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Summary

When data are incomplete, models are often cataloged according to one of three
modeling frameworks to which they belong: selection models (SeM), pattern-mixture

models (PMM), and shared-parameter models (SPM). At the same time, the missing
data mechanism is conventionally classified as missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). Whereas MCAR is
naturally simple, in the sense that measurement and missingness processes are fully

independent, and hence easy to describe in every modeling framework, this is less the
case for MAR. The conventional definition (Rubin 1976) is cast in the SeM framework.

Molenberghs et al (1998) provided a characterization for PMM. In this paper, MAR
is characterized, for the first time, for the SPM framework too, based upon a general,

appealing definition of a broad class of SPM. This result is important from a conceptual
point of view. A specific sub-family, satisfying the MAR condition, is studied in some
detail. Particular implications for non-monotone missingness as well as for time-ordered,

longitudinal data subject to dropout are studied. In particular, it is indicated how SPM
can be constrained such that dropout at a given point in time can depend on current and

past, but not on future measurements, in analogy to the result by Kenward, Molenberghs,
and Thijs [16] for the PMM family. While a natural requirement, it is less easily imposed

in the PMM and SPM frameworks than in the SeM case. Some of the models proposed
are illustrated using a clinical trial in toenail dermatophyte onychomycosis.

Keywords and phrases: Available-case missing value restrictions; Ignorability; Missing at random

counterpart; Missing completely at random; Missing non-future dependent restrictions; Non-future
dependence; Pattern-mixture model; Selection model.
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1 Introduction

Incomplete sets of data are common throughout all branches of empirical research. Incomplete data

have always posed problems of imbalance in the data matrix, but more importantly incompleteness of-

ten destroys a trial’s randomization justification or a survey’s representativeness. The extent to which

this happens depends on the nature of the missing data mechanism. Rubin [32] provided a formal

framework for the field of incomplete data by introducing the important taxonomy of missing data

mechanisms, consisting of missing completely at random (MCAR), missing at random (MAR), and

missing not at random (MNAR). An MCAR mechanism potentially depends on observed covariates,

but neither on observed nor unobserved outcomes. An MAR mechanism depends on the observed

outcomes and perhaps also on the covariates, but not further on unobserved measurements. Finally,

when an MNAR mechanism is operating, missingness does depend on unobserved measurements,

maybe in addition to dependencies on covariates and/or on observed outcomes.

During the same era, the selection model (SeM), pattern-mixture model (PMM), and shared-

parameter model (SPM) frameworks have been established. In a selection model, the joint dis-

tribution of the ith subject’s outcomes, denoted Y i, and vector of missingness indicators, written

Ri, is factored as the marginal outcome distribution and the conditional distribution of Ri given

Y i. A pattern-mixture approach starts from the reverse factorization. In a shared-parameter model,

a set of latent variables, latent classes, and/or random effects is assumed to drive both the Y i

and Ri processes. An important version of such a model further asserts that, conditional on the

latent variables, Y i and Ri exhibit no further dependence. Rubin [32] contributed the concept of

ignorability , stating that under precise conditions, the missing data mechanism can be ignored when

interest lies in inferences about the measurement process. Combined with regularity conditions, ig-

norability applies to MCAR and MAR combined, when likelihood or Bayesian inference routes are

chosen, but the stricter MCAR condition is required for frequentist inferences to be generally valid.

These conditions are sufficient, not necessary. All of these concepts will be formalized in Section 2

and amplified with the need arising in subsequent sections.

The concept of MAR has typically been framed within the SeM framework, while [25] provided a
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formulation in the PMM setting as well. For the particular case of longitudinal data with dropout,

these authors derived a set of so-called identifying restrictions, to identify the model for the missing

measurements given the observed ones within a missing-data pattern, consistent with MAR. [23]

showed that for every MNAR model, there is an MAR counterpart that produces exactly the same

fit to the observed data. Hence the original model and its MAR counterpart cannot be distinguished

from one another. This can be viewed as a formalization of the ideas put forward in Jansen et al

[15]. These authors focused on the SeM and PMM frameworks.

In this paper, we will characterize MAR in the SPM framework as well and a connection will be made

with the MAR counterpart in the sense of Molenberghs et al [23]. To this end, a broad class of SPM

will be defined. Implications for both non-monotone missing data as well as longitudinal data with

dropout will be considered. In particular, in analogy with the PMM work by Kenward, Molenberghs,

and Thijs [16], conditions will be derived to ensure future, unobserved measurements provide no

information about dropout in addition to what is available from current and past measurements.

Our results are conceptual in nature, in the sense that we take no position as to whether either it

is natural, for a particular application, to assume that missingness is MAR or does not depend on

future observations. Rather, we ensure that the modeller is able to consider such mechanisms within

the SPM framework, in analogy with the SEM and PMM frameworks. That said, in many situations,

one would want to avoid missingness to further depend on future observations, given past ones.

The remainder of the paper is organized as follows. Notation and formal concepts, used throughout

the paper, are detailed in Section 2. The background results regarding MAR counterparts to MNAR

models, necessary in what follows, are reviewed in Section 3. Section 4 defines a general class of

SPM models, within which MAR is then characterized. A particularly appealing set of MAR-type

SPM, satisfying the characterization, is presented. It is also shown that there exist models of the

SPM type that do not belong to this particular family. Implications for non-monotone missingness

and longitudinal data with dropout, where time-ordering is important, are the subject of Sections 5

and 6, respectively. A set of clinical-trial data, is introduced and analyzed in Section 7.
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2 Notation and Concepts

Let the random variable Yij denote the response of interest, for the ith study subject, designed

to be measured at occasions tij , i = 1, . . . , N , j = 1, . . . , ni. Independence across subjects is

assumed. This setting covers both the longitudinal as well as the multivariate settings. In the latter

case, tij = tj would merely be indicators for the various variables studied, and typically ni ≡ n.

The outcomes can conveniently be grouped into a vector Y i = (Yi1, . . . , Yini
)′. In addition, define

a vector of missingness indicators Ri = (Ri1, . . . , Rini
)′ with Rij = 0 if Yij is observed and 1

otherwise. In the specific case of dropout, Ri can usefully be replaced by the dropout indicator

Di =
ni∑

j=1

(1 − Rij).

Note that the concept of dropout refers to time-ordered variables, such as in longitudinal studies.

For a complete sequence, Ri = 0 and/or Di = ni. It is customary to split the vector Y i into

observed (Y o
i ) and missing (Y m

i ) components, respectively. When Ri is conditioned up, Y o
i and

Y m
i explicitly refer to the observed and missing components. In the reverse case, they refer to an

arbitrary partition of the outcome vector.

In principle, one would like to consider the density of the full data f(yi, ri|θ,ψ), where the parameter

vectors θ and ψ describe the measurement and missingness processes, respectively. Covariates are

assumed to be measured and grouped in a vector xi but, throughout, are suppressed from notation.

Although unusual, it is in principle possible for θ and ψ to have components in common.

This full density function can be factored in different ways, each leading to a different framework.

They were mentioned briefly in the introduction. Here, we will present them more formally but in

their standard form of appearance. In subsequent sections, they will be tailored to our needs, in

particular the shared-parameter model.

