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Abstract

During their injecting career, injecting drug users (IDUs) are exposed to some infections, like
hepatitis C virus (HCV) infection and human immunodeficiency virus (HIV) infection, due to
their injecting behavioral risk factors, such as sharing syringes or other paraphernalia containing
infected blood, or sexual behavior risk factors. If we consider that these IDUs might belong to a
social network of people where these behavioral risk factors are spread, then HCV and HIV
infections might be associated at both the individual and the population level. In this paper, we
study the association between HCV and HIV infection at the population level using aggregate
data. Our aim is to define a hierarchy of structured models with which the association between
HCV and HIV infection at population level and the time trend of prevalence can be investigated.
The data analyzed in the paper are “diagnostic testing data,” which consist of repeated cross-
sectional prevalence measurements from 1998 to 2006 for HCV and HIV infection, obtained from
a sample of 515 drug treatment centers spread among the 20 regions in Italy, where subjects went
for a serum diagnostic test. Since we do not have any individual data, it is not possible to relate
these prevalence data to socio-demographic or behavioral risk data. Each region defines a cluster
with repeated prevalence data for HCV and HIV infection over time. Several modeling
approaches, such as generalized linear mixed models (GLMMs) and hierarchical Bayesian models
are applied to the data. First, we test different covariance structures for the region-specific random
effects in the GLMM context; second, a hierarchical Bayesian model is used to refit the best
GLMM in order to obtain the posterior distribution for the parameters of primary interest. We
found that the correlation at population level between HCV and HIV is approximately 0.68 and the
prevalence of the two infections generally decreased over the years, compared to the situation in
1998.

KEYWORDS: association between HCV and HIV infection, IDUs, generalized linear mixed
models, hierarchical Bayesian models
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1 Introduction

During their injecting career, injecting drug users (IDUs) are exposed to several
infections such as hepatitis C virus (HCV), human immunodeficiency virus (HIV),
and hepatitis B virus (HBV). In the last years, a number of studies analyzed the
prevalence of HCV infection within the IDU population and the statistical associ-
ation of HCV infection with HIV infection in the same population (Hutchinson,
2004; Hopeet al., 2005; Mathëiet al., 2006; Suttonet al., 2006; Barrioet al.,
2007). It has been found that the risk of infection depends on several aspects of
injecting, e.g., the length of injection career, the frequency of injection, sharing syr-
inges and other paraphernalia (Hutchinson, 2004; Mathëiet al., 2006). The asso-
ciation between risk factors and disease status can be studied using cross-sectional
serological data, from which the prevalence and the force of infection can be es-
timated. Furthermore, in case that information about more than one infection is
available, co-infection can be studied at individual level (Suttonet al., 2008; Hens
et al., 2009; Del Favaet al., 2011). In particular Del Favaet al. (2011) showed
that there is a clear pattern of co-infection with HCV and HIV among IDUs in Italy
and Spain based on cross-sectional serological survey data: they investigated how
behavioral risk factors affect the association between the infections and concluded
that IDUs who are infected by one virus are more likely to be infected by the other
as well.

However, more often, only aggregate prevalence data are available, possibly
collected over several years. The analysis of these yearly prevalence data is useful
to investigate the time trend in prevalence, to establish intervention scenarios and
evaluate the results of health policies aimed to reduce behavioral risks, and to study
the evolution of the association between different infections. For instance, Vicker-
manet al. (2010) used prevalence data for IDUs from many geographical areas all
over the world and estimated a strong positive correlation between the change in
HIV infection prevalence and the change in HCV infection prevalence over time.
Specifically, the time series suggest that, when the prevalence of HCV infection
is low, any change in HIV prevalence over time is smaller than a change in HCV
infection prevalence in the same period; however, this difference reduces at higher
levels of HCV infection prevalence. Consequently, the authors postulate that HCV
infection prevalence can be seen as a population-level marker of injection-related
HIV risk, especially when the prevalence of HCV infection is high.

