Each participant received a small token of

appreciation for the amount of e5. All diaries were double entered in a computer

database and checked manually.

In line with the total Belgian population (Chi-square test for equality of distribu-

tions, p-value 0.85), participants were recruited from the Flemish (n = 441), Walloon

(n = 239) and Brussels geographic regions (n = 70). Sampling was undertaken in

order to obtain the following age distribution: 10% in the 5-year age groups 0-4, 5-9,

10-14, 15-19 years, and 6% in age groups 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-

54, 55-59, 60-64, ≥ 65 years. Most participants (n = 480) were adults (cf. age group

definitions above) of whom 50% were male, which is representative for the Belgian

population (p-value 0.70). There were also 130 teenagers (49% males, p-value 0.60)

and 140 children (56% males, p-value 0.053).

Virtually all participants (98%) recorded their contacts in the four weeks from
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March 18 to April 14, 2006, and 49% and 73% of the recorded weekdays and weekend

days, respectively, were during the Eastern holiday period (April 03-17). Note that

weekends at the start and the end of the holiday period were considered as holiday as

well and represented 72% of all recorded weekend days. About half of the children aged

0-2 years attended childcare (55%), and almost all children aged 3-8 years attended

childcare or school (93%), while school participation was 100% for participants aged

8-17 years. Adults aged 18 years or older were mostly employed (49%), unemployed

(35%) or in further education (9%). Overall, 10% of the participants lived alone and

these were all 18 years or older. Nearly 1 in 5 children aged 0-8 years lived in a single

parent family, and 26%, 28% and 11% of the participants lived in a household of size

2, 3 and 4, respectively. Larger household sizes were only rarely observed (4%). These

characteristics of the sample are all broadly in line with general Belgian population

statistics (National Institute for Statistics, 2006, Belgium).

Although in order to keep the diary manageable, we intentionally did not ask to

record the relationship with the contacted persons, we were able to extract household-

like contact data from the survey. The persons in the household were identified as

those contacts with exactly the same age as the registered ages of the household

members, which took place at home. We performed a sensitivity analysis with respect

to the selected contacts of the same age (at home).

4.1.2 Professional Contacts

In Section 3.2.3, we already raised the difference in professional contact recording be-

tween the different POLYMOD participating countries. Half of the countries (namely

BE, DE, FI and NL) requested the respondents not to report their contacts at work

in the diary, if their estimated number would exceed a predefined threshold value

(Table 3.4). In the Belgian diaries, the participants were asked prior to filling in their

dairy for the first time the following sequence of questions:

1. Do you have a profession through which you have a large number of contacts

(e.g., clients, patients, students, etc)? 2 YES 2 NO;

2. If YES, please give an estimate of the average number of persons you contact

professionally each day? . . . . . . persons;

3. Tick in which of the following age categories these professional contacts mostly

occur (multiple options possible):

2 0-5 years 2 6-11 years 2 12-17 years 2 18-60 years 2 over 60 years;
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4. If you estimated the number of these contacts to be more than 20, then please

do not record these contacts in the diary, but only record the other (non-

professional) contacts.

Although these questions were asked with the common intention to reduce report-

ing bias for people with many professional contacts (e.g. bus drivers), there are some

important differences in how we approached this, in comparison to DE, FI and NL.

First, based on information from the pilot studies, we set the threshold value at 20,

whereas in DE, FI and NL, it was set at 10. Second, we asked first if the participants

thought they had many professional contacts, and only if they did subjectively think

so, how many they estimated these to be. Third, we only revealed in the last question

what the consequence of their estimate was for the effort required to complete the

diary. Fourth, we did not only ask about the number of professional contacts, but

also about their usual age range.

In Section 3.2.3 we already presented a regression analysis from Hens et al. (2009b)

for the total number of contacts, taking these ‘extra’ professional contacts into ac-

count. Hence, unlike Mossong et al. (2008b), underestimation of the average contact

counts for BE, DE, FI and NL, was avoided. From now on, we make use of all available

information about the professional contacts and perform imputation to complete the

Belgian data. This too has its limitations, since imputation enables generating data

from which reliable inferences can be made, but can not recreate the values that were

not recorded (Little and Rubin, 1987). More specifically, the ticked age categories for

the contacts at work provide a basis for the imputation procedure. Let nw
i denote

the estimated number of professional contacts, which needs to be imputed for partic-

ipant i if nw
i > 20, and let Iai denote the corresponding age range (e.g. Iai = [6, 12)

for a primary school teacher). We then sample nw
i age values from Iai with sampling

probabilities according to the population age distribution. Contrasting this method

with contact data from GB, IT, LU and PL, indicates good performance.

In order to impute the other contact characteristics, plausible assumptions are

made based on the available information from GB, IT, LU and PL. The distributions of

the type of contact and the gender of the contacted person do not change substantially

with the number nw
i of contacts reported at work. Therefore, we impute the physical

nature and the gender of the professional contact in the Belgian contact data set using

the same distribution as when the number of professional contacts is 10 < nw
i ≤ 20.

The imputation of other contact characteristics like duration and frequency seemed

more speculative. For instance, the higher the recorded nw
i was, the shorter the

contact durations were. Nonetheless, choosing a specific distribution for the duration
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of contacts would be subjective, since the information for Belgium is clearly missing

and the distributions vary substantially between countries. We consider it unlikely

that a single professional contact in a large set of such contacts would last longer

than 4 hours and reoccur daily. Therefore, we impute the two variables jointly by

sampling from the bivariate distribution of duration and frequency for work contacts

of participants for whom 10 < nw
i ≤ 20. This method could also be applied more

widely to all characteristics in an attempt to avoid disrupting dependencies, but could

just the same also enforce dependencies.

For the remainder, we focus on the augmented Belgian data set, which in its

POLYMOD version consists of 13 786 contacts recorded by 750 participants during

one day (compared to the sample size of 8880 contacts presented in Table 3.4). Specif-

ically in this chapter, we make use of all data available after imputing the professional

contacts, which is 23 683 contacts recorded by 750 participants during two days. One

female adult respondent recorded an estimate of 1000 contacts at work and was con-

sidered an outlier to the data set. Since this person is likely very influential e.g. when

estimating the Belgian contact surface using bivariate smoothing, she is excluded from

the analyses presented here and in subsequent chapters. Hence, the analyzed data

comprise 749 participants who recorded a total of 12 775 contacts during one day, and

22 666 contacts during two days. Note that the results of the data analyses presented

hereafter, are similar whenever the imputed professional contacts are left out, except

when estimating the average number of contacts. The former was illustrated in Hens

et al. (2009a) for the data mining analysis with classification trees, described in the

next section.

4.2 Elucidating Highly Intimate Contacts

Person to person transmission of infectious diseases is generally more likely to oc-

cur during more intimate contacts, such as contacts involving skin-to-skin touching,

contacts of long duration or contacts on a frequent basis. We use two data mining

techniques, namely association rules and classification trees, to highlight interesting

associations and relations between contact properties such as type of contact (close

or non-close), location, frequency and duration. The aim is to characterize contacts

with high risk of infectious disease transmission, when the main transmission route is

through social contacts of the non-sexual type (e.g. droplet contact, airborne trans-

mission, etc.).
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4.2.1 Data Mining Methods

Association Rules

With the aim to discover meaningful patterns in large transactional databases,

Agrawal et al. (1993) introduced the idea to mine association rules by means of finding

frequently co-occurring items. An important example in this respect is the ‘market

basket analysis’: identifying which supermarket products are frequently purchased

together by a customer in a transaction. The event of a contact between two persons

can also be interpreted as a transaction, and the contact characteristics (e.g. close

contact) then constitute a set of binary items. Next, to introduce some basic con-

cepts, we mainly follow the description from Hahsler et al. (2005) and Hahsler and

Hornik (2007). An association rule is a rule of the form X ⇒ Y , where X and Y are

two disjoint sets of items (X ∩ Y = ∅). The rule means that if we find all items in X

in a contact it is likely that the contact also has the items in Y . We focus on rules

where Y is restricted to a single contact property, whereas X can consist of more than

one property (e.g. a contact at home involving skin-to-skin touching). The length of

a rule is the total number of items constituting that rule.

Association rules are selected from the set of all possible rules using measures

of significance and interestingness. The support of a rule, the primary measure of

significance, is the proportion of contacts in the data expressing all items in that rule:

supp(X ⇒ Y ) = supp(X ∪ Y ) =
cXY

n
,

where cXY represents the number of contacts which are characterized by all items in

X and Y , and n is the total number of contacts in the data. A minimum support

threshold value is chosen (often ad hoc) to select the most frequent - and hopefully

important - item combinations called ‘frequent itemsets’. This can be seen as a

simplification of ‘bump hunting’ (Hastie et al., 2001). From the frequent itemsets, one

can further reduce the number of rules by selecting all rules which satisfy a threshold

on a certain measure of interestingness, e.g. confidence and lift. The confidence of a

rule is defined as:

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
,

and can be interpreted as an estimate of the conditional probability P (EY |EX), were

EX (EY ) is the event that X (Y ) characterizes a contact. One drawback of using

confidence as a selection tool for association rules is that it always increases with the

item in the right hand side of the rule (Y ) getting more frequent. Although larger

confidence values indicate stronger associations, these should not be confused with

high correlation, neither with causality between X and Y .



4.2. Elucidating Highly Intimate Contacts 51

Typically, rules mined using minimum support and confidence are ordered using

their lift value:

lift(X ⇒ Y ) =
conf(X ⇒ Y )

supp(Y )
=

supp(X ∪ Y )

supp(X) supp(Y )
,

which is the deviation of the support of the whole rule from the support expected

under independence. A lift value of 1 indicates that X and Y appear as frequently

together as expected under independence, while a value > 1 indicates that the con-

tact characteristics are (positively) associated. The lift of a rule directly captures

correlation between the itemsets and is symmetric. Recently, alternative measures of

interestingness have been developed such as hyper-lift and hyper-confidence (Hahsler

and Hornik, 2007), though we do not consider them here. The R-package ‘arules’

(Hahsler et al., 2006) is used to mine association rules for the Belgian contact data.

Classification Trees

Classification trees are used to predict membership of cases in the classes of a categor-

ical dependent variable from their measurements on one or more predictor variables.

To gain further insight in the factors determining contact intensity, we use the binary

classification tree methodology as introduced by Breiman et al. (1984). This is a re-

cursive partitioning method which is non-parametric in nature, simple and intuitively

appealing. Table 4.1 lists the covariates used in the classification tree construction

for the variables of interest: type of contact (close or non-close), location (home,

work, school, transport, leisure, another place or multiple locations), frequency (daily,

weekly, monthly, a few times a year, first time) and duration (0-5 min, 5-15 min, 15

min - 1 hour, 1-4 hours, > 4 hours).

At each step, the recursive partitioning algorithm determines an optimal cut off

point based on some impurity measure, such that all contacts are split into two

subpopulations (binary classification tree) to achieve high predictive classification

with respect to the variable of interest. An example of such an impurity measure is

the Gini index, which for node m with nm observations in region Rm, is defined as:

K∑

k=1

p̂mk(1− p̂mk), where p̂mk =
1

nm

∑

xi∈Rm

I(yi = k),

is the proportion of class k observations in node m. When growing a tree, equal

misclassification costs are assigned to the categories k = 1, 2, . . . ,K, of the response

variable. The resulting subpopulations are split repeatedly until no additional par-

titioning is warranted, which results in a ‘saturated tree’: either a subpopulation
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Table 4.1: Variables used in the classification trees analysis. ‘Tree usage’ refers to the

use of the variables in the tree construction for tree 1: close contact; 2: contact location;

3: contact frequency and 4: contact duration. ‘*’ indicates that the variable is used as the

response variable.

Variable Value Code Tree Usage

Type of contact 1=‘close’; touching 1*

2=‘non-close’

Location 1=‘home’; location 1,2*,3,4

2=‘work’;

3=‘school’,

4=‘transport’;

5=‘leisure’;

6=‘other-multiple’

Frequency 1=‘daily’; frequency 1,3*

2=‘weekly’;

3=‘monthly’;

4=‘few times a year’;

5=‘first time’

Duration 1=‘0-5 min’; duration 1,4*

2=‘5-15 min’;

3=‘15 min - 1 hour’;

4=‘1-4 hours’;

5=‘>4 hours’

Age contact continuous agecon 1,2,3,4

Gender contact 1=‘male’; gencon 1,2,3,4

2=‘female’

Age participant continuous agepar 1,2,3,4

Gender participant 1=‘male’; genpar 1,2,3,4

2=‘female’

Occupation participant 1=‘working’; occpar 1,2,3,4

2=‘retired’;

3=‘at home’;

4=‘unemployed/job seeking’;

5=‘in education’;

6=‘other’

Household size participant household size hhsize 1,2,3,4

(including participant)

Region Brss=‘Brussels’ region 1,2,3,4

WlsG=‘Wallonia’

VlmG=‘Flanders’

Day of the week 0=‘Sunday’; dayofweek 1,2,3,4

1=‘Monday’;

2=‘Tuesday’;

3=‘Wednesday’;

4=‘Thursday’;

5=‘Friday’;

6=‘Saturday’

Holiday period 0=‘no holiday period’ holiday 1,2,3,4

1=‘holiday period’;
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contains only one category of observed responses or its sample size is too small to

divide any further.

To correct for overtraining, the saturated tree is then pruned to an optimal sized

subtree, which is most predictive of the outcome and most robust against noise in the

data. To select this optimal sized tree, the performance of the subtrees are evaluated

by means of a 10-fold cross-validation (CV), using 10 randomly partitioned subsamples

as test samples. The average proportion of misclassified observations then defines the

CV cost of a tree. Imposing a maximal tree depth of three layers, we use the 1 SE rule

described by Breiman et al. (1984) to select the three. The 1 SE rule states to chose

the smallest-sized tree whose CV cost does not exceed the minimum CV cost plus 1

times the standard error of the minimum CV cost. We use the R-package ‘mvpart’

(De’ath, 2002), a modification of ‘rpart’, to generate the decision trees depicting the

classification rules generated through recursive partitioning.

4.2.2 Application to the Data

Descriptive Analyses

Figure 4.1 presents histograms of the log-transformed number of contacts on weekdays

and during the weekend, distinguishing between the regular and the holiday period.

The log-transformation somewhat symmetrizes the contact distributions which are

highly skewed on the original scale. The median contact counts on weekdays and

during the weekend are 14 and 9 for the regular period, and 8 and 7 for the holi-

day period, respectively. Figure 4.2 shows contact intensity distributions inside and

outside households, for type of contact, duration and frequency. The plots clearly in-

dicate that contacts with household members are mostly intimate, which corresponds

to darker shading, while contacts outside households display a fairly uniform distribu-

tion of contact characteristics. As a final descriptive statistic, the upper left panel of

Figure 4.3 displays boxplots of the log-transformed number of (close) contacts inside

and outside households. While there is a small variability in the number of household

contacts, the contact counts outside households have a more pronounced variability.

The three other panels in Figure 4.3 present boxplots of the log-transformed number

of contacts for the different categories of location, duration and frequency. There is

substantial heterogeneity in the number of contacts recorded at work/school and dur-

ing leisure activities, with a high number of contacts mostly observed at work/school.

Although there are no apparent differences, the lower left panel in Figure 4.3 indicates

that there is a larger number of contacts of longer duration. Note that most contacts

are frequent contacts whereas fewer yearly or first time contacts are recorded.
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Figure 4.1: Histograms of log(number of contacts + 1) on weekdays (left) and during the

weekend (right), distinguishing regular (top row) from holiday (bottom row) period. The

vertical lines present the median values.

Association Rules

To discover properties of highly intimate contacts, we mine association rules with

the following contact characteristics as right hand sides: close contact (supp=0.61),

non-close contact (supp=0.39), ‘long’ contact i.e. lasting at least 4 hours (supp=0.26),

and ‘frequent’ contact i.e. occurring on a daily basis (supp=0.31). All variables in

Table 4.1 are used except for age of the contact and the participant, occupation of the

participant and region. Day of the week is dichotomized into weekday and weekend.

Association rules are selected using a minimum support threshold value of 0.02 (≈ 343

contacts) and a minimum confidence value of supp(Y ), such that lift(X ⇒ Y ) ≥ 1.
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Figure 4.2: Contact intensity distributions in- and outside households: type of contact

(left), duration (middle) and frequency (right). Darker colors correspond to close contact,

longer duration and more frequent contacts, respectively.

For each contact characteristic of interest (Y ), the rules of length 2 are ordered

based on their lift value and Table 4.2 presents the three most interesting rules. More

than 78% of the long duration, home and daily contacts, involve skin-to-skin touching

(lift > 1.2). On the other hand, more than 64% of the first time contacts and short

duration contacts (< 15 min) are conversations without physical touching (lift > 1.6).

Frequent contacts, and contacts at home/school are in more than 38% of the cases,

long contacts (lift > 1.4), and conversely long contacts, and contacts at home/school

are in more than 52% of the cases, daily contacts (lift > 1.7). We now sum for each

of the contact characteristics, the association rules of length 3 with the largest lift

value. An association is found between long contacts at home and contacts involving

skin-to-skin touching (conf=0.93, lift=1.53). Brief contacts (0-5 min) taking place

during transport (car, bus, etc.) are mostly non-close (conf=0.93, lift=2.40). Similar

to what we observe for rules of length 2, frequent contacts at home are associated

with long contacts (conf=0.64, lift=2.43) and visa versa (conf=0.84, lift=2.76).

Classification Trees

Figures 4.4, 4.5, 4.6 and 4.7, depict the final classification trees for type of contact,

location, frequency and duration, respectively. The length of a branch indicates its

relative importance versus other branches. Together with the split variable, frequency

plots for the terminal nodes are shown. All trees show an improvement with respect to

misclassification compared to the null model, i.e. a tree with only a root node. In gen-

eral, the misclassification rates are still considerably high due to several heterogeneous

terminal nodes. The CV-based misclassification rates are close to or approximately
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Figure 4.3: Boxplots of the number of (close) contacts in and outside households (left upper

panel), the number of contacts per location (right upper panel), the number of contacts for

different durations (left lower panel) and frequencies (right lower panel); all at the log-scale.
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Table 4.2: Most interesting association rules of length 2 according to the lift value, for the

following right hand side (rhs) characteristics: (non-)close contact, long contact and frequent

contact; supp(X ⇒ Y ), conf(X ⇒ Y ) and lift(X ⇒ Y ) are provided for each rule.

Y (rhs) X (lhs) Supp Conf Lift

Close contact duration: > 4 hours 0.23 0.86 1.41

location: home 0.21 0.81 1.33

frequency: daily 0.24 0.78 1.28

Non-close contact frequency: first time 0.08 0.76 1.96

duration: 0-5 min 0.10 0.74 1.91

duration: 5-15 min 0.10 0.64 1.65

Long contact (> 4 hours) frequency: daily 0.17 0.55 2.11

location: home 0.12 0.47 1.78

location: school 0.03 0.38 1.45

Frequent contact (daily) duration: > 4 hours 0.17 0.65 2.11

location: home 0.16 0.62 2.02

location: school 0.05 0.53 1.72

equal to the resubstitution misclassification rates. As a sensitivity analysis, the clas-

sification trees are grown for the non-augmented data as well, however, these are very

similar (results can be found in Hens et al., 2009a).

Duration, location and frequency of the contact, mainly determine whether or

not a contact involves skin-to-skin touching (Figure 4.4). Two thirds of contacts

of short duration (< 15 min) are non-close, while longer contacts taking place at

home, during transportation or leisure activities usually involve touching (78%). At

work and school, there is a fairly even balance between close and non-close contacts

(53% and 47%, respectively). As can be seen from Figure 4.5, on weekdays, contacts

mainly occur at work (employed adults) or at school (children and teenagers), the

latter except for the holiday period when students make more contacts at home and

during leisure activities. In the weekend, contacts mainly take place during leisure

activities and at home. Interestingly, a significantly smaller proportion of weekend

contacts is spent as leisure activities in Wallonia (25%), compared to Flanders and

Brussels (39%) (p-value < 0.001).

Figure 4.6 shows that contact frequency is mainly determined by location and the

age of the contacted person. More frequent contacts are observed at home and school,

and to a lesser extent at work. Contacts during transport, leisure or other activities,

tend to be less frequent, especially when the contacted person is an adult. Contact
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Error :  0.739   CV Error :  0.743   SE :  0.00707
Missclass rates : Null =  0.43  : Model =  0.318  : CV =  0.32

Figure 4.4: Classification tree for type of contact: close or non-close. Variable codes can

be found in Table 4.1.

duration is highly dependent on contact location (Figure 4.7). At home and school,

contacts are mostly of long duration, whereas contacts taking place during transport

are generally more brief. Contacts at work typically constitute a mix of long and

short duration contacts.

4.3 Modelling the Number of Contacts

In Section 3.2.3, the censored negative binomial regression analysis from Hens et al.

(2009b) was presented, which aimed to relate the overall number of contacts to differ-
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Figure 4.5: Classification tree for contact location. Variable codes can be found in Ta-

ble 4.1.

ent participant characteristics for all POLYMOD countries. To analyze the contact

counts for the complete Belgian data set, we will use generalized estimating equa-

tions (GEE) as introduced by Liang and Zeger (1986), since these can account for the

correlation between the number of contacts recorded by the same individual on two

different days.

4.3.1 Generalized Estimating Equations

GEE is a marginal modelling approach which only requires the specification of univari-

ate marginal distributions and a working correlation matrix for the vector of clustered
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Figure 4.6: Classification tree for contact frequency. Variable codes can be found in

Table 4.1.

observations per subject. We assume a Poisson distribution for the contact counts

and incorporate an extra parameter to account for overdispersion. Post-stratification

weights are included in the analyses, first, to adjust for the relative differences in

age and household size representation as compared to Belgian demographic data (cf.

Section 3.2.2), and second, to adjust for the differences in sampling proportions with

respect to weekdays and holiday periods.

Model building is done a priori, using a non-parametric method called ‘random

forests’ (Breiman, 2001). Random forests are constructed using binary partitioning

regression trees (Breiman et al., 1984) which are similar to classification trees, though
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location=2,4,5,6
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Error :  0.883   CV Error :  0.887   SE :  0.00401
Missclass rates : Null =  0.76  : Model =  0.672  : CV =  0.674

Figure 4.7: Classification tree for contact duration. Variable codes can be found in Ta-

ble 4.1.

intended to relate a continuous response variable to explanatory variables. At each

step, the partitioning algorithm splits the data into two parts such that the sum of

the squared deviations from the mean in the separate parts, i.e. the mean squared

error (MSE), is minimized. Random forests are constructed by joining several of

these regression trees, each based on a random sample of the observations and the

explanatory variables, to explicitly take into account the variability associated with

the construction of a single tree. A by-product of this random forests methodology,

is the so-called ‘variable importance’ list, which reflects how often a variable is used

as a splitting criterion.
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Table 4.3: Variables used as initial variables in the WGEE analysis for each of the diary

types. ‘X’ indicates selection of the variable by random forests and inclusion in the WGEE

analysis, and ‘*’ indicates that the final models retain at maximum one of the two variables.

Children (< 9y) Teenagers (9-17y) Adults (≥ 18y)

Age participant X X X

Childcare X

Class size X

Day of the week* X X X

Education participant X

First or second day X X X

Gender participant X X X

Holiday period X X X

Household size participant X X X

Occupation participant X

Region X X X

Weekend* X X X

Since the contact counts have a skew distribution, we construct a random forest

for the log-transform of the number of contacts (Figure 4.1). The variables with

the highest importance in the list, selected based on a threshold of a 5% increase

in MSE, are retained for further model building (Table 4.3). One could chose to

explore the effects of interactions between all pairs of selected variables. Since this

inevitably leads to sparse cells, we only analyze the interaction between day of the

week and holiday period, and for the remainder merely consider main effects. We then

further reduce the model using a stepwise Poisson regression (with log-link) based on

backward selection and the AIC-criterion (2.14), and finally apply the weighted GEE

(WGEE) analysis to account for the correlation between two contact counts from the

same individual. This procedure is applied separately for the three different types

of diaries, considering 19 different contact counts as response variable (determined

by type of contact, location, frequency and duration), which leads to a total of 57

analyses.
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4.3.2 Application to the Data

Table 4.3 lists the variables used in the WGEE analysis of the contact counts for

each of the diary types. The variables have been selected using random forests as de-

scribed in Section 4.3.1. Most of these variables are explained in Table 4.1, except for

childcare (number of children at the daycare center or class size for children attending

kindergarten or school: < 10; 10-20; > 20; no childcare), class size (integer value for

the number of persons in the classroom), education participant (no formal education;

primary; secondary; higher), first or second day (two days of contact recording), and

weekend (yes or no). Performing separate analyses for each of the diary types, allows

us to incorporate diary-specific variables such as childcare, class size and education

of the participant.

The WGEE results for the total number of contacts are presented in Table 4.4.

We observe a significant decrease in the number of contacts made during the holiday

period for children and teenagers, reflecting school closure. In the weekend, there

is a significant decrease in the number of contacts made by teenagers and adults,

but not by children. The number of children in childcare (and in the classroom for

children attending school) is positively correlated with the number of contacts made,

while there is no significant impact of the class size on the total number of contacts

recorded by teenagers. Household size is a significant factor for all age groups, whereas

gender, although retained in the Poisson regression backward selection, turns out to

have no significant impact. Note that the latter two observations are in agreement

with the findings from Hens et al. (2009b) for the ‘all countries analysis’ presented

in Section 3.2.3. For adults, the number of contacts is highly influenced by their

occupation, with employees or students making on average twice as many contacts as

unemployed or retired adults, or adults staying at home (e.g. housewives). Overall, a

significant level of overdispersion is observed in all models, however, the correlation

between the two contact counts is not significantly different from zero.

Disentangling the total number of contacts in terms of type of contact, location,

frequency and duration, yields further interesting insights in contact behavior (es-

timates can be found in Hens et al., 2009a). For all types of diaries, the number

of more intimate contacts increases significantly with household size. For children,

the number of intimate contacts decreases significantly during the holiday period.

Teenagers experience more intimate contacts with increasing class size and when liv-

ing in Flanders. Work is the key factor for adults, where almost a two-fold increase in

the number of intimate contacts for employed adults is observed. There is a marked

increase in the number of intimate contacts for adults living in Flanders and Wallonia
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as opposed to Brussels. In general, there is a slight, mostly non-significant decrease in

the number of contacts reported at day two, irrespective of whether this is a weekend

or a weekday. This may indicate decreased compliance with contact recording over

time due to survey fatigue, which has been confirmed by another contact survey in

Australia involving three study days (McCaw et al., 2010).

4.4 Mimicking the Spread of an Epidemic

We mimic the spread of a newly emerging infectious disease in a large population

based on specific contact patterns. Note that, although the next generation matrix

methodology provides a general idea of the age-specific dissemination during the initial

phase of an epidemic, it does not aim to describe its stochastic nature.

4.4.1 Next Generation Methodology

In Section 2.1.2, it is described how the next generation operator (2.13) is related to

the distribution of infectious cases during the initial exponential growth phase of an

epidemic. Based on this concept, we illustrate the initial spread of a newly emerging

airborne pathogen in Belgium. Considering J age intervals [a[1], a[2]), . . . , [a[J], a[J+1]),

the J × J next generation matrix has the following elements (i, j = 1, . . . , J):

ND

L

{∫ a[i+1]

a[i]

exp

(
−
∫ a

0

µ(u)du

)
da

}
βij . (4.1)

The leading right eigenvector of the next generation matrix is then proportional to

the age-specific distribution of infected individuals in the early phase of an epidemic.

The population size N = 10 547 958, the life expectancy at birth L = 80, and the

age-specific mortality rates µ(a), specific for Belgium, are obtained from official gov-

ernment statistics (source: EUROSTAT). The mean infectious period D is set to five

days, similar to the infectious period typically estimated for influenza (see e.g. Yang

et al., 2007).

We assume constant proportionality (3.4) for the transmission rates, which in the

discrete age class framework translates into (i, j = 1, . . . , J):

βij = q · cij , (4.2)

where cij denotes the average per capita rate at which an individual of age class j

makes contacts with a person of age class i, per unit time. Similar to the contact
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matrix estimation approach from Mossong et al. (2008b) (see Figure 3.4), the con-

tact rate matrices cij are estimated from the Belgian contact data using a bivariate

smoothing approach (Wood, 2006). Further methodological details on the estimation

of the contact rates are deferred to Chapter 5. Here, we specifically focus on contacts

involving skin-to-skin touching, since these are the most determinant for the spread

of influenza. During the estimation process, 1 year age intervals are considered and

post-stratification weights are taken into account. Note that daily contacts are down

weighted with a factor 1/5 to reflect the unlikely occurrence of transmission of in-

fections during a second such contact. To approximate the emergence of pandemic

influenza, we choose the proportionality factor such that the largest eigenvalue of

(4.1) i.e. the basic reproduction number R0, equals 2 (Mills et al., 2004; Halloran

et al., 2008). We investigate the effect of school closure by estimating contact rates

for the regular period, the holiday period and the weekend (excluding holidays), and

by comparing the resulting relative impact on the leading eigenvector and R0.

4.4.2 Application to the Data

The estimated close contact rate matrices are displayed on the left side of Figure 4.8.

For the regular period (upper left panel), we observe a distinct assortative pattern

in contact behavior, especially for children and teenagers, as well as a parent-child

component. The assortativeness is less pronounced for adults, who make contact with

individuals of a broader age range, particularly at work. These findings correspond

to the observations made by Mossong et al. (2008b) as described in Section 3.2.2

(Figure 3.5). During holidays (Figure 4.8, second row) and weekends in the regular

period (third row), similar though less assortative features arise from the close contact

patterns. The upper right panel in Figure 4.8 illustrates the age distribution of

infectious cases if a new infection, transmitted through close contacts, would emerge

during a regular period. The disease-specific proportionality factor q is chosen such

that R0 = 2.00. The highest relative incidence is observed for the adolescent age

group 14-20 years, while a second local maximum is observed for adults aged 35-45

years.

To investigate the impact of school closure as a control measure during the initial

phase of an epidemic, we calculate the relative incidence and R0 based on contact

patterns for the holiday period and the weekend, respectively, while retaining the

proportionality constant q. This results in R0 = 1.69 and R0 = 1.33, which is a

relative change of 0.85 and 0.67, respectively. As depicted in Figure 4.8, both temporal

conditions of holidays as well as weekends would decrease the relative incidence for
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Figure 4.8: Close contact patterns (left) overlaid with contours at the population level,

and the corresponding age distribution of infectious individuals (right) for a newly emerging

infection in Belgium during the regular period (first row), the holiday period (second row)

and the weekend (excluding holiday weekends) (third row).
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teenagers considerably. Holidays seem to induce an age shift to the right for both

peak incidences (weekends as well to a lesser extent), and elderly seem more involved

in the transmission process when schools are closed. For the weekend, we observe

a substantial decrease in relative incidence for adults due to the limited number of

contacts at work. These findings motivated us to further study the relative influence

of temporal conditions on R0 using contact data from all POLYMOD countries (Hens

et al., 2009b). Some results were briefly described in Section 3.2.4, though they cannot

be compared to the results here, since the study from Hens et al. (2009b) focused on

the non-augmented, POLYMOD version of the Belgian contact data (one day) and

their weekend-week comparison included both regular days as well as holidays.

4.5 Concluding Remarks

In this chapter, following Hens et al. (2009a), we extensively described the Belgian

contact survey conducted in 2006. Respondents to the survey recorded their con-

tacts during two randomly assigned days, one weekday and one day in the weekend.

Quota sampling enhanced representativeness of the sample with respect to the Belgian

population in terms of geographical spread (Flemish, Walloon and Brussels region),

age and gender. On the other hand, representativeness of the sample may have been

compromised by the sampling method of random digit dialing on fixed telephone lines

(Pickery and Carton, 2005). The sampling period included a school holiday period,

which was taken into account in the various analyses described in this chapter. In the

diary, participants were instructed to estimate their professional contact count and to

tick the age range of these contacts. If the estimated number of contacts at work would

exceed 20, the participants were asked not to record them in the diary. We augmented

the Belgian data set with these professional contacts by imputing the missing vari-

ables based on the ticked age categories and the data available for participants with a

total number of recorded contacts at work between 10 and 20 (cf. Section 4.1.2). By

explicitly imputing professional contacts at the individual level, the average number

of contacts for the Belgian contact survey increases from 11.8 as reported by Mossong

et al. (2008b), to 18.4.

In Sections 4.2, 4.3 and 4.4, several methods were presented to analyze various

aspects of the Belgian contact survey. Most results were logical or intuitively expected,

but nevertheless important to validate the contact survey and to distinguish between

different levels of contact intimacy. Every piece of information available in the survey,

and the patterns and associations detected between the variables, should be kept
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in mind when using the contact data to inform mathematical models of infectious

disease transmission. We found that contacts between household members are mostly

intimate, i.e. close contacts taking longer than an hour and occurring on a daily basis.

The association rules and classification trees analyses revealed that there are robust

associations between general contact intimacy indicators, such as contacts taking

place at home, lasting at least 4 hours, occurring on a daily basis, and involving skin-

to-skin touching. This information may for instance be useful for contact tracing for

tuberculosis, which is transmitted during more intimate contact as compared to the

common cold or influenza.

