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1. Introduction 
 
These days, durability and sustainability are gaining more and more interest.  High 
energy and material costs force us to optimise the energy use in buildings and the use 
and re-use of building materials.  An obvious way to re-use building materials is 
renovation of buildings.  Since in a renovation project the function of the building is not 
always kept, changes must be made in order to make the new function of the building 
possible.  These changes can be both on the architectural (e.g. changes in division) as 
on the constructive level (e.g. change of loading conditions).  This leads to new 
mechanical conditions which often include a raise of vertical loads due to higher floor 
loads, increase of slenderness of the wall due to removal of intermediate floors and the 
introduction of eccentric loading due to new intermediate floors.  In order to preserve the 
existing load carrying structure, the construction must be recalculated with these new 
loading conditions.   
 
Most old and historical buildings are constructed using masonry.  The recalculation of 
masonry structures subjected to the new loading conditions shows multiple problems. 
First of all, the actual material parameters describing the behaviour of masonry are not 
the same as the initial parameters.  Over the years, strength and stiffness of masonry 
change, altering the overall behaviour of a wall.  It is well known that masonry structures 
can suddenly collapse /1/.  Secondly, the current masonry codes are based on new brick 
materials and mortars.  In older buildings, the quality of brick and mortar differs from 
values nowadays.  Finally, the masonry wall may already be damaged or there might be 
irregularities in the wall (e.g. windows openings).  
 
Consequently, advanced computational modelling techniques are often necessary to 
compute a realistic value of the ultimate collapse load of a masonry structure.  Three 
major groups of finite element modelling approaches exist: microscopic, mesoscopic and 
macroscopic /2/.  The former approach models each masonry constituent (the units, the 
mortar and the unit-mortar interface) in high detail, thus leading to many degrees of 
freedom and high computation times.  In the macroscopic approach the joints and bricks 
are homogenized to one orthotropic material.  The main advantage of this method is that 
not much computational effort is needed to calculate large structures.  However, the 
obtained crack path is less detailed.  These drawbacks can be alleviated by the use of 
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mesoscopic models.  In this approach, joints and bricks are modelled by separate 
entities, but in less detail than the microscopic approach.  Classically, the joints are 
incorporated by interface elements, situated on the boundaries of the continuum brick 
elements (/2/, /3/).   When a critical state is reached in a joint, a strong discontinuity (i.e. a 
jump in the displacement field) is introduced in the interface.  
 
An alternative way to incorporate strong discontinuities is the partition of unity method 
(/4/, /5/, /6/).  Within this method, nodes are locally enhanced to enrich the solution with 
discontinuous modes.  This concept was applied to masonry by De Proft et al. /7/ and will 
be extended in this paper by the incorporation of weak discontinuities.  A weak 
discontinuity introduces a jump in the strain field, allowing for failure to localise in a zone 
with finite width (/8/, /9/).  The thickness of this failure is in this case linked to the joint 
thickness.  The main advantages of the weak discontinuity approach are the ability to 
incorporate the real mortar and brick dimensions, and the ability to perform the 
constitutive modelling in the general stress and strain spaces. 
 

2. Partition of unity concept for weak discontinuities 
 

2.1. Displacement decomposition 
 
The displacement field of a body crossed by a weak discontinuity (Figure 1) is obtained 
by: 
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in which û  and u  denote the regular and enhanced displacement field, respectively.  

wH is a unit ramp function /10/, defined by: 
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Figure 1: Body crossed by a weak discontinuity 
 
 

2.2. GFEM discretisation 
 
In this work, the Generalized Finite Element method has been adopted to model the 
discontinuities /11/.  The unit ramp function (Equation 2) is used as an enhanced basis: 
its value equals unity for a point inside a masonry brick.  When a support of a node is 
crossed by a weak discontinuity (i.e. joint), an enhanced set of degrees of freedom is 
added to the solution field of that node.  Consequently, each brick possesses its own set 
of enhanced degrees of freedom.  Special care has to been taken in the implementation 
of a meshgenerator, to prevent linear dependency of the enhanced basis functions /11/.  
In the current model, two linear quadrilateral elements are used to model one brick. 
 