In this paper, we model the association between HCV and HIV infection at
population level, using aggregate serological data from 20 regions in Italy, collected
from 01/01/1998 to 31/12/2006. We focus the investigation on two points: (1) the
change of HCV and HIV infection prevalence over time and (2) the correlation
between HCV and HIV infection among the regions. In contrast with Vickermanet
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al. (2010), who modeled the dependency of HIV infection on HCV infection using
a conditional model, we use a joint model with random effects for the binomial
prevalence data of HCV and HIV infection. Two types of random-effects models
are used: generalized linear mixed models (GLMM, McCulloch and Searle, 2001;
Molenberghs and Verbeke, 2005) and hierarchical Bayesian models (Gilkset al.,
1996; Gelmanet al., 2004), the latter used to refit the best GLMM in order to obtain
more information about the parameters of interest. Both modeling approaches can
allow for overdispersion in binomial data, that is to say, they can deal with the
variability in the data that is not adequately captured by the model’s prescribed
mean-variance link (Molenberghset al., 2010): in particular, we use them to capture
the variability at the regional level. Note than we do not assume a priori that the two
infections are associated, but we rather test different hypotheses for the covariance
matrix of the random effects in order to find which one fits the data best.

The structure of this paper is as follows. In Section 2, we introduce and dis-
cuss the data. In Section 3, we focus on statistical methodology and formulate a
sequence of GLMMs to model the association between HCV and HIV infection.
The proposed models are fitted to the data and results are presented in Section 4. In
Section 5, we formulate the hierarchical Bayesian model and we present the results
of the analysis. Finally, we discuss and interpret all the results in Section 6.

2 The Prevalence Series from Italy

The data analyzed in the paper were reported to the European Monitoring Centre
for Drugs and Drug Addiction (EMCDDA) and consist of diagnostic testing data
providing information about the HCV and HIV infection status of IDUs in treatment
from the 20 Italian regions in the period 01/01/1998–31/12/2006. Within the frame-
work of a monitoring system established by the Italian government, these data were
collected in 515 drug treatment centers (DTCs) spread all over Italy, from subjects
who went there for a diagnostic test for HCV, HIV, and/or HBV. For each drug user,
a serum specimen was taken and tested for antibodies against some of the three
infections. Indeed, the fact that there is a difference among the sample sizes per
year per infection implies that some subjects were not tested for all three infections.
Note that individual data are not available for this study.

A first concern about these data is that we cannot distinguish between IDUs
and non-IDUs. We have an unknown proportion of low-risk individuals included
in the sample, thus we might underestimate the prevalence of both infections. This
bias could in theory extend to underestimating the association between HCV and
HIV infection among IDUs as well, because non-injectors are much less likely to
get HCV, but still carry a sexual risk to be infected with HIV: what follows is that
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the infection probabilities for HCV and HIV infection might differ between the two
behavioral risk groups. However, a recent study, based on individual serological
data from a sample of 1330 drug users from the Italian DTCs in 2005 (Camoniet
al., 2010), obtained national HCV and HIV infection prevalence estimates com-
parable with those from the aggregate data used in this paper: as regards HCV
infection, the estimated prevalence in 2005 from the individual data was 83.2% in
IDUs and 22% in non-IDUs, whereas with aggregate data we estimated a HCV in-
fection prevalence among drug users of 61.4%; as regards HIV infection, Camoni
et al. estimated a prevalence in 2005 of 14.4% in IDUs and of 1.6% in non-IDUs,
instead the aggregate data here used provided an estimated prevalence in drug users
of 13.8%. This indicates that the dominant risk group in the aggregate data is that of
IDUs. A second concern is that subjects usually self-selected (or were selected by
physicians) and were not recruited in a follow up study. However, the surveillance
system, based on a national protocol, is constant over time and across regions; as
a consequence, it is very likely that the population over time is comparable, as the
data mainly concern with drug users in longer term treatment, e.g., methadone sub-
stitution, who tend to stay in treatment for many years (up to life time), implying
that the population has little turnover. A third problem regards the comparability of
the population as concerns the uptake of the test and the retesting procedure, which
may underestimate the prevalence. On the one hand, it is unknown, but likely, that
someone with a positive test is not retested, and it is unknown to what extent known
positive tests are re-reported to the national system in following years. On the other
hand, since people asking for a test may be characterized by risky behaviors, the
prevalence may be overestimated. In every case, we note that these potential bi-
ases may be more severe for prevalence and less severe for the correlation between
HIV and HCV infection. Indeed, it seems reasonable to assume that these system-
atic biases work in the same direction on both infections, thus only the prevalence
might be affected, not the correlation. In summary, although these diagnostic test-
ing data are not the outcome of a designed study, they provide information about
the prevalence of both HCV and HIV infection in Italy and can be used to model
the change in the prevalence over time and to estimate the association between the
two infections (see, for example, Vickermanet al., 2010).