The selection model (SeM) framework is based on the following factorization [32, 22]:

f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (1)

The first factor is the marginal density of the measurement process and the second one is the density

of the missingness process, conditional on the outcomes. As an alternative, one can consider so-called
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pattern-mixture models (PMM; [18, 19]) using the reversed factorization

f(yi, ri|θ,ψ) = f(yi|ri, θ)f(ri|ψ). (2)

This can be seen as a mixture density over different populations, each of which is defined by the

observed pattern of missingness.

Instead of using the selection modeling or pattern-mixture modeling frameworks, the measurement

and the dropout process can be jointly modeled using a shared-parameter model [42, 40, 41, 35,

11, 20]. One then might assume there exists a vector of random effects bi, conditional upon which

the measurement and dropout processes are independent. This shared-parameter model (SPM) is

formulated by way of the following factorization

f(yi, ri|bi, θ,ψ) = f(yi|bi, θ)f(ri|bi,ψ), (3)

and hence

f(yi, ri|θ,ψ) =

∫
f(yi|bi, θ)f(ri|bi,ψ)f(bi) dbi. (4)

Here, bi are shared parameters, often considered to be random effects and following a specific

parametric distribution. There are various other forms an SPM can take, and a more thorough

discussion can be found in Section 4.

3 Every MNAR Model Has an MAR Counterpart

In this section, based on the argument of Molenberghs et al [23], we restate that for every MNAR

model fitted to a set of data, there is a unique MAR counterpart providing exactly the same fit to the

data. We will sketch these results in view of their transposition in what follows to the general SPM

case. Here, the concept of model fit should be understood as measured using such conventional

methods as deviance measures and, of course, in as far as the observed data are concerned. The

following steps are involved: (1) fitting an MNAR model to the data; (2) reformulating the fitted

model in PMM form; (3) replacing the density or distribution of the unobserved measurements given

the observed ones and given a particular response pattern by its MAR counterpart; (4) establishing

that such an MAR counterpart uniquely exists.
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In the first step, fit an MNAR model to the observed data, with likelihood:

L =
∏

i

∫
f(yi

o, yi
m, ri|θ,ψ)dyi

m. (5)

Using hats for estimated parameters, express the full density in PMM form:

f(yi
o, yi

m|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂) = f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi

m|yi
o, ri, θ̂, ψ̂). (6)

A similar reformulation can be considered for an SPM, as will be shown in the next section. Molen-

berghs et al [23] formally that the fit remains the same after such a substition, which led them to

state that every fit to the observed data, obtained from fitting an MNAR model to a set of incomplete

data, is exactly reproducible from an MAR decomposition. The key computational consequence is

the need to determine h(yi
m|yi

o). This means that, for each pattern, the conditional density of

the unobserved measurements given the observed ones needs to be extracted from the marginal

distribution of the complete set of measurements. [25] have shown that, for the case of dropout, the

so-called available case missing value restrictions (ACMV) provide a practical computational scheme.

Molenberghs et al [23] discuss computational schemes and provide a number of illustrations, with

particular emphasis on contingency tables subject to both monotone and non-monotone missingness.

When applying these ideas, computational issues will arise. There are various options available. For

example, in a pattern-mixture context, some authors have made use of multiple imputation. The

same could be envisaged for shared-parameter models. Admittedly, there are alternatives, however,

and the choice among this will often be a pragmatic one.

4 Shared-parameter Models and Missingness at Random

SPM’s are closely linked to the joint modeling of longitudinal and time-to-event data, a class of

models considered for at least three reasons. First, a time-to-event outcome may be measured in

terms of a longitudinal covariate. Such a joint model then allows, in a natural way, for incorporation

of measurement error present in the longitudinal covariate into the model. Second, a number of

researchers have used joint modeling methods to exploit longitudinal markers as surrogates for survival

[38, 44, 12, 29].
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Third, and of most relevance here, such joint models can be used when incomplete longitudinal

data are collected. Important early references to such models are Wu and Carroll [42], Wu and

Bailey [40], and Wu and Bailey [41]. Wu and Bailey [40] proposed such a model for what they

termed informative right censoring. For a continuous response, Wu and Carroll [42] suggested using

a conventional Gaussian random-coefficient model combined with an appropriate model for to time

to dropout, such as proportional hazards, logistic or probit regression. The combination of probit

and Gaussian responses allows explicit solution of the integral and was used in their application.

In a slightly different approach to modeling dropout time as a continuous variable in the latent

variable setting, Schluchter [33] and DeGruttola and Tu [7] proposed joint multivariate Gaussian

distributions for the latent variable(s) of the response process and a variable representing time to

dropout. The correlation between these variables induces dependence between dropout and response.

Rizopoulos, Verbeke, and Molenberghs [30] study the impact of random-effects misspecification in a

shared parameter model. Beunckens et al [2] combine continuous random effects with latent classes,

leading to the simultaneous use of mixture and mixed-effects models ideas. It is very natural to handle

random-coefficient models, and in particular shared-parameter models, in a Bayesian framework.

Examples in the missing value setting are provided by Best et al [1] and Carpenter, Pocock, and

Lamm [4]. Further references include Pawitan and Self [28], Taylor et al [34], Faucett and Thomas

[10], Lavalley and DeGruttola [17], Hogan and Laird [13, 14], Wulfsohn and Tsiatis [43] and Xu and

Zeger [45].

Models of this type handle non-monotone missingness quite conveniently through random effects.

There are many ways in which such models can be extended and generalized. Nevertheless, these

models seem to defy an easy, elegant characterization of MAR, which is the topic of what follows.

In Section 2, the commonly used definition (3) of an SPM is presented. However, the preceding review

makes clear that not all authors employ the same definition. Before passing on to the definition we

will employ here, it is therefore instructive to take a more general position, also considered by Little

[20], based on augmenting the joint density of (yi, ri) with a vector of random effects bi:

f(yi, ri, bi|θ,ψ, ξ), (7)
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where ξ is now explicitly included to parametrize the random-effects distribution. As before, covari-

ates are allowed to be present, perhaps taking the form of different sets that each describe one of the

three components. Again, they are suppressed from notation. Based on (7), one can still consider

the selection-model factorization:

f(yi, ri, bi|θ,ψ) = f(yi|bi, θ)f(ri|yi, bi,ψ)f(bi|ξ) (8)

and, likewise, the pattern-mixture model factorization:

f(yi, ri, bi|θ,ψ, ξ) = f(yi|ri, bi, θ)f(ri|bi,ψ)f(bi|ξ). (9)

The notation is the same as in Section 2, with in addition ξ parameters describing the random-effects

distribution. Little [20] refers to such decompositions as random-coefficient selection and pattern-

mixture models, respectively. [21] and [46] present hybrid models with meaningful, identifiable

parameters. Obviously, SeM (1) and PMM (2) follow by removing the random effects from (8) and

(9), respectively or, at least, not having them in common between the models for Y i and Ri.

An important simplification, leading to the already-defined SPM (3), arises when Y i and Ri are

assumed independent, given the random effects, i.e., when conditional independence assumptions

are made. Spelling out the model in full produces:

f(yi, ri, bi|θ,ψ, ξ) = f(yi|bi, θ)f(ri|bi,ψ)f(bi|ξ). (10)

Model (10) corresponds to (3), but now also the distribution of the random effects has been spelled

out explicitly. This model was entertained by Follmann and Wu [11]. Note that, when bi is assumed

to be discrete, a latent-class or mixture model follows.

