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Abstract. In this contribution, a rate-dependent mesoscopic masonry model is presented
in which the mortar joints are incorporated by embedded weak discontinuities based on
partitions of unity. Within the discontinuities, both an isotropic damage and a Perzyna
viscoplastic model are used to describe joint degradation. The elastic domain of the joint
behaviour is bounded by a modified Drucker-Prager yield function. The performance of
the developed masonry model is demonstrated by the simulation of a three-point bending
test and a shear wall test.

1 INTRODUCTION

The modelling of masonry has been a popular topic within computational mechanics
for some years now. Two major groups of modelling approaches can be distinguished:
macroscopic and mesoscopic [1]. In the macroscopic approach the joints and bricks are
homogenized to one orthotropic material. The main advantage of this method is that not
much computational effort is needed to calculate large structures. However, the obtained
crack path is less detailed. This drawback can be alleviated by the use of mesoscopic mod-
els. In this approach, joints and bricks are modelled by separate entities. Classically, the
joints are incorporated by interface elements, situated on the boundaries of the continuum
brick elements [1, 2]. When a critical state is reached in a joint, a strong discontinuity
(i.e. a jump in the displacement field) is introduced in the interface.
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An alternative way to incorporate strong discontinuities is the partition of unity method
[3, 4, 5]. Within this method, nodes are locally enhanced to enrich the solution with
discontinuous modes. This concept was applied to masonry by De Proft et al. [6] and
will be extended in this paper by the incorporation of weak discontinuities. A weak
discontinuity introduces a jump in the strain field, allowing for failure to localise in a zone
with finite width [7, 8, 9]. The thickness of this failure is in this case linked to the joint
thickness.

2 PARTITION OF UNITY CONCEPT FOR WEAK DISCONTINUITIES

2.1 Displacement decomposition

The displacement field of a body crossed by a weak discontinuity (Figure 1) is obtained
by:

u = û +HΩw ũ (1)

in which û and ũ denote the regular and enhanced displacement field, respectively.
HΩw is a unit ramp function [10], defined by:

HΩw =


0 if x ∈ Ω−

ξ−ξ−
ξ+−ξ− if x ∈ Ωw

1 if x ∈ Ω+

(2)

Figure 1: Body crossed by a weak discontinuity
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2.2 GFEM discretisation

In this work, the Generalized Finite Element method has been adopted to model the
discontinuities [11]. The unit ramp function (Equation (2)) is used as an enhanced basis:
its value equals unity for a point inside a masonry brick. When a support of a node
is crossed by a weak discontinuity (i.e. joint), an enhanced set of degrees of freedom is
added to the solution field of that node. Consequently, each brick possesses its own set
of enhanced degrees of freedom. Special care has to been taken in the implementation of
a meshgenerator, to prevent linear dependancy of the enhanced basis functions [11]. In
the current model, two linear quadrilateral elements are used to model one brick.

3 MATERIAL MODELS

Two material laws have been implemented to model the nonlinear joint behaviour: an
isotropic damage model and a viscoplastic model. The stone behaviour remains linear
elastic throughout the simulations. Consequently, cracks cannot run through bricks.

3.1 Damage model

The nonlinear joint behaviour is governed by an exponential damage evolution law [12]:{
ω = 0 if κ < κ0

ω = 1− κ0
κ

exp
[
− (κ−κ0)

γ

]
if κ ≥ κ0

(3)

where κ0 = ft0
E

in which E represents the Young’s modulus of the mortar joints. The
loading function κ, expressed in terms of strain invariants, is derived from the Drucker-
Prager model [13]:

κ = α
I1,ε

1− 2ν
+ β

√
J2,ε

1 + ν
(4)

The material parameters α and β are chosen to fit the uniaxial tensile strength ft0 and
uniaxial compressive strength fc0:

α =
1

2

fc0 − ft0
fc0

(5)

β =

√
3

2

fc0 + ft0
fc0

(6)

Finally, the brittleness of response is governed by γ:

γ =
GfI

lcft0
− 1

2
κ0 (7)

where GfI denotes the mode I fracture energy and lc is a regularising equivalent length
parameter.
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3.2 Viscoplastic model

An alternative way to model the softening and failure behaviour of masonry is the
use of a viscoplastic model. The incorporation of this type of model is twofold: time-
dependent behaviour can be modelled (e.g. the creep phenomenon [14]) and the model
has a regularising effect [15, 16]. In this work, the Perzyna overstress model has been
adopted [17]. Classically, the strain rate is decomposed into an elastic and a viscoplastic
strain rate:

ε̇ = ε̇e + ε̇vp (8)

in which the viscoplastic strain rate for non-associative flow is expressed by:

ε̇vp =
1

η
〈φ(f)〉m (9)

where η represents the viscosity parameter, f is a yield function and m = ∂g
∂σ

in which
g is a viscoplastic potential. 〈φ(f)〉 is defined as:

〈φ(f)〉 =

{ (
f
σ̄0

)N
if f ≥ 0

0 if f < 0
(10)

in which σ̄0 is the initial yield stress and scalar N is a material parameter which equals
1 in the present study. The rate-independent and elastic cases can be recovered when η
approaches 0 and∞, respectively. The elastic domain is bounded by a modified Drucker-
Prager yield surface, expressed in terms of stress invariants I1,σ and