The WGEE analysis showed that the number of reported contacts depends heavily

on household size, size of the classroom for children (or the childcare center for infants)

and daily occupation for adults. Differences in the average number of contacts are

observed for the three regions in Belgium, showing the importance of considering re-

gional differences within a country. The correlation between the two days of recording

was generally found to be non-significant, though overdispersion of the contact counts

again appeared to be essential. People mostly mix with people of similar age, or with

their offspring, parents or grandparents. In the holiday period, the contact frequency

for children and teenagers decreases considerably, while a similar observation is made

for teenagers and adults during the weekend. In Section 4.4, we used the estimated

contact rates to mimic the initial spread of a newly emerging airborne pathogen in

Belgium, and observed an effect of temporal conditions on the age-specific relative

incidence. The related effect of school closure on an emerging epidemic was further

studied by Hens et al. (2009b) (cf. Section 3.2.4).

Linking the resulting contact patterns to data on disease prevalence or inci-

dence, informs the estimation of crucial parameters for airborne infections such as

the WAIFW matrix and R0 (Wallinga et al., 2006). Further, insights can be gained

about which type of contact is most predictive for the dissemination of a certain in-

fection in a large population. In the next chapter, we will illustrate these aspects

for VZV in Belgium using both contact data as well as serological data (Goeyvaerts

et al., 2010a; Ogunjimi et al., 2009).





Chapter 5
Estimating Varicella Zoster Virus

Transmission from Data on Social

Contacts

In Section 3.2, we already referred to the traditional approach in modelling trans-

mission dynamics of infectious diseases, and more particularly in estimating age-

dependent transmission rates, that was introduced by Anderson and May (1991).

The idea is to, based on prior knowledge of age-related social mixing behavior, im-

pose different mixing patterns on the WAIFWmatrix, hereby constraining the number

of distinct elements for identifiability reasons, and to estimate the parameters from

serological data. Many authors have elaborated on this approach of Anderson and

May (1991), however, the choice of the imposed mixing pattern is found to highly

influence the outcome of the mathematical model and estimates of related param-

eters such as R0 and the critical immunization level (Greenhalgh and Dietz, 1994).

Both the traditional Anderson and May (1991) approach as well as the alternative

method from Farrington and Whitaker (2005) to parameterize a continuous contact

surface, involve a somewhat ad hoc choice. Alternatively, to estimate age-dependent

transmission parameters, Wallinga et al. (2006) augmented seroprevalence data with

auxiliary data on self-reported numbers of conversational contacts per person, whilst

assuming that transmission rates are proportional to rates of conversational contact.

The social contact surveys conducted as part of the POLYMOD project, which were

extensively discussed in Chapters 3 and 4, allow us to elaborate on this methodology

71



72 Chapter 5. Estimating VZV Transmission from Social Contact Data

presented by Wallinga et al. (2006).

The main parts of this chapter were published in Goeyvaerts et al. (2010a). In

the first section, we illustrate the traditional approach of imposing mixing patterns to

estimate the WAIFW matrix from serological data for VZV in Belgium, as introduced

in Section 3.1.1. In Section 5.2, a transition is made to the novel approach of using

social contact data to estimate R0. The POLYMOD contact survey allows us to infer

on age-specific mixing patterns in Belgium, which is of particular importance for

varicella since social interactions between children determine the main routes of VZV

spread. We show that a bivariate smoothing approach allows for a more flexible and

better estimate of the contact surface compared to the maximum likelihood estimation

method of Wallinga et al. (2006). Further, some refinements are proposed, among

which an elicitation of contacts with high transmission potential and a non-parametric

bootstrap approach, assessing sampling variability and accounting for age uncertainty,

as suggested by Halloran (2006).

In general, however, contacts reported in social contact surveys are proxies of

those events by which transmission may occur and there may exist age-specific char-

acteristics related to susceptibility and infectiousness which are not captured by the

contact rates. Therefore, our main result is the novel method of disentangling the

WAIFW matrix into two age-specific components: the contact surface and an age-

dependent proportionality factor, which entails an improvement of fit for the sero-

prevalence of VZV in Belgium. The proposed method, as described in Section 5.3,

tackles two dimensions of uncertainty. First, by estimating the contact surface from

data on social contacts, we overcome the problem of choosing a completely parametric

model for the WAIFW matrix. Second, to deal with the problem of model selection

uncertainty for the age-dependent proportionality factor, concepts of multimodel in-

ference are applied and model averaged estimates for R0 and the critical immunization

level are calculated. Some concluding remarks are provided in the last section.

5.1 Estimation of R0 by Imposing Mixing Patterns

5.1.1 Estimating Transmission Rates

To describe VZV transmission dynamics, we consider a compartmental MSIR model

for a closed population of size N assuming demographic and endemic equilibrium, as

described in Section 2.1. We thus explicitly take into account the fact that newborns

are initially protected by maternal antibodies and do not take part in the transmission

process. Type I mortality (2.7) with life expectancy L and type I maternal antibodies
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(2.8) with A the age at which newborns lose their maternal immunity, are assumed. It

is reasonable to assume type I mortality (see Figure 2.2) and to ignore mortality due

to infection, when describing transmission dynamics for VZV in a developed country

such as Belgium (see also Whitaker and Farrington, 2004b). Further, we do not explic-

itly model the potential reactivation of the virus as herpes zoster (Section 3.1.1), and

therefore implicitly assume that infected individuals maintain lifelong immunity after

recovery from chickenpox. Following Garnett and Grenfell (1992) and Whitaker and

Farrington (2004b), we thus ignore varicella cases resulting from contact with persons

suffering from shingles. Herpes zoster indeed has a limited impact on VZV trans-

mission dynamics when considering large populations with no immunization program

(Ferguson et al., 1996), which is the case for Belgium.

Estimating transmission rates using seroprevalence data can not be done ana-

lytically since the integral equation (2.12) in general has no closed form solution.

However, it is possible to solve this numerically by turning to a discrete age frame-

work, assuming a constant force of infection in each age-class. Denote the first age

interval (a[1], a[2]) and the jth age interval [a[j], a[j+1]), j = 2, . . . , J , where a[1] = A

and a[J+1] = L. Making use of (2.9) and approximating r(a) by 1 − s(a), ∀a > A,

assuming i(a) is small relative to s(a), the prevalence of immune individuals of age a

is given by:

r(a) = 1− exp

(
−

j−1∑

k=1

λk(a[k+1] − a[k])− λj(a− a[j])

)
, (5.1)

if a belongs to the jth age interval. Note that we allow the proportion of immune

individuals to vary continuously with age and that we do not summarize the binary

seroprevalence outcomes into a proportion per age class. Further, from (2.9) and

(2.12) it follows that the force of infection for age class i equals (i = 1, . . . , J):

λi =
ND

L

J∑

j=1

βij

[
exp

(
−

j−1∑

k=1

λk(a[k+1] − a[k])

)
− exp

(
−

j∑

k=1

λk(a[k+1] − a[k])

)]
,

(5.2)

where βij denotes the average per capita rate at which an individual of age class

j makes effective contacts with a person of age class i, per year. Recall that the

transmission rates βij make up the J × J WAIFW matrix.

Once the WAIFW matrix is estimated, the basic reproduction number R0 can be

calculated as the dominant eigenvalue of the J×J next generation matrix (Diekmann

et al., 1990) with elements defined by (4.1), which under type I mortality becomes

(i, j = 1, . . . , J): ND
L

(
a[i+1] − a[i]

)
βij . Recall that R0 represents the average number
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of secondary cases produced by one typical infected person during his or her entire

period of infectiousness, when introduced into an entirely susceptible population (with

the exception of newborns who are passively immune through maternal antibodies).

In the next section, we illustrate the traditional approach of imposing mixing patterns

to estimate the WAIFW matrix from seroprevalence data.

5.1.2 Imposing Mixing Patterns

The traditional approach of Anderson and May (1991) imposes different, somewhat

ad hoc, mixing patterns on the WAIFW matrix. Note that, in the previous section, we

ended up with a system of J equations with J×J unknown parameters (5.2) and thus

restrictions on these patterns are necessary. Among the proposals in the literature,

one distinguishes between several mixing assumptions such as homogeneous mixing

(β(a, a′) = β), proportional mixing (∃ u : β(a, a′) = u(a)u(a′)), separable mixing

(∃ u, v : β(a, a′) = u(a)v(a′)) and symmetry (β(a, a′) = β(a′, a)). Note that the latter

two mixing assumptions require additional restrictions to be made. As illustrated by

Greenhalgh and Dietz (1994) and Van Effelterre et al. (2009), the structure imposed

on the WAIFW matrix has a high impact on the estimate of R0. In this section, we

assume the transmission rates to be constant within six discrete age classes (J = 6).

We follow Anderson and May (1991); Van Effelterre et al. (2009); Ogunjimi et al.

(2009) and consider the following mixing patterns, based on prior knowledge of social

mixing behavior, to model the WAIFW matrix for VZV:

W1 =





β1 β6 β6 β6 β6 β6

β6 β2 β6 β6 β6 β6

β6 β6 β3 β6 β6 β6

β6 β6 β6 β4 β6 β6

β6 β6 β6 β6 β5 β6

β6 β6 β6 β6 β6 β6





, W2 =





β1 β1 β3 β4 β5 β6

β1 β2 β3 β4 β5 β6

β3 β3 β3 β4 β5 β6

β4 β4 β4 β4 β5 β6

β5 β5 β5 β5 β5 β6

β6 β6 β6 β6 β6 β6





W3 =





β1 β1 β1 β4 β5 β6

β1 β2 β3 β4 β5 β6

β1 β3 β3 β4 β5 β6

β4 β4 β4 β4 β5 β6

β5 β5 β5 β5 β5 β6

β6 β6 β6 β6 β6 β6





, W4 =





β1 β1 β1 β1 β1 β1

β2 β2 β2 β2 β2 β2

β3 β3 β3 β3 β3 β3

β4 β4 β4 β4 β4 β4

β5 β5 β5 β5 β5 β5

β6 β6 β6 β6 β6 β6





(5.3)

W5 =





β1 β6 β6 β6 β6 β6

β6 β2 β6 β6 β6 β6

β6 β6 β3 β6 β6 β6

β6 β6 β6 β4 β6 β6

β6 β6 β6 β6 β5 β6

β6 β6 β6 β6 β6 β5





, W6 =





β1 0 0 0 0 0

0 β2 0 0 0 0

0 0 β3 0 0 0

0 0 0 β4 0 0

0 0 0 0 β5 0

0 0 0 0 0 β6
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In order to estimate the transmission parameters β = (β1, . . . , β6)
T from sero-

prevalence data, we follow an iterative procedure from Farrington et al. (2001) and

Kanaan and Farrington (2005). First, one assumes plausible starting values for β and

solves (5.2) iteratively for the piecewise constant force of infection λ = (λ1, . . . , λ6)
T ,

which in its turn can be contrasted to the serology. Second, this procedure is repeated

under the constraint β ≥ 0, until the Bernoulli loglikelihood

n∑

i=1

{
yi log[r(ai)] + (1− yi) log[1− r(ai)]

}
,

has been maximized. Here, n denotes the size of the serological data set, yi denotes a

binary variable indicating whether subject i had experienced infection before age ai

and the prevalence r(ai) is obtained from (5.1).

5.1.3 Application to the Data

For the remainder, the following parameters specific for Belgium anno 2003 (Eurostat,

2007; FOD Economie Afdeling Statistiek, 2006), are kept constant when estimating

the WAIFW matrix and R0: size of the population aged 0 to 80 years, N = 9 943 749,

and life expectancy at birth, L = 80. The mean duration of infectiousness for VZV

is taken D = 7/365, and the age of losing maternal immunity is chosen A = 0.5

(Halloran et al., 1994). By removing infants younger than 6 months, the size of the

serological data set becomes n = 2649 (Section 3.1.1).

In this application, the population is divided into six age classes taking into ac-

count the schooling system in Belgium, following Van Effelterre et al. (2009): (0.5, 2),

[2, 6), [6, 12), [12, 19), [19, 31), [31, 80). The last age class has a wide range because

the serological data set only contains information for individuals up till 40 years.

The following ML-estimate for λ is obtained assuming a piecewise constant force

of infection and using constrained optimization to ensure monotonicity (r′(a) ≥ 0):

λ̂
ML

= (0.313, 0.304, 0.246, 0.000, 0.082, 0.000)T . A graphical display of the fit is pre-

sented in Figure 5.1 and a dashed line is used to indicate the estimated prevalence

and force of infection for the age interval [40, 80), for which serological information is

lacking.

During the estimation process, non-identifiability problems occur for mixing pat-

terns W1, W5 and W6, which is related to the fact that λ̂ML
4 = λ̂ML

6 = 0. Therefore,

these mixing patterns are left from further consideration. For the remaining three,

ML-estimates for β and R0 are presented in Table 5.1. Note that mixing pattern W4
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Figure 5.1: Estimated prevalence (upper curve) and force of infection (lower curve) for VZV

assuming a piecewise constant force of infection. The dots represent the observed serological

data with size proportional to the corresponding sample size. The dashed lines are used

to indicate the estimated prevalence and force of infection for the age interval [40, 80), for

which serological information is lacking.
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Table 5.1: Estimates for the transmission parameters (multiplied by 104) and for R0,

obtained by imposing mixing patterns W2, W3 and W4 on the WAIFW matrix.

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 R̂0 95% CI for R0 AIC

W2 1.413 1.335 1.064 0.000 0.343 0.000 3.51 [3.07, 13.42] 1372.819

W3 1.362 1.441 0.873 0.000 0.343 0.000 3.37 [2.81, 13.38] 1372.819

W4 1.334 1.298 1.049 0.000 0.349 0.000 4.21 [3.69, 13.13] 1372.756

has a regular configuration for the data, whereas W2 and W3 are non-regular since

unconstrained ML-estimation induces negative estimates for β4 (Farrington et al.,

2001). Both W2 and W3 entail the following ML-estimate for the force of infection:

λ̂
ML

= (0.313, 0.305, 0.245, 0.002, 0.080, 0.000)T . The estimate of R0 ranges from 3.37

to 4.21. 95% bootstrap-based percentile CIs (2.17) for R0 are presented as well, ap-

plying a non-parametric bootstrap by taking B = 1000 samples with replacement

from the serological data. The fit of the three mixing patterns can be compared using

model selection criteria, such as AIC (2.14) and BIC (2.15). As can be seen from

Table 5.1, the AIC-values (equivalent to BIC here) are virtually equal and do not

provide any basis to guide the choice of a mixing pattern.

Note that these results differ somewhat from those obtained by Van Effelterre

et al. (2009), where a different data set for VZV serology was used, collected from a

large laboratory in the city of Antwerp between October 1999 and April 2000 (Thiry

et al., 2002).

5.2 Estimation of R0 using Data on Social Contacts

5.2.1 Constant Proportionality of the Transmission Rates

In the previous section, we have illustrated some caveats involved in the traditional

approach of imposing mixing patterns on the WAIFW matrix. In general, the choice

of the structures as well as the choice of the age classes are somewhat ad hoc. Further,

different regular mixing patterns may induce exactly the same fit to the serological

data, though lead to considerably different estimates of βij and R0. Since evidence for

mixing patterns is thought to be found in social contact data, i.e. governing contacts

with high transmission potential, an alternative approach to estimate transmission pa-

rameters has emerged: augmenting seroprevalence data with data on social contacts.

Wallinga et al. (2006) assumed that the transmission rates βij are directly propor-

tional to the contact rates cij , i.e. the constant proportionality (CP) assumption as
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formulated in (4.2).

The proportionality factor q and the contact rates are not identifiable from sero-

logical data only. Therefore, in order to estimate the WAIFW matrix, one first needs

to estimate the contact rates cij using social contact data. We illustrate this in the

next section for the Belgian contact data, hereby following the sampling scheme of

the POLYMOD project by only considering one assigned day for each participant

(Section 4.1.2). Hence the analyzed data comprise 749 participants who recorded a

total of 12 775 contacts, of which 3 contacts are omitted due to missing age values

for the contacted person. Following the POLYMOD contact survey design, ‘making

contact with’ is defined as a two-way conversation of at least three words in each

others proximity and/or any sort of physical skin-to-skin touching (Section 3.2.2). In

Section 5.2.5, we will refine on this definition and consider specific types of contact

with high transmission potential. In a second step, keeping the estimated contact

rates fixed, we estimate the proportionality factor from serological data using the

estimation method described in Section 5.1.2.

5.2.2 Estimation Methods for the Contact Rates

Consider the random variable Yij , i.e. the number of contacts in age class j during

one day as reported by a respondent in age class i (i, j = 1, . . . , J), which has observed

values yij,t, t = 1, . . . , Ti, where Ti denotes the number of participants in the contact

survey belonging to age class i. Now define mij = E(Yij), i.e. the mean number of

contacts in age class j during one day as reported by a respondent in age class i. The

elements mij make up a J × J matrix, which is called the ‘social contact matrix’.

Now, the contact rates cij are related to the social contact matrix as follows:

cij = 365 · mji

ni
,

where ni denotes the population size in age class i, obtained from demographical data.

When estimating the social contact matrix, the reciprocal nature of contacts needs

to be taken into account (Wallinga et al., 2006):

mijni = mjinj , (5.4)

which means that, on a population level, the total number of contacts from age class i

to age class j must equal the total number of contacts from age class j to age class i.
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Maximum Likelihood Approach of Wallinga et al. (2006)

Wallinga et al. (2006) took the following approach to estimate a contact matrix from

social contact survey data. To allow for overdispersion, the Yij are assumed indepen-

dently negative binomial distributed with mean mij , dispersion parameter kij and

variance mij +m2
ij/kij , inducing the following likelihood:

J∏

i=1

J∏

j=1

Ti∏

t=1

[NegBin(yij,t;mij , kij)]
wit ,

where wit is the post-stratification weight for the tth participant in age class i, as

described in Section 3.2.2. Therefore, an individual contribution to the loglikelihood

function for Yij equals

wit log
[
NegBin(yij,t;

cjinj

365
, kij)

]
, (5.5)

where cji are the per capita contact rates which need to be estimated. Note that, as

long as cij is modeled symmetrically: cij = cji, the reciprocal nature of contacts (5.4)

is taken into account. In this case, the most saturated model for the contact rates

has J(J +1)/2 parameters for the mean and J2 dispersion parameters kij , which can

be estimated by maximizing the summed loglikelihood contributions (5.5).

Bivariate Smoothing

We propose to estimate the elements mij of the social contact matrix using a bivari-

ate smoothing approach as described by Wood (2006). In contrast to the maximum

likelihood approach of Wallinga et al. (2006), the average number of contacts is mod-

eled as a two-dimensional continuous function over the age of the respondent and the

age of the contacted person, giving rise to a ‘contact surface’. The basis is a tensor-

product spline derived from two smooth functions of the respondent’s and contact’s

age, ensuring flexibility:

Yij ∼ NegBin(mij , k), where g(mij) =

K∑

ℓ=1

K∑

p=1

δℓpbℓ(a[i])dp(a[j]), (5.6)

where g is some link function, δℓp are unknown parameters, and bℓ and dp are known

basis functions for the marginal smoothers.

The basis dimension, K, should be chosen large enough in order to fit the data

well, but small enough to maintain reasonable computational efficiency (Wood, 2006).

For tensor-product smoothers, the upper limit of the degrees of freedom is given by
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Table 5.2: Contact rate estimates for models W1-W3, W5 and W6, multiplied by 103, and

corresponding AIC-values, obtained with maximum likelihood estimation.

Model ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6 AIC

W1 1.563 1.578 1.738 3.689 1.663 0.496 13788.48

W2 0.747 1.578 1.004 2.679 0.938 0.519 13974.19

W3 0.648 1.578 1.098 2.679 0.938 0.519 13971.12

W5 1.563 1.578 1.738 3.689 0.769 0.416 13817.40

W6 1.563 1.578 1.738 3.689 1.663 0.639 52652.23

the product of the K values provided for each marginal smooth, minus one, for the

identifiability constraint. However, the actual effective degrees of freedom are also

controlled by the degree of penalization selected during fitting. Thin plate regression

splines are used to avoid the selection of knots and a log link is used in model (5.6).

The post-stratification weights wit are also taken into account in the smoothing pro-

cess. By applying a smooth-then-constrain-approach as proposed by Mammen et al.

(2001), the reciprocal nature of contacts (5.4) is allowed for.

5.2.3 Contact Rate Estimates for Belgium

Maximum Likelihood Approach of Wallinga et al. (2006)

The mixing patterns (5.3), previously used to estimate the WAIFW matrix, are now

applied to model the contact rates cij in order to study the predictiveness of the

social contact data for the transmission of VZV. Structure W4 is not considered here,

because it does not allow for the reciprocal nature of contacts. We focus on the

same six age classes used in Section 5.1.3. By maximizing the negative binomial

loglikelihood function, making use of (5.5), the estimates in Table 5.2 are obtained.

The contact parameters are denoted by cℓ (ℓ = 1, . . . , 6) while the corresponding

dispersion parameters (36 in total) were omitted from the table. Under the CP

assumption (4.2), we expect the WAIFW matrix estimates obtained in Section 5.1.3

to be proportional to the contact rate estimates obtained here. However, comparing

Tables 5.1 and 5.2 for W2 and W3, the βℓ estimates do not seem to be proportional

to the cℓ estimates.

Further, a ‘saturated model’ as proposed by Wallinga et al. (2006), with 21 contact

parameters and 36 dispersion parameters, is fitted to the Belgian contact data. The

estimated contact rate matrix cij and corresponding dispersion parameters, obtained

with maximum likelihood estimation, are displayed in Table 5.3 and the former is
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Table 5.3: Contact rate estimates for the saturated model, multiplied by 103, and corre-

sponding dispersion parameter estimates between brackets, obtained with maximum likeli-

hood estimation ((*) indicates no overdispersion).

Age Class [0.5, 2) [2, 6) [6, 12) [12, 19) [19, 31) [31, 101)

[0.5, 2) 1.563 (0.33) 0.685 (0.53) 0.373 (0.11) 0.262 (0.42) 0.314 (1.49) 0.244 (3.04)

[2, 6) 0.685 (7.19) 1.578 (0.51) 0.606 (0.55) 0.121 (0.07) 0.274 (3.72) 0.266 (5.89)

[6, 12) 0.373 (0.27) 0.606 (1.74) 1.738 (0.90) 0.469 (0.40) 0.194 (1.45) 0.350 (3.38)

[12, 19) 0.262 (0.05) 0.121 (0.20) 0.469 (0.21) 3.689 (0.81) 0.679 (0.56) 0.349 (1.66)

[19, 31) 0.314 (*) 0.274 (0.38) 0.194 (0.18) 0.679 (0.14) 1.663 (1.39) 0.619 (0.89)

[31, 101) 0.244 (0.09) 0.266 (0.33) 0.350 (0.09) 0.349 (0.28) 0.619 (0.61) 0.639 (1.08)

depicted in Figure 5.2, on the left side. Contact rate estimates range from 0.121 ·10−3

between age classes [2, 6) and [12, 19), to 3.689 · 10−3 between individuals from age

class [12, 19). Note that the contact rate estimates on the diagonal are identical to

the ones obtained for model W6 in Table 5.2, as expected. The AIC-value for this

saturated model is 13618.73, which is considerably smaller than the AIC-values for

the mixing patterns considered above (Table 5.2).

Bivariate Smoothing

The smoothing is performed in R with the gam function from the mgcv 1.3-30 pack-

age (Wood, 2006), considering one year age intervals, [0, 1), [1, 2), . . . , [100, 101). An

informal check (by comparing the estimated degrees of freedom and the basis dimen-

sion) shows that K = 11 is a satisfactory basis dimension choice for the Belgian

contact data. On the right hand side of Figure 5.2, the estimated contact surface ob-

tained with the bivariate smoothing approach, is displayed. The smoothing approach

seems better able to capture important features of human contacting behavior. Three

components clearly arise in the smoothed contact surface. First of all, one can see

a pronounced assortative structure on the diagonal, representing high contact rates

between individuals of the same age. Second, an off-diagonal parent-child compo-

nent comes forward, reflecting a very natural form of contact between parents and

children, which might be important in modelling certain childhood infections such

as parvovirus B19 (Mossong et al., 2008a). Finally, there seems to be evidence for

a grandparent-grandchild component. Except for the assortativeness, these features

are not reflected by the contact rates cij , estimated from Wallinga et al. (2006)’s

saturated model.

Further, we would like to compare the two estimation methods more formally us-
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Figure 5.2: Perspective (above) and image (below) plot of the estimated contact rates cij

obtained with maximum likelihood estimation for Wallinga et al. (2006)’s saturated model

(left) and bivariate smoothing (right). TheX- and Y -axis represent the age of the respondent

and the age of the contact, respectively.
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ing information criteria. The models are however not comparable, since they are fitted

to different types of responses. Therefore, we refit the model proposed by Wallinga

et al. (2006), considering one year age intervals and using the gam function for com-

parability. The AIC-value for the saturated model then equals 63009.60 while the

AIC-value for the saturated model with merely one dispersion parameter is smaller,

namely 62902.84, showing it is unnecessary to consider different overdispersion param-

eters. Finally, the AIC-value for the smoothing approach equals 58187.06, indicating

improved estimation of the contact surface using non-parametric techniques. Note

that the BIC-criterion also indicates the smoothing method to outperform both ver-

sions of Wallinga et al. (2006)’s saturated model (59130.66 for the smoothing method

as opposed to 63244.49 and 63674.43 for both saturated models with constant and

heterogeneous overdispersion, respectively).

5.2.4 Estimating Transmission Rates and R0 for VZV

Under the CP assumption (4.2), we are now able to estimate the WAIFW matrix

for VZV using serological data. Keeping the estimated contact rates ĉij fixed, we

estimate the proportionality factor q using the estimation method described in Sec-

tion 5.1.2. In Table 5.4, estimates for q and R0 together with their corresponding

95% profile likelihood CIs (2.16), and AIC-values, are presented for each one of the

contact rate models considered in Section 5.2.3. Note that the 95% CIs are implausi-

bly narrow, resulting from the fact that the estimated contact rates are held constant.

The estimates for R0 range from 8.8 to 17.3. AIC-values vary widely between 1377

and 1585. The largest AIC-values are obtained for the contact rates estimated by

maximizing the likelihood for models W3 and W2, which have the least assortative

structure. This contrasts with the results in Section 5.1.3, where these mixing pat-

terns actually performed well in describing VZV transmission, but is consistent with

the discrepancy from the CP assumption we noted in Section 5.2.3. We elaborate on

this issue in Section 5.3.

The smallest AIC-value is obtained for the saturated model as proposed by

Wallinga et al. (2006). This is a rather odd result, since the bivariate smoothing ap-

proach allowed for a more flexible and better estimate of the contact surface (Section

5.2.3). If transmission rates are indeed proportional to rates of making conversational

contact, one would expect the latter model to perform better. However, by compar-

ing both model fits in Figure 5.3 this counterintuitive result can be clarified. Most

infections with VZV occur early in life, leading to an initial, steep increase in the

fraction of seropositives, which then plateaus after the age of ten. Therefore, contact
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Table 5.4: ML-estimates for the proportionality factor and R0, obtained from contact

rates estimated by models W1-W3, W5-W6, Wallinga et al. (2006)’s saturated model, and

bivariate smoothing, assuming CP.

Model for cij q̂ 95% CI for q R̂0 95% CI for R0 AIC

W1 0.120 [0.113, 0.128] 13.21 [12.42, 14.04] 1419.858

W2 0.065 [0.061, 0.070] 8.83 [8.23, 9.48] 1570.947

W3 0.066 [0.061, 0.071] 8.93 [8.28, 9.64] 1585.177

W5 0.130 [0.122, 0.138] 14.93 [14.06, 15.90] 1409.554

W6 0.232 [0.221, 0.243] 17.30 [16.52, 18.16] 1411.112

Saturated 0.124 [0.117, 0.132] 14.08 [13.26, 14.94] 1377.146

Smoothing 0.132 [0.124, 0.140] 15.69 [14.74, 16.69] 1386.618

rate estimates between children will mainly determine the fit to the serological data,

limiting the advantage of a better contact surface estimate. For infectious diseases

which are less prevalent in the population such as PVB19, the smoothing approach

is expected to yield a better fit to the seroprevalence data, providing more realistic

estimates for the WAIFW matrix.

All models presented in Table 5.4, except for W2 and W3, induce rather large

estimates of the basic reproduction number for VZV, compared to the R0 range of 3-12

reported in the literature (e.g. Whitaker and Farrington, 2004b; Nardone et al., 2007).

This could be due to the fact that the transmission rates are assumed proportional to

the total number of contacts recorded during one day, including e.g. short duration

contacts at work. In the next section, we therefore investigate whether specific contact

characteristics are more predictive of VZV spread.

5.2.5 Refinements to the Social Contact Data Approach

The aim is to clearly disentangle the WAIFW matrix into the contact process and

the transmission potential. Therefore, in the following, contact rates are estimated

using a bivariate smoothing approach, since this method outperforms the saturated

model estimated using maximum likelihood as proposed by Wallinga et al. (2006)

(Section 5.2.3). Following Ogunjimi et al. (2009) and Melegaro et al. (2010), contacts

with high transmission potential are filtered from the social contact data. Further, we

briefly describe the main results from a comparative analysis conducted by Ogunjimi

et al. (2009) of two ML estimation methods for the transmission rates when making

use of social contact data. Finally, to improve statistical inference, we present a non-
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Figure 5.3: Estimated prevalence (upper curve) and force of infection (lower curve) ob-

tained from contact rates estimated using maximum likelihood for Wallinga et al. (2006)’s

saturated model (left panel) and using bivariate smoothing (right panel).

parametric bootstrap approach, explicitly accounting for all sources of variability.

Contacts with High Transmission Potential

The aim is to trace the kind of contact which is most likely to be responsible for

VZV transmission, hereby exploiting the following details provided on each contact:

duration and type of contact, which is either close or non-close. First, the contact

rates c(a, a′) are estimated using all reported contacts (denoted ‘C1’) as we did in

Section 5.2.4 and further, as presented in Table 5.5, four specific contact types with

high transmission potential for VZV are selected (Ogunjimi et al., 2009; Melegaro

et al., 2010). From our analyses in Chapter 4, we know that these contact types very

likely encompass all contacts within the household, between infants at the daycare

center and between children at school. We will explore which contact type induces

the best fit to the serological data.

Assuming CP, maximum likelihood estimates for the transmission parameters qk

(k = 1, . . . , 5) and for the basic reproduction number R0 together with their corre-

sponding 95% profile likelihood CIs (first entry), are presented in Table 5.6. For each

model Ck, the AIC-value, AIC difference ∆k, Akaike weight wk (2.18), and evidence

ratio ER, are calculated following Burnham and Anderson (2002) (cf. Section 2.2.3).

According to the AIC-criterion, although AIC differences are minor, the contact ma-
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Table 5.5: Candidate models assuming various sorts of contact underlying VZV transmis-

sion.

Model Parameter Contact Type

C1 q1 all contacts

C2 q2 close contacts

C3 q3 close contacts > 15 minutes

C4 q4 close contacts and non-close contacts > 1 hour

C5 q5 close contacts > 15 minutes and non-close contacts > 1 hour

Table 5.6: ML-estimates for the proportionality factor and R0, 95% profile likelihood

CIs (first entry), 95% bootstrap-based percentile CIs (second entry) and several measures

related to model selection, obtained from contact rates estimated using bivariate smoothing,

considering different types of contact C1-C5, assuming CP.

Model q̂k 95% CI for qk R̂0 95% CI for R0 AIC ∆k wk ER

C1 0.132 [0.124, 0.140] 15.69 [14.74, 16.69] 1386.618 11.660 0.002 340.4

[0.103, 0.175] [12.34, 21.41]

C2 0.160 [0.150, 0.169] 10.24 [9.65, 10.85] 1379.581 4.623 0.057 10.1

[0.126, 0.208] [8.21, 13.68]

C3 0.173 [0.163, 0.184] 8.68 [8.18, 9.20] 1374.958 0.000 0.574 1.0

[0.133, 0.221] [6.89, 11.34]

C4 0.145 [0.136, 0.154] 11.73 [11.05, 12.47] 1380.354 5.396 0.039 14.9

[0.113, 0.188] [9.41, 15.95]

C5 0.156 [0.147, 0.166] 10.40 [9.79, 11.04] 1376.068 1.110 0.329 1.7

[0.119, 0.204] [8.05, 14.10]

trix consisting of close contacts longer than 15 minutes (model C3) implies the best

fit to the serological data. A graphical representation of the estimated prevalence and

force of infection is omitted here, since the result is very close to the one obtained for

model C1 in Figure 5.3. Further, there is evidence for model C5 as well, having an

Akaike weight of 0.329 and an evidence ratio of 1.7. The latter model adds non-close

contacts longer than one hour to model C3, so the models are closely related.

SEIR-ODE Method

In this context, we note that Ogunjimi et al. (2009) compared two different ML-

estimation methods for the proportionality factor q, considering the same serological
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data set for VZV and the same contact matrices as listed in Table 5.5. The first

estimation method corresponded to our approach in iteratively solving the equations

determined by (5.2), implicitly assuming that the recovery rate is much larger than

the force of infection. The second estimation method of Ogunjimi et al. (2009) was

based on an age and time dependent MSEIR model. This extension of the MSIR

model includes an extra E-compartment to account for the latent period (infected

but not yet infectious to others) when infected with VZV. The set of PDEs (2.1) were

thus extended with an extra transition stage between S and I and reformulated using

a widely applied discretization of the continuous age variable, to transform the PDEs

into approximating ODEs. The estimation method then involved solving these ODEs

in order to obtain equilibrium values for the proportion of seropositives. The first,

iterative method thus starts from assuming endemic equilibrium, while the MSEIR-

ODE method only applies equilibrium at the end of the calculations in order to

calculate the loglikelihood value and is computationally much more time consuming.