We are now in a position to introduce the SPM framework needed for our purposes. Note that most

formulations assume that a single, common set bi drives the entire process. Whilst holding on to

the conditional-independence assumption, we will expand bi to a set of latent structures, as in the

following definition.

Definition 1 (A Generalized Shared-parameter Model Family.) A general shared-parameter model

is defined as one of the form

f(yo
i |gi,hi, ji, `i)f(ym

i |yo
i , gi,hi, ki,mi)f(ri|gi, ji, ki, qi), (11)
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where gi, hi, ji, ki, `i, mi, and qi are independent random-effects vectors (vectors of latent

variables).

In (11), parameters have been suppressed from notation. The same shorthand will be used in what

follows, too. For convenience, write

bi = (gi,hi, ji, ki, `i,mi, qi). (12)

Several remarks are in place. First, this is the most general random-effects model that can be

considered in the sense that gi is common to all three factors in (11), hi, ji, and ki are shared

between a pair of factors, and `i, mi, and qi are restricted to a single factor. Depending on the

application, one may choose to either retain all random effects or to omit some. It will then be

useful to have a perspective on the implications of such simplifications, preferably also in terms of

the missing data mechanism operating. This is why we will establish conditions under which MAR

operates on the one hand, and missingness does not depend on future, unobserved measurements

in a longitudinal context on the other hand. Second, in full generality, model (11) may come across

as somewhat contrived. Our objective is not to postulate (11) as a model of use in every possible

application of SPM, but rather as the most general SPM from which substantively appropriate

models follow as sub-classes. Related to this, it appears (11) assumes two different distributions for

the outcome vector, i.e., divorcing the observed from the missing components. This is not entirely the

case because gi and hi still tie both factors together. The impact of ji, ki, `i, and mi is to modify

one’s latent process in terms of missingness. In other words, the most general model assumes that

observed and missing components are governed in part by common processes and partly by separate

processes. Third, in principle, we could expand (11) with the densities of the random effects. This

is generally not necessary for our purposes, though. Fourth, the assumption of independent random-

effects vectors is not restrictive, because association is captured through the sets common to at least

two factors. Fifth, conventional SPM formulation (10) follows by removing all random effects but gi.

Definition (11) will allow us to derive a general characterization of MAR in the SPM framework.

It is instructive to set out by deriving an elegant set of sufficient conditions. Thereafter, necessity

will be addressed. To this end, we can start from either the SeM-based definition or the PMM
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characterization of MAR.

Starting from the SeM definition, and assuming gi, hi, and ki are zero, we can show that MAR

follows:

f(ri|y
o
i , y

m
i ) =

f(ri, y
o
i , y

m
i )

f(yo
i , y

m
i )

=

∫
f(yo

i |ji, `i)f(ym
i |yo

i ,mi)f(ri|ji, qi)f(bi) dbi∫
f(yo

i |ji, `i)f(ym
i |yo

i ,mi)f(bi) dbi

=

∫
f(ym

i |yo
i ,mi) dmi ·

∫
f(yo

i |ji, `i)f(ri|ji, qi)f(bi) dbi∫
f(ym

i |yo
i ,mi) dmi ·

∫
f(yo

i |ji, `i)f(bi) dbi

=
f(yo

i , ri)

f(yo
i )

= f(ri|y
o
i ),

where integration over bi is shorthand for integration over all component vectors making up bi,

listed in (12), or an appropriate subset thereof. Hence, a sufficient condition for the SPM to be

MAR is that the random effects driving the observed measurements and/or the missing-data process

do not influence the missing measurements, given the observed ones. In other words, all information

about the missing measurements, apart from covariates, stems from the observed measurements

only. Clearly, the random effects mi are not identifiable; they are included for completeness only.

It is instructive to study the same set of sufficient conditions from the PMM perspective, since it

will lead us, at the end of the section, to the construction of an MAR counterpart:

f(ym
i |yo

i , ri) =
f(yo

i , y
m
i , ri)

f(yo
i , ri)

=

∫
f(yo

i |ji, `i)f(ym
i |yo

i ,mi)f(ri|ji, qi)f(bi) dbi∫ ∫
f(yo

i |ji, `i)f(ym
i |yo

i ,mi)f(ri|ji, qi)f(bi) dbi dym
i

= f(ym
i |yo

i ) ·

∫
f(yo

i |ji, `i)f(ri|ji, qi)f(bi) dbi∫
f(yo

i |ji, `i)f(ri|ji, qi)f(bi) dbi

= f(ym
i |yo

i ),

not surprisingly leading to the same result.

These considerations at the same time define an important sub-class, establishing the ensuing result:
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Definition 2 (A Sub-class of SPM Models.) Define a sub-class of shared-parameter model (11):

f(yo
i |ji, `i)f(ym

i |yo
i ,mi)f(ri|ji, qi), (13)

where ji, `i, mi, and qi are independent random-effects vectors.

In other words, Definition 2 follows as a special case from Definition 1 by omitting the random effects

gi, hi, and ki. The key rationale for this definition is, of course, the following result:

Theorem 1 (A Class of MAR-based SPM Models.) The shared-parameter model (13) is miss-

ing at random.

We have not addressed necessity thus far. To this effect, we need to derive general expressions for

MAR in the PMM case, respectively. First, for the left hand side:

f(ym
i |yo

i , ri)

=

∫
f(yo

i |gi,hi, ji, `i)f(ym
i |yo

i , gi,hi, ki,mi)f(ri|gi, ji, ki, qi)f(bi) dbi∫ ∫
f(yo

i |gi,hi, ji, `i)f(ym
i |yo

i , gi,hi, ki,mi)f(ri|gi, ji, ki, qi)f(bi) dbi dym
i

=

∫
f(yo

i |gi,hi, ji, `i)f(ym
i |yo

i , gi,hi, ki,mi)f(ri|gi, ji, ki, qi)f(bi) dbi∫
f(yo

i |gi,hi, ji, `i)f(ri|gi, ji, ki, qi)f(bi) dbi
. (14)

Second, for the right hand side, consider:

f(ym
i |yo

i )

=

∫ ∫
f(yo

i |gi,hi, ji, `i)f(ym
i |yo

i , gi,hi, ki,mi)f(ri|gi, ji, ki, qi)f(bi) dbi dri∫ ∫ ∫
f(yo

i |gi,hi, ji, `i)f(ym
i |yo

i , gi,hi, ki,mi)f(ri|gi, ji, ki, qi)f(bi) dbi dym
i dri

=

∫
f(yo

i |gi,hi, ji, `i)f(ym
i |yo

i , gi,hi, ki,mi)f(bi) dbi∫
f(yo

i |gi,hi, ji, `i)f(bi) dbi
. (15)

Equating (14) and (15) and, for brevity, integrating over random effects that occur in one component

only, produces the general conditions, laid out in the next theorem.

Theorem 2 (Characterization of MAR in the Generalized Shared-parameter Family.) A mem-

ber of the general SPM family (11) is MAR if and only if

∫
f(yo

i |gi,hi, ji)f(ym
i |yo

i , gi,hi, ki)f(ri|gi, ji, ki)f(bi) dbi∫
f(yo

i |gi, ji)f(ri|gi, ji)f(bi) dbi
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=

∫
f(yo

i |gi,hi)f(ym
i |yo

i , gi,hi)f(bi) dbi

f(yo
i )

. (16)

Evidently, again assuming that gi, hi, and ki cancel, reduces (16) to a tautological statement,

showing that (13) satisfies Theorem 2.

