CAP3 for Interaction Design Pattern Diagrams?

Jan Van den Bergh, Karin Coninx
Hasselt University - EDM - IBBT
Wetenschapspark 2
3590 Diepenbeek, Belgium

{jan.vandenbergh, karin.coninx}@uhasselt.be

ABSTRACT

Following the success of the “Gang of four” design patterns for
software engineering, the human-computer interaction community
has used design patterns to document interaction design knowl-
edge. PLML is a structured format to describe these patterns in
XML. At least one actively used pattern library for interaction de-
sign adopted it to structure its knowledge.

One feature that is defined in PLML and that is also an important
part of the “Gang of four” patterns for software engineering is the
diagram. In this paper, we propose to use CAP3, a graphical ab-
stract user interface modeling language, to specify the diagram part
of interaction design patterns. We show some examples of its usage
and discuss benefits and drawbacks.

Categories and Subject Descriptors

H.5.m [Information Interfaces and Presentation (e.g., HCI)]:
Miscellaneous; D.2.2 [Software Engineering]: Design Tools and
Techniques—User Interfaces

General Terms
Design, Documentation, Languages

Keywords

Pattern, Interaction design, abstract user interface, CAP3, diagram

1. INTRODUCTION

Design patterns have been investigated in the human computer in-
teraction community for over a decade. Several libraries of patterns
exist and even pattern languages have been defined up to ten years
ago. One of these pattern languages is PLML [5], which resulted
from a workshop at CHI 2003. This language is currently used
in the design pattern library of Van Welie [1]. The entries in this
library use most features of PLML.

One of these features, diagram, is not used in the xml-descriptions,
although a limited number of wireframes and sketches is used in the
library. We see a similar thing in other interaction pattern libraries;

diagrams are not or very rarely used. Borchers describes the role of
the diagram as follows.

“The diagram supports the solution by summarising
its main idea in a graphical way, omitting any unnec-
essary details. For experts, the diagram is quicker to
grasp than the opening illustration.” [2]

Following this definition, we take the assumption that diagrams are
especially suitable to illustrate properties about behavior and struc-
ture. This means that a major part of the interaction patterns would
benefit from a diagram. Especially if it can illustrate the basic ideas
of the solution proposed in the pattern in a compact, yet clear and
understandable way, as class diagrams (and other diagrams) do for
the patterns proposed by “the Gang of Four” in the software engi-
neering domain [6].

We propose to use CAP3, a graphical modeling language for ab-
stract user interfaces, to express the solutions for the diagrams. We
first introduce CAP3, illustrate its use on three different design pat-
terns, specified in the design pattern library of Van Welie [1] and
one from the design pattern library from Tidwell [7]. We choose
design patterns at three of the four levels of abstraction defined by
Van Welie and Van der Veer [9]: posture level (how to structure a
site for a specific domain?), task level (how to accomplish a task?)
and action level (how to realize a specific site element?). We do not
discuss experience level patterns as these do not specifically relate
to structure or behavior of a specific application.

2. CAP3

CAP3 [8] is a modeling language that provides both a concrete syn-
tax (a graphical notation) and an abstract syntax (meta-model) for
abstract user interface models. It’s concrete syntax is based upon
the Canonical Abstract Prototypes notation [4] (CAP). CAP pro-
vides a number of abstract Ul components to describe the structure
of a (graphical) user interface in a way that is independent of any
concrete toolkit or even modality.

CAP3 and CAP have three main Ul components: tool, container
and active material. A tool allows a user to trigger a change in
the UI or in the functional core (e.g. a button), a container can
hold data (e.g. a label, image) or any other Ul component (e.g. a
window), and an active material is a combination of both previous
components and thus can hold both data and trigger a change in the
UI, data or functional core (e.g. a textfield, the Microsoft Ribbon).
There are many more specific Ul components besides these three
that have richer semantics and visuals, but are entirely optional as

data data navi-
CAP3 display | update | gation
1 tool X X
start/goTo X
1 stop/end/complete X
& perform(&return) X
£ view X
' select X
~ create X
M delete/erase X
w~ modify X
@ .l move X
é £ duplicate X
é w toggle X
§ O container X
> cl element X
[notification
E collection X
A active material X X
>l input/accepter X X
ﬂ editable element X X
#] editable collection X X
4] selectable collection X
I#E] selectable action set
lﬁ selectable view set
i | conceptual group X X X
@ repeated conceptual group X X X
—» activate source
é update target | source
g mutuallyExclusive X
- use target
E domain object X