The analyses from Ogunjimi et al. (2009) showed that the iterative method gave a

smaller deviance and thus a better fit to the seroprevalence profile compared to the

MSEIR-ODE method, though the difference was only minor and the estimated q and

R0 were broadly similar.

Non-Parametric Bootstrap

We explicitly acknowledge that up till now, by keeping the estimated contact rates

fixed, we have ignored the variability originating from the contact data. In order to

assess sampling variability for the social contact data and the serological data alto-

gether, we will use a non-parametric bootstrap approach (cf. Section 2.2.2). Further-

more, building in a randomization process, uncertainty concerning age is accounted

for. After all, in the social contact data, ages of respondents are rounded down, which

is also the case for some individuals in the serological data set. Concerning the age

of contacts, a lower and upper age limit is given by the respondents. Instead of using

the mean value of these age limits, a random draw is now taken from the uniform

distribution on the corresponding age interval. In summary, each bootstrap cycle

consists of the following six steps:

1. randomize ages in the social contact data and the serological data set;

2. take a sample with replacement from the respondents in the social contact data;

3. recalculate post-stratification weights based on age and household size of the

selected respondents;
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4. estimate the social contact matrix (smooth-then-constrain approach);

5. take a sample with replacement from the serological data;

6. estimate the transmission parameters and R0.

This bootstrap approach allows one to calculate bootstrap CIs for the transmission

parameters and for the basic reproduction number, which take into account all sources

of variability.

The impact on statistical inference is now illustrated for the models considered in

the previous section. Nine hundred bootstrap samples are taken from the contact data

and from the serological data simultaneously, while ages are being randomized. Merely

B = 587 bootstrap samples lead to convergence in all five smoothing procedures,

which might be induced by the sparse structure of the contact data. However, by

individual monitoring of non-converging gam functions, convergence was reached after

all and a comparison of the bootstrap results showed little difference whether or not

these samples were included. 95% percentile CIs for q and R0 are calculated based

on the B = 587 bootstrap samples (see Table 5.6, second entry). Taking into account

sampling variability for the social contact data has a noticeable impact, as can be

seen from the wider 95% CIs.

5.3 Age-Dependent Proportionality of the Trans-

mission Rates

The proportionality factor q might depend on several characteristics related to sus-

ceptibility and infectiousness, which could be e.g. ethnic-, climate-, disease- or age-

specific. Examples of age-specific characteristics related to susceptibility and infec-

tiousness include the mean infectious period, mucus secretion and hygiene. In the

situation of seasonal and pandemic influenza this has been established and used in re-

alistic simulation models (see e.g. Cauchemez et al. (2004) and Longini et al. (2005)).

Furthermore, the conversational and physical contacts reported in the diaries serve

as proxies of those events by which an infection can be transmitted. For example,

sitting close to someone in a bus without actually touching each other, may also

lead to transmission of infection. In light of these discrepancies, q can be considered

as an age-specific adjustment factor which relates the true contact rates underlying

infectious disease transmission to the social contact proxies.

In view of this, we will explore whether q varies with age, an assumption we will
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refer to as ‘age-dependent proportionality’ (AP):

β(a, a′) = q(a, a′) · c(a, a′), (5.7)

which in the discrete framework turns into: βij = qij · cij (i, j = 1, . . . , J). In the

previous section, it was observed that, under the CP assumption, close contacts longer

than 15 minutes imply the best fit to the serological data for VZV. Therefore in the

following, the contact rates are estimated from the recorded number of close contacts

that last longer than 15 minutes and we will elaborate on model C3 by assuming age

dependence for q. Both discrete matrix structures as well as ‘continuous’ loglinear

regression models are used to allow for an AP factor. Finally, we assess the level

of model selection uncertainty and calculate a model averaged estimate of the basic

reproduction number and the critical immunization level for VZV in Belgium.

5.3.1 Discrete Structures

The proportionality factor qij is now allowed to differ between age classes. Discrete

matrix structures, involving two transmission parameters θ1 and θ2, are explored in

modelling qij . Five models are considered, which fit the following structures for qij

to the seroprevalence data:

M1 =

(
θ1 θ2

θ2 θ2

)
, M2 =

(
θ1 θ1

θ2 θ2

)
, M3 =

(
θ1 θ2

θ2 θ1

)
, (5.8)

M4 =

(
θ1 0

0 θ2

)
, M5 =

(
θ1 θ2

θ1 θ2

)
.

The population is divided into two age classes, namely [0.5, 12) and [12, 80), a choice

based on the dichotomy of the population according to the schooling system in Bel-

gium (Section 5.1.3), yielding the smallest AIC-value. Note that higher order ex-

tensions, considering more parameters and/or number of age classes, were fitted to

the serological data as well. The improvement in loglikelihood, however, does not

outweigh the increase in the number of transmission parameters.

Notice that the structures of M1-M5 resemble the mixing patterns imposed on the

WAIFW matrix in the traditional Anderson and May (1991) approach. We would

like to emphasize that the method proposed here differs greatly from the latter, since

the WAIFW matrix is now estimated using the estimated contact rates: βij = qij · ĉij .
Hence, in contrast with the approach of Anderson and May (1991) who estimate βij by

fixing the structure of the mixing pattern, in our approach we estimate the contact
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pattern from the contact survey data and use several proportionality structures to

select the best model from which the βij are estimated.

Table 5.7 displays ML-estimates for θ1, θ2 and the basic reproduction number

R0, together with their corresponding 95% percentile CIs (B = 603 bootstrap sam-

ples converged out of 700). For model M4, θ2 is non-identifiable, and unconstrained

optimization of model M5 would not lead to convergence. According to AIC, the re-

maining models fit equally well and are informative with respect to VZV transmission

dynamics. Most likely, this is due to the fact that the main transmission routes for

VZV are between children and from infectious children to susceptible adults, embod-

ied by the first column (θ1, θ2)
T . The three models result in approximately the same

estimates for θ1 and θ2 and consequently the differences in AIC are only minor.

It is clear from Table 5.7 that we estimate a difference (though non-significant

according to the 95% CIs) in transmissibility between susceptibles younger and older

than 12 years, which cannot be solely explained by the estimated contact rates. More

specifically, in case of mixing with an infectious child, q is estimated to be about 2.5

times larger for susceptible children compared to susceptible adolescents or adults.

A possible explanation is that when infectious children make close contact with sus-

ceptible children during a sufficient amount of time, the probability of effective VZV

transmission is higher compared to the same situation with susceptible adolescents or

adults. Another potential cause is underreporting of contacts between children. After

all, up to the age of eight, the contact diaries were filled in by the parents, which may

have induced some reporting bias (cf. Section 3.2.2).

5.3.2 Continuous Modelling

As opposed to the previous, the proportionality factor q(a, a′) is now allowed to vary

continuously over age. Loglinear regression models are considered for q(a, a′), since

we expect an exponential decline of q over a due to hygienic habits as well as an

exponential decline of q over a′ due to decreasing mucus secretion. The following

loglinear models are fitted to the data:

M6 : log{q(a)} = γ0 + γ1a;

M7 : log{q(a)} = γ0 + γ1a+ γ2a
2;

M8 : log{q(a′)} = γ0 + γ1a
′;

M9 : log{q(a′)} = γ0 + γ1a
′ + γ2(a

′)2;

M10 : log{q(a, a′)} = γ0 + γ1a+ γ2a
′.
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Table 5.7: Candidate models for the proportionality factor together with ML-estimates

for the transmission parameters and R0, 95% bootstrap-based percentile CIs, and several

measures related to model selection.

Model Parameter 95% CI R̂0 95% CI for R0 K AIC ∆k wk ER

C3 q̂ 0.173 [0.133, 0.221] 8.68 [6.89, 11.34] 1 1374.958 8.884 0.003 84.9

M1 θ̂1 0.185 [0.136, 0.244] 4.79 [4.15, 9.98] 2 1366.306 0.232 0.261 1.1

θ̂2 0.079 [0.006, 0.196]

M2 θ̂1 0.183 [0.138, 0.240] 5.37 [4.47, 9.68] 2 1366.285 0.211 0.264 1.1

θ̂2 0.078 [0.006, 0.187]

M3 θ̂1 0.185 [0.136, 0.244] 8.26 [6.82, 11.25] 2 1366.074 0.000 0.293 1.0

θ̂2 0.069 [0.006, 0.199]

M6 γ̂0 -1.622 [-2.028, -1.212] 5.79 [4.63, 12.60] 2 1368.709 2.635 0.079 3.7

γ̂1 -0.023 [-0.067, 0.016]

M7 γ̂0 -1.720 [-2.441, -1.182] 5.03 [4.20, 1318.68] 3 1368.325 2.251 0.095 3.1

γ̂1 0.014 [-0.086, 0.305]

γ̂2 -0.002 [-0.024, 0.001]

M8 γ̂0 -1.517 [-2.224, -0.446] 3.55 [1.76, 159.96] 2 1374.324 8.250 0.005 61.9

γ̂1 -0.065 [-0.403, 0.064]

Model M6 models q as a first degree function of the age of the susceptible and model

M7 allows for an additional quadratic effect of age, a2. Models M8 and M9 are the

analogue of M6 and M7 for the age of the infectious person, a′. Finally, M10 models q

as an exponential function of a and a′ simultaneously. For model M9, no convergence

was obtained and model M10 gives rise to an estimated proportionality factor which

is exponentially increasing over a′, inducing unrealistically large estimates for q at

older ages.

Maximum likelihood estimates for the model parameters and the basic reproduc-

tion number R0 are presented in Table 5.7, together with the corresponding 95%

percentile CIs (B = 603 bootstrap samples converged out of 700). According to the

AIC-criterion, M6 and M7 fit equally well. Allowing the proportionality factor to

vary by age of infectious persons, does not seem to substantially improve model fit, as

can be seen by comparing the AIC-values of C3 and M8. Clearly for models M7 and

M8, the upper limits of the CIs for R0 are very large, as a consequence of estimated

proportionality factors which are exponentially increasing over a and a′, respectively.

This result originates from two things: first, there is lack of serological information for

individuals aged 40 and older, and second, VZV is highly prevalent in the population

and most individuals become infected with VZV before the age of ten. Mathemat-
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Figure 5.4: Estimated prevalence (upper curve) and force of infection (lower curve) for the

discrete model M3 (left panel) and the continuous model M7 (right panel).

ically the latter means that from a certain age on, r(a) ≈ 1 and r′(a) ≈ 0, leading

to an indeterminate force of infection λ(a) = r′(a)/{1 − r(a)}. In Section 5.3.4, we

assess the sensitivity of the results to the former issue, repeating all analyses using

simulated serological data for the age range [40, 80).

Figure 5.4 displays the estimated prevalence function and force of infection for

the discrete model M3 (left) and the continuous model M7 (right). The results are

remarkably similar. The effect of making q age-dependent is visualized by comparing

Figure 5.4 to the fit of model C1, which was very close to model C3, in Figure 5.3 (on

the right). The models assuming AP estimate an initially higher force of infection and

a steeper decrease from the age of ten, after which the force of infection is reduced

by a factor two, compared to the CP model. While the latter model predicts total

immunity for VZV at older ages, the AP models estimate a fraction of seropositives

which is below one at all times.

5.3.3 Model Selection and Multimodel Inference

Table 5.7 presents all candidate models for the proportionality factor q we have col-

lected up till now, among which the CP model C3, the discrete AP models M1, M2

and M3, and the continuous AP models M6, M7 and M8. Further for each model, the

number of parameters K, the AIC-value, the AIC difference ∆k, the Akaike weight

wk and the evidence ratio (ER) are displayed.
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Model M3 with an assortative component θ1 and a background component θ2

is the ‘best’ model for q according to AIC. However, model selection uncertainty is

likely to be high since the selected best model has an Akaike weight of only 0.293

(Burnham and Anderson, 2002). The evidence ratios for M3 versus M1 and M2 are

both 1.1, which means there is weak support for the best model. If many independent

samples could be drawn, the three discrete age-dependent models would probably

compete each other for the ‘best’ model position. The continuous models M6 and M7

have evidence ratios around 3.5, indicating that these models also contribute some

information. Models C3 and M8 have the largest AIC difference ∆k, a very small

Akaike weight (≤ 0.005) and very large evidence ratios (84.9 and 61.9, respectively),

which means there is little support for these two models.

Since there is no single model in the candidate set that is clearly superior to the

others and since the estimate for the basic reproduction number R0 varies notice-

ably over the candidate models, we are not inclined to base prediction only on M3.

Applying concepts of model averaging (Burnham and Anderson, 2002), a weighted

estimate of R0 is calculated based on the model estimates and their corresponding

Akaike weights, as formulated in (2.19):

R̂0 =

7∑

k=1

wk(R̂0)k = 6.07.

With the bootstrap procedure, we obtain a 95% percentile CI for this model averaged

estimate R̂0, namely [4.4, 351.6]. Again, there is a large upper limit induced by the

same issues reported in Section 5.3.2.

5.3.4 Sensitivity Analysis

In order to assess the lack-of-data-problem, we simulate serological data for the age

range [40, 80) assuming a constant prevalence of 0.983, which is estimated from a

thin plate regression spline model for the original serological data. Sample sizes for

one-year age groups are chosen according to the Belgian population distribution in

2003 and the total size of serological data now amounts to n = 3856. The seven

candidate models for the proportionality factor q are now applied to the original

serological data augmented with the simulated data. The results are presented in

Table 5.8 and are, overall, quite similar to the results obtained before (Table 5.7).

The 95% percentile CIs for R0 (B = 599 bootstrap samples converged out of 700),

however, are narrower since the simulated data for the age range [40, 80) are ‘forcing’

the proportionality factor q to follow a natural pace. This is illustrated for model M7
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Table 5.8: Candidate models for the proportionality factor applied to the serological data

set augmented with simulated data, together with ML-estimates for the transmission param-

eters and R0, 95% bootstrap-based percentile CIs, and several measures related to model

selection.

Model Parameter 95% CI R̂0 95% CI for R0 K AIC ∆k wk ER

C3 q̂ 0.159 [0.126, 0.195] 7.98 [6.60, 10.19] 1 1618.747 70.774 ≪ 0.0001 ≫ 103

M1 θ̂1 0.189 [0.137, 0.250] 4.20 [3.88, 5.74] 2 1548.714 0.741 0.201 1.4

θ̂2 0.052 [0.021, 0.095]

M2 θ̂1 0.186 [0.136, 0.247] 4.74 [4.36, 6.07] 2 1548.627 0.654 0.210 1.4

θ̂2 0.052 [0.020, 0.091]

M3 θ̂1 0.189 [0.137, 0.250] 8.28 [6.43, 11.52] 2 1548.344 0.371 0.242 1.2

θ̂2 0.044 [0.016, 0.082]

M6 γ̂0 -1.561 [-1.934, -1.120] 4.96 [4.47, 6.54] 2 1551.321 3.348 0.055 5.3

γ̂1 -0.035 [-0.067, -0.014]

M7 γ̂0 -1.793 [-2.247, -1.079] 5.22 [4.60, 7.51] 3 1547.973 0.000 0.292 1.0

γ̂1 0.030 [-0.074, 0.126]

γ̂2 -0.002 [-0.006, 0.001]

M8 γ̂0 -1.458 [-2.061, -0.844] 2.69 [2.08, 12.97] 2 1610.113 62.140 ≪ 0.0001 ≫ 103

γ̂1 -0.103 [-0.254, 0.016]

in Figure 5.5, where the estimated function q(a) is depicted for 100 randomly chosen

bootstrap samples. Particularly, right CI limits for R0 are smaller, whereas for most

models the R0 estimate seems to have decreased just a little bit. Note that the 95%

CIs for θ2 are narrower as well, and that the difference in transmissibility which we

observed between susceptibles younger and older than 12 years, is now significant.

Model selection uncertainty is illustrated quite nicely here, since four models, M7,

M3, M2 and M1, have Akaike weights close to 0.24 and these models also had the

most support for the original data set (Table 5.7). The model averaged estimate R̂0

now equals 5.64 and the 95% bootstrap-based percentile CI is [4.7, 7.5].

5.3.5 Critical Immunization Level

Following Whitaker and Farrington (2004b)’s analysis of VZV, we also estimate the

CIL (cf. Section 2.1.2), i.e. the minimal proportion of the population that must be

immunized by vaccination to eliminate the infection from the population. We assume

that a fraction v of individuals is immunized at a fixed age τ , such that maternal

antibodies do not interfere with the vaccine (τ > A). The reproduction number

Rv is then defined as the dominant eigenvalue of the J × J matrix with elements

{1 − v I(a[i] ≥ τ)} Gij , where I(.) denotes the indicator function and Gij are the
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Figure 5.5: q(a) estimates for model M7, shown for 100 randomly chosen bootstrap samples

from the original serological data (left panel) and from this data augmented with simulated

data for [40, 80) (right panel).

elements of the next generation matrix defined by (4.1). Rv represents the expected

number of secondary cases produced when a typical infected individual is introduced

into the population, assuming that all immunity (apart from passive immunity) is

vaccine-derived. The CIL is then the smallest value v for which Rv = 1. We also

consider an alternative CIL (denoted vA) which is directly related to the basic re-

production number and is often applied in the literature: vA = 1 − 1/R0, assuming

immunization takes place immediately after waning of maternal antibodies, at age A.

Note that a 95% CI for vA can be easily computed from the 95% CI for R0 (monotone

transformation).

In our application, we consider a vaccination strategy in which individuals are

immunized at the age of 12 months, which is consistent with current MMR vaccination

in Belgium. Results are presented for both the original serological data as well as the

serological data augmented with simulated data for the age range [40, 80), described in

Section 5.3.4. Table 5.9 shows that v̂MMR is consistently larger than v̂A, as expected,

but still quite close since there is only a six months difference between the ages of

immunization. 95% bootstrap-based percentile CIs for vA are provided, as well as

model averaged (MA) estimates for the CILs (range from 81% to 84%). Note that we

assumed that immunization is with a single dose of a 100% effective vaccine, which

is a rather simplistic though widely used setting (see e.g. Whitaker and Farrington,

2004b). For a more realistic assessment of the CIL for VZV, the values obtained
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Table 5.9: Estimated critical immunization levels for vaccination at the age of 6 and 12

months, v̂A and v̂MMR, respectively, using the original serological data (left) and using this

data augmented with simulated data for [40, 80) (right).

Original Data Simulated Data

Model v̂A 95% CI for vA v̂MMR v̂A 95% CI for vA v̂MMR

C3 0.885 [0.855, 0.912] 0.891 0.875 [0.848, 0.902] 0.880

M1 0.791 [0.759, 0.900] 0.802 0.762 [0.742, 0.826] 0.775

M2 0.814 [0.776, 0.897] 0.825 0.789 [0.771, 0.835] 0.802

M3 0.879 [0.853, 0.911] 0.881 0.879 [0.844, 0.913] 0.880

M6 0.827 [0.784, 0.921] 0.837 0.798 [0.776, 0.847] 0.810

M7 0.801 [0.762, 0.999] 0.808 0.808 [0.783, 0.867] 0.814

M8 0.718 [0.432, 0.994] 0.738 0.628 [0.519, 0.923] 0.659

MA 0.827 [0.77, 0.91] 0.835 0.811 [0.79, 0.87] 0.819

actually need to be corrected for other factors such as the vaccine efficacy (take and

degree, see e.g. Hill and Longini, 2003), waning vaccine-induced immunity, and the

circulation of herpes zoster. However, the goal was merely to illustrate the sensitivity

of the estimated CIL with respect to different parametric models assumed for q when

making use of the social contact data approach.

5.4 Concluding Remarks

In this chapter, an overview of different estimation methods for infectious disease

parameters from data on social contacts and serological status, was given. The the-

oretical framework included a compartmental MSIR model, taking into account the

presence of maternal antibodies, and the mass action principle, as presented by An-

derson and May (1991). An important assumption made was the one of endemic

equilibrium, which means that infection dynamics are in a steady state. The serolog-

ical data set we used was collected over 17 months, averaging over potential epidemic

cycles of VZV in Belgium during that period. In Section 5.1, we have illustrated the

traditional Anderson and May (1991) approach of imposing mixing patterns on the

WAIFW matrix to estimate transmission parameters from serological data. In con-

trast, the novel approach of using social contact data to estimate infectious disease

parameters, avoids the choice of a parametric model for the entire WAIFW matrix.

The idea is fairly simple: transmission rates for infections that are transmitted
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from person to person in a non-sexual way, such as VZV, are assumed to be propor-

tional to rates of making conversational and/or physical contact, which can be esti-

mated from contact surveys. Although more time consuming, the bivariate smoothing

approach as proposed in Section 5.2, was better able to capture important features of

human mixing behavior, compared to the maximum likelihood estimation method of

Wallinga et al. (2006). However, when a non-parametric bootstrap approach was ap-

plied to take into account sampling variability, convergence problems arose, probably

due to the large number of zeros in combination with the log-link. Therefore, a mix-

ture of Poisson distributions or a zero-inflated negative binomial distribution could be

more appropriate. Further, in Section 5.2, we dealt with a couple of challenges posed

by Halloran (2006). The social contact survey contained useful additional information

on the contact itself, which allowed us to target very specific contact types with high

transmission potential for VZV. Furthermore, a non-parametric bootstrap approach

was proposed to improve statistical inference.

The CP assumption was relaxed in Section 5.3 and we have shown that an im-

provement of fit could be obtained by disentangling the transmission rates into a

product of two age-specific variables: the age-specific contact rate and an age-specific

proportionality factor. The latter may reflect, for instance, differences in character-

istics related to susceptibility and infectiousness or discrepancies between the social

contact proxies measured in the contact survey and the true contact rates underly-

ing infectious disease transmission. We would like to emphasize that there probably

exist other models for q(a, a′) than the ones considered in Section 5.3, which fit the

data even better. Our choice of a set of plausible candidate models was directed by

parsimony on the one hand, limiting the total number of parameters to three, and

prior knowledge on the other hand, considering loglinear models. Furthermore, we

restricted analyses to close contacts lasting longer than 15 minutes, which means that

close contacts of short duration and non-close contacts are assumed not to contribute

to transmission of VZV.

It is important to note that different assumptions concerning the underlying type of

contact as well as different parametric models for q(a, a′), are likely to entail different

estimates of R0, however, they may still induce a similar fit to the serological data.

In order to deal with this problem of model selection uncertainty we have turned to

multimodel inference in Section 5.3.3. In Figure 5.6, estimates of R0 are presented

for the main estimation methods considered in this chapter: the traditional method

of imposing mixing patterns to the WAIFW matrix (W4) and the method of using

data on social contacts, assuming CP (the saturated model SA, C1 and C3) and AP

(M1, M2 and M3). There is a pronounced variability in the estimates of R0, which is
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Figure 5.6: R0 estimates for mixing pattern W4, applied to the serological data in Section

5.1.3, and for the following models using social contact data: the saturated model (SA) as

proposed by Wallinga et al. (2006), applied in Section 5.2.4 assuming CP, and further bi-

variate smoothing models: CP models C1 and C3 considering all and close contacts longer

than 15 minutes, respectively (Section 5.2.5) and discrete AP models M1, M2 and M3 (Sec-

tion 5.3.1). The model averaged estimates for R0 calculated from Table 5.7 (MA), based

on the original serological data, and from Table 5.8 (M̃A), based on the serological data set

augmented with simulated data, are displayed, as well as 95% bootstrap-based percentile CI

limits for the latter: [M̃AL, M̃AR].

partially captured by the model averaged estimate MA, calculated from Table 5.7.

When estimating q(a, a′), we were actually faced with three problems of indeter-

minacy. First, there is lack of serological information for individuals aged 40 and

older, second, prevalence of VZV rapidly stagnates at a high level, leading to an inde-

terminate force of infection, and third, serological surveys do not provide information

related to infectiousness. The sensitivity analysis in Section 5.3.4 showed that lack

of serological data had a large impact on CIs for R0. We simulated data for the age

range [40, 80), giving rise to a model averaged estimate M̃A as displayed in Figure 5.6

with corresponding CI limits [M̃AL, M̃AR]. Nevertheless, parameter estimates were

fairly close when comparing the fit to the original data with the fit to the augmented

data. Furthermore, after finalizing the study, extra blood samples from individuals

aged 40 years and older were tested for VZV, and we obtained similar estimates when

the original VZV serology was complemented with these data.

Still, even for the complemented serological data set we encountered the issue of

stagnating prevalence since the percentage of seropositives in older age groups was

close to 100%. This problem might be controlled by combining information on the

same infection over different countries or on different airborne infections, assuming

there is a relation between the country- or disease-specific q(a, a′), respectively. This

strategy already appeared beneficial when estimating R0 directly from seroprevalence
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data, without using social contact data (Farrington et al., 2001). The third problem

of indeterminacy manifested through models which only expressed age differences in

q for infectious individuals, such as the discrete model M5 (Section 5.3.1) and the

continuous models M8 and M9 (Section 5.3.2). These models either did not lead to

convergence or induced unrealistically large bootstrap estimates for q at older ages.

Further, the impact of intervention strategies such as school closures (cf. Sec-

tion 3.2.4), might be investigated by incorporating transmission parameters, estimated

from data on social contacts and serological status, in an age-time-dynamical setting.

Baguelin et al. (2010), for example, developed such a real-time model for pandemic

influenza in the UK, which was used by House et al. (2010) to estimate the effect of

local, reactive school closure on intensive care provision. Finally, it is important to

note that the models rely on the assumptions of type I mortality and type I mater-

nal antibodies in order to facilitate calculations. Consequently, model improvements

could be made through a more realistic approach of demographical dynamics.





Chapter 6
Model Structure Analysis to

Estimate Basic Immunological

Processes and Maternal Risk for

Parvovirus B19

After being infected with PVB19, individuals acquire immunoglobulin G (IgG) anti-

bodies against PVB19 and it is generally assumed that these antibodies persist for

a lifetime (Young and Brown, 2004). Since the presence of IgG antibodies indicates

past infection with PVB19 and the duration of exposure to infection increases with

age, the proportion of seropositives should be monotone increasing with age, pro-

vided that there is time equilibrium at the disease (endemic) and population level

(demographic), and that mortality attributable to PVB19 infection can be ignored.

However, after a steep monotone rise with age, the seroprevalence profiles for PVB19

in each of five European countries (1995-2004) display a decrease or plateau between

the ages of 20 and 40 years, after which the prevalence continues to monotonically

increase with age (Figures 3.2 and 3.3). This phenomenon does not support the as-

sumption of lifelong immunity. A cohort effect due to an epidemic or a demographical

shift seems very unlikely since Nascimento et al. (1990) noted a similar decrease in

adults for serological studies conducted in the 1980’s in Rio De Janeiro (Brazil), Eng-

land and Wales, Japan, and Germany (Nascimento et al., 1990; Cohen and Buckley,

101
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1988; Nunoue et al., 1985; Schwarz et al., 1987). Additionally, we find a decrease or

plateau in the age class 20-40 years for PVB19 seroprevalence studies conducted in

the 1990’s in Japan, Australia and The Netherlands (Matsunaga et al., 1995; Kelly

et al., 2000; Zaaijer et al., 2004).

Furthermore, Schoub et al. (1993) used an avidity test to establish that most

PVB19 infections in pregnancy are not primary infections but reinfections, and in

2007 a case report was published of a secondary symptomatic PVB19 infection in

a healthy, immunocompetent adult two years after a positive PVB19 IgG antibody

test during prenatal care (Kaufmann et al., 2007). This may imply that reinfection

with PVB19 remains possible after an adequate level of antibodies is produced upon

primary infection. Hypotheses of waning of IgG antibodies, boosting by exposure to

infectious individuals and reinfections, were suggested before (Schoub et al., 1993;

Kaufmann et al., 2007; Vyse et al., 2007; Huatuco et al., 2008; Schneider et al.,

2008), however up till now these hypotheses have never been tested using empirical

data. Gay (1996) used a mixture modelling approach to describe the distribution

of continuous PVB19 IgG antibody titers and noted a significant increase with age

in the left skewness of the seropositive population, particularly after age 20 years,

suggesting a decay of antibody levels. Gaining insight in the processes underlying

PVB19 transmission dynamics is of major public health interest, since the decrease

or plateau in IgG seroprevalence is specifically observed in women of childbearing age.

In the absence of longitudinal antibody titer data for PVB19 which would en-

able us to study the evolution of IgG antibodies directly (e.g. Teunis et al., 2002, for

pertussis), we propose an alternative approach. We explore several immunological

scenarios through mathematical modelling and infer on waning and boosting rates

by augmenting the serological data with data on social contact patterns (Chapter 5),

assessing whether the scenarios are able to explain the observed decrease in the sero-

prevalence profile for adults. Similar models were considered before to determine

the effect of waning and boosting of immunity on vaccination schedules for measles

(Rouderfer et al., 1994) and to identify the causes of an epidemic outbreak of pertussis

(van Boven et al., 2000, 2001). However in these studies, values for waning and boost-

ing rates were predefined and, in the absence of representative social contact surveys,

proportionate mixing was assumed to specify the transmission rates. Inference on

transmission dynamics of PVB19 is important for diagnosis, assessing the risk of pre-

natal infection and designing future vaccination policies. If a significant proportion of

the population is infected twice or more with PVB19, it is likely that many secondary

infections are asymptomatic or atypical and hence may not be noticed by traditional

surveillance systems based on case reporting. The risk in pregnant women is then
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likely underestimated and a larger proportion of undiagnosed fetal complications may

therefore be attributable to PVB19 infection during pregnancy.

This chapter covers the study by Goeyvaerts et al. (2010b) and is organized as

follows. In the first section, in addition to the serological data introduction in Sec-

tion 3.1.2, we briefly describe the demographic data and social contact data, that

inform our model structure analysis for PVB19 in five European countries. The com-

partmental dynamic transmission models we consider for PVB19 are introduced in

Section 6.2. We divide the mathematical scenarios into three types of dynamics; the

first type discerning between high and low ‘waned’ immunity (MSIRW), the second

type allowing for multiple infections (MSIRS) and the third type being a mixture

of the two previous ones (MSIRWS). For each scenario, exact formulas for the age-

specific proportions of susceptible and seropositive individuals are derived. These are

incorporated into the ML procedure to estimate the unknown parameters on PVB19

transmission, immunology and risk in pregnancy, which is described further on in

Sections 6.2.2 and 6.2.3. Additionally, we propose some model extensions to assess

age-specific heterogeneity in the immunity transition rates and in the proportionality

factor q for the transmission rates.

In Section 6.3, we present the results of this model structure analysis and sum-

marize the main findings using different inferential means. Our results show that

for four countries, model selection criteria favor the scenarios allowing for waning

immunity at an age-specific rate over the assumption of lifelong immunity, assuming

that the transmission rates are directly proportional to the contact rates. Different

views on the evolution of the immune response to PVB19 infection lead to altered

estimates of the age-specific force of infection and the basic reproduction number.

The scenarios which allow for multiple infections during one lifetime, predict a higher

frequency of PVB19 infection in pregnant women and of associated fetal deaths. Some

final conclusions and a discussion are provided in Section 6.5. When pre-vaccination

serological data are available, the framework developed in this chapter could prove

worthwhile to investigate these different scenarios for other infections as well, such as

cytomegalovirus.

6.1 Introduction

6.1.1 Demographic Data

Some demographic figures for each country from the time of data collection will be

used when modelling the serological data for PVB19 (cf. Section 3.1.2). First, to make
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the data representative of the different populations, post-stratification weights wi are

calculated from demographic data on population sizes per age class, obtained from

EUROSTAT (http://epp.eurostat.ec.europa.eu) and the Office for National Statistics,

United Kingdom (http://www.statistics.gov.uk/popest). The reference years chosen

for BE, EW, FI, IT and PL, are 2003, 1996, 1998, 2004 and 1999, respectively (Ta-

ble 3.1). The weights wi are truncated, applying a cut-off c, w̃i = min(wi, c), to reduce

the influence of individuals with extreme weights and to avoid excessive variability.

Based on the distributions of the post-stratification weights for all countries, we have

chosen c equal to 7.

Further, we will consider a large population of fixed size N and assume demo-

graphic equilibrium with N(a) the stationary age distribution for the population size

and µ(a) the age-specific mortality rate, defined as in (2.3). The mortality rates µ(a)

are estimated from the population sizes and additional data on age stratified numbers

of deaths in the reference year, obtained from EUROSTAT. A Poisson generalized ad-

ditive model with log link is used to model the number of deaths as a function of age

with population size as an offset factor (Hens et al., 2011). Thin plate regression

splines are chosen via the gam function (R-package mgcv 1.3-30). Then, the life ex-

pectancy L is estimated from µ̂(a) using (2.4), and presented in Table 3.1 together

with the total population size N , obtained from the demographic data.