There are situations where (16) is satisfied, without the triplet (gi,hi, ki) vanishing, but these will

necessarily be more ad hoc and less intuitively appealing than these laid out in Theorem 1. The

existence of such singular solutions is not straightforward to establish, as is clear from the following

pair of examples.

Example 1 (MAR Example in Line With Definition 1.) For the purpose of the examples, drop

the index i from notation. Consider a bivariate outcome (Y1, Y2), where the first one is always

observed, and the second component sometimes missing. This necessitates a scalar missing-data

variable R only, leading to full-data vector (Y1, Y2, R). Let R = 0 if the second component is missing

and 1 otherwise. For R = 1, condition (16) is always fulfilled, since the key component, describing

the distribution of the missing observations given the observed ones, is then empty. Therefore, we

can concentrate on R = 0.

For simplicity, assume that all random effects, describing one factor only, are absent, i.e., remove

`i, mi, and qi. From the four remaining random-effects, retain only ji and ki, implying that the

missing-data process is connected to both response-related factors which, in turn, are unrelated to

each other. Assume furthermore that both outcomes, Y1 and Y2, are dichotomous, and that also

both random effects are binary. This means that (16) can be simplified to:



∑

j

π1
y1|j

πj


 ·



∑

j,k

π1
y1|j

π2
y2|y1kπr=0|jkπjπk




=




∑

j,k

π1
y1|j

πr=0|jkπjπk



 ·




∑

j,k

π1
y1|j

π2
y2|y1kπjπk



 , (17)

where the π’s are probabilities pertaining to the variables indicated by their corresponding indices.

It is convenient to introduce some simplifying notation, making use of the fact that all key variables

are dichotomous: set γ = πj=0, ϕ = πk=0, and ρjk = πr=0|jk.
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Expression (17) needs to be considered only for (Y1, Y2) = (0, 0) and (1, 0), since spelling out the

ones for (1, 0) and (1, 1) and summing them with their counterparts lead to tautological statements.

This implies that (17) produces two equations, i.e.,there are two constraints to be satisfied. For the

first equation, in (Y1, Y2) = (0, 0), choose x = π2
0|01 as the parameter to be determined. This means

that (17) is a linear equation in x. Clearly, setting π2
0|00 = π2

0|01 solves the equation, based on two

observations. First, a constant factor π2
y2|y1 is common to both sides of the equation and cancels.

Second, the remaining factors are pairwise equal: the first factor on the LHS then equals the second

factor on the RHS; the second factor on the LHS equals the first factor on the RHS. The argument

for (Y1, Y2) = (1, 0) is entirely symmetric, and hence the unique solution implies that k vanishes

from the distribution of Y2 given Y1, in agreement with Definition 2.

Similar manipulations can be done for the cases: (1) where only gi is present; and (2) where only

hi and ji are present. In these two cases, as well as in Example 1, a single random effect describes

π2
y2|y1·

. This is crucial to ensure accordance with Definition 1. The next example is different in that

two independent random effects will influence the probability of the second component given the

first one.

Example 2 (MAR Example Violating Definition 1.) Retain the setting of Example 1, but now

with the pair of random effects hi and ki present. This particular choice leads to a different

simplification of (16):
(
∑

h

π1
y1|h

πh

)
·




∑

h,k

π1
y1|h

π2
y2|y1hkπr=0|kπhπk





=




∑

h,k

π1
y1|h

πr=0|kπhπk



 ·




∑

h,k

π1
y1|h

π2
y2|y1hkπhπk



 . (18)

We will conveniently use the following notation: η = πh=0, ϕ = πk=0, and ρk = πr=0|k.

With similar logic as in Example 1, it easily follows that we only need to consider (18) for (Y1, Y2) =

(0, 0) and (1, 0). Concentrating on the first of these, and singling out π2
0|011 as the parameter to

identify from the others, it follows that

π2
0|011 =

ab − de

df − ac
, (19)

13



Generalized Shared-parameter Models and MAR

with

a = π1
0|0η + π1

0|1(1 − η),

b = π1
0|0π

2
0|000ρ0ηϕ + π1

0|0π
2
0|001ρ1η(1− ϕ) + π1

0|1π
2
0|010ρ0(1 − η)ϕ,

c = π1
0|1ρ1(1− η)(1− ϕ),

d = π1
0|0ρ0ηϕ + π1

0|0ρ1η(1− ϕ) + π1
0|1ρ0(1− η)ϕ + π1

0|1ρ1(1 − η)(1− ϕ),

e = π1
0|0π

2
0|000ηϕ + π1

0|0π
2
0|001η(1− ϕ) + π1

0|1π
2
0|010(1 − η)ϕ,

f = π1
0|1(1− η)(1− ϕ).

The derivations for (Y1, Y2) = (1, 0) is entirely similar and leads to (19) with the first conditioning

argument ‘1’ rather than ‘0’. A numerical example is provided in Table 1, establishing that the

random effects hi and ki do influence the distribution of Y2, given Y1, in the dropout pattern.

Finally, the characterization of Theorem 2 allows us to construct an MAR counterpart to an arbitrary

SPM of the form (11). It is necessary to (1) retain the fit of the model to the observed data,

while (2) ensuring that (16) hold. This is easily done by a-posteriori integrating the shared random

effects out of the densities describing the unobserved measurements, given the observed ones. Here,

integration takes place over the densities of gi, hi, and ki, where fitted parameters are plugged into

the densities.

Theorem 3 (An MAR Counterpart to a Generalized SPM.) The MAR counterpart, to an arbi-

trary general SPM of the type (11) is found by replacing f(ym
i |yo

i , gi,hi, ki,mi) with

h(ym
i |yo

i ,mi) =

∫

g
i

∫

hi

∫

ki

f(ym
i |yo

i , gi,hi, ki,mi)dgidhidki (20)

First, it is clear that this marginalization is merely describing the model-based prediction of the

unobserved outcomes, given the observed ones. Hence, the choice for h(·) does not alter the fit.

Second, observe that using h(·) in (16), instead of f(ym
i |yo

i , gi,hi, ki,mi), of Theorem 2, reduces

the equation to a trivial identity, and hence the second condition is also satisfied.

For categorical random effects, such as in Examples 1 and 2, the integral in (20) becomes summation.
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5 Non-monotone Missing Data

The characterization of MAR in the SPM family, the formulation of specific family (13), and the

construction of an MAR counterpart to a general SPM, are all independent of the missing-data

patterns that occur in a given study. Specifically, these results apply to monotone and non-monotone

patterns alike. The same is true for earlier work on the definition of MAR in the PMM framework

[25], and the MAR counterpart to a general model in the SeM and PMM families [23], both reviewed

in Section 3.

Nevertheless, it is useful to realize that the purely probabilistic concept behind MAR, as intended

by Rubin [32], is not necessarily the same as the pragmatic view taken by the statistical modeler.

Indeed, consider the simple data setting of Examples 1 and 2. From a modeler’s perspective, MAR

might usefully mean that missingness depends on Y1 but not on Y2, whereas from a probabilistic

point of view, it merely means that Y1 and Y2 influence missingness among the completers, whereas

missingness is determined by Y1 only among the incomplete observations.