We begin with a preliminary exploratory data analysis. When taking into ac-
count the overall prevalence per region (see Figure 1), we notice a clear association
between the prevalence of HCV and HIV infection: the Spearman’s correlation
coefficient between the overall prevalence of HCV and HIV infection at regional
level is ρ = 0.80 and with the Spearman’s rank test we can reject the null hypo-
thesisH0 : r = 0 with p < 0.0001. This finding is in agreement with Vickermanet
al. (2010), who estimated a Pearson’s correlation between HCV and HIV of 0.67
among many countries in the world. Figure 2 shows the prevalence of HCV and

3

Del Fava et al.: Joint Modeling of HCV and HIV among IDUs with Repeated Data

Published by Berkeley Electronic Press, 2011



HIV infection per region over time, where the regions are sorted by the average
HIV infection prevalence over the years. Firstly, we notice that the prevalence of
HCV infection is much higher than the prevalence of HIV infection, reflecting the
fact that HCV is reported to be about 10 times more infectious than HIV (Crofts
et al., 2001). Secondly, Figure 2 reveals a pattern of between-region and within-
region variability. For instance, in 2000, HCV infection prevalence ranges from
13% (Valle d’Aosta) to 86% (Emilia Romagna), while, in 2006, HIV infection
prevalence ranges from 0.3% (Campania) to 55% (Liguria). Instead the within-
region variability is due to considerable differences in the sample size in successive
time-points, e.g., a few regions are characterized by very large variability, like Valle
d’Aosta and Molise, as concerns HCV, and Liguria, as concerns HIV.

The complete datasets, with the number of tested and infected individuals per
region and year, are presented in Table 1 and 2 in the supplementary material of this
paper.
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Figure 1: Overall regional observed prevalence (averaged over the years 1998-2006) for
each of the 20 regions.
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3 Statistical Methods: Joint Modeling of HCV and
HIV Infection Prevalence with GLMMs

In this section, we formulate a sequence of nested random-effects models for bi-
nomial data which can allow for the correlation between HCV and HIV infection
among the regions over the years, where the effect of time is included in the model
as a set of unstructured time evolution slopes. The possible correlation among the
observations from the same region and the deviation of the region-specific preva-
lence from the overall prevalence is captured by region-specific random intercepts.

3.1 The Independence Model

The data consist of aggregate repeated measurements over a period of 9 years,j =
1,2, . . . ,9. Let yyyi = (yi1,yi2) be the response vector for thei–th region, whereyi1

denotes the number of reported cases of HCV infection andyi2 denotes the number
of reported cases of HIV infection. Letyyyik = (yi1k, . . . ,yiJk) be the response vector
representing the number of infected individuals with infectionk in the i–th region
in year j. Let ni jk be the sample size in thei–th region in yearj for infectionk. We
assume that the distribution ofyi jk is binomial:

yi jk ∼ Bin(πi jk ,ni jk) i = 1, . . . ,20, j = 1, . . . ,9, k = 1,2.

Here,πi j1 = P(yi j1 = 1) andπi j2 = P(yi j2 = 1) are the prevalence of HCV and
HIV infection in thei–th region in yearj, respectively. We further assume a set of
unstructured means for the time effect, i.e., we fit infection-specific parameters for
each year, but the first: {

g(πi j1) = β01+β11j ,
g(πi j2) = β02+β12j .

