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1. Introduction 

Masonry is a widespread and common form of construction used throughout history.  
Thus it is important to know the structural behaviour of those buildings, especially 
when speaking in terms of maintenance of cultural heritage preservation or structural 
restoration of an historic  building. The design of masonry structures, as it is done 
today, is still based on codebooks and rules of thumb, which often lead to a lack of 
control over safety factors and non-optimal structure dimensions. As such, it would be 
useful to develop reliable numerical tools that predict the behaviour of masonry 
structures. 
The majority of numerical tools currently available for constitutive description of 
masonry structures have proven to be accurate on small scale structures, but when 
used on large scale structures, excessive computational effort is required and 
numerical instabilities occur /4,6,9/. Hence, in order to lower the computational cost it 
is more efficient to focus on regions of the masonry structure where cracks occur. It is 
also known that the mortar phase is relatively weak, which due to the periodic 
arrangement of the phases leads to a stiffness degradation along preferential 
orientations, i.e. the crack path in masonry (often) follows the joints. A domain 
decomposition method can be employed to decompose the masonry structure into 
several domains, and concentrate the computational efforts on the domains which 
undergo inelastic behaviour. 
It is possible to adopt such a technique in two different ways to describe a multi-scale 
model for masonry structures. The  first approach consists of initializing the discretized 
masonry structure as a coarse grid consisting of several domains. Once a domain 
meets a given criterion, indicating the occurrence of inelastic behaviour, it will be 
isolated and evaluated on a meso-scale using a finer background mesh. Afterwards, 
the results from the meso-scale computation will be integrated into the macro-scale 
parent grid using a domain decomposition technique. Another way to use the domain 
decomposition technique is to define the regions in the discretized structure where 
possible inelastic behaviour could occur on beforehand. These domains will be 
meshed at meso-scale, while the remainder of the structure will be meshed with a 
coarse grid on macro-scale.  
In this contribution the second approach will be presented, as illustrated in Figure 1. 
As shown in Figure 1, the meso-scale domains are concentrated under and above the 
window, since under uniform compression the inelastic behaviour most likely will occur 
in those regions. The evaluation at macro-scale is done with an homogenized 
stiffness, as described in /9/, and the meso-scale crack behaviour is modelled using a  



Figure 1: Multi-scale approach masonry wall subjected to compression forces and the 
FETI mesh (Finite Element Tearing and Interconnecting).  

 
discontinuous model based on the Generalized Finite Element Method (GFEM) 
/4,7,11/. Crack growth is given by a plasticity based cohesive zone model, in terms of 
tractions and displacements. This approach does not constitute a completely new 
method, but rather an application of domain decomposition techniques on masonry 
structures, in order to reduce the computational effort and increase the numerical 
stability within the inelastic regions. The proposed method will serve as a good basis 
for the future development of the automated 'detect-and-refine' approach we have 
mentioned earlier. 

 

2. Meso-scale approach 
 
The meso-scale framework consists of a background mesh fitted on a masonry 
topology, using the simplified micro-model as proposed by Lourenço in /9/ Cracking of 
the mortar joints is modelled by using GFEM in combination with a plasticity based 
cohesive zone law. 
 
 

2.1 The generalized finite element method 
 
The generalized finite element method belongs to the numerical family of 
discontinuous models. These models are classified as discontinuous, because 
displacements are represented as discontinuities. 
The basic idea of this approach is to enhance the displacement field by discontinuous 
functions that allow for jumps along the discontinuity surface. A key feature of this  



Figure 2:  (a) GFEM cells in masonry; (b) background mesh 
 
method is that the behaviour of the crack can be completely captured within the 
discontinuity, while the surrounding continuum remains elastic. Such a discontinuous 
function can be added using the partition of unity property of finite element shape 

functions i   /2,11/, that yields the following equation 
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When using GFEM, it is necessary to predefine the possible locations of the crack 
path before computation. This results in a topology which consists of a number of 

cells i , defined by possible cracks. Within the partition of unity method, the 

discontinuity information is processed on the level of a cell /11/ The displacement field 
for a cell reads. 
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where: ˆ ( )xu  equals the regular set of displacements en ( )xu  equals the enhanced 

set of displacements. 
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Figure 3: Benchmark tests: (a) confined shear test; (b) tensile test  
 
 

Table 1: Material parameters of the cement mortar and brick continuum (/1,10/) 

            

  
tensile strength 
[MPa] 

cohesion 
[MPa] 

Gf I 

[N/mm] 
Gf II 
[N/mm] 

Young‟s 
mod[MPa] 

Continuum - - - - 14525 
Interface 
(mortar) 0,3 0,62 0,012 0,564 11320 

       

2.2 A plasticity based cohesive zone model 
 
In a cohesive zone model, the fracture behaviour is regarded as a gradual 
phenomenon in which separation takes place across a cohesive zone. As such, a 
cohesive zone does not represent any physical material, but rather the cohesive 
forces which occur when material elements are being pulled apart /3,12/. 
 