This apparent discrepancy is resolved by noting that the modeler voluntarily restricts oneself to a

practically meaningful sub-class of probabilistic MAR mechanisms. This notwithstanding, Molen-

berghs et al [23] provide examples of MAR mechanisms, often as so-called MAR counterparts to

MNAR models, that would hardly be considered purely on grounds of appeal to the modeler. Also

Molenberghs et al [25] provide such an example, taking the form of a 2×2 contingency table subject

to non-monotone missingness.

In the same spirit, for SPM’s, the modeler may consider an SPM of MAR type, i.e., a model fulfilling

the characterization of Theorem 2, practically unnatural. In this respect, the sub-class of Definition 2

may or may not be deemed a practically more appealing choice.

When measurements are collected longitudinally, then typically time is prominently present in model

formulation, and most model choices will be judged in the light of their (un)desirable time-related

implications. The presence of ‘time’ also provides a vehicle to make the set of measurements that

influence missingness vary from pattern to pattern, while retaining an intuitively appealing flavor.

For example, when missingness is confined to dropout, a natural restriction is to allow only past
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measurements influence dropout, an MAR mechanism. Evidently, the set of past measurements is

not static, but itself a function of the time point at which dropout occurs.

These and other proper-time-dependence considerations are the subject of the next section.

6 Longitudinal Data With Dropout: Non-future Dependence

When measurements are taken longitudinally, it is good practice to ensure that the implied time

dependencies are logical from a substantive standpoint. For example, in a variety of contexts, such

as growth, regression functions over time may be constrained to non-decreasing forms.

Let us turn to the nature of the missingness mechanism. Throughout the section, assume that

missingness is confined to dropout. From a SeM perspective, one often classifies missing data

mechanisms as [9]: (1) independent of outcomes; (2) dependent on previous measurements only; (3)

dependent on the current and perhaps previous measurements only; (4) fully arbitrary, i.e., where

missingness can depend on previous, current, and future measurements. Evidently, (1) is MCAR, (2)

is MAR, and (4) is MNAR, without restrictions. [9], for example, did not consider (4) but restricted

MNAR to mechanism (3) only. While this is very restrictive, it is also extremely appealing since

it prevents dropout at a given point in time to depend on future measurements; these are termed

non-future dependent in the next section.

Clearly, the concepts of the previous paragraph are very natural by virtue of framing them in the

SeM. Kenward, Molenberghs, and Thijs [16] underscored that the situation is less clear in the PMM

family and then translated the mechanisms from the SeM to the PMM framework. We will review

these in Section 6.1, and then present a similar taxonomy for the SPM in Section 6.2.

6.1 Non-future Dependence in the PMM Framework

Since we are restricting attention to monotone missingness, we can easily indicate a drop-out pattern

by the numbers of observations made. In this sense, pattern t collects all individuals with the first

t measurements taken (t = 1, . . . , n). Thijs et al [36] constructed a general identifying-restrictions

framework in which the distribution of the (t+1)th measurement, given the earlier measurements, in
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pattern t, yt+1 say, is set equal to a linear combination of the corresponding distributions in patterns

t + 1 to n. Since this family is characterized by the use of observable distributions to identify the

unobservable ones, we term it the ‘interior’ family of identifying-restrictions. Three members of this

family are studied in detail by Thijs et al [36]: complete-case missing value restrictions [18], where

information is borrowed from the completers only, available-case missing values, equivalent to MAR

(Molenberghs et al [25]; see also Section 5), for which a particular linear combination needs to be

considered, and neighboring-case missing value restrictions, where information is borrowed from the

closest available pattern.

The equivalence of available-case missing values and MAR is important in that it enables us to make

a clear connection between the selection and pattern-mixture frameworks. By implication, the other

members of the interior family are of MNAR type, while at the same time there do exist MNAR type

restrictions that are not captured by this family.

We will now characterize missing-data mechanisms that prevent missingness from depending on future

unobserved measurements. To this effect, it is useful to consider the SeM and PMM factorizations

for the specific context of longitudinal data. Let r = t ≤ n be the number of measurements actually

observed. The selection model factorization for this context is given by

f(y1, · · · , yn, r = t) = f(y1, · · · , yn)f(r = t|y1, · · · , yn).

Pattern-mixture models now take the form:

f(y1, · · · , yn, r = t)

= f(y1, · · · , yn|r = t)f(r = t)

= ft(y1, · · · , yn)f(r = t)

= ft(y1, · · · , yt)ft(yt+1|y1, · · · , yt)ft(yt+2, · · · , yn|y1, · · · , yt+1)f(r = t), (21)

where ft(y1, · · · , yn) = f(y1, · · · , yn|r = t). The first three factors in (21) are referred to as the

distributions of past, present, and future measurements, respectively. Only the first and the fourth

factors are identifiable from the data.
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Definition 3 (Non-future Dependence (NFD).) In the SeM context, we can formulate missing

non-future dependent as

f(r = t|y1, · · · , yn) = f(r = t|y1, · · · , yt+1). (22)

Note that MAR is a special case of missing non-future dependent, which in turn is a sub-class of

MNAR.

Definition 4 (Non-future Dependent Missing Value Restrictions (NFMV).) Within the PMM

framework, we define non-future dependent missing value restrictions as follows:

f(yt|y1, · · · , yt−1, r = j) = f(yt|y1, · · · , yt−1, r ≥ t − 1), (23)

for all t ≥ 2 and all j < t − 1.

Non-future missing values is not a comprehensive set of restrictions, but rather leaves one conditional

distribution per incomplete pattern unidentified:

f(yt+1|y1, · · · , yt, r = t). (24)

In other words, the distribution of the ‘current’ unobserved measurement, given the previous ones,

is unconstrained. This implies that the NFMV class contains members outside of the interior family,

where every restriction takes the form of a linear combination of observable distributions. Conversely,

(23) excludes such mechanisms as complete-case missing values and neighboring-case missing values,

showing that there are members of the interior family that are not of non-future missing values type.

Finally, choosing (24) of the same functional form as (23) establishes available-case missing values

as a member of the intersection of the interior and non-future missing values families. The latter

is particularly important since it shows, because of the equivalence of ACMV and MAR, that MAR

belongs to both families.

The following theorem, the proof of which is to be found in Kenward, Molenberghs, and Thijs [16],

establishes the equivalence between NFD and NFMV, showing the NFMV restrictions correspond to

NFD, just as ACMV corresponds to MAR.
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Theorem 4 (Equivalence Between NFD and NFMV.) . For longitudinal data with drop-outs,

missing non-future dependence is equivalent to non-future missing values.

A consequence of using (23) is that the joint distribution will not typically have a simple analytical

representation. This is to be understood in the sense that covariate effects would not necessarily be

linear on an appropriate scale. However, this is not to say there is no analytical form. Moreover, it

does not have to be a major disadvantage, provided the resulting distribution is empirically reasonable.

Such a requirement may help guide the choice for (24). Kenward, Molenberghs, and Thijs [16] offered

a tractable, sampling-based implementation and applied it to the analysis of a set of data.

6.2 Non-future Dependence in the SPM Framework

It is now particularly easy to derive a general characterization of non-future dependent SPM. First,

note that (22) in Definition 3 can be seen as a longitudinal dropout-based definition of MAR, “one

component shifted to the right,” i.e., where yt+1, in spite of its missingness, is also allowed to

influence missingness. Given that Theorem 2 was derived from the standard MAR definition, it

immediately follows that a characterization of NFD-SPM is as follows.