Choosing the functiong(·) to be the logit link, we can interpret the time evol-
ution parametersβ11j andβ12j , with j = 2, . . . ,9, as the log odds ratios of being
infected with HCV and HIV, respectively, in yearj, compared to the reference year
1998. Note that this model (1) assumes that HCV and HIV infections are independ-
ent and there are no region-specific effects.
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3.2 Generalized Linear Mixed Models (GLMMs)

3.2.1 The Independent Random-Effects Model

To capture the extra variability at the regional level, the first GLMM includes a
region-specific effect in addition to the time effect, while keeping the independence
between HCV and HIV infection. Hence, the independence model (1) is rewritten
in the following way: {

g(πi j1) = β01+β11j +ai ,
g(πi j2) = β02+β12j +bi .

Here, ai and bi are region and infection-specific random effects assumed to
be independent from each other. More precisely, we assume a bivariate normal
distribution with variance-covariance matrix for random effects given by(

ai

bi

)
∼MVN

[(
0
0

)
,DI1 =

(
σ2

a 0
0 σ2

b

)]
.

The diagonal structure of the covariance matrixDI1 of the random effects for
model (2a) implies that the observations on a particular infection within the same
region are associated over time, but HCV and HIV infection prevalences are inde-
pendent. In addition, we test a model (2b) with a more restrictive structure for the
independent covariance matrix, that is, we assume that HCV and HIV have inde-
pendent infection-specific random effects, but with equal variances:

DI2 =
(

σ2 0
0 σ2

)
.

One can test the null hypothesisH0 : σ2
a = σ2

b using the likelihood ratio test
(Molenberghs and Verbeke, 2005).

3.2.2 The Shared Random-Effects Model

The random-effects models (2a) and (2b) assume that HCV and HIV infections are
independent. Instead, the shared random-effects model takes into consideration the
possible association between the two infections in the same region. In order to
account for this association, we use the following set of random effects:{

g(πi j1) = β01+β11j +bi ,
g(πi j2) = β02+β12j + γbi .

Here,bi is a region-specific random effect assumed to follow a normal distribu-
tion, bi ∼ N(0,σ2), andγ is a scale parameter. The underlying assumption behind
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the shared random-effects model (3) is that the correlation between the random ef-
fects is equal to 1. The parameterγ is used to relax the assumption of common vari-
ance between the random effects of HCV and HIV infection, sinceσ2

HIV = γ2σ2
HCV.

The case withσ2 = 0 implies that the two infections are uniformly spread among
the regions. Note that model (3) implies that regions with high levels of HCV have
also high levels of HIV, ifγ is positive.

3.2.3 The Correlated Random-Effects Model

As mentioned above, the shared random-effects model (3) assumes a perfect posit-
ive correlation between the infections at the level of the linear predictor. The next
two GLMMs allow to estimate a more realistic value of the correlation. This can be
incorporated in the model by specifying two possible covariance structures: an un-
structured matrix (model 4a) and a Toeplitz matrix (model 4b). The former matrix
allows for different variance parameters for the random effects; the latter assumes
only two parameters, that is, equal variances for the random effects and the covari-
ance between them. The two matrices are shown below:

DU =
(

σ2
a σab

σab σ2
b

)
Unstructured matrix.

DT =
(

σ2 σab

σab σ2

)
Toeplitz matrix,

The two matrices imply that HCV and HIV infections are associated and this
association can be modeled directly using the correlation coefficient between the
region-specific random intercepts:

ρU =
σab

σaσb
ρT =

σab

σ2 .

A positive correlation coefficient implies concordance between the prevalence
of the two infections, that is to say, in a certain region, when the prevalence of
HCV infection grows, also the prevalence of HIV infection grows, although with
a different magnitude. Note that, forρ = 1, the correlated random-effects models
reduce to the shared random-effects model (3), whileρ = 0 implies that the models
can be reduced to the independent random-effects models (2a) and (2b). We recall
here thatρ measures the association between HCV and HIV infection at the level
of the linear predictor.
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4 Application to the Data: GLMMs

The GLMMs discussed above were fitted with SAS software, using the proced-
ure NLMIXED with adaptive Gaussian quadrature method based on 10 quadrature
points: this method is considered to give precise estimates at the price of being
computationally intensive (Molenberghs and Verbeke, 2005). Table 1 presents the
covariance parameter estimates, together with the Akaike’s information criterion
(AIC) for each model. Note that the model with the smallest AIC is the one with
the best compromise between goodness-of-fit and model complexity. Model selec-
tion using the Bayesian information criterion (BIC) gives similar results, as shown
in the supplementary material for the paper.