Table 1: CAP3 symbols. Symbols with a light-gray background
are the core symbols. Other symbols are optional.

they are special cases of them. An overview of all visual elements
that are part of CAP3 can be seen in Table 1. Each UI component is
represented by a rectangle with an icon in the top-left corner. The
table only depicts the icons of the UI components.

Table 1 also shows the other core parts of CAP3: conceptual groups,
relations and domain objects. Conceptual groups can be used to
group UI components that logically belong together and are repre-
sented by dashed rectangles. Repeated conceptual groups (RCP)
are special cases of conceptual groups that are used to indicate that
a group of UI components is repeated within a containing UI com-
ponent. RCP are represented by a dashed rectangle accompanied
by a triple down-pointing chevron.

CAP3 also contains a limited set of relations: activate, update, mu-
tuallyExclusive and use. The relation activate indicates that the
source activates the target Ul component. The relation Update
means that the source updates the content represented by the tar-
get Ul Component or the way it is presented. MutuallyExclusive
means that only one of the UI components can be part of the user
interface at a certain moment in time. The use relation indicates
that the source uses information from the target.

I:‘ Legin screen

] Login BB g

User database

Password

A COnﬁrm/ \ﬁ(oear

Confirmation is only
possible after both login and
password are specified.

Figure 1: Login window expressed using CAP3

Figure 1 shows some of the relations and Ul components applied
to an example of a login dialog. It specifies that Confirm and Clear
are only available after the login and password are specified us-
ing the activate relation. The fact that Clear clears both the login
and password is shown using the update relation (thick gray dot-
ted arrow). Fig. 1 also shows that the logins are fetched from the
user database (domain object) and are presented in a selectable
collection (use relation). Note that the conceptual group is used to
reduce the number of arrows; all relations that are connected to a
conceptual group can be replaced by relations to all its contained
components.

3. CAP3 PATTERN DIAGRAMS

This section discusses how CAP3 can be used to represent diagrams
using a limited set of examples spread over three of the four levels
of patterns specified by Van Welie and Van der Veer [9]:

Posture level Web-based application [1]
Task level Wizard [7], collapsible panel [1]

Action level Outgoing link [1]

3.1 Web-based application

The example illustrating the posture level is the web-based appli-
cation. As this pattern is high-level and demonstrates the common
structures of a web-based application, which is rather complex, it
refers to other patterns for more details. Figure 2 shows a possi-
ble diagram using CAP3. It consists of a selectable view set, a Ul
component that allows to switch between different “views”, and
references to other patterns that are used in the realization of a web
application: the main part of a screen in a web application is a view
(frequently a table with all kinds of data that can be manipulated
using wizards) or a form. Each UI component that refers to at least
one pattern is highlighted with a colored background. The dashed
line between both components / patterns means that only one of
them can be used at any moment. Other common parts are meta-
navigation (a link to a site-map, search, help, ...) and login. The
dashed rectangle around the View and Form is a conceptual group
and avoids the need to draw update relations to both the Form and

[Web-based application

A Mavigation [] Meta navigation

[Login

heorizontal or
vertical [Ferm
menu, or
double-
tabbed
navigation -
are usually [view

sufficient

Figure 2: CAP3 diagram for web application pattern

View. A note (rectangle with one flipped corner) is used in Figure 2
to highlight that relatively simple navigation structures will usually
suffice.