Finally, to estimate the frequency and burden of PVB19 infection during preg-

nancy, data on the number of live births in the reference year stratified by age of

the mother at her last birthday, are retrieved from EUROSTAT. The maternal age

distribution for live births is denoted by B(a), thus the total number of live births

equals B =
∫∞

0
B(a)da (Table 3.1).

6.1.2 Social Mixing

Comparable to rubella, PVB19 is primarily spread by infected respiratory droplets

and outbreaks tend to occur during winter and spring time. Close contacts, i.e. with

physical skin-to-skin touching, are likely to play an important role in the transmis-

sion of PVB19, considering the reports of school outbreaks (Woolf et al., 1989; Rice

and Cohen, 1996; Gonçalves et al., 2005), high attack rates in households (Chorba

et al., 1986) and outbreaks in hospital wards (Bell et al., 1989; Pillay et al., 1992).

Furthermore in different studies, high risk estimates are reported for daycare and

after-school clubs personnel, nursery and elementary school teachers (Valeur-Jensen

et al., 1999; Gillespie et al., 1990; Cartter et al., 1991), identifying young children as

the main spreaders of PVB19. The social contact data approach, which we applied
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Figure 6.1: Illustration of the MSIRWb-ext compartmental model.

to VZV in Chapter 5, thus seems very convenient to estimate transmission rates for

PVB19 as well. For each of the five countries under study for PVB19, POLYMOD

contact survey data are available (Section 3.2.2): BE, GB (which encompasses EW),

FI, IT and PL. The post-stratification weights are truncated to a maximum of 5; a

value chosen based on the weight distributions. Recall that a short summary of the

contact data collection and sample sizes for each country are provided in Table 3.4,

and that for BE the augmented contact data set for one sampled day is considered

(cf. Section 4.1.2).

6.2 Transmission Scenarios for PVB19

6.2.1 Mathematical Models

We will consider several compartmental scenarios to model the dynamics of PVB19

transmission assuming endemic equilibrium. The basic building block will be an

MSIR structure as introduced in Section 2.1, assuming that after PVB19 infection,

individuals recover and acquire immunity marked by a discernible IgG antibody level.

Further, we assume type I maternal antibodies (2.8), and denote by A the age at which

maternal antibodies are lost. Mortality due to infection is ignored, which is justifiable

for PVB19. To investigate the assumption of lifelong immunity we fit the basic MSIR

model to the serological data and compare its fit to specific mathematical scenarios

described hereunder, comprising processes of waning, boosting and reinfection with

PVB19.

MSIRW Models

Figure 6.1 shows a graphical representation of the ‘MSIRWb-ext’ model, which al-

lows for waning of disease-acquired antibodies without loss of protective (‘cellular’)
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immunity. Individuals then move at a rate ε(a) from a high immunity state R to

a low immunity state W , in which they are still protected from infection however

categorized as being seronegative, i.e. with antibody levels (indicating ‘humoral’ im-

munity) falling below the serostatus threshold. We assume that low immunity can

be boosted by exposure to infectious individuals. The boosting rate and the force of

infection are then directly proportional with a proportionality constant ϕ, such that

the rate at which individuals move back from W to R equals ϕ · λ(a). By solving the

corresponding set of differential equations, one finds that the fraction in state S is

given by (2.9) and that the proportion in state W equals

w(a) =

∫ a

A

ε(u) exp

(
−
∫ a

u

{ϕλ(v) + ε(v)}dv
){

1− exp

(
−
∫ u

A

λ(v)dv

)}
du,

if a > A. Approximating r(a) by 1− s(a)−w(a), ∀a > A, assuming i(a) is small rela-

tive to s(a) and w(a), we obtain the following expression for the proportion seropos-

itives:

r(a) =

∫ a

A

{
(1− ϕ)λ(u) exp

(
−
∫ u

A

λ(v)dv

)
+ ϕλ(u)

}
exp

(
−
∫ a

u

{ϕλ(v) + ε(v)}dv
)
du,

if a > A. The two special cases in which there is no boosting of low immunity,

ϕ = 0, and in which the boosting rate exactly equals the force of infection, ϕ = 1, as

assumed by Rouderfer et al. (1994), are considered as well and denoted by ‘MSIRW’

and ‘MSIRWb’, respectively.

MSIRS Models

The MSIRS model, displayed in Figure 6.2, allows for loss of disease-acquired im-

munity and potential reinfection. Individuals are assumed to move from R back to

the susceptible state S at a rate σ(a). Again, by solving the corresponding set of

differential equations and making use of r(a) ≈ 1− s(a), ∀a > A, expressions for the

proportion of susceptibles and seropositives can be obtained (for a > A):

s(a) = exp

(
−
∫ a

A

{λ(u) + σ(u)} du
)
+

∫ a

A

σ(u) exp

(
−
∫ a

u

{λ(v) + σ(v)}dv
)
du,

r(a) =

∫ a

A

λ(u) exp

(
−
∫ a

u

{λ(v) + σ(v)}dv
)
du. (6.1)

The MS1I1RS2I2RS2 model (denoted ‘MSIRS-ext’), presented in Figure 6.3, is

an extension of the MSIRS model and closely follows the model of van Boven et al.

(2000, 2001) for pertussis. This scenario allows to distinguish between infection in

immunologically naive individuals (I1) and infection in individuals whose immune
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Figure 6.2: Illustration of the MSIRS compartmental model.
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Figure 6.3: Illustration of the MSIRS-ext compartmental model.

system has been primed by infection before (I2). The proportion of immunologically

naive susceptibles s1(a) is given by equation (2.9) and the set of differential equations

yields the following solutions, assuming γ is large and thus r(a) ≈ 1− s1(a)− s2(a):

s2(a) =

∫ a

A

σ(u)

{
1− exp

(
−
∫ u

A

λ(v)dv

)}
exp

(
−
∫ a

u

{σ(v) + λ(v)}dv
)
du,

if a > A, and the fraction of seropositives is given by formula (6.1). In the MSIRS-ext

framework, the mass action principle (2.12) is rewritten as

λ(a) = D

∫ ∞

A

{
β1(a, a

′)λ(a′)S1(a
′) + β2(a, a

′)λ(a′)S2(a
′)
}
da′, (6.2)

where β1(a, a
′) and β2(a, a

′) are the group-specific age-dependent transmission rates.

MSIRWS Model

The MSIRWS model (Figure 6.4) is an adaptation of the model by Rouderfer et al.

(1994) for measles, and can be seen as a mixture of the MSIRWb-ext model and the

MSIRS model. Individuals in the low immunity state W can either be boosted by

exposure to infectious individuals and move back to the high immunity state R at a
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Figure 6.4: Illustration of the MSIRWS compartmental model.

rate ϕ ·λ(a), or their immunity wanes to such an extent that they become susceptible

again at a rate σ(a). Approximating r(a) by 1− s(a)−w(a), assuming i(a) is small,

we obtain the following system of differential equations for s(a) and w(a):





s′(a) = σ(a)w(a) − λ(a)s(a),

w′(a) = ε(a){1− s(a)} − {ϕλ(a) + σ(a) + ε(a)}w(a).

This system of inhomogeneous linear differential equations of order 1 and dimension 2

cannot be solved explicitly for s(a) and w(a). However, by turning to discrete age

classes, the solutions can be approximated recursively (cf. Appendix A).

6.2.2 Inference on PVB19 Immunology

In Chapter 5, we have shown that the method of estimating contact rates from social

contact surveys and using them to inform transmission rates for infections trans-

mitted predominantly through non-sexual social contacts, is more efficient than the

traditional Anderson and May (1991) approach of imposing parametric mixing pat-

terns on the WAIFW matrix (Wallinga et al., 2006; Ogunjimi et al., 2009; Goey-

vaerts et al., 2010a). Given the transmission routes and outbreak reports for PVB19

as summarized in Section 6.1.2, and given our findings for VZV in Chapter 5, the

WAIFW matrix is assumed proportional to rates of making close contact, and partic-

ularly those for which the total contact time per day exceeds 15 minutes. The contact

rates are estimated from the POLYMOD contact data by applying a smooth-then-

constrain-approach as described in Section 5.2.2. In short, the mean contact surface

is estimated using a bivariate smoothing approach with a thin plate regression spline

basis (Wood, 2006), assuming a negative binomial distribution for the number of re-

ported contacts over one year age intervals and taking into account post-stratification

weights (gam function, R-package mgcv 1.3-30). Subsequently, the estimated con-
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tact surface is constrained using age-specific population sizes (Section 6.1.1) to entail

reciprocity (Wallinga et al., 2006).

In a first application, we assume constant proportionality (CP, 3.4) for the trans-

mission rates which requires estimation of an unknown proportionality parameter q.

Note that for the MSIRS-ext scenario, we have two q parameters in the mass action

principle (6.2), q1 and q2, to differentiate between infectivity of individuals with pri-

mary and secondary infection. Further, it is assumed that the immunity transition

rates ε and σ are independent of age. Next, this assumption is relaxed by modelling

the waning rate as a piecewise constant function with a cut-off point at a predeter-

mined age H : ε(a) = ε1, if a ∈ (A,H), and ε(a) = ε2, if a ≥ H , and similar for

σ(a). This model is able to identify age differences in the rate at which antibody

levels decay. Finally, we assess the sensitivity of our results with respect to the CP

assumption by allowing for an age-dependent q (5.7). This age-specific proportional-

ity factor q(a, a′) may reflect, for instance, discrepancies between the social contact

proxies measured in the contact survey and the ‘true’ contact rates underlying infec-

tious disease transmission, or differences in characteristics related to susceptibility or

infectiousness; though the latter is not estimable from serological surveys. Similar to

what we did in Chapter 5 for VZV, we consider the matrix structures M1,M2,M3

for q(a, a′) defined in (5.8), involving two transmission parameters θ1 and θ2 for the

population dichotomized by a cut-off at a predetermined age G.

Since the integral equation (2.12) has no closed form solution, we turn to discrete

age classes to estimate the scenario-specific parameters ε, σ, ϕ and q (cf. Appendix A).

Through an iterative procedure, the Bernoulli loglikelihood for the serological data is

being maximized (cf. Matlab code in Appendix C):

ℓ(ε, σ, ϕ, q|y1, . . . , yn) =
n∑

i=1

w̃i

{
yi log[r(ai|ε, σ, ϕ, q)]+(1−yi) log[1−r(ai|ε, σ, ϕ, q)]

}
,

where n denotes the sample size of the serological data set, w̃i is the truncated post-

stratification weight for subject i as defined in Section 6.1.1, and yi is the binary

variable indicating whether subject i of age ai is classified as being seropositive.

Once the ML-estimates for these parameters are obtained, the basic reproduction

number R0 can be computed as the dominant eigenvalue of the J×J next generation

matrix (Diekmann et al., 1990) with elements defined by (4.1).
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6.2.3 Risk in Pregnancy

To assess the infection risk in pregnant women, we estimate the average maternal

proportion of susceptibles (s̄p) and the average maternal force of infection (λ̄p),

s̄p =

∫∞

0
s(a)B(a)da∫∞

0
B(a)da

, λ̄p =

∫∞

0
λ(a)s(a)B(a)da∫∞

0
s(a)B(a)da

,

where B(a) represents the maternal age distribution of live births as introduced in

Section 6.1.1. The annual number of PVB19 infections in pregnant women is calcu-

lated as follows (Gay et al., 1994):

Ip = 0.77

∫ ∞

0

λ(a)s(a)B(a)da,

where 0.77 years embodies the mean duration of pregnancy (40 weeks). To estimate

the frequency of fetal deaths due to PVB19 infection during pregnancy, we calculate

an average risk of fetal loss using data from the two largest prospective cohort studies

of pregnant women with confirmed PVB19 infection reported in the literature: a study

from EW (1985-1988 and 1992-1995) by Miller et al. (1998) and from DE (1993-1998)

by Enders et al. (2004). We find an average excess fetal death rate during the first

20 weeks of gestation of 7.7%, when comparing the study populations to a control

group of women in EW and DE who were followed up prospectively after varicella

infection in pregnancy (Enders et al., 1994). Pastuszak et al. (1994) showed that

there is no significant difference in the rate of fetal loss between women with and

women without primary varicella infection during pregnancy. Although Tolfvenstam

et al. (2001) suggest that fetal death due to PVB19 infection in late second and third

trimester of pregnancy could be more common than previously reported, a recent

study by Riipinen et al. (2008) confirms the results of Miller et al. (1998) and Enders

et al. (2004) that this is overall a very rare event.

6.3 Results

6.3.1 Constant Waning

For the remainder of the chapter, we assume that the mean duration of infectiousness

for PVB19 is D = 6/365 years (Anderson and Cherry, 2004) and that maternally

derived antibodies are lost at the age of A = 0.5 years, implying that neonates younger

than 6 months are assumed not to take part in the PVB19 transmission process. The

latter is in line with the serological findings of Cohen and Buckley (1988) in London
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and Eis-Hübinger et al. (1998) in Germany, and the decay estimated by Huatuco et al.

(2008) from a seroprevalence study in São Paulo, Brazil. Removing the few serological

samples of neonates younger than 6 months, which are only covered by the sample

for BE, the sample size for the latter becomes n = 3069 (Table 3.1).

Further, we consider integer age intervals for all countries: (0.5, 1), [1, 2), [2, 3),. . . ,

[79, 80). The different dynamical models are fitted to the serological data, assuming

constant waning (CW) rates ε and σ, and CP with respect to close contacts > 15 min-

utes. Confidence intervals are obtained using the non-parametric bootstrap approach

described in Section 5.2.5, taking into account all sources of sampling variability and

age uncertainty. The ML-estimates for the scenario-specific parameters and R0 are

displayed in Table 6.1, together with 95% bootstrap-based percentile CIs (2.17) and

information criteria AIC (2.14) and BIC (2.15). Figure 6.5 depicts the estimated

seroprevalence and force of infection resulting from each compartmental scenario, for

all five countries.

Likelihood ratio (LR) tests are performed to test the null hypotheses H0 : ε = 0

and H0 : σ = 0 for the MSIRW and MSIRS models, respectively. Since these null

hypotheses are on the boundary of the parameter space R+, the asymptotic distribu-

tion of the LR-test statistic is a 50:50 mixture of χ2
0 and χ2

1 (Self and Liang, 1987).

The p-values together with the information criteria in Table 6.1 indicate substantial

evidence against the assumption of lifelong immunity for PVB19 in BE, EW and IT,

and this is also clear from the model fit in Figure 6.5. Note that, except for MSIRW

in IT and EW, the same conclusion can be made from the 95% CIs for ε and σ, which

also take into account the variability originating from the contact data. For these

countries, The MSIRW scenario with boosting comes out as the ‘best’ model, though

AIC and BIC values for MSIRW and MSIRS models are fairly close. For FI and PL,

however, the scenarios are not able to elicit any evidence of waning immunity from

the PVB19 serology.

The results from MSIRWb-ext and MSIRS-ext for both FI and PL are omitted

since ε and σ are estimated to be zero, making neither ϕ̂ nor q̂2 estimable. The results

from MSIRWb-ext are omitted for Italy as well since 90% of the bootstrap replicates

of ε̂ are larger than 103. The unboundedness of the parameters and the structure of

the Italian serological data conduce to extremely large bootstrap estimates for both

ε and ϕ, which is unrealistic and non-interpretable. For BE and EW, we additionally

test whether the proportionality constant ϕ in the MSIRWb-ext model equals 0 or 1,

corresponding to MSIRW and MSIRWb respectively. The former null hypothesis is

on the boundary of the parameter space R+, while the latter hypothesis of H0 : ϕ = 1

implies a classical LR-test. For BE and EW, there is a significant amount of boosting
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Table 6.1: ML-estimates for the scenario-specific parameters q, ε, σ, ϕ, and the basic repro-

duction number R0, with 95% bootstrap-based percentile CIs in square brackets, information

criteria AIC and BIC (minima indicated in boldface), and LR-test null hypotheses and p-

values, obtained under the assumption of CW.

Country Model R̂0 AIC BIC LR-test

H0 p-value

BE MSIR q̂ 0.056 [0.047, 0.062] 2.48 [2.27, 2.72] 3477.08 3483.10

MSIRW q̂ 0.073 [0.058, 0.087] 3.21 [2.70, 3.93] 3390.20 3402.26

ε̂ 0.004 [0.002, 0.006] ε = 0 < 0.001

MSIRWb q̂ 0.076 [0.060, 0.093] 3.35 [2.77, 4.17] 3384.02 3396.07

ε̂ 0.010 [0.005, 0.014] ε = 0 < 0.001

MSIRWb-ext q̂ 0.076 [0.059, 0.093] 3.35 [2.77, 4.17] 3385.98 3404.06

ε̂ 0.009 [0.005, 0.021] ϕ = 0 0.006

ϕ̂ 0.91 [0.30, 2.56] ϕ = 1 0.841

MSIRS q̂ 0.064 [0.054, 0.072] 2.84 [2.54, 3.22] 3387.51 3399.56

σ̂ 0.013 [0.006, 0.022] σ = 0 < 0.001

MSIRS-ext q̂1 0.076 [0.000, 0.091] 3.35 [0.00, 4.10] 3386.02 3404.10

q̂2 0.000 [0.000, 0.132] q1 = q2 0.062

σ̂ 0.010 [0.005, 0.044]

EW MSIR q̂ 0.053 [0.047, 0.057] 1.72 [1.64, 1.81] 3551.25 3557.20

MSIRW q̂ 0.058 [0.050, 0.064] 1.87 [1.72, 2.04] 3533.53 3545.42

ε̂ 0.003 [0.000, 0.005] ε = 0 < 0.001

MSIRWb q̂ 0.059 [0.051, 0.065] 1.90 [1.73, 2.07] 3531.65 3543.54

ε̂ 0.004 [0.001, 0.008] ε = 0 < 0.001

MSIRWb-ext q̂ 0.059 [0.051, 0.065] 1.91 [1.74, 2.09] 3532.21 3550.05

ε̂ 0.008 [0.002, 0.025] ϕ = 0 0.034

ϕ̂ 3.16 [0.94, 12.5] ϕ = 1 0.230

MSIRS q̂ 0.057 [0.050, 0.061] 1.83 [1.71, 1.96] 3531.88 3543.77

σ̂ 0.005 [0.001, 0.008] σ = 0 < 0.001

MSIRS-ext q̂1 0.059 [0.026, 0.064] 1.90 [0.89, 2.06] 3533.65 3551.49

q̂2 0.000 [0.000, 0.364] q1 = q2 0.632

σ̂ 0.004 [0.001, 0.011]

FI MSIR q̂ 0.052 [0.045, 0.057] 1.56 [1.52, 1.64] 3055.50 3061.32

MSIRW q̂ 0.052 [0.045, 0.057] 1.56 [1.52, 1.65] 3057.50 3069.15

ε̂ 0.000 [0.000, 0.001] ε = 0 1.000

MSIRWb q̂ 0.052 [0.045, 0.057] 1.56 [1.52, 1.65] 3057.50 3069.15

ε̂ 0.000 [0.000, 0.002] ε = 0 1.000

MSIRS q̂ 0.052 [0.045, 0.057] 1.56 [1.52, 1.65] 3057.50 3069.15

σ̂ 0.000 [0.000, 0.002] σ = 0 1.000

IT MSIR q̂ 0.025 [0.021, 0.027] 1.68 [1.60, 1.79] 3192.52 3198.35

MSIRW q̂ 0.027 [0.023, 0.030] 1.86 [1.68, 2.04] 3176.16 3187.82

ε̂ 0.003 [0.000, 0.005] ε = 0 < 0.001

MSIRWb q̂ 0.028 [0.023, 0.030] 1.89 [1.69, 2.08] 3175.12 3186.78

ε̂ 0.004 [0.001, 0.007] ε = 0 < 0.001

MSIRS q̂ 0.027 [0.023, 0.029] 1.83 [1.68, 1.99] 3175.96 3187.62

σ̂ 0.005 [0.001, 0.008] σ = 0 < 0.001

MSIRS-ext q̂1 0.028 [0.022, 0.030] 1.89 [1.58, 2.08] 3177.12 3194.61

q̂2 0.000 [0.000, 0.118] q1 = q2 0.359

σ̂ 0.004 [0.001, 0.008]

PL MSIR q̂ 0.047 [0.041, 0.050] 2.16 [1.97, 2.31] 2785.69 2791.51

MSIRW q̂ 0.047 [0.041, 0.051] 2.16 [1.97, 2.32] 2787.69 2799.33

ε̂ 0.000 [0.000, 0.000] ε = 0 1.000

MSIRWb q̂ 0.047 [0.041, 0.051] 2.16 [1.97, 2.32] 2787.69 2799.33

ε̂ 0.000 [0.000, 0.001] ε = 0 1.000

MSIRS q̂ 0.047 [0.041, 0.050] 2.16 [1.97, 2.31] 2787.69 2799.33

σ̂ 0.000 [0.000, 0.001] σ = 0 1.000
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Figure 6.5: Estimated seroprevalence (upper curves) and corresponding force of infection

(lower curves) obtained for each compartmental scenario for BE, EW, FI, IT and PL, as-

suming CW. The dots represent the observed serological data with size proportional to the

population age distribution obtained from demographic data.
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and the boosting rate is not significantly different from the force of infection.

To test the need of extending the MSIRS model, an LR-test of H0 : q1 = q2

is performed for MSIRS-ext. The non-significant p-values together with AIC and

BIC values demonstrate the limited impact on the fit to the data. Further, the

bootstrap samples mainly give rise to two discrepant solutions: q̂1 = 0 or q̂2 = 0.

We believe we cannot identify differences in transmission potential with respect to

the immunological status of the infected individual, because the serological data only

provide information related to susceptibility. Therefore, MSIRS-ext is not considered

further when relaxing the CW assumption. Note that in the latter framework we

have calculated the basic reproduction number based on a typical primary infected

person, such that bootstrap replicates q̂1 = 0 correspond to R̂0 = 0, clarifying the

lower CI-limits for BE and EW.

Solutions for the MSIRWS model are obtained using numerical approximation,

however, these results are not presented here since they are not directly comparable

with those for the other models in Table 6.1, which are obtained from analytical

solutions. Nevertheless, for BE and EW, we are able to compare the fit of MSIRWS

with MSIRWb-ext and MSIRS by constraining the parameters to the following values:

σ = 0 and (ϕ, σ) = (0, 200), respectively. The MSIRWS model is not better according

to the BIC criterion and therefore omitted from further consideration.

Considering the best models in terms of AIC/BIC, the following estimates are

obtained for the basic reproduction number R0: 3.35 for BE, 1.90 for EW, 1.56

for FI, 1.89 for IT and 2.16 for PL. The estimated basic reproduction number for

PVB19 is similar for EW, IT and PL. R0 is significantly smaller for Finland and

significantly larger for Belgium compared to the other countries, which may indicate

an epidemiological difference. A visual inspection of the fit to the data for BE, EW

and PL (Figure 6.5) reveals that the scenarios considered up till now, are not able to

capture the decrease or plateau observed in the seroprofile for young adults. Therefore,

in the next section, we further generalize these scenarios and relax the assumption

that the waning rates are independent of age.

6.3.2 Age-specific Waning

We extend the CW models from the previous section to allow for age differences in

the immunity transition rates ε and σ. Ten piecewise constant functions are fitted to

the data with cut-off points H ranging from 5 to 50 years in 5 years steps. For FI,

allowing for age-related heterogeneity in the rate at which antibody levels wane over

time, has virtually no effect on the fit to the seroprevalence data and the resulting
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parameter estimates. For BE, EW and PL, there is a large improvement in fit and

the likelihood values for the four scenarios as functions of H clearly show maxima

between the ages 20-50. For IT, the impact on the likelihood is rather limited and

the curves for the four scenarios show distinct optimal values for H , ranging from 5

to 35 years. The tendency towards lower cut-off values for IT and EW seems to be

driven by ill fitting points in infants, which is confirmed through a sensitivity analysis

(cf. Section 6.5). A comparison of the overall likelihood, combined over all countries,

for the different values of H and a visual inspection of the fit to the data lead us to

the choice of H = 35 years.

Table 6.2 presents the ML-estimates and 95% bootstrap-based percentile CIs for

the scenario-specific parameters and R0, assuming a piecewise constant function for ε

and σ with a cut-off at H = 35 years. Figure 6.6 displays the estimated seroprevalence

and force of infection for the age-specific waning (AW) models. The results for Finland

are omitted since these are the same as in the CW case (Table 6.1 and Figure 6.5).

As described for the CW counterpart in Section 6.3.1, the bootstrap replicates for

MSIRWb-ext are problematic for Italy and therefore the results are not considered

here. For BE, EW and PL, the AW models perform markedly better than their

constant counterparts according to AIC and BIC, with the single exception of the

MSIRW scenario for PL. The fitted seroprofiles now clearly display a decrease or

plateau in young adults (Figure 6.6). For IT, the AIC values are virtually equal

while the CW models have smaller BIC values than the age-specific ones. For BE,

EW and IT, the MSIRW and MSIRS scenarios are quite competitive when it comes

to model selection and it is difficult to discern whether a dynamics involving waning

and boosting of immunity or complete loss of immunity potentially leading to multiple

infections, is more plausible for PVB19. The Polish results support the latter scenario

in which protection acquired through PVB19 infection in childhood may be lost (≈ 24

years after infection), after which secondary infections with PVB19 could occur up

till the age of 35 years.

Consistent for all countries and all scenarios, is the finding that the immunity

transition rates ε and σ in individuals above 35 years of age are either estimated to

be 2 to 7 times smaller than the corresponding rate in younger individuals, or that

the transition from R to W and S for MSIRW and MSIRS respectively, even does

not occur in individuals of age 35 years and older, which is the case for Poland. This

may reflect the general observation that infection or boosting through exposure to in-

dividuals who are infectious with PVB19, elicits higher antibody responses in mature

immune systems, which could prolong the process of antibody waning. Further, we

obtain the following R̂0 ranges for the AW scenarios: 2.86-3.75 for BE, 1.96-2.19 for
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Table 6.2: ML-estimates for the scenario-specific parameters q, ε,σ, ϕ, and the basic repro-

duction number R0, with 95% bootstrap-based percentile CIs in square brackets, information

criteria AIC and BIC (minima indicated in boldface), obtained under the assumption of AW

with cut-off H = 35 years.

Country Model R̂0 AIC BIC

BE MSIRW q̂ 0.080 [0.063, 0.096] 3.53 [2.94, 4.30] 3359.11 3377.19

ε̂1 0.007 [0.005, 0.009]

ε̂2 0.000 [0.000, 0.000]

MSIRWb q̂ 0.084 [0.065, 0.102] 3.70 [3.05, 4.57] 3361.77 3379.86

ε̂1 0.019 [0.012, 0.027]

ε̂2 0.005 [0.001, 0.010]

MSIRWb-ext q̂ 0.085 [0.067, 0.103] 3.75 [3.08, 4.63] 3353.63 3377.74

ε̂1 0.013 [0.008, 0.020]

ε̂2 0.000 [0.000, 0.005]

ϕ̂ 0.35 [0.05, 0.94]

MSIRS q̂ 0.065 [0.056, 0.072] 2.86 [2.61, 3.20] 3359.25 3377.34

σ̂1 0.030 [0.018, 0.049]

σ̂2 0.010 [0.004, 0.018]

EW MSIRW q̂ 0.064 [0.054, 0.070] 2.05 [1.84, 2.27] 3521.81 3539.65

ε̂1 0.008 [0.004, 0.011]

ε̂2 0.000 [0.000, 0.002]

MSIRWb q̂ 0.068 [0.056, 0.076] 2.18 [1.92, 2.46] 3514.79 3532.63

ε̂1 0.017 [0.008, 0.025]

ε̂2 0.003 [0.000, 0.006]

MSIRWb-ext q̂ 0.068 [0.057, 0.076] 2.19 [1.93, 2.46] 3514.61 3538.39

ε̂1 0.026 [0.010, 0.048]

ε̂2 0.007 [0.000, 0.017]

ϕ̂ 2.03 [0.30, 5.59]

MSIRS q̂ 0.061 [0.053, 0.065] 1.96 [1.82, 2.10] 3512.43 3530.27

σ̂1 0.021 [0.010, 0.032]

σ̂2 0.003 [0.000, 0.007]

IT MSIRW q̂ 0.029 [0.024, 0.031] 1.96 [1.72, 2.17] 3176.10 3193.59

ε̂1 0.006 [0.000, 0.009]

ε̂2 0.001 [0.000, 0.005]

MSIRWb q̂ 0.029 [0.024, 0.032] 1.99 [1.74, 2.24] 3174.87 3192.36

ε̂1 0.008 [0.000, 0.014]

ε̂2 0.004 [0.000, 0.007]

MSIRS q̂ 0.028 [0.023, 0.030] 1.90 [1.72, 2.08] 3175.53 3193.02

σ̂1 0.010 [0.000, 0.017]

σ̂2 0.004 [0.000, 0.008]

PL MSIRW q̂ 0.049 [0.041, 0.054] 2.24 [2.00, 2.49] 2788.15 2805.62

ε̂1 0.001 [0.000, 0.004]

ε̂2 0.000 [0.000, 0.000]

MSIRWb q̂ 0.057 [0.044, 0.068] 2.64 [2.11, 3.16] 2770.01 2787.48

ε̂1 0.013 [0.001, 0.022]

ε̂2 0.000 [0.000, 0.000]

MSIRWb-ext q̂ 0.058 [0.047, 0.066] 2.67 [2.29, 3.04] 2752.17 2775.46

ε̂1 0.030 [0.018, 0.048]

ε̂2 0.000 [0.000, 0.001]

ϕ̂ 2.45 [1.59, 5.18]

MSIRS q̂ 0.053 [0.046, 0.056] 2.44 [2.23, 2.60] 2740.45 2757.91

σ̂1 0.042 [0.014, 0.082]

σ̂2 0.000 [0.000, 0.001]
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Figure 6.6: Estimated seroprevalence (upper curves) and corresponding force of infection

(lower curves) obtained for each compartmental scenario for BE, EW, IT and PL, assuming

AW. The dots represent the observed serological data with size proportional to the population

age distribution obtained from demographic data.



118 Chapter 6. Model Structure Analysis for Parvovirus B19

EW, 1.90-1.99 for IT, and 2.24-2.67 for PL, which are all significantly larger than the

basic reproduction number for Finland (Table 6.1).

6.3.3 Risk in Pregnancy

For each of the scenarios considered for each country in the two previous sections,

Table 6.3 presents the ML-estimates for s̄p, λ̄p, Ip, the frequency of PVB19 infection

in pregnancy, and the annual number of fetal deaths (FD) due to PVB19 infection,

with corresponding 95% bootstrap-based percentile CIs. Our results for the MSIR

model can be compared to the results of Mossong et al. (2008a) who analyzed the

same serological surveys using local quadratic models based on the assumption of

lifelong immunity. With the social contact data approach, we find similar estimates

for the average maternal proportion of susceptibles s̄p to PVB19: 27%, 38%, 43%,

38% and 31%, for BE, EW, FI, IT and PL, respectively. The largest difference is

found for Poland, for which Mossong et al. (2008a) obtained an estimate of 37%. It

should be noted that our MSIR scenario does not provide a good fit to the Polish

serology since it is not flexible enough to capture the decrease in young adults. The

maternal risk λ̄p of acquiring PVB19 infection when still susceptible is estimated to

be 0.034 (BE), 0.018 (EW), 0.014 (FI), 0.010 (IT) and 0.024 (PL), which in case of

Belgium is significantly larger than the estimate of 0.006 obtained by Mossong et al.

(2008a). Also for EW and PL, we estimate a larger maternal force of infection and

in summary for BE and EW, we estimate a significantly higher frequency of PVB19

infection in pregnancy compared to Mossong et al. (2008a) and Vyse et al. (2007).

For the MSIRW scenarios presented in Table 6.3, we notice either no change or a

slight decrease in the estimated frequency of PVB19 infection in pregnancy and the

induced number of fetal deaths, when broadly comparing them to the MSIR model.

In contrast for the MSIRS scenarios, the estimated frequency is much higher for BE,

EW, IT and PL (AW) with a significant difference observed for the former and latter

country. These two trends continue when comparing the CW models to their age-

specific counterparts: for the MSIRW scenarios, allowing for AW induces a decrease in

the estimated frequency of PVB19 infection in pregnancy, while it induces an increase

for the MSIRS scenarios. The annual number of fetal deaths due to PVB19 infection

in pregnancy, estimated from MSIR, MSIRWb AW and MSIRS AW, respectively,

equals 31, 23, 77 for BE, 130, 122, 237 for EW, 10 for FI, 61, 61, 91 for IT, and 85,

71, 280 for PL. Our estimates for the average maternal force of infection for PVB19

are in line with the seroconversion rates reported in literature, which are estimated

from prospective cohort studies in pregnant women (Alanen et al., 2005; van Gessel
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et al., 2006; Valeur-Jensen et al., 1999).

6.3.4 Age-Dependent Proportionality

We assess the sensitivity of the results from our model structure analysis for PVB19

with respect to the CP assumption of the transmission rates, hereby restricting at-

tention to MSIR, MSIRW(b) and MSIRS to ensure estimability. We choose the same

dichotomy of the population, namely with a cut-off point at age G = 12 years,

which performed well in our application of the MSIR model to VZV serology de-

scribed in Section 5.3. By parameterizing q(a, a′) according to the matrix structures

M1,M2,M3 as defined in (5.8), the evidence of waning immunity arising from the

CW models for BE, EW and IT, is almost completely absorbed, which is expressed by

the very small estimates for the waning rates. For these countries, under the assump-

tion of lifelong immunity, the AP model is always selected according to AIC/BIC. For

Belgium, the AP constant waning models fit the seroprofile much better than the CP

models and the estimates for R0 vary around the estimates obtained previously (Ta-

ble 6.1), with a pronounced dependence on the configuration type M which is similar

to what we observed for VZV (Section 5.3 and Figure 5.6). When making pairwise

comparisons of the CP versus AP constant waning models for EW, the AIC values

are always in favor of the AP scenarios, while the selection based on BIC depends

on the waning scenario and the parametric model considered for q(a, a′). For IT,

however, the BIC values always select the CP models over their AP counterpart. For

BE, EW and IT, the force of infection is now estimated to be smaller in adults which

reduces the estimated maternal frequency of PVB19 infection (Table 6.3). Finally for

FI and PL, allowing q to be age-dependent, does not substantially affect the fit of

the CW scenarios to the serological data and nearly preserves the estimates obtained

previously (Tables 6.1 and 6.3). The CP-models are better in terms of BIC and AIC,

the latter with the exception of M2 for Poland.