Table 1: Comparison of the fitted models with AIC and parameter estimates for the
variance components with respective 95% asymptotic confidence intervals.

Model Type AIC Covariance parameter estimates
1 Independence model 84753 -
3 GLMM shared RE 21032 γ̂ = 1.96 (1.92,2.00)

σ̂2 = 0.13 (0.04,0.22)
2b GLMM independent RE

Equal parameters 10616 σ̂2 = 0.41 (0.22,0.61)

2a GLMM independent RE σ̂2
a = 0.25 (0.08,0.42)

Different parameters 10615 σ̂2
b = 0.58 (0.19,0.98)

GLMM correlated RE σ̂2 = 0.41 (0.18,0.64)
4b Toeplitz covariance 10608 σ̂ab = 0.26 (0.03,0.49)

ρ̂ = 0.64 (0.35,0.92)
σ̂2

a = 0.25 (0.08,0.42)
4a GLMM correlated RE σ̂2

b = 0.57 (0.19,0.96)
Unstructured covariance10605 σ̂ab = 0.26 (0.04,0.48)

ρ̂ = 0.69 (0.43,0.94)

The abbreviation RE stands for ”random effects”.

9

Del Fava et al.: Joint Modeling of HCV and HIV among IDUs with Repeated Data

Published by Berkeley Electronic Press, 2011



the models with correlated random effects, the AIC for the model with unstructured
covariance matrix is 10605 and is smaller than the AIC of the model with Toep-
litz covariance matrix (10608). We formally test the null hypothesisH0 : σ2

a = σ2
b :

the LRT statistic is 5.3 on 1 d.f. withp = 0.025, entailing that the null hypothesis
should be rejected, therefore we conclude that the variability of the random effects
for HCV and HIV infection is not the same. From the best model, we can estim-
ate the correlation between the random effects of the two infections:ρ̂ = 0.69 with
95% CI (0.43, 0.94). This implies a strong positive correlation (but different from 1)
exists between the infections among the regions at the level of the linear predictor,
indicating a concordant association.

Figure 3 shows the odds ratios for HCV and HIV infection with their 95%
asymptotic confidence intervals in function of time (the baseline is 1998), estimated
by exponentiating the time evolution slopesβ1k j from the best model. All the odds
ratios, apart from the one for HCV in 1999, are significantly different from 1. In
general, the time evolution odds ratios decrease along the years with respect to 1998
for both infections. The exceptions are in 2000 and 2001 for HCV, when the odds
ratios are bigger than 1, indicating a rise in the prevalence with respect to 1998.

Figure 4 shows the scatterplot of the random effects for HIV infection against
those for HCV infection, obtained from the correlated model with unstructured co-
variance. The comparison between this graph and Figure 1 shows how the cor-
related model effectively translated the regional prevalence pattern to the regional-
specific random effects pattern, while correcting for the time effect. Comparing the
two figures, we see that we can divide the plot in 4 parts, with the regions mostly
lying in the first and in the third quadrant: in the first quadrant we have the re-
gions with higher levels of both infections, e.g., Emilia Romagna, Sardegna, and
Trentino Alto Adige, whereas the third quadrant contains the regions with lower
levels of both infections, e.g., Campania and Valle d’Aosta.

According to the AIC, we discard the independence and the shared random-
effects models. Considering the remaining GLMMs, the models which best fit in
terms of model complexity are the two correlated random-effects. The likelihood
ratio tests (LRT) indicate that we can reject the null hypothesis that the covari-
anceσ̂ab = 0 (LRT=10 with 1 d.f.,p=0.0016, for the models with equal variances;
LRT=12 with 1 d.f., p=0.0005, for the models with different variances). Among
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5 Hierarchical Bayesian Correlated Random-Effects
Model for HCV and HIV Prevalence

In order to obtain more information about the correlation between the two infec-
tions, we refit the correlated random-effects model with unstructured covariance
(model 4a) within the hierarchical Bayesian framework. The added value of this
approach is that it provides not only with a point estimate of the parameter of in-
terest and confidence interval, but it estimates also the posterior distribution ofρ.
We assume that we do not have any prior knowledge about the true parameter val-
ues, thus we use flat prior distributions for the parameters such that their posterior
distributions will be mostly determined by the likelihood of data. The model is
parameterized in the following way. In the first stage of the model, a binomial like-
lihood is assumed for both HCV and HIV infection, with linear predictors given
by {

g(πi j1) = α1i +β11j ,
g(πi j2) = α2i +β12j .