3. Nonlinear modelling 
 

3.1. Material model 
 
The stone behaviour remains linear elastic during the simulations, whereas the joint 
behaviour is governed by an exponential damage evolution law /12/: 
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where   0
0

tf

E
 in which E represents the Young’s modulus of the mortar joints.  The 

loading function  , expressed in terms of strain invariants, is derived from the Drucker-
Prager model /13/ : 
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in which ft0 and fc0 are the mortar tensile and compressive strengths, respectively.  The 
brittleness of response is governed by  : 
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where GfI denotes the mode I fracture energy. 
 

3.2. Energy release control 
 
An important aspect in modelling masonry and other solids containing many 
nonlinearities is the use of a robust algorithm which is capable of tracing the whole 
equilibrium path, particularly the post-peak response of the structure.  In this work, an 
energy release constraint function is used to trace the equilibrium path.  The robustness 
and versatility of this method was shown by Gutiérrez /14/.  The constraint function is 
given by: 
 

      0 0

1 ˆ -
2

f a aTg     (6) 

in which   represents the enforced energy dissipation during a loadstep, f̂  is a vector 

containing the prescribed unit loads,   is a load scaling factor and a is a vector 

containing the displacement field.  The subscript 0 refers to the converged values of the 
previous loadstep. 
 

4. Numerical examples 
 
4.1. Three-point bending test 
 
In order to demonstrate the potential of the developed masonry model, a three-point 
bending test has been carried out.  The material parameters (Tables 1-2) and 
experimental data (Figure 3, dotted curve) are obtained from /15/.  The simulation results 
show a good agreement with those from the experiment. 
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Table 1: Elastic material parameters for the three-point bending test 

 

 dimensions E [ N/mm² ]   

joints 10 mm 3360 0,20 

bricks 76 ∙ 230 ∙ 110 mm³ 17500 0,15 

 
 

Table 2: Inelastic material parameters for the three-point bending test 
 

 ft0 [ N/mm² ] fc0 [ N/mm² ] GfI [ N/mm ] 

joints 0,086 7,26 0,002 

 
 

 
 

Figure 2: Load-CMOD curve and deformed mesh for the three-point bending test 
 
 

4.2. Shear wall test 
 
The second example is a shear wall with opening.  Tables 3-4 summarise the employed 
material parameters.  A confining stress of 0,30 N/mm² is applied on top of the wall.  
Again a good agreement is observed with the ultimate load capacity found in 
experimental tests /16/ (Figure 3, dotted curve).  The typical stair-step crack pattern is 
also recovered. 
 

Table 3: Elastic material parameters for the shear wall test 
 

 dimensions E [ N/mm² ]   

joints 10 mm 782 0,14 

bricks 52 ∙ 210 ∙ 100 mm³ 16700 0,15 
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Table 4: Inelastic material parameters for the shear wall test 

 

 ft0 [ N/mm² ] fc0 [ N/mm² ] GfI [ N/mm ] 

joints 0,25 10,5 0,018 

 
 
 

 
 

Figure 3: Load-displacement curve and deformed mesh for the shear wall test 
 

 

5. Conclusion and future works 
 
In this paper, a mesoscopic masonry model is developed in which joints are modelled by 
weak discontinuities.  The discontinuities are incorporated using the Generalized Finite 
Element Method.  A Drucker-Prager damage model is used to describe the failure of the 
mortar joints, whereas the stone behaviour remains linear elastic. The collapse load and 
post peak response are traced using an energy release constraint function.  A three-point 
bending test and a shear wall test showed that the presented method leads to realistic 
load capacities and failure patterns. 
 
The developed methodology will be extended in the future by the implementation of 
cracking of the bricks.  Furthermore, other constitutive laws will be employed and 
compared, to describe the nonlinear unit and joint behaviour.  Finally, the model will be 
extended to capture the effects of thermal fields. 
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