For the AW models, however, the evidence in favor of waning immunity is sus-

tained for BE, EW and PL, under the AP assumption for the transmission rates.

Furthermore, the ranking of the different waning scenarios according to AIC/BIC re-

mains approximately the same for each country compared to the results in Table 6.2.

Under AP, the estimates for the waning rates ε,σ slightly decrease for BE and slightly

increase for EW and FI, while for IT and PL these fluctuate around the estimates ob-

tained before depending on the parametric structure considered for q(a, a′). Further,

the estimates for R0 are generally close to the estimates obtained before (Table 6.2),

though we observe somewhat larger deviations in case ofM1 andM2 for the MSIRWb
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scenario for BE, EW and PL. For these three countries, information criteria based

pairwise selection of the CP versus AP counterparts differs depending on the waning

scenario and the configuration type M considered, but overall the smallest AIC/BIC

values are obtained for the AP MSIRS scenarios based on M3 for BE and M1 for EW

and PL. A visual inspection of the fit to the serological data shows that this model

more pronouncedly captures the shoulder effect in teenagers and 20 year olds for BE

and EW, and that the fit to the initial prevalence rise in children is improved for PL,

compared to the scenarios depicted in Figure 6.6. For FI, the MSIR CP model is

still the best one according to information criteria based selection and for IT, the CP

models are again selected over their AP counterpart. The frequency of PVB19 infec-

tion in pregnancy is now estimated to be lower in BE, slightly higher for FI, and for

EW, IT and PL it fluctuates around the estimates displayed in Table 6.3 depending

on the AP matrix for q(a, a′). For all countries, the annual number of PVB19-induced

fetal deaths estimated from the MSIRS scenario seems to be the most sensitive with

respect to the proportionality assumption.

6.4 Simulation Study

We conduct a simulation study to assess the performance of the different mathematical

scenarios and the ability of the model selection criteria AIC and BIC to select the

true underlying disease dynamics. Without loss of generality, we simulate ns = 200

serological data sets of size n = 3075, taking the ages of the individuals from the

Belgian seroprevalence data as a basis (cf. Table 3.1). The binary responses are

simulated by considering each one of the ten scenarios studied in Section 6.3 as the

‘true’ model, and by using the ML-estimates for Belgium as parameter values. All

compartmental models are then fitted to the ns simulated serological data sets. For

each model, the bias of the estimator ¯̂q = 1
ns

∑ns

i=1 q̂i, for the proportionality factor q

is calculated as follows: bias(¯̂q) = ¯̂q− q. The mean squared error (MSE) is computed

as:

MSE
(
¯̂q
)
= bias2(¯̂q) + V̂ar(¯̂q), with V̂ar(¯̂q) =

1

ns − 1

ns∑

i=1

(q̂i − ¯̂q)2,

where the latter formula is the estimated sample variance of ¯̂q. Further, we calculate

the same figures for a few other ‘global’ parameters: the basic reproduction number

R0, the average maternal proportion of susceptibles s̄p, the average maternal force of

infection λ̄p, and the annual number of fetal deaths (FD). Note that for the MSIRS-

ext model, we use the proportionality factor q1 for infected individuals with a primary

infection, as a surrogate for q.
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Figure 6.7: The root mean squared error (RMSE) of
¯̂
R0 and F̂D, where FD denotes

the annual number of fetal deaths, obtained for each scenario. The sizes of the dots are

proportional to the AIC (blue) and BIC (red) model selection probabilities. Each panel

corresponds to a fixed simulation setting.
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Tables D.1-D.10 in Appendix D, present the simulation results in full, while Fig-

ures 6.7 and 6.8 provide a summary of the main findings. Each panel corresponds

to a specific simulation setting and the dots represent the square root of MSE, the

so-called root mean squared error (RMSE), of
¯̂
R0 (left Y -axis) and F̂D (right Y -axis)

for each mathematical scenario. The RMSE values have the same unit as the quan-

tity being estimated. The sizes of the dots are proportional to the AIC (blue) and

BIC (red) model selection percentages: πsel,AIC and πsel,BIC, respectively. The results

when simulating serology under the lifelong immunity hypothesis (MSIR), are pre-

sented in Table D.1. As expected, all mathematical models perform well and have low

MSE values, while AIC and BIC are well able to detect MSIR as the true underlying

scenario. It is less interesting to depict these results as we did for the MSIRW models

in Figure 6.7. The panels on the left side of this figure reveal that, under a CW set-

ting, the MSIRW scenarios entail low RMSE values, whereas the MSIR and MSIRS

models produce higher RMSEs due to fairly large biases (see Tables D.2, D.4, D.6).

Under AW (Figure 6.7 on the right), we see a similar pattern, though the MSIRW AW

scenarios now clearly outperform the CW counterparts in terms of RMSE.

Figure 6.8 displays the RMSE values in case the simulation setting is of the MSIRS

type. For MSIRS CW, the MSIRS CW/AW models entail low RMSE values, whereas

for MSIRS AW only the true model performs well in general. Below in Figure 6.8,

the results for the MSIRS-ext setting are depicted. As opposed to the previous, the

peculiar result arises that the RMSE value of
¯̂
R0 for the true underlying dynamical

model is rather large compared to the other scenarios. Table D.10 shows that this is

due to a large estimated variance for ¯̂q, and consequently for
¯̂
R0 as well, when fitting

MSIRS-ext to the simulated data sets.

In most settings, the BIC model selection probability for the true model is larger

than the corresponding AIC model selection probability. Nevertheless, it seems im-

portant to calculate and compare both criteria in practice, since for MSIRW AW

and the MSIRWb-ext models, the BIC selection percentage for the actual underlying

dynamics is lower than the AIC selection percentage. Furthermore, the simulation

study reveals that the model selection criteria have difficulties to identify certain

waning scenarios: MSIRS CW and the MSIRWb-ext and MSIRS-ext models. For the

latter settings, the information criteria tend to select more parsimonious models.
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Figure 6.8: The root mean squared error (RMSE) of
¯̂
R0 and F̂D, where FD denotes

the annual number of fetal deaths, obtained for each scenario. The sizes of the dots are

proportional to the AIC (blue) and BIC (red) model selection probabilities. Each panel

corresponds to a fixed simulation setting.



126 Chapter 6. Model Structure Analysis for Parvovirus B19

6.5 Concluding Remarks

The results in Sections 6.3.1 and 6.3.2 for BE, EW and PL, indicate substantial

evidence towards processes of age-specific waning immunity for PVB19. Furthermore,

this finding is preserved when we relax the constant proportionality assumption of the

transmission rates (Section 6.3.4). Figure 6.6 shows that the age-specific MSIRWb

and MSIRS scenarios are able to explain at least partly the observed decrease in the

seroprofile for adults. The waning rates ε and σ are consistently estimated to be

smaller in individuals above 35 years of age, which may reflect a stronger antibody

response in more mature immune systems when exposed to PVB19, prolonging the

subsequent waning process of IgG antibodies. It is however difficult to discern from

the data whether a scenario involving waning and boosting of low immunity or a

scenario allowing for reinfections, is more plausible for PVB19. The simulation study

presented in Section 6.4 and Appendix D, illustrates that this finding may also hold

in general when inferring on disease dynamics using serological data. Elucidating the

underlying immunological process for PVB19 is nevertheless important with respect

to maternal-fetal risk assessment as we have shown in Section 6.3.3, in which the

MSIRS scenarios predict a higher risk of PVB19 infection in pregnancy and a larger

associated number of fetal deaths.

For IT, the evidence against lifelong immunity for PVB19 is merely sustained

under the assumption of constant proportionality and is less pronounced than for

BE, EW and PL. From the Finnish serological data we cannot infer any evidence

of waning immunity for PVB19, which relates to the shape of the seroprofile. The

Finnish seroprofile plateaus between the ages of 20 and 40 years and does not display

a decrease as for the other countries. For both FI and IT we obtain smaller estimates

for the basic reproduction number R0 and it could be hypothesized that the reduced

potential of spread for PVB19 in these countries makes it more difficult to observe

long-term waning processes at the population level. There is a limit to what can

be inferred from serological surveys and we have reached the boundary of what is

estimable by considering models such as MSIRWb-ext, MSIRS-ext and MSIRWS. In

Appendix B, we provide, in addition to the results here, estimates for the average

number of transitions from one stage to the other per person during their lifetime and

the average age at which these transitions occur.

In our model structure analysis, we have assumed endemic equilibrium for PVB19

which means that disease incidence fluctuates around a stationary average over time.

The few reports in the literature suggest that PVB19 has 3-5 year epidemic cycles in

European countries with a seasonal peak in the first half of each year (Bosman et al.,
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2002; Riipinen et al., 2008; Vyse et al., 2007), comparable to rubella. Using auxiliary

data on case reports, Whitaker and Farrington (2004a) show that cyclic epidemics

have only a marginal effect on estimates obtained under endemic equilibrium from

serological surveys for immunizing infections with short latent and infectious periods.

Whether these findings can be extended towards non-immunizing infections has not

been investigated yet and is beyond the scope of this thesis.

It was noted that the serological data reveal a rather high proportion of seropos-

itive 1-year old infants (Mossong et al., 2008a), which decreases until the second or

third year of life and then starts to increase gradually, except for IT where a sim-

ilar pattern is detected from three years of age. One would however expect that

the proportion of seropositive infants immediately starts to build up after the loss

of maternal antibodies. Mossong et al. (2008a) suggest that this could be due to a

lack of assay specificity for these age groups exposed to many other viral agents. On

the other hand, cyclic PVB19 epidemics in relation to the timing of the data collec-

tion could perhaps also explain these observations. The proportion of seropositive

neonates born in the period after an epidemic will be lower than expected whereas

the number of congenital infections during an epidemic, and thus the proportion of

seropositive newborns, will be larger. Yet, we are not able to verify this hypothesis

due to lack of data on the epidemic patterns for the countries involved in this study.

Given these seropositivity ‘deviations’ in infants, we performed a sensitivity anal-

ysis by omitting the serological samples for infants aged 0.5-3 years and re-fitting all

models. The same scenarios and cut-off points for the AW models are selected accord-

ing to AIC and BIC, except for EW and IT where in case of the MSIRW scenarios

the cut-off point is not anymore selected at young ages. Overall, the ML-estimates

of the model parameters, R0 and the risk in pregnancy are approximately the same.

Only for the MSIRS scenario in EW, IT and PL we observe a slight decrease in q̂ and

σ̂, inducing smaller estimates for the number of fetal deaths.

There is a need for additional large prospective cohort studies in pregnant women

in order to obtain more precise estimates of the risk of fetal death and hydrops fe-

talis due to PVB19 infection. In Miller et al. (1998) and Enders et al. (2004), only

pregnant women who were reported because they had rash, arthropathy or other

symptoms, and/or contact with a suspected case of erythema infectiosum, were in-

cluded in the analysis (at the point when maternal PVB19 infection was serologically

confirmed). This selection, with a reduced probability of asymptomatic PVB19 cases

to be reported, may compromise the generalization of the estimated risk to the entire

population of pregnant women.





Chapter 7
Estimating Measles-Mumps-Rubella

Vaccination Coverage from

Trivariate Current Status Data

Universal vaccination of infants is an important tool to control or even eliminate

vaccine preventable infectious diseases that are potential causes of illness and death.

In order for vaccination strategies to be effective, it is crucial to achieve and maintain

a high vaccination coverage. Although trivalent measles, mumps and rubella (MMR)

immunization has been widely implemented in the whole of Europe, still several small-

scale measles epidemics occur, as was recently the case in Northern Ireland (Smithson

et al., 2010). The suboptimal vaccination coverage raises serious doubts that the

World Health Organization’s stated goal of eliminating measles from Europe by 2010

can be attained (Muscat et al., 2009). In this chapter, we explore methods to estimate

MMR vaccination coverage from trivariate current status data using the serological

data sets from Belgium and Ireland, which were introduced in Section 3.1.4.

Up till now in Belgium, age-cohort-specific MMR vaccination coverage has been es-

timated from surveys based on the expanded program on immunization (EPI) cluster

sampling technique (see e.g. Theeten et al., 2007). Vaccine uptake is documented ret-

rospectively by conducting face-to-face interviews with the selected families at home.

These EPI-surveys, however, suffer from incomplete documentation of vaccinations

after infancy and possible participation bias, which may induce biased estimates of

the vaccination coverage. In Flanders, a web-based system called ‘Vaccinnet’ for the

129
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ordering and registration of vaccines has been recently developed, but it is still to be

assessed whether this system is able to tackle the aforementioned issues. In Ireland,

each Health Service Executive Area maintains a childhood immunization register in

which uptake statistics are compiled from vaccine return forms completed by general

practitioners. The database is limited to the uptake of the first MMR dose measured

at 2 years of age only, and does not allow for linkage between the different areas to

ensure uniqueness (O’Flanagan and others as the ‘Measles and Rubella Elimination

Committee of the Department of Health and Children’, 2007).

As an alternative to these methods relying on parental recall or registered evidence,

Gay (2000) proposed to exploit the information contained in multivariate antibody

prevalence data obtained from large national serum banks. Gay (2000) argued that the

higher the multivalent vaccination coverage, the greater the extent to which seropos-

itivity to each infection within individuals coincides. From the age-specific data on

serological status with respect to MMR, Gay (2000) obtained ML-estimates for the

vaccination coverage, the seroconversion rates and the proportions of unvaccinated

who are seropositive as a result of natural infection (‘exposure probabilities’). From

Gay (2000)’s modelling equations, Altmann and Altmann (2000) derived exact solu-

tions for the various parameters, using computer aided elimination theory of variables.

These exact formulas, however, do not take into account the uncertainty originating

from the data nor the interdependency between the different age cohorts, and may

yield biologically implausible solutions. Using the Belgian data set, we illustrate the

methods of Gay (2000) and Altmann and Altmann (2000) in Section 7.1.

In Section 7.2, we elaborate on the estimation method presented by Gay (2000)

by taking into account the dependency in acquisition of measles, mumps and rubella,

which are transmitted via the same route. In a likelihood-based marginal model

framework, we use the Bahadur model to describe the association between the expo-

sure probabilities. Further, instead of considering a saturated, age-specific structure

for the exposure probabilities, we propose a semiparametric approach with restricted

cubic splines to model the probability of acquiring natural infection as a smooth func-

tion of age. Allowing for dependence between the exposure probabilities, has a clear

effect on the MMR vaccination coverage estimates and the corresponding uncertainty,

as is shown for the Belgian and Irish data sets. Further, the restricted cubic splines

allow for a more parsimonious model, which is flexible enough to capture the main

trends of the exposure probability profiles. An extensive discussion on the results and

some further research prospects are provided in Section 7.3.
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7.1 Existing Methods

From now on, the index d = 1, 2, 3 refers to the three diseases: measles, mumps and

rubella, respectively, and the index j refers to the right-open age interval [j, j + 1)

where j = 1, . . . ,m. We use the same parameter definitions as introduced by Gay

(2000). The main parameter of interest is the vaccination coverage νj , i.e. the propor-

tion of individuals aged j years who have received the trivalent MMR vaccine. Here,

the implicit assumption is made that each individual receives no more than one dose

of the vaccine. Thus, the effect of the second dose of MMR, which mainly influences

the older age cohorts, is ignored. Further, let ζjd denote the ‘seroconversion rate’,

i.e. the proportion of individuals of age j who acquire detectable antibodies against

disease d when being vaccinated, and let ηjd denote the proportion of unvaccinated

individuals aged j years who are seropositive for disease d as a result of naturally

acquired infection (‘exposure probability’).

7.1.1 Gay’s Estimation Approach

Gay (2000) developed a model to estimate the trivalent vaccination coverage from

trivariate serology under the following assumptions:

1. Vaccinated individuals who did not seroconvert as a result of vaccination, have

the same probability of being seropositive as an unvaccinated individual of the

same age (i.e. ηjd);

2. Within an individual, seroconversion to each vaccine component is independent;

3. The risk of exposure to infection is homogeneous within each age cohort and

infection with each disease is independent.

Using the first assumption, the probability for a vaccinated individual in age class

[j, j + 1) of being seropositive for disease d equals:

πjd = ζjd + (1− ζjd)ηjd.

Based on the trivariate binary response variable Y ij = (Yij1, Yij2, Yij3) indicating

whether or not individual i ‘nested’ in age class j tested seropositive for measles,

mumps and rubella (1 = seropositive, 0 = seronegative), he/she can be categorized

into one of eight different immunity states (±,±,±), where + indicates seropositive

and − seronegative. The probability that a person of age j is classified into category

k is denoted by pjk (k = 1, . . . , 8). Using the second and third assumption, Gay
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(2000) determined the classification probabilities for each age group, which in case of

[j, j + 1) led to:

pj1 = fj(+,+,+) = νjπj1πj2πj3 + (1− νj)ηj1ηj2ηj3

pj2 = fj(+,+,−) = νjπj1πj2(1− πj3) + (1− νj)ηj1ηj2(1− ηj3)

pj3 = fj(+,−,+) = νjπj1(1 − πj2)πj3 + (1− νj)ηj1(1− ηj2)ηj3

pj4 = fj(+,−,−) = νjπj1(1− πj2)(1 − πj3) + (1− νj)ηj1(1− ηj2)(1 − ηj3)

pj5 = fj(−,+,+) = νj(1− πj1)πj2πj3 + (1− νj)(1 − ηj1)ηj2ηj3

pj6 = fj(−,+,−) = νj(1 − πj1)πj2(1− πj3) + (1− νj)(1 − ηj1)ηj2(1− ηj3)

pj7 = fj(−,−,+) = νj(1 − πj1)(1 − πj2)πj3 + (1− νj)(1 − ηj1)(1 − ηj2)ηj3

pj8 = fj(−,−,−) = νj(1− πj1)(1− πj2)(1− πj3)+ (1− νj)(1− ηj1)(1− ηj2)(1− ηj3),

(7.1)

where fj(yij) indicates the joint probability density function of Y ij .

Gay (2000) assumed that the disease-specific seroconversion rates are independent

of age (ζd), which is plausible from a biological point of view, unless there is a cohort

effect due to changing vaccine compounds. As a consequence, the sets of equations

(7.1) for all age classes are interlinked because of the mutual parameters ζ1, ζ2, ζ3. Let

njk denote the number of individuals of age j classified into category k. Gay (2000)

maximized the likelihood for the observed njk to estimate the 4m + 3 unknown pa-

rameters: ν = (ν1, . . . , νm), ζ = (ζ1, ζ2, ζ3),η1 = (η11, . . . , ηm1) and η2,η3 defined

analogously. During the optimization process, Gay (2000) put some additional con-

straints in order to obtain biologically relevant estimates: 0 ≤ νj ≤ 1, 0 ≤ ζd ≤ 1

and 0 ≤ ηjd ≤ ηj+1,d ≤ 1. Note that the latter constraint implies monotonicity of

the exposure probabilities with respect to age. Alternatively, we use link functions to

transform the probabilities to the real number scale:

logit(νj) = log

(
νj

1− νj

)
= αj , logit(ζd) = δd, logit(ηjd) = βjd, (7.2)

and we do not require the exposure probabilities to monotonically increase over age.

We come back to the motivation for the latter in Section 7.2.2. Since the response

variables (nj1, . . . , nj8) follow a multinomial distribution with nj =
∑

k

njk the total

number of individuals aged j years, and pjk the event probabilities, the loglikelihood

is given by

ℓ(α, δ, β1, β2, β3|n11, . . . , n18, n21, . . . , nm8) =

m∑

j=1

8∑

k=1

njk log(pjk) + C, (7.3)
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where C is a constant.

7.1.2 Exact Solutions by Altmann & Altmann

Using computer aided elimination theory of variables, Altmann and Altmann (2000)

derived exact formulas for νj , ζjd and ηjd from Gay’s set of equations (7.1). The

theory of Altmann and Altmann (2000) only works if Gay’s assumption that the

seroconversion rates are independent of age, is eliminated. If the so-called primary

feasibility conditions, g4j > 0 and g2jd > 0 (d = 1, 2, 3), hold, there is a unique,

feasible solution for the vaccination coverage νj :

νj =
g1j

√
g4j + g3j

2g1j
√
g4j

,

where g1j = nj ,

g2j1 = (nj8 + nj4)(nj1 + nj5)− (nj7 + nj3)(nj2 + nj6)

g2j2 = (nj8 + nj6)(nj1 + nj3)− (nj4 + nj2)(nj5 + nj7)

g2j3 = (nj8 + nj7)(nj1 + nj2)− (nj6 + nj5)(nj3 + nj4),

and

g3j = {(nj8 + nj5 + nj3 + nj2)− (nj1 + nj4 + nj6 + nj7)}(nj8nj1 + nj5nj4

+nj3nj6 + nj2nj7)− 2(nj8nj1(nj8 − nj1) + nj5nj4(nj5 − nj4) + nj3nj6

·(nj3 − nj6) + nj2nj7(nj2 − nj7)) + 2{(nj5nj3nj2 + nj8nj3nj2 + nj8nj5nj2

+nj8nj5nj3)− (nj4nj6nj7 + nj1nj6nj7 + nj1nj4nj7 + nj1nj4nj6)}

g4j = (n2
j8n

2
j1 + n2

j5n
2
j4 + n2

j3n
2
j6 + n2

j2n
2
j7) + 4(nj8nj5nj3nj2 + nj1nj4nj6nj7)

−2(nj8nj1nj5nj4 + nj8nj1nj3nj6 + nj8nj1nj2nj7 + nj5nj4nj3nj6

+nj5nj4nj2nj7 + nj3nj6nj2nj7).

By ‘feasible’ it is meant that the solutions are real numbers, contained in the interval

[0, 1]. Moreover, if g2jd ≥ √
g4j + |h2jd|, Altmann and Altmann (2000) showed that

feasible solutions for the disease-specific seroconversion rates and exposure probabil-

ities can be obtained as well (d = 1, 2, 3):

ζjd =
2
√
g4j

g2jd − h2jd +
√
g4j

, ηjd =
g2jd + h2jd −√

g4j

2g2jd
,
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where

h2j1 = −nj8nj5 + nj7nj6 + nj4nj1 − nj3nj2

h2j2 = −nj8nj3 + nj7nj4 + nj6nj1 − nj5nj2

h2j3 = −nj8nj2 + nj7nj1 + nj6nj4 − nj5nj3.

Altmann and Altmann (2000) revealed that the set of equations (7.1) has a special

geometrical interpretation, which implies that the vaccination coverage νj is more

robust against data noise than the seroconversion rates or the exposure probabili-

ties. This is reflected by the fact that one only needs the weaker primary feasibility

conditions to obtain an appropriate result for the vaccination coverage.

7.1.3 Illustration of the Independence Models

We now illustrate both methods to assess MMR coverage using the Belgian 2002 data

set presented in Table 3.2. Table 7.1 shows the age-specific estimates (indicated with a

tilde) obtained using Gay’s maximum likelihood approach, and the exact solutions of

Altmann and Altmann (2000). The ML-estimates for the vaccination coverage and the

disease-specific exposure probabilities are also depicted together with 95% pointwise

CIs in the left upper panels of Figure 7.1 and 7.2, respectively. The vaccination

coverage is estimated to be 47% in 1 year olds, which is expected since the first MMR

dose is administered during the second year of life. For the other age groups, the

coverage estimates fluctuate between 68% and 92%. There seems to be a decreasing

trend of MMR coverage in the younger age cohorts with a minimum at 9 years of

age, while the coverage broadly increases again afterwards. This effect could be due

to the second MMR dose recommended at 10-13 years. Figure 7.2 indicates that the

estimated variability of the exposure probabilities is remarkably large, especially in

the younger age groups where estimates are at the boundary of zero. Although the

exposure estimates are very wiggly, there seems to be some increasing trend over age

for all three diseases.

The Altmann and Altmann (2000) approach entails feasible solutions for the vac-

cination coverage, but the other parameters sometimes fall outside the biologically

plausible parameter range, as indicated in bold in Table 7.1. Some solutions for the

seroconversion rates ζjd are larger than 1 and some negative values are obtained for

the exposure probabilities ηjd. Recall that in Gay’s estimation approach, the param-

eter estimates were constrained to lie within [0, 1]. Overall, the vaccination coverage

estimates from Gay’s model are quite close to the exact Altmann and Altmann (2000)

solutions in younger age groups. In the older age cohorts, there is some difference
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Table 7.1: Comparison of the exact solutions as derived by Altmann & Altmann and the

estimates obtained using Gay’s maximum likelihood approach (indicated with a tilde) for

the Belgian 2002 data.

Age ν ν̃ ζ1 ζ2 ζ3 η1 η̃1 η2 η̃2 η3 η̃3

[1, 2) 0.47 0.47 0.96 0.87 1.01 0.10 0.10 0.04 0.04 0.10 0.11

[2, 3) 0.87 0.88 0.98 0.84 1.00 0.22 0.21 0.00 0.00 0.10 0.10

[3, 4) 0.92 0.92 1.00 0.86 0.98 -0.03 0.00 0.00 0.00 0.17 0.16

[4, 5) 0.87 0.86 0.97 0.86 0.98 -0.02 0.00 0.00 0.00 0.06 0.08

[5, 6) 0.83 0.84 1.01 0.84 1.00 0.00 0.00 0.20 0.17 0.21 0.16

[6, 7) 0.81 0.81 1.00 0.81 0.97 0.16 0.19 0.00 0.00 0.18 0.18

[7, 8) 0.84 0.81 1.00 0.86 0.92 0.29 0.44 0.00 0.11 0.50 0.46

[8, 9) 0.88 0.88 0.98 0.77 1.00 0.12 0.12 0.00 0.00 0.09 0.13

[9, 10) 0.67 0.68 1.03 0.77 1.04 0.51 0.53 0.14 0.06 0.34 0.38

[10, 11) 0.88 0.87 1.00 0.83 1.00 0.57 0.63 0.00 0.00 0.25 0.33

[11, 12) 0.88 0.86 0.95 0.90 0.99 0.40 0.37 0.25 0.40 0.22 0.33

[12, 13) 0.74 0.73 0.75 1.04 1.05 0.67 0.48 0.36 0.59 0.51 0.61

[13, 14) 0.80 0.78 0.93 0.95 0.99 0.40 0.34 0.25 0.43 0.49 0.53

[14, 15) 0.89 0.84 0.95 0.97 0.95 -0.01 0.13 0.32 0.65 0.60 0.65

[15, 16) 0.90 0.79 0.86 0.96 0.93 0.49 0.49 -0.09 0.55 0.74 0.80

[16, 17) 0.96 0.89 0.92 0.88 1.00 0.00 0.00 0.50 0.68 0.39 0.76

[17, 18) 0.88 0.84 1.00 0.90 0.91 0.29 0.53 0.33 0.51 0.50 0.44

[18, 19) 0.89 0.86 0.95 0.89 0.98 0.27 0.29 -0.01 0.21 0.52 0.60

with respect to vaccination coverage, especially in the 15 and 16 year olds. To com-

pare the seroconversion rates predicted by the two models, we calculate a weighted

average over age of the exact Altmann and Altmann (2000) values: 0.96 for measles,

0.88 for mumps and 0.98 for rubella. These are fairly similar to the seroconversion

rates estimated using Gay’s model, which are presented in the first row of Table 7.2.

As expected, the lowest vaccine efficacy is obtained for mumps.

The deviance −2ℓ and the AIC and BIC values for Gay’s model are presented in

Table 7.3. To assess the goodness-of-fit of Gay’s model, we also fit the most saturated

biologically relevant model, thus allowing for the seroconversion rates to depend on

age. The following fit statistics are obtained for this saturated model: −2ℓ = 2590.11,

# par = 126, AIC = 2842.11, and BIC = 3499.51. The χ2 goodness-of-fit test leads

to an approximate p-value of 0.666, indicating a good fit of Gay’s model.
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Figure 7.1: Estimated vaccination coverage with 95% pointwise CI for each age class of

the Belgian 2002 data, obtained for Gay’s model with ‘saturated’ exposure probabilities (left

upper panel), and for Gay’s model (right upper panel), BAH I (left lower panel) and BAH II

(right lower panel) with RCS structure (4 knots) for the exposure probabilities.



7.1. Existing Methods 137

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

es
tim

at
ed

 e
xp

os
ur

e 
pr

ob
ab

ili
ty

measles
mumps
rubella

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

es
tim

at
ed

 e
xp

os
ur

e 
pr

ob
ab

ili
ty

measles
mumps
rubella

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

es
tim

at
ed

 e
xp

os
ur

e 
pr

ob
ab

ili
ty

measles
mumps
rubella

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

es
tim

at
ed

 e
xp

os
ur

e 
pr

ob
ab

ili
ty

measles
mumps
rubella

Figure 7.2: Estimated exposure probabilities with 95% pointwise CIs for each age class

of the Belgian 2002 data, obtained for Gay’s model with ‘saturated’ exposure probabilities

(left upper panel), and for Gay’s model (right upper panel), BAH I (left lower panel) and

BAH II (right lower panel) with RCS structure (4 knots) for the exposure probabilities.
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Table 7.2: Estimates of the seroconversion rates to each of the MMR vaccine components

with 95% CIs in square brackets, obtained for a selected set of models fitted to the Belgian

(BE) 2002 and the Irish (IE) 2003 data.

Data Model Exposure Measles (ζ1) Mumps (ζ2) Rubella (ζ3)

BE 2002 Gay Saturated 0.99 [0.96, 0.99] 0.85 [0.82, 0.88] 0.99 [0.97, 1.00]

Gay RCS K = 4 0.99 [0.96, 0.99] 0.85 [0.82, 0.87] 0.99 [0.97, 1.00]

BAH I RCS K = 4 0.99 [0.96, 1.00] 0.84 [0.81, 0.87] 0.99 [0.97, 1.00]

BAH II RCS K = 4 0.99 [0.96, 1.00] 0.84 [0.81, 0.87] 0.99 [0.96, 1.00]

IE 2003 Gay Saturated 0.99 [0.97, 1.00] 0.83 [0.79, 0.87] 0.97 [0.95, 0.98]

Gay RCS K = 3 0.99 [0.95, 1.00] 0.83 [0.79, 0.86] 0.97 [0.94, 0.98]

BAH I RCS K = 3 1.00 [0.00, 1.00] 0.82 [0.78, 0.86] 0.98 [0.93, 0.99]

BAH III RCS K = 3 1.00 [0.00, 1.00] 0.82 [0.72, 0.89] 0.98 [0.57, 1.00]

7.2 Likelihood-Based Marginal Modelling

The approaches of Gay (2000) and Altmann and Altmann (2000) both rely on the

three assumptions formulated by Gay as listed in Section 7.1.1. A violation of the first

assumption, e.g. in the sense that vaccinated individuals who did not seroconvert as

a result of vaccination, may have a smaller probability of acquiring natural infection

than an unvaccinated individual of the same age, would not affect our results too

much because of the high immunogenicity of the MMR vaccine. The second assump-

tion is supported by a study from England (Pebody et al., 2002), where no evidence

for correlation of seropositivity to each antigen was found after MMR vaccination

other than that produced by a small excess of children seronegative to all three dis-

eases. The third assumption ignores the natural heterogeneity in the population in

that some individuals are more prone than others to acquire infection with all three

diseases. Measles, mumps and rubella are transmitted through the same route, thus

the individual’s social contact behavior underlies the probability of exposure to MMR.

The exposure probabilities are therefore not independent, and we assess the impact

of relaxing the third assumption by extending Gay’s model to take into account the

dependency in acquisition of the three diseases. Note that the exact approach of Alt-

mann and Altmann (2000) cannot be extended in a similar way, because it relies on

the dimension of the probability space and the parameter space being both equal to

7, which results from the complete separation of the system of equations (7.1) per age

class. It is convenient to model the dependency at the marginal level, since subject-

specific models are computationally very intensive. In Section 7.2.1, we introduce
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Table 7.3: Estimates of the correlation parameters with 95% CIs, the deviance and infor-

mation criteria obtained for Gay’s model and specific Bahadur models with different mean

structures for the exposure probabilities fitted to the Belgian 2002 data.

Model Par Est 95% CI −2ℓ #par AIC BIC

Saturated exposure probabilities

Gay (indep.) 2636.28 75 2786.28 3177.59

RCS exposure probabilities K = 3

Gay (indep.) 2708.29 30 2768.29 2924.82

BAH I ρ(2) 0.16 [-0.03, 0.34] 2706.21 31 2768.21 2929.95

BAH II ρ(2) 0.15 [-0.08, 0.36] 2705.99 32 2769.99 2936.95

ρ(3) -0.04 [-0.22, 0.14]

RCS exposure probabilities K = 4

Gay (indep.) 2686.58 33 2752.58 2924.75

BAH I ρ(2) 0.11 [-0.07, 0.28] 2684.99 34 2752.99 2930.38

BAH II ρ(2) 0.13 [-0.03, 0.29] 2684.45 35 2754.45 2937.06

ρ(3) 0.08 [-0.13, 0.28]

RCS exposure probabilities K = 5

Gay (indep.) 2675.60 36 2747.60 2935.43

the Bahadur model to describe the association between the exposure probabilities in

terms of correlation coefficients. But before doing so, we derive expressions for the

joint probabilities in the vaccinated population.

