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Abstract

Background: Linear regression models are used to quantitatively predict drug resistance, the phenotype, from the
HIV-1 viral genotype. As new antiretroviral drugs become available, new resistance pathways emerge and the
number of resistance associated mutations continues to increase. To accurately identify which drug options are left,
the main goal of the modeling has been to maximize predictivity and not interpretability. However, we originally
selected linear regression as the preferred method for its transparency as opposed to other techniques such as
neural networks. Here, we apply a method to lower the complexity of these phenotype prediction models using a
3-fold cross-validated selection of mutations.

Results: Compared to standard stepwise regression we were able to reduce the number of mutations in the
reverse transcriptase (RT) inhibitor models as well as the number of interaction terms accounting for synergistic
and antagonistic effects. This reduction in complexity was most significant for the non-nucleoside reverse
transcriptase inhibitor (NNRTI) models, while maintaining prediction accuracy and retaining virtually all known
resistance associated mutations as first order terms in the models. Furthermore, for etravirine (ETR) a better
performance was seen on two years of unseen data. By analyzing the phenotype prediction models we identified
a list of forty novel NNRTI mutations, putatively associated with resistance. The resistance association of novel
variants at known NNRTI resistance positions: 100, 101, 181, 190, 221 and of mutations at positions not previously
linked with NNRTI resistance: 102, 139, 219, 241, 376 and 382 was confirmed by phenotyping site-directed mutants.

Conclusions: We successfully identified and validated novel NNRTI resistance associated mutations by developing
parsimonious resistance prediction models in which repeated cross-validation within the stepwise regression was
applied. Our model selection technique is computationally feasible for large data sets and provides an approach to
the continued identification of resistance-causing mutations.

Background
Linear regression models have been shown to be accu-
rate in predicting drug susceptibility from the HIV-1
viral genotype, by calculating the inhibitory concentra-
tion 50% (IC50) log Fold-Change (FC) phenotype as a
linear combination of parameters, which are mutations
[1-3] and interaction terms (mutation pairs) [1]. The

coefficients of these parameters are named resistance
weight factors (RWF), and they quantify the effect on
the log FC of the mutations and mutation pairs. To gen-
erate models that are able to make predictions for future
genotypes, ideally only resistance associated mutations
are selected for the models. As it is not feasible to
explore all possible subsets of mutations, stepwise
regression is used to incrementally generate a series of
regression models by addition or removal of mutations
in each step. Different performance criteria exist to
select one final linear regression model from this series
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[4,5]. In [1] standard stepwise regression was applied,
selecting mutations based on significance with the F-test
using predefined p-values. However, since correction for
multiple significance-testing is not taken into account
and because p-value thresholds are arbitrary, other
selection criteria are preferred. Information criteria exist
that balance accuracy and parsimony by penalizing for
the number of parameters in the models. Information
criteria commonly used are Akaike Information Criter-
ion (AIC [6]) and Schwarz Bayesian Criterion (SBC [7])
with the penalty in SBC being more severe than in AIC.
Although standard stepwise regression is a fast method
in generating a model, the model found may be too
complex by containing redundant information. There-
fore, techniques are required that increase the stability
of subset selection in linear regression. In [8] bootstrap
aggregation (’bagging’) was presented where an averaged
prediction is made using multiple models generated on
random re-samples of the original data set with replace-
ment (’bootstrap’) [9]. In [10] the bootstrap was inte-
grated in the automatic selection procedure itself as
parameters were sequentially added according to the
proportion of bootstrap models in which they were
selected. We investigated whether cross-validation [4,5]
could be used as a less computationally intensive re-
sampling technique than bootstrapping to reduce the
complexity of the linear regression models while main-
taining accuracy and adding to interpretability by gener-
ating only one regression model. As such, we aimed for
an improvement in reliability of information extracted
from the models, in this case the identification of novel
mutations that cause resistance to anti-HIV drugs. In
this article we use VirtualPhenotype™-LM (Virco,
Beerse, Belgium) [1] as a reference prediction model.
Since June 2006, VirtualPhenotype™-LM has been a
linear regression model that predicts the log FC based
on mutations (first-order terms) and mutation pairs
(second-order interaction terms accounting for synergis-
tic and antagonistic effects). We propose a more robust
selection procedure by making two major changes to
this reference approach. First, models were developed
directly in second-order: interaction terms could be
selected as soon as the constituting mutations were both
present as first-order effect. Second, mutations or inter-
action terms were selected by repeatedly applying 3-fold
cross-validation. In this article we refer to this method
as 3F. Repeated cross-validation was presented as a way
to reduce variability in the prediction error estimate
[11]. Moreover, as shown in [12,13], repeated multi-fold
cross-validation leads to better model selection when
increasing the size of the validation set. To evaluate the
generalizability of the models, the prediction error was
calculated on genotypes in an unseen data set with
available measured phenotypes.

After generating linear models with reduced complex-
ity we were able to effectively identify novel mutations
associated with NNRTI resistance. The individual con-
tribution to resistance of these mutations was experi-
mentally validated by making site-directed mutants and
determining in vitro resistance levels.