For the joint prior distribution of the random interceptsα1i andα2i , we use the
hierarchically centered parameterization (Gelfandet al., 1996; Roberts and Sahu,
1997), that consists in specifying a distribution for the random effects which is not
centered around zero but on other stochastic meansβ01 andβ02,(

α1i

α2i

)
∼MVN

[(
β01

β02

)
,D =

(
σ2

a σab

σab σ2
b

)]
.

This method is demonstrated to lead to a more efficient Gibbs sampling scheme,
that is to say, the mixing of the stochastic chains is faster and the convergence re-
quires a fewer iterations than the standard parameterization (Gelfandet al., 1996).
In order to complete the specification of the hierarchical model, we specify hyper
prior distributions for the hyper parametersβ01 andβ02:{

β01∼ N(0,1000),
β02∼ N(0,1000).

The hierarchical centering method is also used for the time evolution parame-
ters of the unstructured means. We specify normal distributions for the parameters
β11j andβ12j , which are centered on the meansµβ11

andµβ12
(uninformative prior

distributions in the form of normal distributions with very large variances), with
independent variancesσ2

β11
andσ2

β12
(uninformative prior distributions in the form

of inverse gamma distributions with small parameters). For example, the time evol-
ution parameters for HCV infection are given by:
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β11j ∼ N(µβ11

,σ2
β11

), prior for β11j ,

µβ11
∼ N(0,1000), hyperprior forµβ11

,
σ2

β11
∼ IG(0.01,0.01), hyperprior forσ2

β11
.

Next, we specify a prior distribution for covariance matrixD. We used the
Wishart distribution, which is usually employed in the estimation of the covariance
matrix in case of multivariate normally distributed data (Gilkset al.; 1996, Cong-
don, 2003):

D∼W2

[
R=

(
σ2

a σab

σab σ2
b

)]
;

the matrixRmust be a positive definite matrix and thus we used the identity matrix
for the starting values, in order to provide as less information as possible.

5.1 Application to the Data: Hierarchical Bayesian Model

The hierarchical Bayesian model was fitted in JAGS (Plummer, 2007) through the
packageR2jags (Yu-Sung and Masanao, 2011) in R. We ran the model with three
chains of 20000 iterations and we discarded the first 10000 iterations for each chain
as burn-in period. Employing multiple MCMC chains, we could use the ”poten-
tial scale reduction factor” (Gelman and Rubin, 1992) to check the convergence
of each parameter. This diagnostic statistic compares the within-variability and
the between-variability of the chains and it converges to 1 in case of MCMC con-
vergence. For all the parameters of the hierarchical Bayesian model, we obtained
values very close to 1. Figure 5 shows the posterior densities of the time evolu-
tion parameters for HCV infection, which coincide with the ML estimates from the
correlated GLMM (4a) .

Table 2: Comparison of the results from the best models: the correlated random-effects model
(4a) with unstructured covariance and the hierarchical Bayesian correlated model. We report the
estimates for the variance parameters and for the correlation.