In general, the joint probabilities (7.1) for age class [j, j + 1) can be written as:

fj(yij) = νjfj(yij |V) + (1− νj)fj(yij |NV), (7.4)

where V indicates ‘vaccinated’ and NV indicates ‘non-vaccinated’. Given the marginal

model for the joint exposure probabilities fj(yij |NV), we are able to derive the joint

density for Y ij in the vaccinated population, and by (7.4) also the full joint distri-

bution. In the vaccinated population, the processes of seroconversion and natural

infection are interdependent and we need the law of total probability, hereby condi-

tioning on the seroconversion status, to obtain the joint probability for each of the
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eight different immunity states:

fj(+,+,+|V) = ζ1ζ2ζ3 + ζ1ζ2(1 − ζ3)fj(., .,+|NV) + ζ1(1− ζ2)ζ3fj(.,+, .|NV)
+ζ1(1− ζ2)(1 − ζ3)fj(.,+,+|NV) + (1− ζ1)ζ2ζ3fj(+, ., .|NV)
+(1− ζ1)ζ2(1 − ζ3)fj(+, .,+|NV) + (1− ζ1)(1 − ζ2)ζ3fj(+,+, .|NV)
+(1− ζ1)(1 − ζ2)(1− ζ3)fj(+,+,+|NV)

fj(+,+,−|V) = ζ1ζ2(1− ζ3)fj(., .,−|NV) + ζ1(1− ζ2)(1 − ζ3)fj(.,+,−|NV) + (1− ζ1)

·ζ2(1− ζ3)fj(+, .,−|NV) + (1− ζ1)(1− ζ2)(1 − ζ3)fj(+,+,−|NV)
fj(+,−,+|V) = ζ1(1− ζ2)ζ3fj(.,−, .|NV) + ζ1(1− ζ2)(1 − ζ3)fj(.,−,+|NV) + (1− ζ1)

·(1− ζ2)ζ3fj(+,−, .|NV) + (1− ζ1)(1− ζ2)(1 − ζ3)fj(+,−,+|NV)
fj(+,−,−|V) = ζ1(1− ζ2)(1 − ζ3)fj(.,−,−|NV) + (1− ζ1)(1− ζ2)(1 − ζ3)

·fj(+,−,−|NV)
fj(−,+,+|V) = (1− ζ1)ζ2ζ3fj(−, ., .|NV) + (1− ζ1)ζ2(1− ζ3)fj(−, .,+|NV) + (1− ζ1)

·(1− ζ2)ζ3fj(−,+, .|NV) + (1− ζ1)(1− ζ2)(1 − ζ3)fj(−,+,+|NV)
fj(−,+,−|V) = (1− ζ1)ζ2(1− ζ3)fj(−, .,−|NV) + (1− ζ1)(1− ζ2)(1 − ζ3)

·fj(−,+,−|NV)
fj(−,−,+|V) = (1− ζ1)(1− ζ2)ζ3fj(−,−, .|NV) + (1− ζ1)(1− ζ2)(1 − ζ3)

·fj(−,−,+|NV)
fj(−,−,−|V) = (1− ζ1)(1− ζ2)(1− ζ3)fj(−,−,−|NV).

The joint densities for immunity states 4, 6 and 7 in the vaccinated population can

be simplified further by working out the marginal densities:

fj(+,−,−|V) = ζ1(1− ζ2)(1 − ζ3)fj(−,−,−|NV) + (1− ζ2)(1 − ζ3)fj(+,−,−|NV)
fj(−,+,−|V) = (1− ζ1)ζ2(1− ζ3)fj(−,−,−|NV) + (1− ζ1)(1 − ζ3)fj(−,+,−|NV)
fj(−,−,+|V) = (1− ζ1)(1− ζ2)ζ3fj(−,−,−|NV) + (1− ζ1)(1 − ζ2)fj(−,−,+|NV).

7.2.1 The Bahadur Model for Trivariate Binary Data

We use the Bahadur model (Bahadur, 1961), a marginal model conceived for binary

data, to describe the joint density of the test outcomes Y ij in the non-vaccinated

population. For the model description, we mainly follow Molenberghs and Verbeke

(2005). The Bahadur model (abbreviated ‘BAH’) can be represented as the product
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of two components:

fj(yij |NV) = gj(yij |NV) · cj(yij |NV).

In our trivariate context, the first factor represents the independence model (7.1) used

by Gay (2000):

gj(yij |NV) =

3∏

d=1

η
yijd

jd (1− ηjd)
(1−yijd),

and the second component,

cj(yij |NV) = 1 + ρj12y
∗
ij1y

∗
ij2 + ρj13y

∗
ij1y

∗
ij3 + ρj23y

∗
ij2y

∗
ij3 + ρj123y

∗
ij1y

∗
ij2y

∗
ij3,

embodies the correction factor. In these formulas, the y∗ijd equal
yijd−ηjd√
ηjd(1−ηjd)

and can

be interpreted as standardized response values, while the

ρjd1d2 = E(Y ∗
ijd1

Y ∗
ijd2

) = Corr(Yijd1 , Yijd2),

are defined as the marginal two-way correlation coefficients and ρj123 =

E(Y ∗
ij1Y

∗
ij2Y

∗
ij3) as the third order correlation coefficient. We use Fisher’s z-transform

for the correlation coefficients:

z(ρ) = log

(
1 + ρ

1− ρ

)
= γ ⇔ ρ =

exp(γ)− 1

exp(γ) + 1
,

and the γ parameters are estimated by maximizing the loglikelihood (7.3) using the

same link functions for the other parameters as before (7.2).

Given the estimates obtained for the exposure probabilities and the two-way corre-

lation coefficients, we can also estimate the pairwise probability that an unvaccinated

individual of age j had a past infection with both disease d1 and d2:

ηjd1d2 = P (Yijd1 = 1, Yijd2 = 1|NV) = ηjd1ηjd2+ρjd1d2 [ηjd1(1−ηjd1)ηjd2(1−ηjd2)]
1/2,

or the joint probability that an unvaccinated individual of age j had a past infection

with all three diseases:

ηj123 = P (Y ij = (1, 1, 1)|NV) = ηj1ηj2ηj3 + ρj12ηj3[ηj1(1− ηj1)ηj2(1 − ηj2)]
1/2 + ρj13

· ηj2[ηj1(1− ηj1)ηj3(1− ηj3)]
1/2 + ρj23ηj1[ηj2(1− ηj2)ηj3(1− ηj3)]

1/2 + ρj123

· [ηj1(1− ηj1)ηj2(1− ηj2)ηj3(1− ηj3)]
1/2.

During the analyses, we make some simplifying assumptions with respect to the asso-

ciation structure. First, we assume that the correlation coefficients are the same for

all age groups, which reduces the total number of correlation parameters from 4m to
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Table 7.4: Summary of the different Bahadur models considered.

Name #par Second order Third order

BAH I 1 ρ(2) = ρ12 = ρ13 = ρ23 none

BAH II 2 ρ(2) = ρ12 = ρ13 = ρ23 ρ(3)

BAH III 3 ρ12, ρ13, ρ23 none

BAH IV 4 ρ12, ρ13, ρ23 ρ(3)

4. Further, we explore the assumption of ‘exchangeability’ or ‘equicorrelation’ which

states that the associations do not depend on the disease: ρ12 = ρ13 = ρ23 = ρ(2) and

ρ123 = ρ(3), thus leading to 2 correlation parameters. Finally, we investigate whether

the third order correlation coefficient ρ(3) can be ignored. The four resulting Bahadur

models that are considered in this chapter, are summarized in Table 7.4.

Bahadur (1961) indicates that the sum of the probabilities of all possible outcomes

is one, i.e.
∑8

k=1 pjk|NV, even when higher order correlations are set equal to zero.

However, the requirement of having non-negative probabilities for all possible out-

comes results in restrictions on the parameter space of the Bahadur model. These

restrictions have been studied in the specific context of exchangeably clustered data,

i.e. each subject within a cluster has the same response probability and the associa-

tions of a particular order are assumed constant within a cluster (see e.g. Bahadur,

1961; Declerck et al., 1998). Bahadur (1961) discusses the restrictions on the second

order correlation when all higher order associations are left out. The bounds on ρ(2),

required to obtain a valid probability mass function, depend on the response prob-

ability. When the size of the clusters equals three, the lower bounds vary between

-1/3 and 0, while the upper bounds vary between 0.5 and 1. Within the context of

developmental toxicity studies, Declerck et al. (1998) studied the lower and upper

bound of ρ(2) in the presence of higher order correlations. The inclusion of a third

order correlation in the Bahadur model for clusters of size three, somewhat relaxes

the bounds on ρ(2). In our setting of (unexchangeable) trivariate data, the analytical

calculations for these bounds would be much more complex and are beyond the scope

of this study.

7.2.2 Semiparametric Model for the Exposure Probabilities

Up till now, the exposure probabilities ηjd were modelled in a ‘saturated’ manner (7.2)

with one parameter βjd for each disease d and each age class j, leading to a total of 3m

parameters. Gay (2000) put the additional constraint that the exposure probabilities
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are monotonically increasing with age, which is to be expected for an immunizing

infection in a population with no vaccination programme. However, mass vaccination

against MMR has been implemented in most of Europe since the 1980s, and the effect

of herd immunity has altered MMR disease dynamics. Therefore, the exposure prob-

abilities estimated from 21st century current status data do not anymore reflect the

monotone age-specific seroprevalence profile expected under pre-vaccination equilib-

rium. Since we do not know the functional relationship between the marginal prob-

ability for a non-vaccinated individual of acquiring infection with measles, mumps

or rubella, and age, we propose to use a semiparametric model of cubic regression

splines (3.1). Cubic regression splines are an easy way of including an explanatory

variable in a smooth non-linear way in a wide variety of models, however, they may

behave poorly in the tails.

‘Restricted cubic splines’ (abbreviated ‘RCS’) also known as ‘natural cubic splines’

are cubic splines with the constraint that they are linear in their tails beyond the

boundary knots. This is enforced by putting s′′d = s′′′d = 0, where sd() represents the

cubic splines function (3.1). Restricted cubic splines thus allow for a more parsimo-

nious model. The RCS model with K knots κ1d, . . . , κKd for the independent variable

‘age’ is given by (Devlin and Weeks, 1986):

logit(ηjd) = sd(j) = β0d + β1dj1d + β2dj2d + . . .+ βK−1,djK−1,d,

where j1d = j and for q = 1, . . . ,K − 2:

j∗q+1,d = (j − κqd)
3
+ − (j − κK−1,d)

3
+(κKd − κqd)

(κKd − κK−1,d)
+

(j − κKd)
3
+(κK−1,d − κqd)

(κKd − κK−1,d)
,

where (j − κqd)+ = j − κqd if j > κqd and (j − κqd)+ = 0 if j ≤ κqd. The variables

jq+1,d are normalized as follows: jq+1,d = j∗q+1,d/(κKd − κ1d)
2, such that the RCS

components are on the original age scale. This RCS model has a total ofK parameters

to describe the exposure probability for disease d. The SAS macro %rcspline from

Harrell is used to generate the RCS components (Harrell, 2001).

7.2.3 Application to the Data

We now fit Gay’s model and the four Bahadur models (see Table 7.4) to the Belgian

2002 and the Irish 2003 serology, hereby considering different structures for the ex-

posure probabilities: saturated as in the original framework of Gay (2000), and semi-

parametric RCS models with 3 to 5 knots placed at predefined quantiles of the age

range, hereby following Harrell (2001). Due to the sparseness of the data (Tables 3.2
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and 3.3) and the structure of the joint density (7.4), the optimization procedure for

some of the Bahadur models leads to parameter estimates which do not yield a valid

multinomial probability mass function in the non-vaccinated population for all age

categories. Building in parameter restrictions to avoid negative probabilities, would

require complex analytical derivations of bounds for all correlation parameters (for

each Bahadur model considered), which is beyond the scope of this study. Alterna-

tively, penalized likelihood methods to constrain the probabilities could be explored,

but we will not consider these in this thesis. Therefore, we here present the results

of the Bahadur models for which the ML-estimates entail a valid probability mass

function for all age categories, as well as a positive definite hessian matrix.

The correlation parameter estimates with 95% CIs, the deviance and the AIC and

BIC values are presented in Tables 7.3 and 7.5 for Belgium and Ireland, respectively.

For the Belgian serology, both LR-tests as well as AIC and BIC values indicate that

the correlation parameters in BAH I and BAH II for the RCS models with 3 or 4

knots, are not significantly different from zero. For Ireland, however, AIC selects

BAH I over Gay’s model and the LR-tests for H0 : ρ(2) = 0 entail a significant p-

value of 0.044 for K = 3 and a non-significant p-value of 0.060 for K = 4. For the

Belgian data, when we further increase the number of knots in the RCS model to 6,

the AIC and BIC value for Gay’s model are both larger than when K = 5 (2752.39

and 2955.87, respectively). Furthermore, the corresponding Bahadur models are not

valid. The RCS models with K = 4 and K = 3 were broadly the best in terms of AIC

and BIC for Belgium and Ireland, respectively. For these models, the ML-estimates

of the seroconversion rates are shown in Table 7.2, while the ML-estimates of the

vaccination coverage and the exposure probabilities are displayed together with 95%

pointwise CIs in Figures 7.1 and 7.2 (Belgium) and Figures 7.3 and 7.4 (Ireland),

respectively.

From the upper panels in Figures 7.1 and 7.3, it is observed that replacing the

saturated exposure probabilities by a more parsimonious semiparametric model, has

a moderate effect on the estimated MMR vaccination coverage: the estimates are

pressed towards one another, inducing a more stable pattern with less fluctuations. By

taking into account the dependency in acquisition of the three pathogens (Figures 7.1

and 7.3, lower panels), the vaccination coverage estimates decrease everywhere to

some extent, especially in the older age cohorts. Further, the estimated uncertainty

increases markedly which is embodied by the wider 95% confidence intervals. There

is no substantial difference between the different Bahadur models with regard to the

estimated vaccination coverage, except that the variability is larger for BAH III than

for BAH I when considering the Irish serology in Figure 7.3. The MMR seroconversion
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Figure 7.3: Estimated vaccination coverage with 95% pointwise CI for each age class of

the Irish 2003 data, obtained for Gay’s model with ‘saturated’ exposure probabilities (left

upper panel), and for Gay’s model (right upper panel), BAH I (left lower panel) and BAH III

(right lower panel) with RCS structure (3 knots) for the exposure probabilities.
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Figure 7.4: Estimated exposure probabilities with 95% pointwise CIs for each age class of

the Irish 2003 data, obtained for Gay’s model with ‘saturated’ exposure probabilities (left

upper panel), and for Gay’s model (right upper panel), BAH I (left lower panel) and BAH III

(right lower panel) with RCS structure (3 knots) for the exposure probabilities.
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Table 7.5: Estimates of the correlation parameters with 95% CIs, the deviance and infor-

mation criteria obtained for Gay’s model and specific Bahadur models with different mean

structures for the exposure probabilities fitted to the Irish 2003 data.

Model Par Est 95% CI −2ℓ #par AIC BIC

Saturated exposure probabilities

Gay (indep.) 1541.67 63 1667.67 1956.59

RCS exposure probabilities K = 3

Gay (indep.) 1588.68 27 1642.68 1766.51

BAH I ρ(2) 0.21 [0.03, 0.37] 1584.64 28 1640.64 1769.05

BAH III ρ12 0.27 [-0.32, 0.70] 1584.63 30 1644.63 1782.21

ρ13 0.18 [-0.56, 0.77]

ρ23 0.20 [0.00, 0.38]

RCS exposure probabilities K = 4

Gay (indep.) 1585.07 30 1645.07 1782.65

BAH I ρ(2) 0.21 [0.03, 0.39] 1581.52 31 1643.52 1785.70

RCS exposure probabilities K = 5

Gay (indep.) 1581.10 33 1647.10 1798.45

rate estimates in Table 7.2 are, except for the estimated uncertainty, nearly unaffected

by the assumptions regarding the mean and association structure for the exposure

probabilities. Further, it is quite agreeable to observe such a strong consistency

between the disease-specific estimates for Belgium and Ireland.

The upper panels in Figures 7.2 and 7.4 clearly show the difference between the

saturated and the RCS model for the exposure probabilities. The fitted RCS profiles

are very smooth and the 95% pointwise CIs are more narrow compared to the sat-

urated model. As can be seen from the two lower panels, the profiles are estimated

to be higher and the corresponding 95% CIs are wider when the association between

the probabilities of acquiring infection with MMR is incorporated into the model.

There is virtually no effect of allowing for a third order correlation for the Belgian

data, or by relaxing the assumption of exchangeability for the two-way correlations

for the Irish serology. Overall, the estimated MMR exposure probabilities seem to be

somewhat larger in older age cohorts which could be due to the accumulating risk of
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exposure or to the higher circulation of MMR at the introduction of universal vaccina-

tion (herd immunity effect). Further, Figures 7.2 and 7.4 indicate that unvaccinated

teenagers seem more likely to have acquired past infection with rubella compared

with measles or mumps, which is a strange result since the pre-vaccination prevalence

of immune teenagers is estimated to be smaller for rubella in comparison to measles

and mumps (Farrington, 1990). This could however reflect the delay of replacement

of the monovalent rubella vaccine by the second MMR-dose in pre-adolescent girls.

7.2.4 Sensitivity Analysis

One could argue that the second and third order correlations between the exposure

probabilities for MMR should be positive because of the common, behavioral social

contact aspect which drives exposure to all three diseases. As a sensitivity analysis,

we re-fit the Bahadur models considered in the previous section under the constraint

that 0 ≤ ρ ≤ 1, where ρ represents any correlation parameter present in the models.

When allowing for a saturated structure for the exposure probabilities, as before,

none of the Bahadur models entail a valid fit for the two data sets. The results of the

RCS models for the Irish data set are not presented here, since the hessian obtained

for BAH III (K = 3) is not positive definite anymore, and the results for the BAH I

models are exactly the same as before (Table 7.5), except for a slight shift of the 95%

CIs for ρ(2) to the right.

The sensitivity analysis results for Belgium are more interesting (see Table 7.6),

since more Bahadur models now lead to a valid solution. While BAH III with an

RCS structure of 5 knots is the best model in terms of AIC, Gay’s model with an

RCS structure of 4 knots is the best model in terms of BIC. For the RCS models

with K = 4, a LR-test for Gay’s model versus BAH III entails a non-significant

p-value of 0.097. When the number of knots is increased to 5, the three pairwise LR-

tests always reject the null hypothesis of no correlation (p-values range from 0.027 to

0.043). LR-tests for the nested Bahadur models indicate that extending to BAH IV

is not informative. Figure 7.5 shows the ML-estimates of the vaccination coverage

and the exposure probabilities together with 95% pointwise CIs for BAH III with an

RCS structure of 5 knots. The vaccination coverage estimates are broadly somewhere

in between Gay’s model and BAH I with an RCS structure of 4 knots (Figure 7.1),

whereas the estimated exposure probability curve for measles in the right panel has

quite a different shape with a more pronounced peak around the age of 10 years.

In conclusion, the sensitivity analysis makes clear that it might be important for the

Belgian data as well to take into account the association between the MMR acquisition
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Table 7.6: Estimates of the correlation parameters with 95% CIs, the deviance and in-

formation criteria obtained for specific Bahadur models with different mean structures for

the exposure probabilities fitted to the Belgian 2002 data under the constraint of positive

correlation (Gay’s model added as a reference).

Model Par Est 95% CI −2ℓ #par AIC BIC

RCS exposure probabilities K = 3

Gay (indep.) 2708.29 30 2768.29 2924.82

BAH I ρ(2) 0.16 [0.05, 0.43] 2706.20 31 2768.20 2929.95

BAH II ρ(2) 0.17 [0.06, 0.41] 2706.29 32 2770.29 2937.25

ρ(3) 0.01 [0.00, 0.99]

RCS exposure probabilities K = 4

Gay (indep.) 2686.58 33 2752.58 2924.75

BAH I ρ(2) 0.11 [0.02, 0.43] 2684.99 34 2752.99 2930.38

BAH II ρ(2) 0.14 [0.04, 0.38] 2684.45 35 2754.45 2937.06

ρ(3) 0.07 [0.00, 0.65]

BAH III ρ12 0.02 [0.00, 1.00] 2680.27 36 2752.27 2940.09

ρ13 0.01 [0.00, 0.98]

ρ23 0.25 [0.11, 0.47]

RCS exposure probabilities K = 5

Gay (indep.) 2675.60 36 2747.60 2935.43

BAH II ρ(2) 0.24 [0.12, 0.43] 2669.28 38 2745.28 2943.55

ρ(3) 0.00 [0.00, 1.00]

BAH III ρ12 0.09 [0.01, 0.63] 2666.44 39 2744.44 2947.92

ρ13 0.00 [0.00, 1.00]

ρ23 0.28 [0.16, 0.46]

BAH IV ρ12 0.14 [0.02, 0.55] 2665.74 40 2745.74 2954.44

ρ13 0.00 [0.00, 1.00]

ρ23 0.33 [0.17, 0.54]

ρ(3) 0.11 [0.01, 0.68]
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Figure 7.5: Estimated vaccination coverage (left panel) and exposure probabilities (right

panel) with 95% pointwise CIs for each age class of the Belgian 2002 data, obtained for

BAH III with RCS structure (5 knots) for the exposure probabilities under the constraint of

positive correlation.

probabilities.

7.3 Concluding Remarks

In Section 7.1, we described and illustrated the two existing approaches of Gay (2000)

and Altmann and Altmann (2000) to, respectively, estimate and theoretically calcu-

late trivalent vaccination coverage from trivariate serological data. Although the

method of Altmann and Altmann (2000) was founded on Gay’s modelling equations,

it is less interesting from a statistical point of view since it ignores the variability

in the data and attributes biologically implausible values to insufficient data quality

rather than incorrect modelling assumptions. As a by-product of Gay’s method, esti-

mates for the vaccine seroconversion rates and the natural exposure probabilities are

obtained. In Section 7.2, we relaxed one of the assumptions made by Gay (2000) and

explicitly modelled the association between the probabilities of acquiring infection

with each of the three pathogens, by means of the Bahadur model for trivariate bi-

nary data (Bahadur, 1961). When fitting several configurations of the Bahadur model

to the Belgian and Irish MMR serology, we were confronted with the problem of nega-

tive probabilities for the multinomial distribution. Bahadur (1961) and Declerck et al.

(1998), amongst others, have studied the correlation parameter restrictions needed to
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Table 7.7: Estimates of MMR vaccine coverage in infants and adolescents obtained from

retrospective EPI-surveys in Flanders (95% CIs in square brackets). Note that in the EPI-

survey of 1999, infants with missing vaccination documents were omitted from the coverage

estimates, while for the other surveys the doses were considered not given.

Survey Age Birth Coverage dose 1 Coverage dose 2 Source

year cohort

1999 18-24m 1997 83.4% [80.3, 86.5] Swennen et al. (2002)

2005 18-24m 2003 94.0% [92.6, 95.3] Theeten et al. (2007)

2005 7-8y 1997 88.0% [85.6, 90.4] Theeten et al. (2009)

2005 13-14y 1991 80.6% [78.2, 83.0] 83.6% [81.4, 85.8] Vandermeulen et al.

(2008)

2008 18-24m 2006 96.6% [95.2, 97.6] Boonen et al. (2009)

2008 13-14y 1994 88.1% [86.1, 90.0] 90.6% [89.0, 92.2] Boonen et al. (2009)

obtain a valid density function, but only in the less complex case of exchangeably

clustered data. Since analytically deriving the parameter bounds was beyond the

scope of this study, we used an ad hoc approach by merely considering those models

for which a valid fit to the data was obtained. Further, in Section 7.2.2, as an alter-

native to Gay’s saturated model, we proposed a more parsimonious structure based

on restricted cubic splines to model the exposure probabilities as a function of age.

In our MMR applications, these RCS models clearly outperformed the saturated one.

Taking into account the dependency between the exposure probabilities somewhat

decreases the MMR vaccination coverage estimates while it increases the associated

variability (see Figures 7.1 and 7.3). For example, considering the Irish data with an

RCS structure of 3 knots, MMR coverage estimates vary between 72% in the 2 years

age cohort and 96% in the 15 years age cohort for Gay’s model, whereas they vary

between 67% in the 11 years age cohort and 93% in the 15 years age cohort for BAH I.

In general, the estimated vaccination coverage profiles for Belgium and Ireland are

quite different, with seemingly low MMR coverage in Irish infants in the early 2000’s.

While the Irish coverage shows an abrupt increase from 11 to 12 year olds, the Belgian

coverage shows decreases in 9 and 12-13 year olds. Yet, we do not have an explanation

for this. In Table 7.7, a brief overview is presented of the MMR vaccination coverage

estimates obtained from retrospective EPI-surveys in Flanders. The MMR coverage

estimates for Belgium are 84%, 86% and 85% according to Gay’s model with K = 4

and 84%, 85% and 82% according to BAH III with K = 5, for the 1997 (dose 1), 1994
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(dose 1) and 1991 (between dose 1 and 2) birth cohorts, respectively. These estimates

match quite well with the EPI-survey results in Table 7.7.

One could constrain the RCS model for the exposure probabilities to take into

account the protective period induced by maternally-derived immunity, for instance

by imposing that ηd(A) = expit(sd(A)) = 0, where A is the average age at which

maternal immunity is lost. Further, we have additional covariate information about

the serum samples such as gender, and specifically for Belgium: the region of resi-

dence (Flanders, Wallonia and Brussels). Stratifying the outcomes according to these

variables, however, would enlarge the problem of sparseness of the data. It would be

interesting to investigate whether the modelling equations can be extended to incorpo-

rate the coverage of the second MMR dose and the process of waning vaccine-induced

immunity. The more realistic the model created to account for these two aspects, the

more difficult it will be to identify the parameters from the serological data and to

separate the effects from the first MMR dose coverage and the exposure probabilities.

If the loss of vaccine-induced immunity would be studied, the effect of boosting of

immunity by exposure to infection has to be considered as well (Rouderfer et al.,

1994).

The ad hoc method we used to deal with the parameter space restrictions of

the Bahadur model, inhibited us to fully explore the dependency between the three

exposure probabilities. The sensitivity analysis in Section 7.2.4, where we put the

additional constraint of positive correlation, indicated good performance of BAH III

for the Belgian data, which we had not inferred before since no valid solution was

obtained under the ‘unconstrained’ optimization. For the Irish serology, the constraint

of positive correlation did not enhance convergence towards valid ML-estimates. In

the absence of analytical parameter bounds or a penalized likelihood approach, the

construction of profile likelihood CIs, which would be a better alternative for the

inverted Wald CIs (Agresti, 2002), is also precluded because of the problems with the

Bahadur model. Therefore, we are currently exploring the use of the trivariate Dale

model as a complement to the Bahadur model to describe the association between

the natural acquisition probabilities for the three diseases.



Chapter 8
Discussion and Further Research

8.1 Summary of the Thesis

In this thesis, we explored diverse modelling methods for current status data and

social contact data to enhance our understanding of the transmission of endemic

or actively immunized infectious diseases which spread from person to person. In

Chapter 4, we thoroughly studied the Belgian contact survey, collected as part of

the POLYMOD project. The data mining analyses revealed that there are robust

associations between general contact intimacy indicators, such as contacts taking

place at home, lasting at least 4 hours, occurring on a daily basis, and involving

skin-to-skin touching. The total number of reported contacts in the survey increased

significantly with increasing household size and class size for children, and for adults

who were employed or in further education, whereas it decreased significantly for

children and teenagers during a school holiday period.

We proposed a semiparametric, bivariate smoothing approach to estimate contact

rates from social contact survey data in Chapter 5, and found this method to outper-

form Wallinga et al. (2006)’s low dimensional, fully parametric maximum likelihood

approach. Furthermore, the bivariate smoothing method revealed a common pat-

tern in the contact surfaces for all countries in the POLYMOD project: individuals

mostly mix assortatively i.e. with people of similar age, which also includes contact

with a person’s partner and siblings, and non-assortatively with (grand)children or

(grand)parents, i.e. first-degree and second-degree relatives. However, there is still

room for improvement as our generalized additive model did not directly take into

account zero-inflation, digit preference or clustering of the contact counts, though the

153
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latter two aspects were accounted for in the non-parametric bootstrap approach.

Further in Chapter 5, we estimated age-specific transmission rates for VZV in

Belgium by augmenting the serological data with the estimated contact rates, hereby

extending the work of Wallinga et al. (2006). An improvement of fit to the seropreva-

lence was obtained by modeling transmission as the product of two age-specific vari-

ables: the age-specific contact rate and an age-specific proportionality factor q(a, a′).

Despite the fact that the social contact data approach tackles the main disadvantages

of the traditional Anderson and May (1991) method, it still involves two dimensions

of uncertainty: the choice of the type of contact underlying actual transmission of

disease, and the choice of a parametric model relating the contact rates to the trans-

mission rates. Focussing on close contacts lasting longer than 15 minutes, which

induced the best fit to the VZV data under constant proportionality, different models

for q(a, a′) resulted in a similar fit, while entailing different estimates of the basic

reproduction number R0. To overcome this problem of model selection uncertainty,

we turned to multimodel inference and computed a model averaged estimate of R0.

We conducted a compartmental model structure analysis in Chapter 6, to estimate

basic immunological processes for PVB19, such as waning immunity, natural boost-

ing of immunity and secondary infections, and to assess the impact on the inferred

maternal risk. The social contact data approach revealed evidence towards long term

processes of waning immunity for PVB19, however, it was difficult to discern from the

current status data whether individuals with low immunity remain protected and can

be boosted, or become susceptible again and potentially get reinfected. Our results

showed that for four of the five European countries studied, model selection crite-

ria favor the scenarios allowing for waning immunity at an age-specific rate over the

assumption of lifelong immunity, assuming that the transmission rates are directly

proportional to the contact rates. Different views on the evolution of the immune

response to PVB19 infection led to altered estimates of the age-specific force of infec-

tion and R0. The scenarios which allowed for multiple infections during one lifetime

predicted a higher frequency of PVB19 infection in pregnant women and of associated

fetal deaths.

Finally, in Chapter 7, we reviewed the work of Gay (2000) and Altmann and

Altmann (2000) on the estimation of trivalent vaccination coverage from trivariate

serological data. While the exact, algebraic method of Altmann and Altmann (2000)

was found less interesting from a statistical point of view, we elaborated on Gay

(2000)’s maximum likelihood approach by explicitly modelling the association be-

tween the probabilities of exposure to each of the three diseases for a non-vaccinated

individual. To this purpose, the Bahadur model for trivariate binary data was used,
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which produced a decrease in the estimated MMR vaccination coverage and an in-

crease in the corresponding estimated variability when applied to the serology for

Belgium and Ireland. Because of the restrictive Bahadur parameter space, we are

currently exploring the trivariate Dale model as well.

8.2 Current Status Data

The use of current status data in infectious disease modelling relies on the correct

classification of the antibody titers by the manufacturer’s cut-off range for the ELISA

test, with respect to the immunity status of the individual. However, not for all viruses

we have studied in this thesis, a serological correlate of protection is agreed upon. For

example, rubella antibody titers > 10 IU/ml are considered seroprotective according

to the current consensus, whereas there is no International Standard for mumps sera

(Tischer et al., 2007). For measles, the antibody level which gives protection against

infection is still under debate. Further, by dichotomizing the antibody results and

excluding the equivocal samples, obviously some information is lost. Recently, new

methods have emerged to interpret continuous antibody titers using mixture models

(see e.g. Vyse et al., 2006; Rota et al., 2008), however, this should be done with caution

since the fitted mixture components do not necessarily reflect prior known group

structures in the data, such as different immunity states (e.g. susceptible, vaccinated

or naturally infected). Furthermore, from a modelling point of view, the mixture-

model methods for continuous antibody levels developed up till now are confined to

estimating the seroprevalence and the force of infection, hereby implicitly assuming

SIR (Bollaerts et al., 2011). Whether the methods can be extended to establish a

link with the mass action principle, to estimate age-dependent transmission rates

from continuous titers, or with compartmental models for waning immunity as we

considered for PVB19 in Chapter 6, needs yet to be explored.

For an endemic infectious disease with an SIR dynamics, one expects the seropreva-

lence to be monotonically increasing with age. However, in practice, the seroprofile

may display distortions with respect to monotonicity, which can be visualized via a

semi- or non-parametric estimate (cf. Section 3.1.3). According to Hens et al. (2010a),

these distortions could be due to the presence of maternally derived immunity, a viola-

tion of time homogeneity, waning antibodies or plain randomness. Hens et al. (2010a)

presented a practical flow chart with different remedial techniques to obtain a ‘regu-

larized’ estimate of the force of infection. In all analyses presented here, we took into

account the fact that newborns are initially protected by assuming ‘type I maternal



156 Chapter 8. Discussion and Further Research

antibodies’. For VZV and PVB19, we explicitly assumed endemic equilibrium, even

though for both diseases there exist regular epidemic cycles. This violation very likely

does not influence our results for VZV (Whitaker and Farrington, 2004a), however if

immunity for PVB19 would truly wane over time, the same is not guaranteed there.