Results
Reverse Transcriptase Inhibitors
For the reverse transcriptase inhibitors (RTI) a 3F model
with lower complexity (using less mutations and less
interaction terms) than the reference was found for
AZT, 3TC, d4T, ABC, FTC, NVP, EFV and ETR (Table
1). For the nucleoside reverse transcriptase inhibitors
(NRTI) class of drugs the reduction in interaction terms
and mutations used in 3F versus reference was 20.3%
and 11.9%, respectively. For the NNRTI class of drugs
the 3F method was even more effective in reducing the
complexity: the reduction in interaction terms and
mutations was 38.3% and 26%, respectively. For all RTI
with exception of AZT the 3F performance on unseen
data equalled the reference (3F average squared error
within 1% of the reference) or was better than the refer-
ence (for ETR: 3F average squared error 1.9% lower
than in the reference) (Table 1). Moreover, the 3F
model performance as compared to reference was main-
tained in subsets of unseen data samples, including the
subset with one or more mutations included only in the
reference model. Although the AZT 3F model had a
lower SBC value on the training set than the reference,
the averaged squared error on the unseen data was 1.5%
higher in 3F. The reduction in the AZT 3F model com-
pared to the reference of 28.7% interaction terms and
17.1% mutations thus resulted in 3F underfitting. Never-
theless, for AZT the concordance in susceptibility calls
on the unseen data between 3F and reference was
94.67% and there were no ‘major’ discordances (fully
susceptible or maximal response by reference but fully
resistant or minimal response by 3F or vice versa)
between the two approaches. In contrast, the ETR refer-
ence model had a lower SBC value on the training set
than the 3F model but used 2.2 times more interaction
terms and 1.3 times more mutations than the 3F model,
thus implying reference overfitting. Here, the concor-
dance in susceptibility calls between the two approaches
was 90.56%, with one major discordance (see additional
file 1: Comparison of susceptibility call between 3F and
Reference on unseen data for ATV, AZT and ETR). An
increase in the ratio of interaction terms versus single
terms in a 3F RT inhibitor model had no significant
impact on the 3F performance compared with the refer-
ence (P = 0.3673). In total, 172 and 196 different muta-
tions were used as single terms in the NRTI and
NNRTI 3F models, respectively (Figure 1, and see
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additional file 2: Complexity and performance of 3F and
Reference models on genotype-phenotype data
sequenced at Virco up to September 2006). The latter

include all of the 44 NNRTI resistance-associated muta-
tions identified in [14], with the exception of 179G,
227C, and 236L. Seventy-two RT mutations were pre-
sent as single terms in both NRTI and NNRTI 3F mod-
els, including the highly prevalent mutations 103N and
184V. Three interaction terms were common between
the AZT 3F model and one or more of the NNRTI 3F
models: 103N&181C, 103N&184V and 215Y&219E.
Some rare variants at RT position 181 were identified
with high RWF and relatively high standard error: 181F,
181G and 181S (Figure 1).
Linear discriminant analysis (LDA [5,15]) was conducted
to compare the predicted FC distribution of genotypes
with a mutation from the list compiled in [14] to the
genotypes having the wild-type amino acid at the corre-
sponding position. Mutations with the highest impact
(LDA F1 [16]) on NNRTI resistance are shown in Figure
2. Ranking by impact (LDA F1) was largely similar when
comparing the 3F models to the reference, and the
RWF were also very similar in both approaches. How-
ever, some clear differences between 3F and reference
were observed. For example, for EFV, 190Q (the muta-
tion with the highest RWF in reference and 3F) had
more impact in 3F (F1 = 0.133 vs. 0.089). For ETR,
mutation 179F had more impact in 3F than in the refer-
ence, although the mutation was not present as first-
order effect in the 3F model (Figure 2). To detect novel
NNRTI resistance-associated mutations a similar LDA
was conducted for the remaining 100 RT mutations
from the list of 124 found as first-order effect in the

Table 1 Complexity and performance of 3F and Reference models on genotype-phenotype data sequenced at Virco up
to September 2006

Reference Sep 2006 3F Sep 2006a Unseen data

Sep 2006 - Dec 2008

drug N singleb intc mutd single int mut N asee ase

train terms terms terms terms test Reference 3F

Nucleoside RT inhibitors

AZT 45734 80 108 123 66 77 102 8698 0.091 0.093

3TC 47422 59 64 70 43 52 45 8733 0.059 0.059

ddI 47269 49 21 62 50 25 54 8746 0.054 0.054

d4T 47235 47 34 68 54 20 60 8749 0.050 0.050

ABC 45908 71 46 90 63 24 68 8749 0.048 0.048

FTC 16440 31 35 46 34 34 36 8722 0.086 0.086

TDF 31640 64 91 110 79 83 111 8757 0.065 0.064

Nonnucleoside RT inhibitors

NVP 47400 124 190 142 103 148 110 8729 0.101 0.100

EFV 46054 191 167 211 126 101 142 8687 0.266 0.264

ETR 18166 122 158 160 94 72 119 8493 0.126 0.124
aJuly-September genotype-phenotype 2006 data was used as validation set for 3F.
bNumber of single terms (first order effects) in model.
cNumber of interaction terms in model.
dNumber of mutations in model.
eAverage squared error on unseen genotype-phenotype data collected between September 2006 and December 2008.
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NNRTI 3F models but not in the NRTI 3F models. We
ranked these novel mutations by their impact on
NNRTI resistance, and retained the top 40 for further
analysis as described in the next section.

Novel resistance-associated mutations
Forty novel NNRTI resistance-associated mutations
were found satisfying the following criteria: LDA cutoff
> 0 (mutation contributes to resistance) for all of the
NNRTIs, RWF > 0 in the 3F model of at least one of
the NNRTIs, and RWF ≮ 0 in any 3F model of NVP,
EFV or ETR (Table 2). The mutation with the highest
impact (LDA F1) was 179M and occurred relatively
rarely (31 times) in the LDA data set containing
approximately 79,000 genotypes. Novel mutations that
were more frequent with an impact > 0.01 were 376S,
138A and 357T. Mutation 138A has recently been
recognized as an ETR resistance associated mutation
[17]. Site-directed mutants were made for a selection of
the novel mutations. Their resistance contribution was
analyzed by looking at the mutant’s FC relative to a
drug-specific biological cutoff (BCO), used to separate
viruses that are susceptible from those that show signs
of resistance [18]. When comparing ETR to the other
two NNRTIs in Table 2 in most cases the LDA F1 value