Theorem 5 (Non-future Dependent Shared-parameter Models.) A member of the general SPM

family (11) is NFD if and only if

∫
f(ypc

i |gi,hi, ji)f(yf
i |y

pc
i , gi,hi, ki)f(ri|gi, ji, ki)f(bi) dbi∫

f(y
pc
i |gi, ji)f(ri|gi, ji)f(bi) dbi

=

∫
f(y

pc
i |gi,hi)f(y

f
i |y

pc
i , gi,hi)f(bi) dbi

f(ypc
i )

, (25)

where ypc
i = (y1, · · · , yt+1)

′ and yf
i = (yt+2, · · · , yn)′.

Note that the subscript ‘pc’ refers to ‘previous and current,’ while ‘f’ refers to ‘future.’

Likewise, the sub-class (13) of Definition 2 can be ‘shifted’ to yield an NFD version.

Definition 5 (A NFD Sub-class of SPM Models.) Define a sub-class of shared-parameter model

(11):
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f(ypc
i |ji, `i)f(yf

i |y
pc
i ,mi)f(ri|ji, qi), (26)

where ji, `i, mi, and qi are independent random-effects vectors.

The key assumption here is that all information about the missing data is contained in the observed

data, given which no further information is needed from neither the missing data mechanism nor the

random effects. With similar logic as before, Definition 5 offers a class of missing-data mechanism

that belongs to the NFD family. The relationship between the various mechanisms in the three

families is depicted in Figure 1.

7 The Toenail Data

The data introduced in this section were obtained from a randomized, double-blind, parallel group,

multicenter study for the comparison of two oral treatments (in the sequel coded as A and B)

for toenail dermatophyte onychomycosis (TDO), described in full detail by [6]. TDO is a common

toenail infection, difficult to treat, affecting more than 2 out of 100 persons [31]. Anti-fungal

compounds, classically used for treatment of TDO, need to be taken until the whole nail has grown

out healthy. The development of new such compounds, however, has reduced the treatment duration

to 3 months. The aim of the present study was to compare the efficacy and safety of 12 weeks of

continuous therapy with treatment A or with treatment B.

In total, 2 × 189 patients, distributed over 36 centers, were randomized. Subjects were followed

during 12 weeks (3 months) of treatment and followed further, up to a total of 48 weeks (12

months). Measurements were taken at baseline, every month during treatment, and every 3 months

afterwards, resulting in a maximum of 7 measurements per subject. At the first occasion, the treating

physician indicates one of the affected toenails as the target nail, the nail which will be followed over

time. We will restrict our analyses to only those patients for which the target nail was one of the

two big toenails. This reduces our sample under consideration to 146 and 148 subjects, in group A

and group B, respectively.
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Figure 2 shows the observed profiles of 30 randomly selected subjects from treatment group A and

treatment group B, respectively.

One of the responses of interest was the unaffected nail length, measured from the nail bed to the

infected part of the nail, which is always at the free end of the nail, expressed in millimeters. This

outcome has been studied extensively in Verbeke and Molenberghs [39]. Another important outcome

in this study was the severity of the infection, coded as 0 (not severe) or 1 (severe). The question of

interest was whether the downward evolution of severe infection differs among treatment groups. A

summary of the number of patients in the study at each time-point, and the number of patients with

severe infections is given in Table 2. A graphical representation is given in Figure 3. Due to a variety

of reasons, the outcome has been measured at all 7 scheduled time points, for only 224 (76%) out

of the 294 participants. Table 3 summarizes the number of available repeated measurements per

subject, for both treatment groups separately. We see that the occurrence of missingness is similar

in both treatment groups.

We will first analyze the entire longitudinal profile of continuous outcomes (unaffected nail length),

and then switch to the binary outcome (severity of infection) and confine attention to the first and

last time points.

7.1 Continuous Unaffected Nail Length

Consider a general model of the form (11), with random effects confined to gi, i.e., common to

all three components. For the measurement model, assume a linear mixed model [39], with general

form:

Y i|gi ∼ N (Xiβ + Zigi, Σi), (27)

gi ∼ N (0, D). (28)

Based on (27) and (28), the so-called marginal model can be derived

Y i ∼ N (Xiβ, ZiDZ ′
i + Σi). (29)
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To compute the model’s prediction for the unobserved data, given the observed measurements, the

corresponding density needs to be derived. To this end, first decompose the mean and variance in

(27) as 

Y o

i

Y m
i




∣∣∣∣∣∣∣∣∣

gi ∼ N







Xo
i

Xm
i


β +




Zo
i

Zm
i


 gi,




Σoo
i Σom

i

Σmo
i Σmm

i





 .

This expression can easily be used to construct the conditional density:

Y m
i |yo

i , gi ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i + (Zm

i − Σmo
i {Σoo

i }−1 Zo
i )gi,

Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (30)

Now, (30) corresponds to the model as formulated, and will typically be of the MNAR type. To

derive the MAR counterpart, we need to integrate over the random effect. With similar logic that

leads to (29), now applied to (30), we obtain:

Y m
i |yo

i ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i ,

(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )D(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )′

+Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (31)

Hence, (31) is the MAR counterpart to (30). For the unaffected nail length, we choose for (27)–(28):

E(Yij|gi, Ti, tj,β) = β0 + gi + β1Ti + β2tj + β3Titj , (32)

gi ∼ N (0, d), and Σi = σ2I7, where I7 is a 7×7 identity matrix. Further, Ti = 0 if patient i received

standard treatment and 1 for experimental therapy (i = 1, . . . , 298). Finally, tj is the time at which

the jth measurement is taken (j = 1, . . . , 7).

Given these choices, (30) and (31) simplify to

Y m
i |yo

i , gi ∼ N (Xiβ + Zm
i gi, σ

2Ii), (33)

Y m
i |yo

i ∼ N (Xiβ, dJi + σ2Ii), (34)

with Ii an identity matrix and Ji a matrix of ones, with dimensions equal to the number of missing

measurements for subject i. Especially owing to the conditional independence assumption, the

simplification is dramatic.
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Next, let us formulate a model for the missingness mechanism in (11). The sequence ri can take one

of two forms in our case. Either, it is a length-7 vector of ones, for a completely observed subject,

or it is a sequence of k ones followed by a sole zero 1 ≤ k ≤ 6, for someone dropping out. Note

that k is 1 at least, since for everyone the initial measurement has been observed. It is convenient

to assume a logistic regression of the form:

logit [P (Rij = 1|Ri,j−1 = 0, gi, Ti, tj, γ)] = γ0 + γ01gi + γ1Ti + γ2tj + γ3Titj, (35)

(j > 1), where γ01 is a scale factor for the shared random effect in the missingness model; forcing

the variance in the measurement and dropout indicator sequences to be equal would make no sense.

As a result, γ01gi ∼ N (0, γ2
01d).

The model specified by (32) and (35) can easily be fitted using, for example, the SAS procedure

NLMIXED, details about which are provided in the Appendix.