3.2 Collapsible panels

The collapsible panels pattern is an instance of a task level pattern.
It is used to manage information by hiding parts of information that
are only useful to a subset of the users behind descriptive titles.
These titles can be expanded in place to show all hidden informa-
tion. Figure 3 illustrates this pattern. It shows that an instance of
the pattern will contain a set of panels (indicated by the use of a
repeated conceptual group) that are either in a collapsed or an ex-
panded state. In collapsed state only the title is shown. The fact
that the title is represented as an active material shows that the title
is interactive. The fact that the title serves as a mechanism to hide
or show more details is frequently represented through the use of
an icon that reflects the state of the panel (collapsed or expanded).
This aspect is not shown in the diagram because usage of an icon is
not required and is more readily explained using examples or plain
text rather than using the CAP3 modeling language. Note that the
type of UI component used for the Collapsible panel already gives
a hint towards the situation in which the pattern is used.

Iz‘ Collapsible panels

E|Collap5ed Panel title

I i

If‘Expanded Panel

] PanelTitle

EDetaiIed information

«

Figure 3: CAP3 diagram for collapsible panels pattern

[Wizard

A List of steps

[Step

cherred A user input
preferre

over
previous/
next

K

54

A Previous A MNext A End

The number of steps that is shown at cnce differs for different kinds
of wizard.

Figure 4: CAP3 diagram for wizard pattern

3.3 Wizard

The wizard pattern described by Tidwell [7] demonstrates how de-
sign alternatives can be represented. Most of these instantiations
are summarized in Figure 4. A first category of instantiations uses
multiple screens, each containing a single step of the wizard. Two
different ways can be used to navigate between the different steps:
through an ordered list of steps (depicted with a selectable view
collection in Figure 4) or through previous and next buttons
(each represented by a ool in the CAP3 diagram.) Both are rep-
resented as mutually exclusive choices, with a note indicating the
preference for the ordered list of steps. A second category of wizard
instantiations bundles all steps on a single page in different ways.
Since the way they are combined is discussed in other patterns, a
repeated conceptual group is used to indicate that they can be com-
bined omitting details on how this can be accomplished. Again, a
note is used to explain when multiple steps and navigation can be
represented on a page.

Figure 4 illustrates that also conceptual groups can refer to pat-
terns. In this case a repeated conceptual group refers to different
patterns that can be used to realize the collection of steps, which is
otherwise not contained in a Ul component. Note that in contrast
to the UI components that refer to other patterns in the Web-based
application pattern, the user input Ul component does not carry the
name of the pattern it refers to (Good defaults pattern). Similarly,
the names of the patterns the repeated conceptual group refers to
are not mentioned in the diagram.

3.4 Outgoing link

At the action level, Figure 5 illustrates the outgoing link pattern.
This pattern explains that when the majority of the links on a web-
site are within the website (such as on Wikipedia), outgoing links
are best accompanied by an icon that symbolizes the fact that the
link points to a different site. Figure 5 makes this explicit by group-
ing the outgoing link in a conceptual group and by depicting a link
within website without the icon. The diagram uses a note to empha-
size that the icon should indicate somehow that the link goes out of
the site as this is a crucial part of the pattern.

[] Qutgeing link pattern

illustrates
outgaing link.
.. arrow
pointing
outwards

of rectangle

i
i A Qutgoing link [Flicon
i

A link within website

Figure 5: CAP3 diagram for outgoing link pattern

4. DISCUSSION

The examples given in the previous section indicate that it is possi-
ble to represent interaction patterns at different levels of abstraction
with CAP3 and that their structure is relatively easy to understand.
When using CAP3 to create diagrams for interaction patterns we
intuitively added notes to illustrate design alternatives or presen-
tation aspects that cannot be expressed in an abstract manner (see
Figure 5). The alternatives are highlighted using notes when they
can be represented using the same Ul component (see Figure 2).

The examples above illustrate that design patterns can be linked to
certain types of Ul components, but also that more than one pattern
can be used for a given Ul component. This means it is not always
practical to visually represent all alternative patterns or approaches
in the diagram. Since CAP3 is a modeling language, we propose
to define specific annotations for pattern definition and usage. In
this way, patterns are integrated in the models and thus interlinking
patterns through interactive diagrams becomes possible and model-
driven development approaches can potentially be enriched.

The ability to more precisely define the type of design patterns, also
creates the possibility to semi-automatically refine initial designs
by applying design patterns. The compact representation of the
design pattern also makes it possible to visually illustrate different
options. Further combination with the domain model could lead
to even better assistance in the application of design patterns in a
model-driven approach. For example, the amount of data that needs
to be represented could be derived from a domain model and thus
limit the choices for applying the models.