for ETR was higher than for EFV and NVP (Table 2:
max(F1)). However, the in vitro effect of the site-direc-
ted single mutations was, with exception of 138A,
always below the BCO for ETR, while this was not the
case for EFV and NVP. SDMs 100V, 190T, 101A and
101D had measured FC values above the BCO for NVP
(> 6.0) and EFV (> 3.3). SDM 139R had an FC value
above the BCO for NVP only. For the SDM 138A, the
highest FC values measured were 4.9, (NVP, below
BCO), 3.6, (EFV, above BCO) and 3.5, (ETR, above BCO
(> 3.2)). Other mutations found with elevated FC for at
least one of the NNRTIs were 221L, 219H, 219D, 376S,
102L, 101N, 234I, 382T, 139K and 241M.
As these novel mutations frequently co-occur with

known resistance-associated mutations, we also studied
their effect in genetic background containing such
mutations. The Virco database of clinical isolates was
searched for the most appropriate genetic backgrounds
to test each of the novel mutations for their effect on
NNRTI resistance [19]. For the mutations 139R, 219D
and 219H we looked at their contributions to resistance
in combination with the highest-impact NNRTI resis-
tance mutants 103N and 181C (Figure 2, and see addi-
tional file 3: Linear Discriminant Analysis (LDA) for
103N and 181C). The following site-directed mutants
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Figure 2 Impact of known NNRTI resistance associated mutations. LDA on reference (blue) and 3F (red) predicted phenotypes. Mutations
shown are from the list of 44 known non-nucleoside RT inhibitor resistance associated mutations [14] having F1 > 0, ranked by F1.
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Table 2 Novel non-nucleoside RT inhibitor resistance associated mutations

Site-directed Mutantsa LDA 3Fb

Mutationc N wtd N mute NVP EFV ETR max(F1) max(n11)
f

max
(

n11

n11 + n01

)g

min(cutoff)h

V179M 67699 31 0.8-2.3 0.3-0.4 0.4-0.9 0.327 (EFV) 13 (ETR) 8/(8 + 10) (EFV) 1.35 (ETR)

H221L 76783 31 4.2-5.0 1.5-1.6 1.1 0.118 (EFV) 2 (EFV) 2/(2 + 1) (EFV) 2.03 (ETR)

V179Y 67699 17 0.2-0.5 < 0.2-0.2 < 0.1-0.2 0.063 (ETR) 16 (ETR) 16/(16 + 472) (ETR) 1.44 (ETR)

K219H 67913 129 1.3-2.2 1.0-1.8 1.1-1.8 0.047 (ETR) 14 (ETR) 14/(14 + 447) (ETR) 1.45 (ETR)

K219D 67913 161 1.4-3.8 1.3-2.2 0.4-2.0 0.044 (ETR) 24 (ETR) 24/(24 + 894) (ETR) 1.22 (ETR)

V179N 67699 15 1.2-1.9 0.9-1.2 0.6-0.8 0.039 (ETR) 8 (ETR) 8/(8 + 391) (ETR) 1.50 (ETR)

T376S 15617 7415 2.8-3.4 1.5-2.0 1.6-2.1 0.035 (EFV) 135 (EFV) 135/(135 + 145) (EFV) 1.67 (ETR)

Y181S 72643 3 NA NA NA 0.019 (ETR) 3 (ETR) 3/(3 + 310) (ETR) 1.45 (ETR)

L100V 77197 8 6.4 (1) 9.0-18.3 (2) 1.1-1.2 (2) 0.017 (ETR) 6 (ETR) 6/(6 + 678) (ETR) 1.63 (ETR)

Y181F 72643 9 1.1-2.0 0.4-0.8 0.4-0.7 0.016 (ETR) 4 (ETR) 4/(4 + 503) (ETR) 1.33 (ETR)

K102L 72791 12 2.3-2.9 0.5-1.2 0.3-0.4 0.015 (ETR) 4 (ETR) 4/(4 + 505) (ETR) 1.77 (ETR)

K101N 72175 94 5.0 (1) 2.8 (1) 0.8 (1) 0.015 (ETR) 4 (ETR) 4/(4 + 434) (ETR) 1.66 (ETR)

V106L 75529 44 0.5-0.6 0.7-1.1 0.2-0.3 0.015 (ETR) 5 (ETR) 5/(5 + 617) (ETR) 1.69 (ETR)

E138A 75869 1828 2.2-4.9 1.2-3.6 2.8-3.5 0.014 (ETR) 14 (ETR) 14/(14 + 157) (ETR) 2.10 (ETR)

M357T 44115 17866 0.9 (1) 1.2 (1) NA 0.013 (ETR) 117 (ETR) 117/(117 + 199) (ETR) 1.88 (ETR)

T139R 76899 243 6.4-7.3 1.5-2.7 1.0-1.2 0.010 (ETR) 2 (ETR) 2/(2 + 137) (ETR) 2.22 (ETR)

E370G 75915 489 NA NA NA 0.007 (ETR) 2 (ETR) 1/(1 + 1) (EFV) 2.38 (ETR)

I135T 45829 18410 NA NA NA 0.006 (ETR) 52 (ETR) 52/(52 + 94) (ETR) 2.16 (ETR)

L234I 79037 98 0.6-1.0 1.6-2.3 0.9-1.1 0.004 (ETR) 1 (ETR) 1/(1 + 353) (ETR) 1.95 (ETR)

S379C 69973 3578 NA NA NA 0.001 (ETR) 1 (ETR) 1/(1 + 1) (ETR) 3.35 (ETR)

R206I 79051 8 1.0-1.7 0.4-0.7 0.5-0.9 NA 0 (ETR) 0/(0 + 102) (ETR) 2.33 (ETR)

S134N 79041 19 1.2-2.1 0.6-0.7 0.8-0.9 NA 0 (ETR) 0/(0 + 69) (ETR) 2.45 (ETR)