Parameter estimates and standard errors are displayed in Table 4. It is noteworthy that the scale

factor γ01 is estimated to be negative, even though it is not significant. While we should not overly

stress its importance, there is some indication that a higher subject-specific profile of unaffected nail

length corresponds with a lower dropout probability, which is not surprising. The magnitude of the

scale factor allows us to ‘translate’ the subject-specific effect from the continuous outcome scale,

expressed in mm, to the unitless logit scale on which the probability of missingness is described. Note

that the random-intercept variance is highly significant among unaffected nail length outcomes; the

same is not true for the dropout model, with p = 0.2487, using a 50 : 50 mixture of a χ2
0 and χ2

1

distribution [39].

Figure 4 displays the incomplete profiles, extended beyond the time of dropout, using prediction

based on: (1) the original model (dashed lines); (2) the MAR counterpart (solid lines). Within each

of the treatment arms, three profiles are highlighted. The MAR counterpart reduces all predictions

to the same profile, whereas the MNAR model predicts different evolutions for different subjects,

implied by the presence of the random effect. The simple MAR-based prediction structure follows

directly from the conditional independence assumption, present in (33). When deemed less plausible,

the fully general structure (30) can be implemented.
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7.2 Dichotomous Severity of Infection

Let us turn attention to the binary severity of infection outcome, for the pair of time points formed

by the always recorded initial measurement and the sometimes missing final point in time. The data

are displayed in Table 5. By way of illustration, we will assume a single dichotomous random effect,

of the gi type. This imposes a latent-class structure. Decompose the cell probabilities as:

πgi1i2rt = πgπi1|gπi2|i1gtπr|g, (36)

with g = 0, 1 indicating the latent class, i1, i2 = 0, 1 non-severe versus severe infection at the first

and last occasions, respectively, r = 0, 1 referring to the dropouts versus completers groups, and

t = 0, 1 denoting standard versus experimental treatment arm. The probability factors on the right

hand side of (36) are modeled as:

πg =
eαg

1 + eα
,

πi1|g =
e(β0+β1g)i1

1 + eβ0+β1g
, (37)

πi2|i1gt =
e(γ0+γ1i1+γ2g+γ3i1g+γ4t)i2

1 + eγ0+γ1i1+γ2g+γ3i1g+γ4t
, (38)

πr|g =
e(δ0+δ1g)r

1 + eδ0+δ1g
.

In Model ‘Bin1’, we will set β1 = 0 in (37) for reasons of identifiability. In Model ‘Bin2’, γ2 = γ3 = 0

in (38). This implies the latter model is of the MAR type, and hence its MAR counterpart will

equal the original model. Fitted counts are presented in Table 5. For the dropout group, both the

fit to the pair of observed counts and the prediction of the underlying unobserved two-by-two table

is given. Note that the MAR counterpart preserves the distribution of the first outcome, within

each treatment and dropout group; the difference between original model and MAR counterpart is

confined to the distribution of the second outcome, given the first one. The fits of the models is

obtained by replacing all quantities in (36) by their estimates, followed by summing over g. The

MAR counterpart is obtained as πgi1i2rt = πgπi1|gπ̃i2|i1tπr|g, where

π̃i2|i1t =
∑

g

πgπi2|i1gt.
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Parameter estimation by both maximum likelihood, as well as the EM algorithm [8] is particularly

easy. For direct likelihood, the log-likelihood function takes the form

` =
∑

i1,i2,t

Zi1i2,r=1,t ln

(
∑

g

πgπi1|gπi2|i1gtπr=1|g

)
+
∑

i1,t

Zi1,r=0,t ln

(
∑

g

πgπi1|gπr=0|g

)
, (39)

where Zi1i2,r=1,t and Zi1,r=0,t are the observed-data counts, with obvious notation. Maximization

then proceeds by feeding (39) to a standard numerical optimizer.

The complete-data log-likelihood, needed for the EM algorithm, takes the form:

`∗ =
∑

g,i1,i2,r,t

Z∗
gi1i2rt ln

(
πgπi1|gπi2|i1gtπr|g

)

=
∑

g

Z∗
g++++ ln (πg) +

∑

g,i1

Z∗
gi1+++ ln

(
πi1|g

)

+
∑

g,i1,i2,t

Z∗
gi1i2+t ln

(
πi2|i1gt

)
+
∑

g,r

Z∗
g++r+ ln

(
πr|g

)
. (40)

Here, Z∗
gi1i2rt is the (hypothetical) count in bivariate severity category (i1, i2), in missingness group r,

treatment arm t, and allocated to latent class g. A plus in lieu of a subscript indicates summation over

the corresponding index. To proceed, the expected values of the complete-data sufficient statistics

need to be computed. Thanks to the multinomial structure of `∗, this is straightforward and hence

the E step consists of:

E
(
Z∗

g++++

)
= πgZ++++,

E
(
Z∗

gi1+++

)
= πgπi1|gZi1+++

E
(
Z∗

gi1i2+t

)
= πgZi1i2,r=1,t + πgπi2|i1gtZi1+,r=0,t,

E
(
Z∗

g++r+

)
= πgπr|gZ++r+.

Finally, the M step takes the form of four separate logistic regressions, in the α, β, γ, and δ

parameters, respectively, i.e., for each of the four terms in (40).

8 Concluding Remarks

Incomplete data are governed by a number of taxonomies and classification systems, two of which

were of relevance here. A first one is concerned with the type of missing data mechanism (MCAR,
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MAR, and MNAR), whereas a second one classifies joint models for the outcome and missing data

processes as belonging to the SeM, PMM, and SPM model families. Since MCAR merely comes

‘down to independence between both processes, perhaps conditional on fixed covariates, it takes a

trivial form regardless of the model family. Whereas MAR has been defined in an SeM fashion, it

has been characterized in a PMM way and studied further for the specific context of longitudinal

data by Molenberghs et al [25]. Characterizing MAR in the SPM family is less straightforward and,

to our knowledge, had not formally been done before. As a first result, we have provided such a

characterization in this paper, after defining a very general class of SPM that encompasses many

earlier, specific instances. Since the characterization, in its full generality, may be somewhat awkward

to work with, a more restrictive but appealing sub-class of SPM, satisfying MAR, has been proposed

too.

Molenberghs et al [23] established that every MNAR model fitted to a particular set of data can be

replaced by a unique MAR counterpart, i.e., a model producing exactly the same fit to the observed

data but where the prediction of the unobserved outcomes given the observed ones is of the MAR

type. While their result is general, they focused on the SeM and PMM frameworks. As a second

result, we present a generic format of this counterpart for the SPM family.

Apart from considerations on the basis of taxonomy, particular design aspects may be used to further

focus one’s model choices. For example, in a longitudinal study subject to dropout, one will often

cast missingness mechanisms in terms of previous, current, and future measurements, rather than

simply in terms of observed and unobserved measurements. There is a subtle distinction. While

previous and observed measurements are synonymous in such a case, the unobserved measurements

are further sub-divided into current and future measurements. Substantively, it is usually conceivable

to assume that dropout is driven by the current, perhaps unobserved measurement, but it will not

always be sensible to let dropout depend on future measurements. Constraining a SeM to this effect

is particularly straightforward, but this is less trivial for the other two families. While Kenward,

Molenberghs, and Thijs [16] translated this requirement to the PMM family, this had not yet been

done for the SPM. As a third result, we characterize so-called non-future dependent mechanisms

within the SPM family.
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While our results are predominantly of a conceptual nature, a number of them have been illustrated,

for enhanced insight, using both a continuous and a binary outcome from a two-armed clinical trial

in toenail dermatophyte onychomycosis. In the continuous case, a linear mixed model was combined

with logistic regression contributions for dropout. In the binary case, a dichotomous random effect

was assumed, i.e., a latent class, reducing the analysis to one of incompletely observed contingency

tables. Evidently, within each of the analyses done, a wider variety of model specifications can be

entertained. Moreover, the ideas developed in this paper are generic and one could, for example,

consider generalized linear mixed models for the entire binary profile, etc. [27].