The PVB19 seroprofile distortions in adults was our motivation in the first place to

investigate the hypothesis of waning antibodies. That these distortions would be due

to time heterogeneity seemed very unlikely, since the same pattern was observed for

several countries in Europe, America, Asia and Australia, over at least two decades.

There were also some distortions in infants, which seemed more likely due to PVB19

epidemics, but a sensitivity analysis showed that these were not influential.

Throughout this thesis, we experienced that there is a limit to what can be inferred

from current status data. Serological surveys do not provide information related to

infectiousness, which was one of the main problems with the traditional Anderson and

May (1991) approach to estimate the WAIFW matrix. Thanks to the social contact

data approach, the transmission rates can now be disentangled into two components

and the (symmetric) age related contact heterogeneities can be estimated directly

from social contact surveys. Consequently, the problem of indeterminacy is shifted

to the age-specific proportionality factor q(a, a′). Therefore, it is important to assess

the sensitivity of the results with regards to different assumptions for q(a, a′). Other

factors which complicate inference from serological data are lack of data for certain

age groups or extremely prevalent diseases such as VZV (cf. Chapter 5). The fact

that we were not able to show improved performance of more complex immunologi-

cal scenarios for PVB19, such as MSIRWb-ext, MSIRS-ext and MSIRWS, does not

necessarily imply that the other, simpler models are closer to reality. We believe that

these scenarios cannot be identified without the use of auxiliary data, which was sup-

ported by the bootstrap and simulation study results in Chapter 6. We suspect that

something similar happens for the MMR vaccination coverage and the third order

correlation between the MMR exposure probabilities, which are both informed by the

occurrence of samples seropositive to all three infections (cf. Chapter 7).

Ideally, for the purpose of validation, the results obtained from serological data

could be compared to results from other data sources such as incidence data or EPI-

surveys. Auxiliary sources of data could also help to sustain certain modelling as-

sumptions. Good quality age-specific incidence data, however, were not available to

us.
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8.3 Social Contact Data Approach

Although there is a positive trend in the sense that more time and thinking is spent

on the survey design in recent social contact surveys with the aim to collect data

to inform infectious disease transmission models (e.g. POLYMOD project), there are

still some points which need continuous attention in the future. Apart from the fact

that a deliberate decision needs to be made with respect to the timing of the survey,

reporting of contacts by children and of professional contacts by adults need to be

carefully considered. Up till now, parents were asked to fill in the contact diary

for their young child, which is the most practicable method though it might lead

to underreporting of contacts. Adults were either not given any instructions related

to professional contacts or they were explicitly instructed not to record them in the

diary in case the number would exceed a fixed threshold. We find the latter approach

the most efficient provided that first, the ordering of the questions is similar to the

one from the Belgian contact survey (cf. Section 4.1.2) and second, that additional

age related information is required from the participant. In this way, one anticipates

the problem of contact underreporting for adults who encounter many individuals

professionally each day, and one can still estimate the age-specific contact rate surface

by sampling at random from the recorded age distribution.

The per capita contact rates estimated from social contact surveys are constrained

to be symmetric to take into account the reciprocal nature of contact events. Although

we have not considered this, it might be interesting to measure the sample deviation

from symmetry, like Wallinga et al. (2006), to assess underreporting of contacts or

oversampling for specific age groups. For a contact survey from Utrecht, Wallinga

et al. (2006) found that different age classes overall agree on the number of contacts

occurring between them. Since the year of serological data collection will not always

(perfectly) correspond to the timing of social contact surveys available, assumptions

are needed to impose the symmetry constraint. By using age-specific population sizes

obtained from demographical data corresponding to the year of serological data collec-

tion, we implicitly assumed that the mean number of contacts mij remained constant

between the two data collection periods. In fact, because of the cohort interpretation

of the serological data, the transmission models we considered in this thesis implicitly

assume that the contact rates have been constant over several decades. We return to

this issue in the next paragraph. Further, more research is needed about measures of

(dis)assortativeness for contact patterns and the relation with their predictiveness for

serological data. Farrington et al. (2009) proposed a summary measure of disassor-

tativeness, i.e. the extent to which contacts occur between individuals from different
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age groups, and found that this index was remarkably constant across the contact

patterns of countries involved in the POLYMOD survey.

Recently, another large social contact survey was conducted in Indonesia, Taiwan,

Thailand and Vietnam as part of the WHO-project on ‘Influenza illness and vacci-

nation in Asia: data collection of social contacts and mixing patterns’ (SMILI). Not

all countries, however, have the means or interest to conduct social contact surveys.

In addition, contact data are cross-sectional i.e. a snapshot of social mixing patterns,

which are likely to change over time due to changing relationships between humans

and their social and physical environments. It is therefore of interest to parameterize

the contact surface (e.g. using POLYMOD data) and to develop a sort of generic

model for contact rates, which can be informed by longitudinal, demographic data

for a specific country. The aim is to derive a flexible, though parsimonious paramet-

ric structure which captures the most important features of the contact surface, by

incorporating variables such as the average age of becoming a parent, the duration of

compulsory education, the average age at retirement, etc. To the same purpose, Ital-

ian colleagues are currently working on so-called ‘synthetic contact matrices’, which

are reconstructed from individual-based simulation models for social-demographic dy-

namics (Iozzi et al., 2009).

Finally, we would like to recall some of the issues inherent to the mass action

principle formulated in (2.12), which were also discussed by Ogunjimi et al. (2009).

The mass action principle allows that individuals make contact with each other at

different rates depending on their age, but the contacts can in principle occur with

whomever in the population (randomly distributed). Hence, the mass action concept

assumes that there does not exist a predefined relationship or a causal circumstance

by which a certain pair of individuals is more likely to interact with each other than

another pair of individuals having the same age. It would be interesting to investigate

whether the mass action principle (2.12) can be extended to incorporate clustering of

contacts, perhaps by borrowing concepts from network theory. On the other hand,

social contact data may also be useful to inform network or individual-based models,

which are used to study the epidemic spread of infectious diseases and the impact of

control measures. Further, the mass action principle (2.12) implicitly assumes that

an infected individual’s social mixing behavior does not change during the infectious

period. However, when people are seriously ill they are likely to adapt their normal

activities and have fewer contacts which mostly occur within the household (Eames

et al., 2010). Whether this is relevant for the estimation of the WAIFW matrix and

R0, depends on the latency and incubation period of the infectious disease considered,

i.e. whether the clinical symptoms occur before, during or after the infectious period.
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Appendix A
Discretized Formulas

The integral equation (2.12) has no closed form solution and therefore, we solve the

system numerically by turning to a discrete age framework, assuming a constant force

of infection in each age class. For this purpose, denote the first age interval (a[1], a[2])

and the jth age interval [a[j], a[j+1]), where a[1] = A. For the MSIRW models intro-

duced in Chapter 6, the proportion of susceptibles of age a (2.9), with a ∈ [a[j], a[j+1]),

reduces to

s(a) = exp

(
−

j−1∑

k=1

λk(a[k+1] − a[k])− λj(a− a[j])

)
.

Making use of this formula, the force of infection for age class i is approximated by:

λi =
ND

L
exp(−µ1A)

∑

j

βij
λj

λj + µj

[
exp

(
−

j−1∑

k=1

(λk + µk)(a[k+1] − a[k])

)

− exp

(
−

j∑

k=1

(λk + µk)(a[k+1] − a[k])

)]
,

βij denoting the per capita rate at which an individual of age class j makes effective

contacts with a person of age class i, per year. The fraction of seropositives for the

177
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MSIRWb-ext model is approximated by

r(a) =(1− ϕ)

j−1∑

ℓ=1

λℓ

(1− ϕ)λℓ − εℓ
exp

(
−

ℓ−1∑

k=1

λk(a[k+1] − a[k])−
j−1∑

m=ℓ+1

(ϕλm + εm)

· (a[m+1] − a[m])− (ϕλj + εj)(a− a[j])

)
·
[
exp

(
−(ϕλℓ + εℓ)(a[ℓ+1] − a[ℓ])

)

− exp
(
−λℓ(a[ℓ+1] − a[ℓ])

)]
+

(1− ϕ)λj

(1− ϕ)λj − εj
exp

(
−

j−1∑

k=1

λk(a[k+1] − a[k])

)

·
[
exp

(
−(ϕλj + εj)(a− a[j])

)
− exp

(
−λj(a− a[j])

)]
+ ϕ

j−1∑

ℓ=1

λℓ

ϕλℓ + εℓ

· exp
(
−

j−1∑

m=ℓ+1

(ϕλm + εm)(a[m+1] − a[m])− (ϕλj + εj)(a− a[j])

)
[
1− exp

(

− (ϕλℓ + εℓ)(a[ℓ+1] − a[ℓ])
)]

+
ϕλj

ϕλj + εj
·
[
1− exp

(
−(ϕλj + εj)(a− a[j])

)]
,

(A.1)

if a belongs to the jth age interval. The variants for the more parsimonious, nested

MSIRW models are obtained by substituting ϕ with 0 and 1, respectively. From the

integral equation (6.2) it follows that in case of an MSIRS-ext model, the force of

infection for age class i can be approximated by:

λi =
ND

L
exp(−µ1A)

∑

j

[
β1ij

λj

λj + µj

{
exp

(
−

j−1∑

ℓ=1

(λℓ + µℓ)(a[ℓ+1] − a[ℓ])

)

− exp

(
−

j∑

ℓ=1

(λℓ + µℓ)(a[ℓ+1] − a[ℓ])

)}
+ β2ij

λj

λj + σj + µj
exp
(
−

j−1∑

ℓ=1

µℓ(a[ℓ+1]

− a[ℓ])
){

1− exp
(
−(λj + σj + µj)(a[j+1] − a[j])

)}
{

j−1∑

ℓ=1

exp
(
−

j−1∑

m=ℓ+1

(λm + σm)

· (a[m+1] − a[m])
)[ σℓ

λℓ + σℓ

{
1− exp

(
−(λℓ + σℓ)(a[ℓ+1] − a[ℓ])

)}
− exp

(
−

ℓ∑

k=1

λk

· (a[k+1] − a[k])
){

1− exp
(
−σℓ(a[ℓ+1] − a[ℓ])

)}
]
+

σj

λj + σj

[
λj + σj + µj

µj

· 1− exp
(
−µj(a[j+1] − a[j])

)

1− exp
(
−(λj + σj + µj)(a[j+1] − a[j])

) − 1

]
− exp

(
−

j−1∑

ℓ=1

λℓ(a[ℓ+1] − a[ℓ])
)

·
[
λj + σj + µj

λj + µj
· 1− exp

(
−(λj + µj)(a[j+1] − a[j])

)

1− exp
(
−(λj + σj + µj)(a[j+1] − a[j])

) − 1

]}]
.
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In case β1ij = β2ij , ∀i, j, it can be shown analytically that this expression reduces

to the corresponding formula for the MSIRS model. The formula for the fraction of

seropositives for both the MSIRS and MSIRS-ext model is identical to the one derived

for the MSIRWb-ext model (A.1) with ϕ = 1, where the waning rate ε is replaced by

the rate of re-entering the susceptible state, σ.

For the MSIRWS model, we partition the age classes [a[j], a[j+1]) into smaller

intervals of length δ and approximate the system of differential equations by a set of

difference equations. The proportion of susceptibles and the proportion of individuals

in the low immunity state, are then calculated as follows:





si+1 = si + σiδwi − λiδsi,

wi+1 = wi + εiδ{1− si} − {ϕλi + σi + εi}δwi,

where s1 = 1 and w1 = 0. The force of infection for age class i is approximated by:

λi =
NDe−µ1A

L

∑

j

βijλjsj
µj

[
exp

(
−

j−1∑

k=1

µk(a[k+1] − a[k])

)
−exp

(
−

j∑

k=1

µk(a[k+1] − a[k])

)]

and the fraction of seropositives r(a) is approximated by 1− si−wi, where the index

i is chosen such that age a is located in the ith age interval of length δ.





Appendix B
Immunity Transitions

Following Rouderfer et al. (1994), we estimate the number of certain PVB19 immu-

nity transitions per person during their lifetime and the average age at which these

transitions occur (Table B.1) for all scenarios considered in Chapter 6, hereby using

the ML-estimates for the scenario-specific parameters. Note that for the MSIRS-

ext model, the total fraction of susceptibles equals s(a) = s1(a) + s2(a). For each

country and each transmission scenario considered, the resulting estimates are pre-

sented in Table B.2.

Table B.1: The average number of transitions per person during their lifetime (*) and the

average age at which these transitions occur.

Notation - Formula Interpretation (all averages)

n̄SI

∫
∞

0
λ(a)s(a)N(a)/N(0)da *number of infections

ĀSI {
∫

∞

0
aλ(a)s(a)N(a)/N(0)da}/n̄SI age at infection

n̄RW

∫
∞

0
ε(a)r(a)N(a)/N(0)da *number of transitions from high to low immunity

ĀRW {
∫

∞

0
aε(a)r(a)N(a)/N(0)da}/n̄RW age at waning from high to low immunity

n̄WR

∫
∞

0
ϕλ(a)w(a)N(a)/N(0)da *number of boosts from low to high immunity

ĀWR {
∫

∞

0
aϕλ(a)w(a)N(a)/N(0)da}/n̄WR age at boosting from low to high immunity

n̄RS

∫
∞

0
σ(a)r(a)N(a)/N(0)da *number of losses of disease-acquired immunity

ĀRS {
∫

∞

0
aσ(a)r(a)N(a)/N(0)da}/n̄RS age at loss of disease-acquired immunity
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Appendix C
Matlab Code

The MSIRW and MSIRS scenarios considered for PVB19 in Chapter 6 are imple-
mented in Matlab and ML-estimates are obtained using fminsearch. We provide
the Matlab functions below for the two most extensive models MSIRWboostext and
MSIRSext, since all other scenarios are special cases. Both functions make use of
the function read (not displayed here) to import the country-specific data: the esti-
mated daily contact rates matrix rij(:,:), the vectors containing the serological data
i.e. the individuals’ age age(:,), serological status resp(:,) and post-stratification
weight weight(:,), the life expectancy L, the total population size N, the age-specific
mortality rates mu(:,), and the maternal age distribution bi(:,) for live births.
Further, both functions make use of the function Rfrac displayed below to calculate
the age-specific fraction of seropositives according to formula (A.1). Finally, both
functions require the following input parameters: the country{‘’} specification, the
cut-off point H for the age-specific waning scenario, the starting values init(,:) for
the optimization procedure, and the model{‘’} specification for the waning rates.

function r = Rfrac(age,epsilon,phi,C,B1,Cb,foi,k)

alow = floor(age);

if length(epsilon)>1

theta = exp(-(phi*foi(alow+1)+epsilon(alow+1)).*(age-max(0.5,alow)));

r2 = sum(Cb(:,alow+1).*(theta*ones(1,k))’)’+(foi(alow+1)./(phi*foi(alow+1)

+epsilon(alow+1))).*(1-theta);

else

theta = exp(-(phi*foi(alow+1)+epsilon).*(age-max(0.5,alow)));

r2 = sum(Cb(:,alow+1).*(theta*ones(1,k))’)’+(foi(alow+1)./(phi*foi(alow+1)

+epsilon)).*(1-theta);

end

r1 = sum(C(:,alow+1).*(theta*ones(1,k))’)’+(B1(alow+1).*(theta-exp(-foi(alow+1)

.*(age-max(0.5,alow)))));

r1 = max(0,r1);
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r2 = max(0,r2);

r = (1-phi)*r1 + phi*r2;

end

C.1 MSIRWb-ext Model

function [parhat,R0,risk,trans,aic,bic,exitflag,output] = MSIRWboostext(country,H,init,

model)

[rij,age,resp,weight,L,N,mu,bi] = readd(country);

% age of maternal antibody waning (0<=A<1)

A = 0.5;

% mean duration of infectiousness

D = 6/365;

% k right-open age-intervals are considered: (A,1), [1,2),..., [k-1,k)

k = 80;

step = [1-A, ones(1,k-1)]’;

ageint = [A+[0;cumsum(step(1:end-1))] A+cumsum(step)];

rij = rij(1:k,1:k);

mu = mu(1:k);

bi = bi(1:k);

% ages <= A and >= k are removed from the serological data

resp = resp(age>A & age<k);

age = age(age>A & age<k);

% Function "qestim" to calculate the FOI and likelihood

% conditional on the parameter values

%*******************************************************

function dev = qestim(par)

q = exp(-par(1));

if strcmp(model,’constant’)

epsilon = exp(-par(2));

end

if strcmp(model,’discrete’)

% piecewise constant function

epsilon = [exp(-par(2))*ones(H,1) ; exp(-par(3))*ones(k-H,1)];

end

phi = exp(-par(end));

bij = 365*q.*rij;

foi = 0.1*ones(k,1);

tol = 1;

it = 0;
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while (tol>1D-15) && (it<2000)

S = (N/L)*exp(-mu(1)*A)*exp(-cumsum([0;(foi+mu).*step]));

I = foi./(foi+mu).*(S(1:end-1)-S(2:end));

foinext = D*bij*I;

tol = sum((foinext-foi).^2);

it = it+1;

foi = foinext;

end

if it==2000

error(’Maximum number of iterations exceeded’)

end

% input from MSIRW framework

s = exp(-cumsum([0;foi.*step]));

if length(epsilon)>1

f = @(i,j) exp(-sum((phi*foi(i+1:j-1)+epsilon(i+1:j-1)).*step(i+1:j-1)));

else

f = @(i,j) exp(-sum((phi*foi(i+1:j-1)+epsilon).*step(i+1:j-1)));

end

F = zeros(k);

for j = 1:k

for i = 1:j-1

F(i,j) = f(i,j);

end

end

E = [f(0,2) diag(F,2)’ f(k-1,k+1)];

B1 = foi./((1-phi)*foi-epsilon).*s(1:end-1);

B2 = B1.*(E’-(s(2:end)./s(1:end-1)));

C = (B2*ones(1,k)).*F;

% input from MSIRWboost framework

B = (foi./(phi*foi+epsilon)).*(1-E’);

Cb = (B*ones(1,k)).*F;

% fraction of seropositives

r = Rfrac(age,epsilon,phi,C,B1,Cb,foi,k);

ll = resp.*log(r)+(1-resp).*log(1-r);

dev = -2*sum(weight.*ll);

end

% Non-linear optimization of the function "qestim"

%*************************************************

[parhat,dev,exitflag,output] = fminsearch(@qestim,init,optimset(’FunValCheck’,

’on’,’Display’,’final’,’MaxFunEvals’,1500));

parhat = exp(-parhat);

% Next generation matrix and R0

%******************************

Na = (N/L)*exp(-mu(1)*A)*exp(-cumsum([0;mu.*step]));
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M = (Na(1:end-1)-Na(2:end))./mu;

G = D*diag(M)*bij;

R0 = max(real(eig(G)));

% Risk in pregnancy

%******************

Iy = sum(bi.*(s(1:end-1)-s(2:end)));

slb = sum(bi./foi.*(s(1:end-1)-s(2:end)));

sp = slb/sum(bi);

foip = Iy/slb;

Ip = 0.77*Iy;

freqp = sum(bi)/Ip;

fetaldeath = Ip*0.077*(20/40);

risk = [sp foip Ip freqp fetaldeath];

% Transitions

%************

U1 = (1-exp(-(phi*foi+epsilon+mu).*step))./(phi*foi+epsilon+mu);

U2 = (1-exp(-(foi+mu).*step))./(foi+mu);

U3 = (1-exp(-mu.*step))./mu;

T1 = (ageint(:,1)-ageint(:,2).*exp(-(phi*foi+epsilon+mu).*step))./(phi*foi+epsilon+mu)

+U1./(phi*foi+epsilon+mu);

T2 = T1-((ageint(:,1)-ageint(:,2).*exp(-(foi+mu).*step))./(foi+mu)+U2./(foi+mu));

T3 = ((ageint(:,1)-ageint(:,2).*exp(-mu.*step))./mu+U3./mu)-T1;

nSI = sum((L/N)*I);

ASI = sum((L/N)*foi./(foi+mu).*(S(1:end-1).*(ageint(:,1)+U2)-S(2:end)

.*(ageint(:,2))))/nSI;

r1 = sum(C)’+(B1.*(1-(U2./U1)));

r2 = sum(Cb)’+(foi./(phi*foi+epsilon).*((U3./U1)-1));

radapt = (1-phi)*r1+phi*r2;

r1A = T1.*sum(C)’+T2.*B1;

r2A = T1.*sum(Cb)’+T3.*foi./(phi*foi+epsilon);

radaptA = (1-phi)*r1A+phi*r2A;

nRW = sum((L/N)*epsilon.*Na(1:end-1).*U1.*(radapt));

ARW = sum((L/N)*epsilon.*Na(1:end-1).*(radaptA))/nRW;

B1 = (epsilon./(phi*foi+epsilon)).*(1-E’);

C1 = (B1*ones(1,k)).*F;

B2 = (epsilon./((1-phi)*foi-epsilon)).*s(1:end-1).*(E’-s(2:end)./s(1:end-1));

C2 = (B2*ones(1,k)).*F;

wadapt = sum(C1)’-sum(C2)’+epsilon./(phi*foi+epsilon).*((U3./U1)-1)-epsilon

./((1-phi)*foi-epsilon).*s(1:end-1).*(1-(U2./U1));

wadaptA = T1.*(sum(C1)’-sum(C2)’)+epsilon./(phi*foi+epsilon).*T3-epsilon

./((1-phi)*foi-epsilon).*s(1:end-1).*T2;

nWR = sum((L/N)*phi*foi.*Na(1:end-1).*U1.*(wadapt));
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AWR = sum((L/N)*phi*foi.*Na(1:end-1).*(wadaptA))/nWR;

trans = [nSI ASI nRW ARW nWR AWR];

% Information criteria

%*********************

aic = dev+2*length(parhat);

bic = dev+log(length(resp))*length(parhat);

end

C.2 MSIRS-ext Model

function [parhat,R0,risk,trans,aic,bic,exitflag,output] = MSIRSext(country,H,init,

model)

[rij,age,resp,weight,L,N,mu,bi] = readd(country);

% age of maternal antibody waning (0<=A<1)

A = 0.5;

% mean duration of infectiousness

D = 6/365;

% k right-open age-intervals are considered: (A,1), [1,2),..., [k-1,k)

k = 80;

step = [1-A, ones(1,k-1)]’;

ageint = [A+[0;cumsum(step(1:end-1))] A+cumsum(step)];

rij = rij(1:k,1:k);

mu = mu(1:k);

bi = bi(1:k);

% ages <= A and >= k are removed from the serological data

resp = resp(age>A & age<k);

age = age(age>A & age<k);

% Function "qestim" to calculate the FOI and likelihood

% conditional on the parameter values

%*******************************************************

function dev = qestim(par)

q1 = exp(-par(1));

q2 = exp(-par(2));

if strcmp(model,’constant’)

sig = exp(-par(end));

end

if strcmp(model,’discrete’)
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% piecewise constant function

sig = [exp(-par(end-1))*ones(H,1) ; exp(-par(end))*ones(k-H,1)];

end

b1ij = 365*q1*rij;

b2ij = 365*q2*rij;

V2 = exp(-sig.*step);

V3 = exp(-mu.*step);

CV3 = cumprod([1;V3]);

foi = 0.1*ones(k,1);

tol = 1;

it = 0;

while (tol>1D-15) && (it<2000)

% foi = term*(I1+I2)

V1 = exp(-foi.*step);

CV1 = cumprod([1;V1]);

V12 = V1.*V2;

CV13 = CV1.*CV3;

% constructing the number of primary infectious individuals I1

I1 = (N/L)*exp(-mu(1)*A)*foi./(foi+mu).*(CV13(1:end-1)-CV13(2:end));

% constructing the number of secondary infectious individuals

% I2 = term*(Q1+Q2-Q3)

% constructing Q1

f = @(l,j) prod(V12(l+1:j-1));

g = @(l,j) prod(V2(l+1:j-1));

F = zeros(k);

G = zeros(k);

for j = 1:k

for l = 1:j-1

F(l,j) = f(l,j);

G(l,j) = g(l,j);

end

end

B1 = (sig./(foi+sig)).*(1-V12);

T1 = (B1*ones(1,k)).*F;

B2 = CV1(1:end-1)*ones(1,k);

T2 = ((1-V2)*ones(1,k)).*G.*(B2’);

Q1 = sum(T1)’-sum(T2)’;

% constructing Q2 en Q3

Q2 = sig./(sig+foi).*((foi+sig+mu)./mu.*((1-V3)./(1-V1.*V2.*V3))-1);

Q3 = CV1(1:end-1).*((foi+sig+mu)./(foi+mu).*((1-V1.*V3)./(1-V1.*V2.*V3))-1);

I2 = (N/L)*exp(-mu(1)*A)*foi./(foi+sig+mu).*CV3(1:end-1).*(1-V1.*V2.*V3)

.*(Q1+Q2-Q3);

foinext = D*(b1ij*I1+b2ij*I2);

tol = sum((foinext-foi).^2);

it = it+1;

foi = foinext;
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end

if it==2000

error(’Maximum number of iterations exceeded’)

end

V1 = exp(-foi.*step);

V12 = V1.*V2;

f = @(l,j) prod(V12(l+1:j-1));

F = zeros(k);

for j = 1:k

for l = 1:j-1

F(l,j) = f(l,j);

end

end

E = [f(0,2) diag(F,2)’ f(k-1,k+1)];

B = (foi./(foi+sig)).*(1-E’);

C = (B*ones(1,k)).*F;

r = Rfrac(age,sig,1,zeros(k),zeros(k,1),C,foi,k);

ll = resp.*log(r)+(1-resp).*log(1-r);

dev = -2*sum(weight.*ll);

end

% Non-linear optimization of the function "qestim"

%*************************************************

[parhat,dev,exitflag,output] = fminsearch(@qestim,init,optimset(’FunValCheck’,

’on’,’Display’,’final’,’MaxFunEvals’,1500));

parhat = exp(-parhat);

% Next generation matrix and R0

%******************************

Na = (N/L)*exp(-mu(1)*A)*exp(-cumsum([0;mu.*step]));

M = (Na(1:end-1)-Na(2:end))./mu;

G = D*diag(M)*b1ij;

R0 = max(real(eig(G)));

% Risk in pregnancy

%******************

Tp = exp(-cumsum([0;(foi+sig).*step]));

% constructing Q1p

Q1p = (1-Tp(2:end)./Tp(1:end-1)).*sum(C)’;

% constructing Q3p

Q3p = foi./(foi+sig).*(((foi+sig).*step)-(1-Tp(2:end)./Tp(1:end-1)));

Iy = sum(foi.*bi.*step)-sum(foi.*bi./(foi+sig).*(Q1p+Q3p));

slb = sum(bi.*step)-sum(bi./(foi+sig).*(Q1p+Q3p));

sp = slb/sum(bi);

foip = Iy/slb;

Ip = 0.77*Iy;
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freqp = sum(bi)/Ip;

fetaldeath = Ip*0.077*(20/40);

risk = [sp foip Ip freqp fetaldeath];

% Transitions

%************

% constructing P

T = exp(-cumsum([0;(foi+sig+mu).*step]));

P = T(1:end-1)-T(2:end);

% constructing Q1

B1 = (sig./(foi+sig)).*(1-E’);

C1 = (B1*ones(1,k)).*F;

Q1 = (1-T(2:end)./T(1:end-1)).*sum(C1)’;

% constructing Q2

Q2 = sig./(foi+sig).*(((foi+sig+mu)./mu.*(1-exp(-mu.*step)))-(1-T(2:end)./T(1:end-1)));

% constructing Q

Q = exp(-cumsum([0;mu(1:end-1).*step(1:end-1)])).*(Q1+Q2);

nSI = sum(exp(-mu(1)*A)*foi./(foi+sig+mu).*(P+Q));

U1 = (1-exp(-mu.*step))./mu;

U2 = (ageint(:,1)-ageint(:,2).*exp(-mu.*step))./mu;

U3 = (1-T(2:end)./T(1:end-1))./(foi+sig+mu);

U4 = (ageint(:,1)-ageint(:,2).*T(2:end)./T(1:end-1))./(foi+sig+mu);

V1 = (L/N)*(foi./mu).*(Na(1:end-1).*(ageint(:,1)+U1)-Na(2:end).*(ageint(:,2)));

V2 = (L/N)*Na(1:end-1).*foi.*((U3./(foi+sig+mu)+U4).*sum(C)’+foi./(foi+sig)

.*((U1./mu)+U2-(U3./(foi+sig+mu))-U4));

ASI = sum(V1-V2)/nSI;

T1 = U4+U3./(foi+sig+mu);

T3 = U2+U1./mu-T1;

radapt = sum(C)’+(foi./(foi+sig).*((U1./U3)-1));

radaptA = T1.*sum(C)’+T3.*foi./(foi+sig);

nRS = sum((L/N)*sig.*Na(1:end-1).*U1.*(radapt));

ARS = sum((L/N)*sig.*Na(1:end-1).*(radaptA))/nRS;

trans = [nSI ASI nRS ARS];

% Information criteria

%*********************

aic = dev+2*length(parhat);

bic = dev+log(length(resp))*length(parhat);

end



Appendix D
Simulation Results

Tables D.1-D.10 present the results of the simulation study for PVB19 described in

Section 6.4. For each simulation setting considered (see table legend), the sample esti-

mate, estimated sample standard deviation (ŝ.d.), and mean squared error (MSE) are

given for the proportionality factor q, the basic reproduction number R0, the average

maternal proportion of susceptibles s̄p, and the average maternal force of infection

λ̄p, that are estimated by fitting each of the mathematical scenarios considered in

Chapter 6 to the simulated serological data sets. Further, the AIC and BIC model

selection percentages, πsel,AIC and πsel,BIC respectively, are provided as well, and the

largest value for each is displayed in bold. Note that for the MSIRS-ext model, we

use the proportionality factor q1 for infectious individuals with a primary infection,

as a surrogate for q. When using MSIR as the true underlying dynamics, identifia-

bility problems arise for MSIRWb-ext (both CW and AW) and MSIRS-ext since the

waning rate estimates are close to zero, which makes it difficult to estimate φ and q2,

respectively. Therefore, the results for these models are omitted from Table D.1, and

for this reason the πsel,AIC do not sum up to 100%.
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Table D.1: Simulation study results for PVB19 considering MSIR as the ‘true’ model and

using ML-estimates for BE as parameter values: q = 0.056 (R0 = 2.48, s̄p = 0.27, λ̄p = 0.034,

ns = 188).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.001 0.002 2.49 0.06 0.00 74%

MSIRW CW 0.057 0.001 0.003 2.52 0.06 0.00 2%

AW 0.057 0.001 0.002 2.52 0.06 0.00 2%

MSIRWb CW 0.057 0.001 0.003 2.52 0.06 0.01 5%

AW 0.057 0.001 0.003 2.54 0.06 0.01 0%

MSIRS CW 0.057 0.001 0.002 2.50 0.06 0.00 3%

AW 0.057 0.001 0.002 2.51 0.05 0.00 4%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 0.01 0.034 0.001 0.001 97%

MSIRW CW 0.26 0.01 0.02 0.035 0.001 0.002 1%

AW 0.26 0.01 0.02 0.035 0.001 0.001 0%

MSIRWb CW 0.26 0.01 0.02 0.035 0.001 0.002 1%

AW 0.26 0.01 0.02 0.035 0.001 0.002 0%

MSIRS CW 0.26 0.01 0.01 0.035 0.001 0.003 2%

AW 0.27 0.01 0.02 0.036 0.002 0.005 0%
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Table D.2: Simulation study results for PVB19 considering MSIRW CW (ϕ = 0) as the

‘true’ model and using ML-estimates for BE as parameter values: q = 0.073 and ε = 0.004

(R0 = 3.21, s̄p = 0.17, λ̄p = 0.046, ns = 185).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.001 0.286 2.46 0.06 0.56 0%

MSIRW CW 0.073 0.002 0.006 3.22 0.11 0.01 29%

AW 0.073 0.003 0.006 3.21 0.11 0.01 11%

MSIRWb CW 0.075 0.003 0.014 3.32 0.12 0.03 14%

AW 0.074 0.003 0.008 3.25 0.12 0.01 5%

MSIRWb-ext CW 0.075 0.003 0.014 3.29 0.14 0.03 9%

AW 0.074 0.003 0.011 3.26 0.14 0.02 9%

MSIRS CW 0.064 0.002 0.079 2.82 0.07 0.15 7%

AW 0.064 0.001 0.080 2.82 0.07 0.16 8%

MSIRS-ext CW 0.054 0.019 0.730 2.38 0.86 1.42 8%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 1.08 0.034 0.001 0.155 0%

MSIRW CW 0.17 0.01 0.01 0.046 0.002 0.003 49%

AW 0.17 0.01 0.01 0.046 0.002 0.003 2%

MSIRWb CW 0.16 0.01 0.02 0.048 0.002 0.006 24%

AW 0.16 0.01 0.01 0.047 0.002 0.004 0%

MSIRWb-ext CW 0.16 0.01 0.02 0.047 0.002 0.006 4%

AW 0.16 0.01 0.02 0.047 0.002 0.005 0%

MSIRS CW 0.24 0.01 0.57 0.058 0.004 0.159 21%

AW 0.24 0.02 0.54 0.057 0.004 0.135 0%

MSIRS-ext CW 0.24 0.01 0.52 0.067 0.019 0.800 1%
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Table D.3: Simulation study results for PVB19 considering MSIRW AW (ϕ = 0) as the