H221C 76783 59 NA NA NA NA 0 (ETR) 0/(0 + 20) (ETR) 2.73 (ETR)

I382T 78025 329 2.4-6.7 0.9-1.7 0.7-2.4 NA 0 (ETR) 0/(0 + 2) (ETR) 3.30 (ETR)

D237E 78246 423 NA NA NA NA 0 (EFV) 0/(0 + 3) (EFV) 3.67 (ETR)

N348T 74372 170 NA NA NA NA 0 (ETR) 0/(0 + 0) (ETR) 4.05 (ETR)

E399G 66049 670 NA NA NA NA 0 (ETR) 0/(0 + 0) (ETR) 4.10 (ETR)

G190T 72912 10 > 67.4 7.8-14.9 0.6-0.7 NA 0 (EFV) 0/(0 + 2) (EFV) 4.16 (ETR)

Y188F 76892 41 1.4-1.9 0.3-0.5 0.2-0.6 NA 0 (NVP) 0/(0 + 0) (NVP) 4.70 (NVP)

L283I 72462 5930 NA NA NA NA 0 (ETR) 0/(0 + 0) (ETR) 5.01 (ETR)

K101A 72175 50 8.8-13.4 4.1-5.6 1.5-1.8 NA 0 (EFV) 0/(0 + 3) (EFV) 5.04 (NVP)

K101D 72175 7 13.3-18.9 5.7-6.8 1.0-1.3 NA 0 (EFV) 0/(0 + 3) (EFV) 5.08 (EFV)

T139K 76899 348 4.4-5.8 1.2-2.3 2.4-3.0 NA 0 (ETR) 0/(0 + 0) (ETR) 5.10 (ETR)

T165L 75078 183 NA NA NA NA 0 (ETR) 0/(0 + 0) (ETR) 5.81 (ETR)

T386A 59810 1756 NA 1.6 (1) 0.5 (1) NA 0 (NVP) 0/(0 + 0) (NVP) 6.07 (NVP)

V241M 78771 23 4.7-5.6 1.0-1.8 0.8-1.2 NA 0 (NVP) 0/(0 + 0) (NVP) 6.90 (NVP)

I382L 78025 228 NA NA NA NA 0 (NVP) 0/(0 + 0) (NVP) 7.30 (NVP)

G335S 65035 1877 NA NA NA NA 0 (ETR) 0/(0 + 0) (ETR) 7.55 (ETR)

E399D 66049 10697 NA NA NA NA 0 (ETR) 0/(0 + 0) (ETR) 7.98 (ETR)

R358K 70517 5995 NA NA NA NA 0 (NVP) 0/(0 + 0) (NVP) 8.06 (NVP)
aFold-Change range from 3 measurements, unless otherwise indicated between brackets.

FC > Biological Cut-Off (BCO) in bold, FC ≤ BCO in italic; BCO for NVP is 6.0, BCO for EFV is 3.3 and BCO for ETR is 3.2.
bSummarized for the three non-nucleoside RT inhibitors (NNRTI).
cTop 40 mutations, ranked by max(LDA F1) descending, then by min(LDA cutoff) ascending. Mutations shown are from the list of 124 NNRTI mutations with RWF
≥ 0 and LDA cutoff > 0 for NVP, EFV and ETR. Known NNRTI positions or novel mutations listed in [32,33] are shown in bold.
dFrequency of wild-type (not within a mixture) in LDA data set.
eFrequency of mutation (not within a mixture) in LDA data set.
fn11 is the number of samples with amino acid mutation having a predicted phenotype above the LDA cutoff.
gn01 is the number of samples with wild type amino acid having a predicted phenotype above the LDA cutoff.
hCutoff in log Fold-Change (taking the wild-type and mutation frequency percentages as prior probabilities in the LDA can result in cutoff values outside of the
range of the predicted phenotypes).
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were tested for all NNRTIs: 103N, 103N+181C, 139R
+103N+181C, 219D+103N+181C and 219H+103N+181C
(Table 3). While for NVP and EFV all of the above com-
binations were resistant, for ETR the single mutation
103N and the combination 103N+181C were susceptible
with mean FC values of 0.9 and 3.0, respectively. The
limited impact (3F LDA F1: 0.09) of 103N on ETR resis-
tance was thus confirmed by the site-directed mutant
and adding 181C did not result in a FC above the BCO.
Remarkably, all the above triple combinations were
found to be resistant for ETR, thereby clearly demon-
strating the contribution to NNRTI resistance of the
novel mutations. For ETR a 2.2, 6.3 and 4.6-fold increase
in FC compared to 103N+181C was seen when adding
139R, 219D and 219H, respectively. For EFV a 1.8-2.6-
fold increase was seen as well. For NVP the contribution
to resistance of the novel mutations in combination with
103N+181C could not be confirmed due to IC50 values
larger than the maximum assay concentration (Table 3).

Data for the novel mutations 102L, 138A, 139K, 139R,
179Y, 181F, 188F, 221L and 234I tested in different
genetic backgrounds can be found in additional file 4:
Site directed mutants of novel mutations tested for NVP,
EFV and ETR, extending Table 2 with results of
combinations.
Mutation 181G was not in the list of novel mutations as
it was always found in presence of other amino acids at
position 181 (a ‘mixture’) in the LDA data set. A site-
directed mutant, containing 181G only, was made and
found to be resistant to NVP (FC: 30.1-38.3) and having
FC values of 1.1-1.6 for EFV and 0.9-1.5 for ETR (Table
3).