The constitutive relationship for the cohesive zone is defined in terms of tractions and 
separations. The plasticity evolution law is based on a smooth yield surface which 
was proposed in earlier work /7,8/. 
 
The proposed yield surface is constructed using the material parameters of the 
mortar; tensile strength, compressive strength and  cohesion. In this work the material 
parameters of a cement mortar are used /1,10/ (Table 1). The softening laws for the 
strength parameters are based on an exponential function. Figure 3 shows the  



Figure 4: Decomposition in two domains with interface forces  ; fine resolution = 

GFEM background mesh and coarse resolution = standard FE mesh  
 
validation of the meso-scale model for a simple tensile and shear test,  applying a 
cement mortar. The experimental data is retrieved from Van der Pluijm /10/ for the 
tension test and Chaimoon /1/ for the shear test. 

 
It should be noted that upon using another mortar composition, the material 
parameters derived from simple small scale tests can easily be substituted into the 
plasticity model.  
  

3. Multi-scale approach: FETI 
 
3.1  Basic theory 

 
Domain decomposition techniques are used to partition the computation of large 
systems, where the interfaces between the domains are iterative solved. In this 
contribution, a basic formulation of the Finite Element Tearing and Interconnecting 
(FETI) method has been implemented, which belongs to the family of dual domain 
decomposition methods. The given formulation is adopted for finite element analysis. 
For further details on this method, the authors refer to the work of Farhat et al. /5/. 

 
The FETI approach uses Lagrange multipliers to fulfil the compatibility between 

different domains 
( )s . Hence the global system Ku = f  is split into a set of 

subsystems  ( sN ) which are connected using the Lagrange multipliers, so the local 

equilibrium of a domain reads: 
 

   



 
Figure 5: Cantilever beam with h=20mm and L=60mm; (a) FETI mesh and (b) FE 

mesh. 
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The continuity between the displacements fields is given by Boolean matrices B 
containing the values +1 or -1 at those positions that correspond to the interface of 

the respective domain 
( )s , so that: 
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When adopting this method it is possible to combine both fine and  coarse meshes by 
using the Lagrange multipliers to enforce the compatibility constraints. Thus it is 
possible to use the GFEM background mesh as the fine mesh for a meso-scale 
computation and quadrilateral elements as the coarse mesh for a macro-scale 
computation, Figure 4. Hence both computation are independently executed and 
bridged by using the FETI method. 

 

3.2  Numerical example of the FETI approach 
 



 
Figure 6: Displacement field at height 10 mm 

 
A numerical example of a cantilever beam, Figure 5, illustrates the bridging of a 
GFEM background mesh with a standard coarse FE mesh (Figure 5(a)). This will be 
compared with a basic FE mesh generated with 32 elements (Figure 5 (b)).  
When comparing the results, it is important to have a continuous displacement  field 
between both domains in the FETI mesh. Figure 6 presents the displacement field at 
height 10 mm along the length of the beam of both the FE mesh and the FETI mesh. 
It indeed can be observed that the displacement field of both meshes coincide and 
that there is no discontinuity in the displacement field between both domains. 

 

4. Conclusions and future works 
 
In this work, we have introduced a novel multi-scale model for masonry structures. 
We have shown that GFEM can be employed as a suitable tool for describing crack 
behaviour of the masonry mortar at the meso-scale, while simultaneously zones in 
which no cracking occurs can be modelled  by a computationally inexpensive coarse 
finite element mesh. We have shown that both scales can be bridged using the FETI 
method, guaranteeing a continuous displacement field. This allows for the 
combination of both methods into a multi-scale technique, in which  regions where 
possible inelastic behaviour can occur are predefined with a meso-scale mesh, while 
other regions are meshed with a coarse grid.  
 
Further optimization of this method  will include a „detect-and-refine‟ method, in which 
the entire structure is meshed initially using a coarse grid, but local meso-scale 
refinements are created as inelastic behaviour occurs. 
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