‘true’ model and using ML-estimates for BE as parameter values: q = 0.080, ε1 = 0.007,

and ε2 = 0.000 (R0 = 3.53, s̄p = 0.14, λ̄p = 0.051, ns = 181).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.001 0.579 2.47 0.06 1.13 0%

MSIRW CW 0.074 0.003 0.041 3.27 0.12 0.08 2%

AW 0.079 0.003 0.008 3.50 0.12 0.02 45%

MSIRWb CW 0.077 0.003 0.017 3.42 0.14 0.03 5%

AW 0.082 0.003 0.011 3.60 0.13 0.02 11%

MSIRWb-ext CW 0.077 0.003 0.019 3.41 0.15 0.04 3%

AW 0.081 0.003 0.011 3.59 0.13 0.02 12%

MSIRS CW 0.065 0.002 0.237 2.86 0.07 0.46 5%

AW 0.065 0.002 0.219 2.88 0.07 0.43 17%

MSIRS-ext CW 0.068 0.018 0.486 2.99 0.81 0.95 1%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 1.72 0.034 0.001 0.300 0%

MSIRW CW 0.16 0.01 0.06 0.047 0.002 0.019 6%

AW 0.14 0.01 0.01 0.051 0.002 0.004 33%

MSIRWb CW 0.15 0.01 0.03 0.049 0.002 0.008 33%

AW 0.13 0.01 0.01 0.052 0.002 0.005 4%

MSIRWb-ext CW 0.15 0.01 0.03 0.049 0.002 0.009 1%

AW 0.13 0.01 0.01 0.052 0.002 0.005 0%

MSIRS CW 0.24 0.01 1.07 0.061 0.006 0.135 12%

AW 0.27 0.02 1.74 0.072 0.006 0.459 11%

MSIRS-ext CW 0.25 0.01 1.15 0.061 0.021 0.528 0%
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Table D.4: Simulation study results for PVB19 considering MSIRWb CW (ϕ = 1) as the

‘true’ model and using ML-estimates for BE as parameter values: q = 0.076 and ε = 0.010

(R0 = 3.35, s̄p = 0.15, λ̄p = 0.048, ns = 196).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.001 0.410 2.46 0.06 0.80 0%

MSIRW CW 0.073 0.002 0.014 3.23 0.11 0.03 16%

AW 0.074 0.003 0.010 3.26 0.11 0.02 13%

MSIRWb CW 0.076 0.003 0.008 3.35 0.12 0.01 20%

AW 0.076 0.003 0.007 3.34 0.12 0.01 8%

MSIRWb-ext CW 0.076 0.003 0.009 3.35 0.13 0.02 20%

AW 0.076 0.003 0.008 3.36 0.13 0.02 7%

MSIRS CW 0.064 0.001 0.144 2.83 0.07 0.28 10%

AW 0.064 0.001 0.141 2.83 0.06 0.27 6%

MSIRS-ext CW 0.066 0.014 0.283 2.93 0.61 0.55 0%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 1.39 0.034 0.001 0.218 0%

MSIRW CW 0.17 0.01 0.03 0.046 0.002 0.007 22%

AW 0.16 0.01 0.02 0.047 0.002 0.005 2%

MSIRWb CW 0.15 0.01 0.01 0.048 0.002 0.004 50%

AW 0.16 0.01 0.01 0.048 0.002 0.003 1%

MSIRWb-ext CW 0.15 0.01 0.01 0.048 0.002 0.004 6%

AW 0.15 0.01 0.01 0.049 0.002 0.004 1%

MSIRS CW 0.24 0.01 0.80 0.059 0.004 0.126 17%

AW 0.25 0.02 0.90 0.060 0.005 0.165 2%

MSIRS-ext CW 0.24 0.01 0.85 0.058 0.014 0.278 0%
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Table D.5: Simulation study results for PVB19 considering MSIRWb AW (ϕ = 1) as the

‘true’ model and using ML-estimates for BE as parameter values: q = 0.084, ε1 = 0.019,

and ε2 = 0.005 (R0 = 3.70, s̄p = 0.13, λ̄p = 0.054, ns = 200).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.001 0.765 2.48 0.06 1.49 0%

MSIRW CW 0.070 0.002 0.194 3.09 0.11 0.38 0%

AW 0.076 0.003 0.065 3.36 0.12 0.13 4%

MSIRWb CW 0.074 0.003 0.113 3.25 0.13 0.22 0%

AW 0.084 0.003 0.012 3.69 0.15 0.02 38%

MSIRWb-ext CW 0.074 0.003 0.100 3.28 0.14 0.19 1%

AW 0.084 0.003 0.012 3.70 0.15 0.02 30%

MSIRS CW 0.063 0.001 0.430 2.79 0.07 0.84 0%

AW 0.065 0.001 0.369 2.85 0.07 0.72 28%

MSIRS-ext CW 0.074 0.003 0.113 3.25 0.13 0.22 0%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 2.01 0.034 0.001 0.388 0%

MSIRW CW 0.18 0.01 0.30 0.044 0.002 0.091 0%

AW 0.15 0.01 0.08 0.049 0.002 0.029 6%

MSIRWb CW 0.16 0.01 0.16 0.047 0.002 0.052 9%

AW 0.13 0.01 0.01 0.053 0.002 0.005 47%

MSIRWb-ext CW 0.16 0.01 0.14 0.047 0.002 0.046 0%

AW 0.13 0.01 0.01 0.054 0.002 0.005 5%

MSIRS CW 0.24 0.01 1.38 0.055 0.005 0.022 0%

AW 0.29 0.02 2.86 0.076 0.007 0.558 34%

MSIRS-ext CW 0.25 0.01 1.53 0.048 0.002 0.037 0%
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Table D.6: Simulation study results for PVB19 considering MSIRWb-ext CW as the ‘true’

model and using ML-estimates for BE as parameter values: q = 0.076, ε = 0.009, and

ϕ = 0.91 (R0 = 3.35, s̄p = 0.15, λ̄p = 0.048, ns = 194).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.001 0.400 2.47 0.06 0.78 0%

MSIRW CW 0.073 0.003 0.017 3.21 0.12 0.03 11%

AW 0.074 0.003 0.011 3.27 0.12 0.02 11%

MSIRWb CW 0.076 0.003 0.010 3.34 0.14 0.02 28%

AW 0.076 0.003 0.009 3.36 0.13 0.02 11%

MSIRWb-ext CW 0.076 0.003 0.011 3.35 0.14 0.02 18%

AW 0.077 0.003 0.010 3.38 0.14 0.02 6%

MSIRS CW 0.064 0.002 0.143 2.83 0.07 0.28 8%

AW 0.064 0.002 0.138 2.84 0.07 0.27 6%

MSIRS-ext CW 0.069 0.011 0.169 3.06 0.50 0.33 1%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 1.34 0.034 0.001 0.212 0%

MSIRW CW 0.17 0.01 0.03 0.046 0.002 0.008 16%

AW 0.16 0.01 0.02 0.047 0.002 0.005 2%

MSIRWb CW 0.16 0.01 0.02 0.048 0.002 0.005 58%

AW 0.15 0.01 0.01 0.048 0.002 0.004 5%

MSIRWb-ext CW 0.15 0.01 0.02 0.048 0.002 0.005 4%

AW 0.15 0.01 0.01 0.049 0.002 0.005 0%

MSIRS CW 0.24 0.01 0.78 0.058 0.005 0.114 12%

AW 0.25 0.02 0.94 0.061 0.005 0.182 2%

MSIRS-ext CW 0.25 0.01 0.85 0.055 0.011 0.162 0%
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Table D.7: Simulation study results for PVB19 considering MSIRWb-ext AW as the ‘true’

model and using ML-estimates for BE as parameter values: q = 0.085, ε1 = 0.013, ε2 = 0.000,

and ϕ = 0.35 (R0 = 3.75, s̄p = 0.12, λ̄p = 0.054, ns = 198).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.001 0.818 2.49 0.06 1.59 0%

MSIRW CW 0.072 0.003 0.172 3.18 0.13 0.34 0%

AW 0.079 0.003 0.042 3.49 0.14 0.08 6%

MSIRWb CW 0.076 0.003 0.093 3.35 0.15 0.18 0%

AW 0.086 0.003 0.012 3.79 0.14 0.02 21%

MSIRWb-ext CW 0.076 0.004 0.088 3.36 0.16 0.17 1%

AW 0.086 0.003 0.013 3.79 0.15 0.03 44%

MSIRS CW 0.064 0.002 0.434 2.83 0.08 0.84 0%

AW 0.065 0.002 0.384 2.88 0.08 0.75 28%

MSIRS-ext CW 0.076 0.006 0.128 3.33 0.28 0.25 0%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 2.07 0.034 0.001 0.412 0%

MSIRW CW 0.17 0.01 0.24 0.046 0.002 0.079 0%

AW 0.14 0.01 0.05 0.051 0.002 0.019 17%

MSIRWb CW 0.15 0.01 0.12 0.048 0.002 0.042 3%

AW 0.12 0.01 0.01 0.055 0.002 0.005 34%

MSIRWb-ext CW 0.15 0.01 0.11 0.049 0.002 0.040 1%

AW 0.12 0.01 0.01 0.055 0.002 0.006 4%

MSIRS CW 0.24 0.01 1.41 0.058 0.006 0.049 0%

AW 0.30 0.02 3.03 0.081 0.007 0.743 42%

MSIRS-ext CW 0.25 0.01 1.59 0.050 0.007 0.068 0%
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Table D.8: Simulation study results for PVB19 considering MSIRS CW as the ‘true’ model

and using ML-estimates for BE as parameter values: q = 0.064 and σ = 0.013 (R0 = 2.84,

s̄p = 0.24, λ̄p = 0.059, ns = 188).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.002 0.072 2.47 0.08 0.14 0%

MSIRW CW 0.074 0.002 0.095 3.26 0.10 0.19 21%

AW 0.074 0.002 0.095 3.26 0.10 0.19 10%

MSIRWb CW 0.077 0.003 0.153 3.38 0.11 0.30 21%

AW 0.075 0.002 0.123 3.32 0.11 0.24 5%

MSIRWb-ext CW 0.076 0.003 0.144 3.36 0.13 0.28 12%

AW 0.076 0.003 0.132 3.33 0.12 0.26 6%

MSIRS CW 0.065 0.002 0.003 2.85 0.07 0.00 13%

AW 0.065 0.001 0.002 2.85 0.07 0.00 7%

MSIRS-ext CW 0.06 0.019 0.385 2.66 0.85 0.75 5%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 0.10 0.034 0.001 0.651 0%

MSIRW CW 0.16 0.01 0.63 0.047 0.002 0.156 36%

AW 0.16 0.01 0.63 0.047 0.002 0.157 2%

MSIRWb CW 0.15 0.01 0.80 0.049 0.002 0.116 34%

AW 0.16 0.01 0.71 0.048 0.002 0.136 1%

MSIRWb-ext CW 0.15 0.01 0.77 0.048 0.002 0.123 2%

AW 0.16 0.01 0.74 0.048 0.002 0.131 0%

MSIRS CW 0.24 0.01 0.01 0.06 0.004 0.017 23%

AW 0.24 0.02 0.03 0.059 0.005 0.021 2%

MSIRS-ext CW 0.24 0.02 0.02 0.064 0.018 0.351 1%
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Table D.9: Simulation study results for PVB19 considering MSIRS AW as the ‘true’ model

and using ML-estimates for BE as parameter values: q = 0.065, σ1 = 0.030, and σ2 = 0.010

(R0 = 2.86, s̄p = 0.29, λ̄p = 0.077, ns = 199).

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.002 0.075 2.49 0.07 0.15 0%

MSIRW CW 0.071 0.002 0.039 3.12 0.10 0.08 0%

AW 0.077 0.002 0.148 3.39 0.11 0.29 4%

MSIRWb CW 0.074 0.003 0.094 3.27 0.13 0.18 2%

AW 0.084 0.003 0.367 3.70 0.14 0.71 23%

MSIRWb-ext CW 0.075 0.003 0.105 3.30 0.13 0.20 0%

AW 0.084 0.003 0.372 3.70 0.14 0.73 24%

MSIRS CW 0.063 0.002 0.004 2.80 0.07 0.01 0%

AW 0.065 0.002 0.003 2.87 0.07 0.01 48%

MSIRS-ext CW 0.074 0.005 0.100 3.25 0.21 0.19 0%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 0.10 0.034 0.001 1.840 0%

MSIRW CW 0.18 0.01 1.39 0.045 0.002 1.048 0%

AW 0.15 0.01 2.07 0.049 0.002 0.790 5%

MSIRWb CW 0.16 0.01 1.78 0.047 0.002 0.897 8%

AW 0.13 0.01 2.81 0.054 0.002 0.552 29%

MSIRWb-ext CW 0.16 0.01 1.84 0.047 0.002 0.876 0%

AW 0.13 0.01 2.83 0.054 0.002 0.548 2%

MSIRS CW 0.24 0.01 0.29 0.055 0.005 0.493 1%

AW 0.29 0.02 0.04 0.077 0.007 0.054 56%

MSIRS-ext CW 0.25 0.01 0.23 0.049 0.005 0.819 0%
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Table D.10: Simulation study results for PVB19 considering MSIRS-ext CW as the ‘true’

model and using ML-estimates for BE as parameter values: q1 = 0.076, q2 = 0.000, and

σ = 0.010 (R0 = 3.35, s̄p = 0.25, λ̄p = 0.050, ns = 196). Note that the proportionality

factor q1 for infectious individuals with a primary infection, is used as a surrogate for q.

model waning ¯̂q ŝ.d.
(
¯̂q
)

MSE
(
¯̂q
) ¯̂

R0 ŝ.d.
(
¯̂
R0

)
MSE

(
¯̂
R0

)
πsel,AIC

·103
MSIR 0.056 0.002 0.397 2.48 0.08 0.77 0%

MSIRW CW 0.073 0.002 0.012 3.24 0.10 0.02 13%

AW 0.074 0.002 0.009 3.26 0.10 0.02 10%

MSIRWb CW 0.076 0.003 0.006 3.36 0.11 0.01 30%

AW 0.076 0.003 0.007 3.35 0.11 0.01 6%

MSIRWb-ext CW 0.076 0.003 0.008 3.37 0.13 0.02 21%

AW 0.076 0.003 0.009 3.38 0.13 0.02 7%

MSIRS CW 0.064 0.002 0.136 2.84 0.07 0.26 6%

AW 0.065 0.001 0.133 2.85 0.07 0.26 6%

MSIRS-ext CW 0.068 0.014 0.264 3.00 0.62 0.51 1%

model waning ˆ̄sp ŝ.d.
(
ˆ̄sp

)
MSE

(
ˆ̄sp

)
ˆ̄λp ŝ.d.

(
ˆ̄λp

)
MSE

(
ˆ̄λp

)
πsel,BIC

·102 ·103
MSIR 0.27 0.01 0.06 0.034 0.001 0.257 0%

MSIRW CW 0.16 0.01 0.72 0.047 0.002 0.013 24%

AW 0.16 0.01 0.76 0.047 0.002 0.011 1%

MSIRWb CW 0.15 0.01 0.93 0.049 0.002 0.005 57%

AW 0.15 0.01 0.90 0.048 0.002 0.006 1%

MSIRWb-ext CW 0.15 0.01 0.93 0.049 0.002 0.006 3%

AW 0.15 0.01 0.95 0.049 0.002 0.005 0%

MSIRS CW 0.24 0.01 0.02 0.059 0.004 0.095 13%

AW 0.24 0.02 0.04 0.060 0.005 0.129 2%

MSIRS-ext CW 0.24 0.01 0.02 0.057 0.014 0.236 0%





Samenvatting

Infectieziekten zijn ziektes in mensen, dieren of planten die veroorzaakt worden

door ziektekiemen zoals bijvoorbeeld virussen, bacteriën of parasieten. Er bestaan

verschillende wegen waarlangs deze ziektekiemen overgedragen kunnen worden van

de ene ‘gastheer’ op de andere, bijvoorbeeld: via de lucht (airborne), druppelcon-

tact (bijv. door te hoesten), direct of indirect fysiek contact, fecaal-orale overdracht

(bijv. via besmet drinkwater of voedsel), seksueel contact of vectoroverdracht (bijv. via

muggen). In deze thesis ligt de nadruk op modellen voor virale infectieziekten in

mensen, die hoofdzakelijk via sociale contacten van een niet-seksuele aard overgedra-

gen worden, bijvoorbeeld via de lucht, druppelcontact of direct fysiek contact.

In het algemeen, wanneer een persoon gëınfecteerd wordt met een virale infec-

tieziekte, gaat het adaptief immuunsysteem complexe mechanismen activeren om

de gastheer te beschermen. Het adaptief immuunsysteem bestaat uit twee soorten

verdedigingsmechanismen: de cel-gemedieerde en de humorale afweer. Het is deze

laatste soort die verantwoordelijk is voor de productie van virusspecifieke antilichamen

die zorgen voor langetermijnbescherming. Wanneer er geen vaccinatie bestaat, wijst

de aanwezigheid van virusspecifieke IgG antilichamen in het bloed op een historische

infectie met het virus of op maternele antilichamen bij een pasgeborene. De voor-

naamste gegevensbron die gebruikt wordt in deze thesis, zijn cross-sectionele data-

banken bestaande uit bloedstalen. De bloedstalen worden getest met een virusspe-

cifieke ELISA-kit (Enzyme-Linked Immuno Sorbent Assay). De resultaten hiervan

worden serologische gegevens genoemd en geven informatie met betrekking tot de

immuniteitsstatus van de individuen. Wij focussen hier op de gedichotomiseerde

uitkomst van de ELISA-test die weergeeft of een persoon seropositief of seronegatief

is voor het virus (current status data).
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Deze thesis werd gemaakt in een interdisciplinair Belgisch onderzoeksconsortium

om simulatiemodellen te ontwikkelen voor infectieziektenoverdracht en controlepro-

cessen, gesteund door het Strategisch BasisOnderzoek (SBO) van het Agentschap voor

Innovatie door Wetenschap en Technologie (IWT) in Vlaanderen (project ‘SIMID’,

060081). Het doel van de thesis was om statistische modellen te ontwikkelen gebaseerd

op wiskundige modelvergelijkingen, om specifieke parameters te schatten over de

persoon-tot-persoon overdracht van infectieziekten, die ofwel endemisch zijn of waar-

voor actief gevaccineerd wordt, gebruik makend van gedichotomiseerde serologische

gegevens. Een ‘endemische’ infectieziekte is een ziekte die over een langere tijd in

een constante frequentie in een bevolking voorkomt. De incidentie van een endemi-

sche infectieziekte kan cyclische epidemieën ondergaan over de tijd, maar fluctueert

steeds rond een stationair gemiddelde. Het schatten van zulke parameters is be-

langrijk, omdat het helpt om leeftijdsspecifieke patronen van ziekteverspreiding op

populatieniveau af te leiden en te begrijpen. Verder worden deze parameters ook ge-

bruikt in modellen om universele vaccinatieprogramma’s te plannen en op te volgen,

en om controlemaatregelen (schoolsluiting, vaccinatie, antivirale middelen, enzovoort)

te evalueren wanneer een epidemie uitbreekt.

Een van die belangrijke parameters is de ‘infectiedruk’, de snelheid waarmee een

vatbaar persoon gëınfecteerd wordt met een infectieziekte. Een ander basisconcept

is de ‘wie verkrijgt infectie van wie’- matrix (‘Who Acquires Infection From Whom’

of WAIFW matrix). Deze matrix geeft de leeftijdsspecifieke overdrachtsintensiteiten

weer over twee dimensies, namelijk de leeftijd van diegene die vatbaar is voor de infec-

tieziekte en de leeftijd van diegene die gëınfecteerd is. Hoe groter de overdrachtsinten-

siteit tussen twee leeftijdsgroepen, i.e. de frequentie van doeltreffende contacten tussen

twee individuen uit deze leeftijdsgroepen, des te groter de kans dat het virus overge-

dragen wordt, gegeven dat één van de twee betrokkenen besmettelijk is en de andere

vatbaar. In het verleden was het zeer moeilijk om de WAIFW matrix te kwantificeren

omdat er geen gegevens waren over contactpatronen. Toen werd de WAIFW matrix

voornamelijk geschat met behulp van de methode die gepopulariseerd werd door het

boek van Anderson and May (1991). Deze methode veronderstelt dat de WAIFW ma-

trix een bepaalde structuur heeft (mixing pattern) die geparametriseerd wordt onder

een aantal beperkingen, zodat alle parameters identificeerbaar zijn. Gebruik makend

van de wet van massa-actie voor de leeftijdsspecifieke infectiedruk, worden de para-

meters vervolgens geschat op basis van serologische gegevens.

Hoewel deze Anderson and May (1991) methode een realistischer alternatief

aanbiedt voor de sterke veronderstelling van homogeneous mixing, die overeenkomt

met een constante WAIFW matrix, zijn er ook nadelen aan verbonden. De keuze
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van de structuur en de verdeling in leeftijdsgroepen is eerder subjectief en berust

op een ‘prior’ idee dat de onderzoeker heeft over sociale contactpatronen of vat-

baarheid/besmettelijkheid. Verder houdt de methode sterke parametrische veron-

derstellingen in die in de praktijk kunnen leiden tot onrealistische discontinüıteiten.

Tenslotte kunnen verschillende matrixstructuren in gelijke mate ondersteund worden

door de data, terwijl ze verschillende schattingen opleveren voor gerelateerde para-

meters zoals het basisreproductiegetal (Greenhalgh and Dietz, 1994). Het basisre-

productiegetal R0 stelt het gemiddeld aantal secundaire gevallen voor, voortgebracht

door één typisch gëınfecteerd individu in een totaal vatbare populatie.

Wallinga et al. (2006) argumenteerden dat enquêtes over sociale contacten een

nuttige bron van informatie zouden zijn om de persoon-tot-persoon overdracht van in-

fectieziekten te modelleren en ze stelden een alternatieve schattingsmethode voor. Ze

initieerden de ‘sociale-contact-hypothese’: leeftijdsspecifieke overdrachtsintensiteiten

zijn recht evenredig aan frequenties van verbale contacten die geschat kunnen worden

vanuit contactbevragingen. Door de geschatte contactfrequenties te integreren in een

wiskundig transmissiemodel en dit te contrasteren tot een serologische dataset, kan

de WAIFW matrix voor een bepaalde infectieziekte geschat worden. In navolging van

dit onderzoek werd in het POLYMOD project een grootschalige enquête uitgevoerd

over contactgedrag in acht Europese landen (Mossong et al., 2008b). Deelnemers aan

de enquête dienden gedurende één dag al hun contacten te rapporteren in een dag-

boekje. Een contact tussen twee personen werd gedefinieerd als een uitwisseling van

tenminste drie woorden in elkaars nabijheid en/of een fysieke aanraking (bijv. een

hand of kus geven). Het dagboekje bevat informatie over de deelnemer zelf maar ook

details over zijn/haar contacten zoals de leeftijd en het geslacht van de betrokkene en

de plaats, duur, frequentie en al dan niet fysieke aard van het contact.

In Hoofdstuk 4 hebben we een grondige analyse gemaakt van de Belgische con-

tactenquête. In tegenstelling tot de andere Europese landen dienden de deelnemers

hun contacten gedurende twee dagen te rapporteren, namelijk tijdens een weekdag

en een dag in het weekend. Twee data mining technieken, namelijk associatieregels

en classificatiebomen, toonden aan dat er robuuste associaties bestaan tussen ver-

schillende indicatoren van ‘intieme’ contacten i.e. met een hoger risico op infectieziek-

teoverdracht. Deze indicatoren zijn bijvoorbeeld contacten die thuis plaatsvinden,

langer dan vier uur duren, dagelijks gebeuren of gepaard gaan met fysieke aanrakin-

gen. Het effect van verschillende factoren op het totaal aantal gerapporteerde con-

tacten werd onderzocht, gebruik makend van weighted generalized estimating equa-

tions zodat de correlatie tussen de twee dagen in rekening gebracht kon worden. We

stelden vast dat het aantal gerapporteerde contacten stijgt wanneer de huishoud-
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grootte toeneemt. Hetzelfde effect werd geobserveerd bij kinderen wanneer het aantal

leerlingen in de klas toeneemt en bij volwassenen wanneer ze tewerkgesteld zijn of

voortgezet onderwijs volgen. Anderzijds is er tijdens de schoolvakantie een signifi-

cante daling van de dagelijkse contactfrequentie voor kinderen en adolescenten.

In Hoofdstuk 5 hebben we de methodologie van Wallinga et al. (2006) om de

WAIFW matrix te schatten gebruik makend van sociale contactgegevens, verder ver-

fijnd in een toepassing voor waterpokken in België. We hebben een flexibel alternatief

voorgesteld voor de laagdimensionale, parametrische schattingsmethode voor contact-

frequenties: een semiparametrisch, bivariaat smoothing model dat toelaat om een

continu 3D contactoppervlak te schatten. Dit levert een betere fit op voor de sociale

contactgegevens. Via deze schattingsmethode vinden we voor alle Europese landen in

het POLYMOD project een gemeenschappelijk patroon terug: mensen maken voor-

namelijk contact met leeftijdsgenoten en met hun (klein)kinderen of (groot)ouders.

Er is echter nog ruimte voor verbetering, aangezien het model geen rekening houdt

met nul-inflatie, digit preference of clustering van het aantal contacten, hoewel de

laatste twee aspecten in rekening worden gebracht in de niet-parametrische bootstrap

procedure voor de overdrachtsintensiteiten. Naast de variabiliteit die voortkomt uit

de serologische data, erkent deze procedure immers ook die variabiliteit die voortkomt

uit de contactgegevens. Dit heeft een duidelijk effect op de precisie van de parame-

terschattingen.

De sociale-contact-hypothese van Wallinga et al. (2006) dat de WAIFW matrix

recht evenredig is aan het contactoppervlak, kan in vraag gesteld worden. De con-

tacten die gerapporteerd worden in de enquête gelden immers als benadering voor die

gebeurtenissen waarbij een infectie via de lucht overgedragen zou kunnen worden en

zijn zeker niet alomvattend. Verder kan het zijn dat er leeftijdsspecifieke karakteristie-

ken bestaan met betrekking tot vatbaarheid en besmettelijkheid die niet vervat zitten

in de contactfrequenties, zoals het aantal dagen dat men besmettelijk is, afscheiding

van slijmen en persoonlijke hygiëne. Een verbeterde fit voor de seroprevalentie van het

waterpokkenvirus wordt verkregen via een nieuwe methode waarbij de WAIFW ma-

trix ontrafeld wordt in twee leeftijdsspecifieke variabelen: het contactoppervlak en

een leeftijdsspecifieke evenredigheidsfactor q(a, a′).

Ondanks het feit dat de methode gebaseerd op sociale contactgegevens de be-

langrijkste nadelen van de traditionele Anderson and May (1991) methode aanpakt,

blijven er twee aspecten van onzekerheid bestaan: de keuze van het soort contact dat

de eigenlijke overdracht van infectieziekten drijft, en de keuze van een (parametrisch)

model dat het contactoppervlak relateert tot de overdrachtsintensiteiten. Van vijf

pre-gedefinieerde soorten van contacten bleken contacten die langer duren dan 15
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minuten en gepaard gaan met een fysieke aanraking, het best in staat te zijn om het

leeftijdsspecifiek serologisch profiel voor het waterpokkenvirus te beschrijven. Con-

ditioneel op dit soort contact, resulteerden verschillende modellen voor q(a, a′) in

een gelijkaardige fit, doch met verschillende schattingen voor het basisreproductiege-

tal R0. Concepten van multi-model inferentie werden toegepast om dit probleem van

modelselectie-onzekerheid te overbruggen, waarbij een model-gemiddelde schatting

werd berekend voor R0.

Verder werd in deze thesis de ‘sociale contact’-methodologie uit Hoofdstuk 5 uit-

gebreid om fundamentele immunologische processen voor parvovirus B19 (PVB19) te

kunnen bestuderen. Algemeen wordt aangenomen dat de IgG antilichamen, die door

de mens aangemaakt worden na een infectie met PVB19, levenslange bescherming

bieden (MSIR model). In dat geval zou het geobserveerd percentage seropositieven

monotoon moeten toenemen over de leeftijd. Verschillende databronnen vertonen

echter een seroprevalentie waarbij een steile, monotone stijging over de leeftijd gevolgd

wordt door een dal of plateau voor volwassenen tussen 20 en 40 jaar. In Hoofd-

stuk 6 hebben we aangetoond dat andere compartimentele modellen meer plausi-

bel zijn voor de geobserveerde leeftijdsspecifieke serologische profielen in vier van de

vijf bestudeerde Europese landen. Enerzijds betreft dit het MSIRW model waarbij

antilichamen langzaam afnemen over de tijd mogelijks gevolgd door een natuurlijke

boosting van het immuunsysteem door contact met iemand die besmet is met PVB19.

Anderzijds betreft dit het MSIRS model waarbij men na een periode van bescherming

terug vatbaar wordt voor een PVB19 infectie. Deze modellen zijn meer plausibel in

vergelijking met de hypothese van levenslange immuniteit.

Op basis van één seroprevalentiestudie is het echter moeilijk te zeggen of een

scenario van boosting van lage immuniteit (MSIRW) al dan niet een scenario van

rëınfecties (MSIRS) het meest waarschijnlijk is voor PVB19. Nochtans is dit belang-

rijk gezien de impact op de geschatte leeftijdsspecifieke infectiedruk en het daaraan

gerelateerd risico van een infectie tijdens de zwangerschap. De geschatte frequentie

van een PVB19 infectie tijdens de zwangerschap en het jaarlijks aantal vruchtdoden

dat daaraan te wijten is, verschillen niet sterk voor een MSIRW en een MSIR model.

Zo variëren de schattingen voor het jaarlijks aantal vruchtdoden tussen 23 en 31 voor

België in 2003. Maar gebaseerd op een MSIRS scenario, waarbij iemand gedurende

zijn/haar leven meerdere infecties kan ondergaan, wordt het risico van een PVB19

infectie tijdens de zwangerschap wel veel hoger geschat, tot 77 jaarlijkse vruchtdoden

in België (2003). Dit is mogelijk omdat de meeste secundaire infecties waarschijnlijk

zonder specifieke of met atypische symptomen verlopen en dus niet opgemerkt worden

door traditionele rapporteringssystemen.
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Tenslotte hebben we in Hoofdstuk 7 de bestaande methodes van Gay (2000) en Alt-

mann and Altmann (2000) om vaccinatiecouvertures te schatten vanuit trivariate sero-

prevalentiegegevens - voor infectieziekten waarvoor een trivalente vaccinatiestrategie

bestaat - besproken en gëıllustreerd. Hiertoe werden twee serologische datasets voor

België en Ierland met testresultaten voor mazelen, bof en rubella (MBR), gebruikt.

Het basisidee komt van Gay (2000): “hoe groter de trivalente vaccinatiecouverture in

een bepaald leeftijdscohort, des te groter de mate waarmee de seropositiviteit voor

de drie infectieziekten overeenkomt binnen een individu.” Hij stelde modelvergelij-

kingen op in termen van vaccinatiecouverture, kansen van seroconversie en bloot-

stellingskansen. Hoewel de algebräısche methode van Altmann and Altmann (2000)

elegante, exacte oplossingen voor deze vergelijkingen oplevert, is het vanuit statistisch

oogpunt minder interessant omdat het de variabiliteit afkomstig uit de data negeert

en kan leiden tot waarden die biologisch gezien onrealistisch zijn.

In deze thesis hebben we Gay’s schattingsmethode veralgemeend door de afhan-

kelijkheid tussen het oplopen van mazelen, bof en rubella expliciet in rekening te

brengen. Deze afhankelijkheid tussen de blootstellingskansen vloeit voort uit het feit

dat sociale contacten aan de basis liggen van de effectieve overdracht van deze in-

fectieziekten, wat we als hypothese voorop stelden. Om de associaties te modelleren

werd het Bahadur model voor trivariate binaire data gebruikt, hetgeen een daling

in de geschatte MBR vaccinatie couverture en een stijging in de overeenkomstige

geschatte variabiliteit teweegbracht. Omwille van de beperkte parameterruimte van

het Bahadur model, verkennen we momenteel ook alternatieven zoals het trivariate

Dale model. Verder werd Gay’s verzadigd model voor de blootstellingskansen in func-

tie van de leeftijd vervangen door een eenvoudiger doch flexibel model met beperkte

kubische splines, wat een verbetering van het model opleverde.

Er zijn een aantal belangrijke, gerelateerde aspecten die we niet bestudeerd hebben

in deze thesis, zoals bijvoorbeeld: testmisclassificatie voor serologische gegevens, de

invloed van cyclische epidemieën op seroprevalentieschaal, het gebruik van andere

soorten databronnen voor infectieziekten zoals incidentiegegevens, de veronderstelling

van een constant contactpatroon over de tijd, een realistisch parametrisch model voor

het contactoppervlak en een vergelijking van netwerkmodellen met modellen steunend

op de wet van massa-actie. Dit zouden interessante onderwerpen kunnen zijn voor

toekomstig onderzoek.
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