Discussion
In order to quantitatively predict drug resistance from
the HIV-1 viral genotype we used 3-fold cross-validation
for the stepwise selection of model mutations or muta-
tion pairs. Importantly, we applied a random division in
three parts before each removal step (see additional file
5: K Fold cross-validated stepwise regression using same
or different random division before each removal step:
ETR model). Thus, in the 3F method robustness was
achieved by removing model parameters that were not
consistently selected under different random divisions.
As a consequence, the 3F method can be considered a
greedy stepwise approach where the probability of a
parameter being removed increases as the model size
increases. As we had to generate models for several
drugs this computational approach was a practical one
for our purpose. Nevertheless, to make the model selec-
tion less greedy, one might consider repeating the cross-
validation at each step multiple times with a different
random division in three parts, to improve the estima-
tion of the prediction error.
As our goal was to reduce the complexity and main-

tain the accuracy of the reference models, we did not
investigate defining a stop criterion for the 3F method
independent from the reference. Instead, we retained all
3F models with better performance (AIC/SBC) than the
reference on the genotype-phenotype data, holding out
the two last months. The 3F model with best perfor-
mance on the hold-out set was then selected as the final
model, and the 3F model parameters were recalculated
on the genotype-phenotype data including the hold-out
set. Ultimately, in deciding between different
approaches, the evaluation of performance on future
observations remains the first priority. Therefore we
tested the performance of the reference and 3F method
on a large unseen genotype-phenotype data set
sequenced at Virco between September 2006 and
December 2008. For the RT inhibitors the 3F method
maintained the accuracy of the reference models while
reducing complexity of the linear regression models.

Table 3 Site-Directed Mutants of novel NNRTI resistance
associated mutations 139R, 219D and 219H in
combination with 103N+181C and SDM 181G

SDM drug 3 measurements (Fold Changea)

139R NVP 7.3 7.3 6.4

EFV 1.5 2.2 2.7

ETR 1.2 1.2 1.0

219D NVP 3.7 3.8 1.4

EFV 1.3 2.2 1.3

ETR 1.1 2.0 0.4

219H NVP 2.1 2.2 1.3

EFV 1.1 1.0 1.8

ETR 1.8 1.7 1.1

103N NVP > 51.7 > 54.2 35.4

EFV 19.5 15.1 12.5

ETR 1.1 0.9 0.6

103N+181C NVP > 85.9 > 85.9 > 85.9

EFV 28.4 23.1 38.7

ETR 4.2 1.7 3.2

139R+103N+181C NVP > 22.7 > 21.8 > 22.7

EFV 60.2 77.0 61.2

ETR 7.0 7.4 5.6

219D+103N+181C NVP > 79.6 > 79.6 > 76.7

EFV 116.6 72.9 48.6

ETR 15.5 20.2 21.4

219H+103N+181C NVP > 79.6 > 79.6 > 79.6

EFV 92.6 23.7 49.0

ETR 14.5 16.1 11.6

181G NVP 30.1 38.3 > 37.2

EFV 1.6 1.3 1.1

ETR 1.5 0.9 1.2
a > Biological Cut-Off (BCO) in bold, ≤ BCO in italic; BCO for NVP is 6.0, BCO
for EFV is 3.3 and BCO for ETR is 3.2.
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We also evaluated the performance of the 3F method
for protease inhibitors (see additional file 2: Complexity
and performance of 3F and Reference models on geno-
type-phenotype data sequenced at Virco up to Septem-
ber 2006). An equal performance between 3F and
reference was seen for the most recent protease inhibi-
tors TPV and DRV, and with both methods the models
were less complex than for the other PIs. For the older
protease inhibitors the performance of the reference
approach was better than the 3F approach. This suggests
that protease inhibitors for which resistance patterns
have become more complex over time also require more
complex regression models, thus increasing the impor-
tance of interaction terms. This is in conflict with the
constraint in the 3F method that allowed only interac-
tion terms of which both first order effects were already
present in the model during the stepwise regression.
For the identification of resistance-associated muta-

tions we restricted our attention to the NNRTIs. We
detected novel variants at NNRTI resistance-associated
positions 100, 101, 179, 181, 188, 190, 221, as well as at
novel NNRTI resistance-associated positions 102, 139,
219, 241, 376 and 382.
As genotyping was done up to RT amino acid (AA)

position 400, the 3F linear models of the RTIs, with
exception of 3TC and FTC, also contained connection
domain mutations (AA 289-423 of RT). Two out of
eight of the connection domain mutations described in
[20] to be associated with AZT resistance, were found
to increase resistance as single term in the AZT 3F
model: 348I and 360V. In [21], 376S was found to be
associated with an increased risk of virological failure to
NVP-based therapy in NNRTI-naïve patients and we
could confirm the in vitro effect on NNRTI resistance
by site-directed mutagenesis. In [22], resistance predic-
tions for AZT, NVP and EFV by current genotypic drug
resistance interpretation systems were found to be non-
inferior when predicting from short RT sequences (AA
41-238 for RT) compared to full RT sequences. Never-
theless, our analysis suggests that there are 12 novel
NNRTI resistance associated connection domain muta-
tions, including 376S and 382T, that could provide
more accurate predictions of NNRTI drug resistance.
Mutations found as a single term in both NRTI and

NNRTI 3F models consisted of mutations at NRTI posi-
tions associated with NNRTI hypersusceptibility [23-25],
including 215Y, found to be ETR hypersusceptible in
the reference and 3F models, of connection domain
mutations, including 348I, and of NNRTI resistance
associated mutations from the list compiled in [14]. Our
3F models suggest that these latter mutations might
have an effect on NRTI resistance as well (two have
already been confirmed to have such an effect: 100I [26]
and 181C [27]). In this study we were interested in

novel NNRTI resistance associated mutations and we
considered RT mutations found in the NNRTI 3F mod-
els only.
By making site-directed mutants we compared the