GLMM Bayesian model
Effect Parameter Estimate 95% CI Estimate 95% CI
Var RE HCV σ̂2

a 0.25 (0.08, 0.42) 0.33 (0.18, 0.63)
Var RE HIV σ̂2

b 0.57 (0.19, 0.96) 0.79 (0.41, 1.49)
Cov RE HCV & HIV σ̂ab 0.26 (0.04, 0.48) 0.35 (0.14, 0.73)
Cor HCV & HIV ρ̂ 0.69 (0.43, 0.94) 0.68 (0.38, 0.86)

The abbreviation RE stands for ”random effects”.
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Table 2 shows the posterior means for the variance components obtained from
the hierarchical Bayesian model, compared with the estimates from the GLMM. We
notice that the posterior means of the variance components are larger than the ML
estimates obtained from the GLMM, while the correlation coefficient remains the
same (̂ρ = 0.68 with 95% credible interval 0.38–0.86). Figure 6 shows the density
estimate for the posterior distribution of the correlation coefficient. We notice that
the distribution is left-skewed, with relatively few low values, implying that larger
values of the correlation are more probable than smaller values.

Time evolution log odds ratio for HCV infection (β11j)

D
en
si
ty

0

5

10

15

20

25

30

35

-0.2 -0.1 0.0 0.1

Year
1999

2000

2001

2002

2003

2004

2005

2006

Figure 5: Density estimates for the posterior distribution of the time evolution log odds
ratios of HCV infectionβ11j , from 1999 to 2006 (baseline: year 1998), together with the
maximum likelihood estimates from the correlated GLMM with unstructured covariance
(dashed lines).

Figure 7 shows the posterior means for the random effects of HCV and HIV
infection and reveals the same pattern observed in Figure 4. Note that the posterior
means are given by the difference between the posterior means of the centered pa-
rametersᾱki and the posterior means of their hyper parametersβ̄0k, i.e., ᾱ1i − β̄01

andᾱ2i− β̄02, respectively. In this way, the random effects’ estimates that we obtain
are comparable with the ones from the correlated GLMM.
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6 Discussion

Using repeated cross-sectional prevalence data for injection-related infections in
IDUs in treatment in Italy from 1998 to 2006, we could define a hierarchy of struc-
tured models with which the association between HCV and HIV infection at pop-
ulation level can be investigated. We fitted several random-effects models for the
prevalence of HCV and HIV infection, namely, five GLMMs with different covar-
iance structures and a hierarchical Bayesian model. The models were conditioned
on region-specific random intercepts, while correcting for the time effect. We tested
different covariance matrices with increasing degree of association between the
random effects in order to determine the structure that better fitted the data. The
random effects served two purposes: firstly, their variance is a measure of the re-
gional heterogeneity in the infection prevalence; secondly, the correlation between
the region-specific random effects for each infection,ai andbi , is a measure of the
association between the two infections.

We have shown in Table 2 that the estimated variance of the random effects for
HIV infection is larger than the variance of the random effects for HCV infection,
entailing a higher regional heterogeneity for HIV infection: this means that there
are regions with prevalence levels of HIV infection much higher than the national
level and others with much lower levels, while the prevalence of HCV infection is
closer to the national levels. Looking at the time evolution odds ratios per year, with
reference 1998, we observe that odds ratios of HCV and HIV infection are usually
smaller than one and generally decrease over the years, except in 2000 and 2001,
when there is an increase with respect to 1998. The decrease is more evident for
HCV infection and less for HIV infection. The fact that the overall prevalence of
HCV infection and, at a lesser extent, of HIV infection in Italy reduces suggests
that strategies implemented at national and regional level and aimed at reducing
risk behaviors among drug users in the last years have borne fruit. The pattern of
HIV infection prevalence is confirmed by other studies as well: independent data in
the form of case-reporting rates of newly diagnosed infections in drug users in Italy
suggest that HIV infection diagnosis rates among drug users were declining until
2005 and remained relatively stable since (ECDC, 2009).
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Figure 6: Density estimate for the posterior distribution of the correlation coefficient for the
region-specific random effects of HCV and HIV infection, with over imposed the estimates
from the Bayesian model (dashed line) and from the GLMM (dotted line).
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Figure 7: Posterior means of the random effects of HCV (ᾱ1i − β̄01) and HIV (ᾱ2i − β̄02)
from the hierarchical Bayesian correlated model.
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The point estimates of the correlation obtained from the GLMM and the Bayesian
model are equal to 0.69 and 0.68, respectively. These results are very similar to the
ones of Vickermanet al. (2010), who analyzed data from all over the world (Italy
included) using a conditional model. All these results strongly suggest that there
is a notable correlation between HCV and HIV infection at regional level, meaning
that the infection prevalence tends to rise or decrease linearly and concordantly.