CAP3 thus has the capability to be used as a diagram to compactly
illustrate the solution offered by a certain design pattern and the ca-
pability to be used in a model-driven approach. Both areas however
need some further investigation:

Usage as diagram. Earlier discussions with interaction design-
ers working in industry indicated that the abstraction level of CAP3
may be a problem in its usage in projects in practice. Usage as a
diagram within a design pattern requires the notation to be immedi-
ately clear to experts, since they may use it to more quickly under-
stand or apply the design pattern. While the very concrete examples
in design patterns for software engineering presented by the Gang
of Four [6] may be very useful for novice users to implement the
design pattern, the UML diagrams illustrating the design patterns
may be more useful to experts who can fill in the details them-
selves. Other users should however also be able to understand the
meaning of the diagram without major effort. In contrast to UML,
however, knowledge of CAP3 is not as widespread among interac-
tion designers as UML class diagrams are for software engineers.

Further investigation regarding the obviousness of the meaning of
the different UI components is necessary before working on more
widespread adoption.

Usage in model-driven engineering. While CAP3 was used
within a model-driven engineering approach to generate concrete
user interfaces, further work is needed to find out how it can sup-
port the creation of models based on design patterns through model
transformations with a supporting software framework. A frame-
work such Epsilon ! provides useful tools to accomplish this and
was already used to create the editor that was used to make all the
diagrams in this paper. Fitting CAP3 into a more encompassing
formal framework on interaction design, such as that proposed by
Botoni et al [3], seems another requirement to create tools which
integrate design-patterns in model-driven development.

5. CONCLUSION

We propose the use of a graphical abstract user interface modeling
language, CAP3, to represent diagrams in interaction design pat-
terns. Several examples of design patterns at different levels of ab-
straction are discussed to show that the language is able to express
a diversity of interaction design patterns in a compact way. We
plan to empirically investigate the clarity of diagrams expressed in
CAP3 with interaction designers.

Since CAP3 is also a modeling language, the diagrams could be
used in a model-driven development approach that would be ac-
cessible to interaction designers. This, however, also needs further
research on supporting (model-driven) software tools. Future work
includes investigation on how patterns can be used to more easily
refactor or construct AUI models. We also see a need for more
research on how patterns can limit the need for detailed specifica-
tion at the AUI level, while still allowing the generation of more
detailed concrete user interface models.

6. ACKNOWLEDGMENTS

This work is supported by the FWO project Transforming human
interface designs via model driven engineering (G. 0296.08).

7. REFERENCES

[1] Interaction design pattern library. welie.com/patterns.

[2] J. O. Borchers. A pattern approach to interaction design. Al
Soc., 15(4):359-376, 2001.

[3] P. Bottoni, E. Guerra, and J. de Lara. Towards a formal notion
of interaction pattern. In C. D. Hundhausen, E. Pietriga,

P. Diaz, and M. B. Rosson, editors, VL/HCC, pages 235-239.
IEEE, 2010.

[4] L. L. Constantine. Canonical abstract prototypes for abstract
visual and interaction. In DSV-IS, pages 1-15, 2003.

[5] S. Fincher. Perspectives on HCI patterns: concepts and tools
(introducing PLML). Interfaces, (56):26-28, September 2003.

[6] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design
patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[7] J. Tidwell. Designing Interfaces. O’Reilly Media, 2010.

[8] J. Van den Bergh, K. Luyten, and K. Coninx. Cap3:
Context-sensitive abstract user interface specification. In
EICS, 2011. Accepted for publication.

[9] M. van Welie and G. C. van der Veer. Pattern languages in
interaction design. In INTERACT, 2003.

"http://www.eclipse.org/gmt/epsilon/

welie.com/patterns
http://www.eclipse.org/gmt/epsilon/

	1 Introduction
	2 CAP3
	3 CAP3 Pattern Diagrams
	3.1 Web-based application
	3.2 Collapsible panels
	3.3 Wizard
	3.4 Outgoing link

	4 Discussion
	5 Conclusion
	6 Acknowledgments
	7 References