resistance effect of mutations as first-order effect in the
models with the in vitro effect. These results show that
despite the reduction in model complexity for the 3F
approach, one must still be cautious when equating lin-
ear model coefficients with in vitro effect. For example,
mutation 181F has only a small in vitro effect for NVP
whereas in the 3F regression model this mutation has a
high first-order coefficient. A likely explanation for this
is that in the same 3F model interaction terms of 181F
with 98G, 103N, 106M, 190A (all known resistance key
mutations [14]) with a strong predicted resensitizing
effect are present as well, canceling out the resistance
contribution of 181F as first-order effect. Specifically, we
could confirm the resensitizing effect of the combination
181F+103N by comparing the resistance levels of SDM
181F+103N and SDM 103N. (see additional file 4: Site
directed mutants of novel mutations tested for NVP,
EFV and ETR). The systematic co-occurrence of 181F
with known resistance mutations probably resulted in a
high ranking for mutation 181F in the list of novel
NNRTI resistance associated mutations.
As another example for ETR 179F is present as a first-

order effect with a large resistance coefficient in the
reference model whereas in the 3F model 179F is not
present as a first-order effect. Inspecting this further we
found the interaction term 179F&181C to be present
with a strong resistance effect in the 3F model, but absent
in the reference model. In this case the 3F method was in
line with in vitro selection experiments done in [28],
where the synergistic effect of 181C and 179F on the
decreased susceptibility of ETR was already described.
Moreover, the one genotype with measured resistant
phenotype that resulted in a major discordance for ETR
between 3F (Minimal Response) and reference (Maximal
Response) contained exactly the 179F&181C combina-
tion (see additional file 1: Comparison of susceptibility
call between 3F and Reference on unseen data for ATV,
AZT and ETR). Most of the novel derived NNRTI resis-
tance associated mutations had the highest impact (LDA
F1 value) on resistance for ETR but a relatively low in
vitro effect in comparison with NVP and EFV. Co-occur-
rence of multiple resistance associated mutations is
needed to cause an elevated ETR FC, as exemplified by
the SDMs containing two known resistance associated
mutations and one novel mutation (e.g. 139R+103N
+181C) with FC values above the BCO for ETR.

Conclusions
By applying repeated 3-fold cross-validation within the
stepwise regression, we could lower the complexity of
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linear regression models for predicting drug resistance
while retaining performance on unseen data. The
described 3F method thus proves to be a tractable
approach when interpretation of the linear model is an
objective. As the 3F method worked particularly well for
the non-nucleoside reverse transcriptase inhibitors, we
derived a list of forty novel NNRTI resistance associated
mutations. For a selection of the novel mutations we
confirmed their in vitro contribution to resistance by
site-directed mutagenesis, individually or in combination
with known resistance mutations. As most of these
novel mutations were found at relative low frequency in
patient samples, carefully following up on drug resis-
tance in patients with viruses carrying these mutations
may provide more insight in understanding how the
virus escapes the current antiretroviral treatment, as
well as in the design of novel drugs.

Methods
Genotype-phenotype database
The size of the data sets of genotypes (AA 1-99 of Pro-
tease (PR) and AA 1-400 of RT) with an available mea-
sured phenotype (Antivirogram, Virco) ranged from
approximately 20,000 to 56,000 samples for all protease
and reverse transcriptase inhibitors. Phenotypes were
measured as the log FC in IC50 of a sample relative to a
wild-type laboratory reference strain.

Reference Linear Models
VirtualPhenotype™Linear Models were calculated for all
drugs on samples sequenced at Virco up to July 2006 and
recalculated 2 months later (samples up to September
2006). Two stepwise regression procedures were used to
develop the models [1]. First, a model was calculated using
single mutations only. In the second stepwise regression
procedure, all possible interaction terms containing the
mutations present in the first-order model were also con-
sidered for selection, to account for synergistic and antago-
nistic effects. Cutoff values for p-values were used to
determine which mutations or interaction terms could
enter the model (SLE) or stay in the model (SLS) (Figure 3).
The minimal number of occurrences in the database for
mutations or interaction pairs to be considered in the
model was 10 for FTC, ETR, ATV, TPV and DRV and 20
for all other drugs, limiting the number of mutations con-
sidered to approximately 300 for PR inhibitors and 1000 for
RT inhibitors. Mutations occurring in mixtures (ambiguous
sequencing results) were weighted accordingly, mixtures of
more than four amino acids were not considered. No vali-
dation set was used in selection of the reference models.

3F Linear Models
In the 3F method three fold cross-validated prediction
error sum of squares (CVPRESS) was used as selection

criterion for parameter inclusion, instead of the signifi-
cance levels (SLS and SLE) used in the reference
approach. The motivation for this choice of fold is
described in the next section. During 3-Fold cross-vali-
dation the data set is randomly split in three equal-sized
parts, and a model is generated three times on two of
the three parts and validated/tested on the remaining
part. In this repetitive modeling each part is used only
once for validation so that every genotype is treated
once as unseen. A mutation was selected based on the
performance (prediction error) calculated for the
‘unseen’ genotypes. We applied this cross-validation
directly in each step of the selection procedure in evalu-
ating which parameter to add or which parameter(s) to
remove from the model. The initial search space con-
sisted of all individual mutations. As soon as two muta-
tions at different positions were selected, the cross-term
of both could enter the model (we did not force this
hierarchy constraint in the removal step, meaning that
mutations could be removed as first-order effect while
still present in an interaction term). The search space
was thus dynamically enlarged with interaction terms as
more single mutations were added (Figure 3). Models
were calculated on the July 2006 data set. The same
minimal counts (10/20) as for building the July 2006
reference model were used as thresholds for mutations
to enter the 3F model. No minimal count was set for
incorporation of interaction terms, as the 3F method

3F

CVPRESS
(remove)

mutation pairs

mutations
p-to-enter

mutation pairs

p-to-enter

reference

first order 
model

p-to-remove

mutation pairs

second order 
model

p-to-remove

mutations
CVPRESS
(add) CVPRESS

(remove)

second order 
model

Figure 3 Reference and 3F methodology: schematic overview.
In the 3F method cross-validated prediction error (CVPRESS) was
used instead of significance levels (p-values) in the reference
approach. In the reference approach two stepwise regression
procedures were used: all possible mutation pairs were made from
mutations in the first order model and candidate for entry in the
second order model. In the 3F method, the initial search space
consisted of all individual mutations. Mutation pairs could only
enter the model if both mutations in the pair were already selected
for the model.
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already in concept selected for less interaction terms.
The CVPRESS selection criterion can be specified
directly in the SAS GLMSELECT procedure [29]. There-
fore CVPRESS can be applied in the same way as selec-
tion criteria like AIC or SBC.