√
J2,σ:

f = aI1,σ +
√
χ2 + J2,σ − b (11)

where χ controls the hyperboloid character of the yield surface (Figure 2). The original
Drucker-Prager cone is recovered by setting χ = 0. If χ 6= 0, the apex is smoothened and
no special stress return-mapping algorithms are required [16]. The material parameters a
and b are chosen to fit the uniaxial tensile and compressive strenghts:

a =
1√
3

fc − ft
fc + ft

(12)

b =
2√
3

fcft
fc + ft

(13)

The viscoplastic potential used in this paper is given by:

g = a′I1,σ +
√
χ2 + J2,σ (14)

in which a′ is expressed in terms of the dilatancy angle ψ [14]:

a′ =
tanψ√

9 + 12 tan2 ψ
(15)
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Figure 2: Drucker-Prager hyperboloid yield surface in principal stress space

Isotropic softening of the material model is determined by an exponential law:

ft = ft0 exp

[
−ft0

κw
GfI

]
(16)

where ft0 represents the initial uniaxial tensile strength and GfI is the mode I fracture
energy. In the present study, the compressive strength is assumed to remain constant
during the simulations. The work softening parameter κw is calculated by:

κw = ∆tσT ε̇vp (17)

in which ∆t is the time increment. The viscoplastic rate equations are integrated with
a fully implicit Euler backward scheme:[

I + ∆λDel ∂m
∂σ

Delm̄

−∆t
η
∂φ
∂f
n 1− ∆t

η
∂φ
∂f

∂f
∂κw

∂κw
∂λ

]{
dσ
dλ

}
=

{
σtrial − σ −∆λDelm

∆t
η
〈φ(f)〉 −∆λ

}
(18)

where Del represents the elastic material stiffness matrix, n = ∂f
∂σ

, σtrial denotes the
elastic predictor stress and:

m̄ = m + ∆λ
∂κw
∂λ

∂m

∂κw
(19)
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Since plane stress conditions are assumed in this paper, the return mapping procedure
is performed in an expanded stress space (σ = {σxx σyy σxy σzz}T ) and the zero out-of-
plane stress condition σzz = 0 is enforced at integration point level [14, 18]. After the
return mapping procedure, the algorithmic consistent tangent stiffness matrix is retrieved
by:

Dt = H− Hm̄nTH

− ∂f
∂κw

∂κw
∂λ

+ nTHm̄ + η

∆t ∂φ
∂f

(20)

in which:

H =

((
Del
)−1

+ ∆λ
∂m

∂σ

)−1

(21)

4 NUMERICAL EXAMPLES

4.1 Three-point bending test

In order to demonstrate the potential of the developed mesoscopic masonry model, a
three-point bending test has been carried out using the isotropic damage model. The
material parameters are given by Tables 1-2. The results show a good agreement with
the experimental data obtained from [19] (dotted curve).
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Figure 3: Load-CMOD curve and deformed mesh for a three-point bending test

Table 1: Elastic material parameters for the three-point bending test

dimensions E [N/mm2] ν

joints 10mm 3369 0,20
bricks 76× 230× 110mm3 16700 0,15

6



B. Vandoren, K. Heyens and K. De Proft

Table 2: Inelastic material parameters for the three-point bending test

ft0 [N/mm2] fc0 [N/mm2] GfI [N/mm] lc [mm]

joints 0,086 7,26 0,002 1

4.2 Shear wall test

The second example is a shear wall with opening [20]. Tables 3-4 summarise the
employed material parameters. A confining stress of 0, 30N/mm2 is applied on top of the
wall. The average horizontal loading rate at the top equals 0, 01mm/s.
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Figure 4: Load-displacement curve and deformed mesh for a shear wall test

The results show a good agreement with those from previous research work (dotted
curve), in which a sequentially linear approach has been used [6]. Since no compressive
cap is implemented, no compressive failure takes place and the load-displacement curve
keeps increasing. The typical stair-step crack pattern, found in experimental tests [20], is
recovered.

Table 3: Elastic material parameters for the shear wall test

dimensions E [N/mm2] ν

joints 10mm 782 0,14
bricks 52× 210× 100mm3 16700 0,15
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Table 4: Inelastic material parameters for the shear wall test

ft0 [N/mm2] GfI [N/mm] fc0 [N/mm2] Gfc [N/mm] ψ [◦] η [s] χ

joints 0,25 0,018 10,5 ∞ 0 30 0,01

5 CONCLUSIONS

In this paper, a mesoscopic masonry model is developed in which joints are modelled
by weak discontinuities. The discontinuities are incorporated using the Generalized Finite
Element Method. A modified Drucker-Prager model is used to describe the failure of the
mortar joints, whereas the stone behaviour remains linear elastic. A Perzyna viscoplastic
model is employed as a regularisation technique. Special attention was given to the
algorithmic aspects of the model. A three-point bending test and a shear wall test showed
that the presented method leads to realistic load capacities and failure patterns. In the
example of the shear wall test, the results showed good agreement with those of previous
research work, although the modelling approaches differ.
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