As we mentioned above, the variance of the random effects is significant and
this provides evidence of regional heterogeneity, that is to say, there are regions
characterized by high levels of prevalence for both infections (e.g., Emilia Ro-
magna, Sardegna, and Trentino Alto Adige) and regions with lower profiles (e.g.,
Campania, Valle d’Aosta). Therefore, two important indications can be drawn from
these findings for the health policy-makers at region levels. First, interventions
to reduce behavioral risks among drug users ought to be carried out specifically
for each region, because of the significant heterogeneity observed at such level.
Second, it must be taken into account that the two infections usually move in the
same direction, even though with different magnitude, since infectiveness of HIV is
lower than that of HCV. This implies that the social network IDUs belong to and the
associated risk factors (sharing syringes or other paraphernalia, higher or lower fre-
quency of injection, presence of strangers in the network, unsafe sexual relations)
ought to have a central importance in planning intervention policies (Vickermanet
al., 2009). Indeed, on the one hand, injections are the most likely way for IDUs to
get infected with HCV, while the risk of sexual transmission is negligible (Neumayr
et al., 1999); on the other hand, an important transmission route for HIV infection
is through unsafe sexual relationships, even though, among IDUs, the sharing of
injecting equipment is a very likely way of transmission as well. Hence, given the
strong correlation between HCV and HIV infection, it may be that IDUs normally
belong to a network of subjects characterized by risky behaviors, more or less sig-
nificant, either in terms of drug-related behavioral risks, e.g., sharing syringes or
other paraphernalia, or in terms of sex-related behavioral risks, e.g., unprotected
sex or prostitution. However, this hypothesis can only be tested using individual
data, connected with information regarding drug and sex behavioral risks, not with
the aggregate data used in this paper. Such an analysis is presented in Del Fava
et al. (2011), where the effects of drug-related behavioral risks on the association
between HCV and HIV infection are investigated.

The data analyzed in this paper have the limitation that they do not allow to
link the prevalence with socio-demographic and behavioral risk information, due to
the lack of the individual data. Therefore, we could only study the trend in preva-
lence over time and the association between the infections at population level. As
we mentioned before, given the ”diagnostic testing” nature of these aggregate data,
there may be a number of biases in the estimation of the prevalence. Although
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the proportion of IDUs among the tested individuals is unknown, the prevalence of
HCV and HIV infection in the data is found to be similar to the prevalence among
the IDUs reported by Camoniet al. (2010). In addition, not all subjects were tested
for all infections, thus the sample sizes for HCV and HIV infection are generally
different. It is also possible that people tested positive once are not retested again,
thus it is not known to which extent positive tests are re-reported to the national
system in the following years, and this might imply an underestimation of the prev-
alence. In addition, such data can provide a national picture of all drug users taking
the tests. Finally, people who self-selected (or were selected by physicians) to be
treated in a DTC are likely to present more risky behaviors and this can result in an
overestimation of the prevalence. Nonetheless, such data really provide a national
picture of all drug users taking the tests. Hence, we believe that they can be used
for the estimation of the correlation between HCV and HIV infection, given that
the biases likely affect more the prevalence of the infections rather than their cor-
relation. For all these reasons, these types of data have already been used to model
the association between HCV and HIV infection (see, for example, Vickermanet
al., 2010).

In this paper, we used models where the fixed effects for the time trends and
the regional-specific random effects were kept separated. In the next stage, it might
be interesting to analyze their combined effects, by including in the models region
and time-specific random effectsθi jk , for the regioni, the yearj, and the infection
k, to fully take into account the overdispersion in these binomial data (Molenberghs
et al., 2010). Moreover, we are aware that generalized linear mixed models and
hierarchical Bayesian models are not the only models available to study multivari-
ate binary data. For future research, it would be interesting to explore the use of
multivariate logit copula models (Nikoloupoulos and Karlis, 2008) to analyze these
data: in such way, we could use other association measures, such as Kendall’s tau,
to jointly analyze HCV and HIV infection prevalence, and study the effect of im-
portant covariates, such as time and region.
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