Randomized stepwise selection
By using CVPRESS as selection criterion, a choice of
fold K had to be made. We selected ETR as drug for
evaluating different K. In short, the results of this eva-
luation were as follows (see additional file 5: K Fold
cross-validated stepwise regression using same or differ-
ent random division before each removal step: ETR
model). Keeping the same random division throughout
the stepwise regression, K = N (Leave-One-Out, also
called PRESS [4]) was found too costly to compute
[5,30]. Moreover, as the N training sets were almost
similar, the improvement on the reference was rather a
result of the hierarchy constraint for introduction of
interaction terms than of the cross-validation itself.
Nevertheless, choosing K < N automatically leads to
selection bias. For K = 3, an apparent decrease in the
ratio of (SBCCV - SBC) over the number of model para-
meters was observed as the model size increased, sug-
gesting overfitting. Therefore, to generate better
generalizing models, we decided to alter the random
division before each removal step in the stepwise regres-
sion. Moreover, we now found K = 3 to be the best
choice of fold in generating a model with lower SBC
than the reference, and using the lowest number of
parameters. Choosing K = 2, the required performance,
set by the reference, could not be achieved using a lim-
ited number of random divisions, due to an increase of
the number of parameter removals. Consequently, for K
= 2, also the difference between SBCCV and SBC was
found to be the largest, indicating that parameter selec-
tion became more difficult when only half of the sam-
ples was used for training of the model.
The randomized stepwise selection procedure can now

be described. An initial forward stepwise regression was
executed until two mutations at different positions were
present in the model. After that the stepwise selection
procedure amounted to the execution of multiple back-
ward-forward regression steps cycles, with each cycle
consisting of a backward/removal step followed by a for-
ward/addition step. To avoid overfitting, a different ran-
dom division in three parts was used in each of these
cycles. As a consequence of this randomization, it was
possible that the latest parameter added in the forward
step of cycle i was directly removed in the backward
step of cycle i+1, for instance when a model parameter
was only present in one of the three parts of the new
random division. This was in fact the reason why we
decided to alter the random division before each

backward step and not before each forward step. Cross-
validation thus penalized infrequent interaction terms to
get/stay in the model but was nevertheless less stringent
than applying a minimal count rule as was done in the
reference method.

3F model selection
The Virco genotype-phenotype data set between July
and September 2006 was used as validation/test set. The
3F models were then selected as follows (Table 4): i)
select all models with a better performance than the
reference model on the training set with either AIC or
SBC and ii) from the models selected in i), select the
model that has the best performance (average squared
error) on the test set. The selected 3F models were then
refitted on all samples (including the validation set) to
actually compare them to the September 2006 reference
models.
AIC is defined as n ln(SSE/n) + 2p. SBC is defined as

n ln(SSE/n) + ln(n)p. In the above definitions SSE is the
Sum of Squared Errors, n is the number of genotypes-
phenotypes and p is the number of parameters in the
linear regression model [4].

Linear Discriminant Analysis
To rank RT mutations by their impact on NNRTI resis-
tance, a linear discriminant analysis (LDA) was done on
approximately 79,000 predicted phenotypes calculated
from genotypes sequenced at Virco between September
2006 and December 2008. Note that the LDA was done
on the calculated phenotypes and not on the measured
phenotypes in order to incorporate as many recent gen-
otypes as possible, especially since some of the novel
NNRTI mutations are infrequent in occurrence (Table
2). In order to analyze the impact of a mutation at posi-
tion i on resistance, a division of genotypes into two
groups was made. The first group contained all geno-
types containing the wild-type (HXB2) amino acid at
position i and the second group the genotypes with the
amino acid mutation. Genotypes containing a mixture
of amino acids at the mutated position were not consid-
ered. A contingency table was then made to analyze
how well the two groups could be separated using the
LDA cutoff applied on the calculated phenotypes. The
following metrics were calculated on the two-by-two
contingency table: precision, recall and F1. Precision is

defined as
n11

n11 + n01
. Recall is defined as n11/N1. n11 is

the number of samples with the amino acid mutation
having a calculated phenotype above the LDA cutoff.
n01 is the number of samples with the wild-type amino
acid having a calculated phenotype above the LDA cut-
off. N1 is the number of samples with the amino acid
mutation. As precision (positive predictive value) of the

Van der Borght et al. BMC Bioinformatics 2011, 12:386
http://www.biomedcentral.com/1471-2105/12/386

Page 9 of 12



LDA discrimination in log FC of the mutated group
from the wild type group at a position i can be high,
while recall (sensitivity) is low or vice versa, we used the
F1 metric, trading off precision and recall, for the rank-
ing of mutations for their impact on resistance. F1 is

defined as
(2 × p × r)

(p + r)
and thus equally weights preci-

sion (p) and recall (r). Ranking by impact on resistance
(F1) was done for the known NNRTI resistance-asso-
ciated mutations. For novel mutations, exclusively pre-
sent as first-order effect in the 3F NNRTI linear
regression models (thus absent in 3F nucleoside reverse
transcriptase linear regression models), ranking for
being associated with resistance was done using F1 if p
+ r > 0 and by LDA cutoff otherwise. LDA analysis was
done for both the reference and 3F calculated pheno-
types calculated using the September 2006 models.