It might appear counterintuitive that the issues arising from incompleteness are further compounded

by allowing for a whole collection of random effects. While this adds a great deal of flexibility,

thereby enabling proper characterization of MAR, it needs to be limited. In practice, substantive

considerations would be critical in reducing the number of these, leaving a more manageable set

which would form the basis for sensitivity analyses.

Finally, the results of this paper open avenues for sensitivity analysis regarding substantive conclusions

with respect to missingness [24, 5]. Thanks to the results in this and previous papers, and the ensuing

classification of model families versus missing data mechanisms (Figure 1), one could, for example,

select an insightful set models across families and mechanisms, perhaps supplementing MNAR models

with their MAR counterparts, and then assess formally or informally how key conclusions change when

ranging over models.
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Table 1: Bivariate binary outcome with the first component fully observed and the second component

partially missing. The missing data mechanism is MAR. The model belongs to general SPM family

(11), but not to the specific MAR sub-class (13).

Effect ‘Failure (0)’ ‘Success (1)’

Random h effect η = πh=0 0.3000 1 − η = πh=1 0.7000

Random k effect ϕ = πk=0 0.4000 1 − ϕ = πk=1 0.6000

R, given k = 0 ρ0 = π0|0 0.4500 1 − ρ0 = π1|0 0.5500

R, given k = 1 ρ1 = π0|1 0.8000 1 − ρ1 = π1|1 0.2000

Y1, given h = 0 π1
0|0 0.3000 π1

1|0 0.7000

Y1, given h = 1 π1
0|1 0.2000 π1

1|1 0.8000

Y2, given Y1 = 0, h = 0, and k = 0 π2
0|000 0.1500 φ2

1|000 0.8500

Y2, given Y1 = 0, h = 0, and k = 1 π2
0|001 0.2500 π2

1|001 0.7500

Y2, given Y1 = 0, h = 1, and k = 0 π2
0|010 0.3500 π2

1|010 0.6500

Y2, given Y1 = 0, h = 1, and k = 1 π2
0|011 0.2857 π2

1|011 0.7143

Y2, given Y1 = 1, h = 0, and k = 0 π2
0|100 0.2000 π2

1|100 0.8000

Y2, given Y1 = 1, h = 0, and k = 1 π2
0|101 0.3000 π2

1|101 0.7000

Y2, given Y1 = 1, h = 1, and k = 0 π2
0|110 0.4000 π2

1|110 0.6000

Y2, given Y1 = 1, h = 1, and k = 1 π2
0|111 0.3625 π2

1|111 0.6375
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Table 2: Toenail Data. Number and percentage of patients (N ) with severe toenail infection, for

each treatment arm separately.

Group A Group B

# Severe N % # Severe N %

Baseline 54 146 37.0% 55 148 37.2%

1 month 49 141 34.7% 48 147 32.6%

2 months 44 138 31.9% 40 145 27.6%

3 months 29 132 22.0% 29 140 20.7%

6 months 14 130 10.8% 8 133 6.0%

9 months 10 117 8.5% 8 127 6.3%

12 months 14 133 10.5% 6 131 4.6%
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Table 3: Toenail Data. Number of available repeated measurements per subject, for each treatment

arm separately.

Group A Group B

# Obs. N % N %

7 107 73.29% 117 79.05%

6 25 17.12% 14 9.46%

5 2 1.37% 8 5.41%

4 2 1.37% 4 2.70%

3 4 2.74% 3 2.03%

2 2 1.37% 1 0.68%

1 4 2.74% 1 0.68%

Total: 146 100% 148 100%
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Table 4: Toenail Data. Continuous, longitudinal unaffected-nail-length outcome. Parameter esti-

mates (standard errors) for the model specified by (32) and (35).

Unaffected nail length Dropout

Effect Parameter Estimate (s.e.) Parameter Estimate (s.e.)

Mean structure parameters

Intercept β0 2.510 (0.247) γ0 -3.127 (0.282)

Treatment β1 0.255 (0.347) γ1 -0.538 (0.436)

Time β2 0.558 (0.023) γ2 0.035 (0.041)

Treatment-by-time β3 0.048 (0.031) γ3 0.040 (0.061)

Variance-covariance structure parameters

Residual variance σ2 6.937(0.248)

Scale factor γ01 -0.076 (0.057)

Rand. int. variance τ2 6.507 (0.630) γ2
01τ

2 0.038 (0.056)
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Table 5: Toenail Data. Bivariate binary severity index at first and last time points. The observed

data are shown, as well as the fit of Models ‘Bin1’ and ‘Bin2’, together with their corresponding

counterparts. Both the fit to the observed data as well as to the hypothetical complete data are

shown.

Standard treatment Experimental treatment

Completers Dropouts Completers Dropouts

Observed data

77 5

42 9

10

3

79 3

42 3

11

6

Fit of Model ‘Bin1’

76.85 5.66

40.60 7.99

9.04 0.34

4.62 0.90

9.38

5.52

81.21 2.43

45.62 3.63

9.36 0.15

5.19 0.41

9.51

5.60

Fit of Model ‘Bin1(MAR)’

77.12 5.39

40.61 7.98

8.77 0.61

4.62 0.91

9.38

5.52

81.32 2.32

45.63 3.63

9.24 0.26

5.18 0.41

9.51

5.59

Fit of Model ‘Bin2’≡‘Bin2(MAR)’

75.86 5.58

41.50 8.15

9.72 0.72

3.74 0.73

10.44

4.47

80.16 2.40

46.61 3.72

10.27 0.31

4.20 0.34

10.58

4.53
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SeM : MCAR ⊂ MAR ⊂ NFD ⊂ general MNAR

l l l l

PMM : MCAR ⊂ ACMV ⊂ NFMV ⊂ general MNAR

⊃ 6= ⊂

interior

l l l l

SPM : MCAR ⊂ Theorem 2 ⊂ Theorem 5 ⊂ general MNAR

∪ ∪

Definition 2 ⊂ Definition 5

Figure 1: Subset-elationships between nested families within the selection model (SeM), pattern-

mixture model (PMM), and shared-parameter model (SPM) families. MCAR: missing completely at

random; MAR: missing at random; MNAR: missing not at random; NFD: non-future dependence;

ACMV: available-case missing values; NFMV: non-future missing values. The vertical two-headed

arrows indicate equivalence between mechanisms across model families.

Figure 2: Toenail Data. Individual profiles of 30 randomly selected subjects in each of the treatment

groups in the toenail experiment.
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Figure 3: Toenail Data. Evolution of the observed percentage of severe toenail infections in the two

treatment groups separately.

Figure 4: Toenail Data. Individual profiles of subjects with incomplete data, for each treatment

arm, extended using MNAR Model (32) (dashed line) and using the model’s MAR counterpart (solid

line). In each group, three subjects are highlighted.
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