Site-Directed Mutants
Site-directed mutants were created at Eurofins Medigen-
omix GmbH (Ebersberg, Germany) using the linear reac-
tion method. In this method, the template DNA is

linearly amplified using a mutagenesis-grade high-fidelity
DNA polymerase which extends the mutagenic primers
containing the desired mutation, incorporating the muta-
tion of interest into the newly synthesized strands. The
unique primer design allows replication of only the par-
ental strand. Final treatment with Dpn I ensures the
digestion of only dam-methylated parental strands. The
resulting mutagenic strands were then transformed in
ultracompetent cells and cultured on an agar plate. Single
colonies were sequenced to ensure the availability of the
correct mutation in the strand. A colony of a correct
mutation containing strand was cultured and the purified
plasmid shipped to Virco. Starting from this plasmid, the
Protease - Reverse transcriptase region (AA 1-99 of PR
and AA 1-400 of RT) was amplified and transfected into
293T cells and recombined with the deletion backbone
by homologous recombination [31]. The cultivated virus
was then grown against a standard set of anti-HIV drugs.

Additional material

Additional file 1: Comparison of susceptibility call between 3F and
Reference on unseen data for ATV, AZT and ETR. For ATV, AZT and

Table 4 3F model selection on genotype-phenotype data up to September 2006

3F Model generationa 3F Model selectionb

drug # 3F Models # lower SBC # lower AIC lower SBCc lower AICd N test ase 3F model selectede

Nucleoside RT inhibitorsf AZT 300 86 0 yes no 800 0.103 296

3TC 150 60 34 yes no 807 0.037 99

ddI 150 20 70 no yes 807 0.049 83

d4T 120 41 35 yes no 806 0.040 81

ABC 200 111 53 yes no 807 0.038 95

FTC 80 28 22 yes yes 804 0.071 76

TDF 400 66 196 no yes 807 0.039 298

NNRTIg NVP 400 93 0 yes no 801 0.089 391

EFV 500 101 0 yes no 807 0.246 386

ETR 700 49 0 yes no 777 0.113 656

Protease inhibitors IDV 485 50 51 yes yes 805 0.075 482

NFV 375 64 6 yes yes 808 0.063 375

SQV 600 53 0 yes no 807 0.092 575

APV 1000 0 656 no yes 808 0.060 709

LPV 500 205 28 yes no 807 0.157 319

ATV 1275 0 2 no yes 805 0.117 1158h

TPV 1000 641 142 yes no 806 0.059 428

DRV 1000 823 799 yes yes 816 0.096 707
aThe number of 3F models generated was arbitrary but taken large enough such that at least one 3F model was found with a lower SBC or AIC than the
reference on the genotype-phenotype data set up to July 2006.
bFrom the remaining 3F models with lower SBC or AIC than the reference, the 3F model was then selected with the lowest average squared error (ase) on an
unseen genotype-phenotype data set collected between July and September 2006 (test set) containing approximately 800 samples.
cSBC of the selected 3F model < SBC reference on the test set (yes/no).
dAIC of the selected 3F model < AIC reference on the test set (yes/no).
eThe number of different random divisions used in the stepwise regression in the selected 3F model.
fFor the nucleoside RT inhibitors the number of random divisions needed was less than 100, with exception of AZT and TDF.
gFor the non-nucleoside RT inhibitors most random divisions were needed for ETR.
hATV was the only drug for which more than 1000 different random divisions were needed.
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ETR a concordance analysis in susceptibility calls was done using
vircoTYPE 4.2 clinical cutoffs [34,35]. AZT and ETR were the RTIs with
difference in average squared error between 3F and reference larger
than 1.0%. ATV was the drug for which most random divisions were
needed to generate the 3F model (Table 4), and one of the PIs with
averaged squared error > 7% higher in 3F than in the reference.

Additional file 2: Complexity and performance of 3F and Reference
models on genotype-phenotype data sequenced at Virco up to
September 2006. Complexity of the 3F models for the NRTIs, NNRTIs
and PIs, and performance on training and test set. The 296 RT mutations
found as single term in the RTI 3F models are listed as i) single terms
exclusively found in NRTI 3F models, ii) single terms exclusively found in
NNRTI 3F models and iii) single terms found in both NRTI and NNRTI 3F
models.

Additional file 3: Linear Discriminant Analysis (LDA) for 103N and
181C. 3F LDA F1 impact on resistance of 103N is largest for NVP: 0.75,
then for EFV: 0.63 and then for ETR: 0.09. 3F LDA F1 impact on resistance
of 181C is largest for ETR: 0.56, then for EFV: 0.19 and then for NVP: 0.11.
LDA cutoff (blue line) is shown to discriminate between samples with
wild type at position 103/181 and samples with mutation 103N/181C for
which the density histograms are shown. Frequency of wild type (not
within a mixture) in LDA data set was 62,010 and 72,643 for positions
103 and 181, respectively. Frequency of mutation (not within a mixture)
in LDA data set was 12,012 and 5043 for 103N and 181C, respectively.

Additional file 4: Site Directed Mutants of novel mutations tested
for NVP, EFV and ETR. Fold Change (FC) was calculated as the IC50 of
the site-directed mutant divided by the IC50 of a wild-type laboratory
reference strain. All SDMs were measured three times (unless indicated
otherwise) and FCs for each of the three measurements are shown.
SDMs used as genetic background for evaluating the contribution to
resistance of the novel mutations, are given at the top of the file.
Noteworthy, the in vitro drug resistance interaction mechanism of the
novel mutation and the known NNRTI resistance associated mutations
was not always additive: 181F contributed to resensitization to EFV of the
103N mutated virus, 179Y contributed to resensitization to NVP and EFV
of the 190A mutated virus.

Additional file 5: K Fold cross-validated stepwise regression using
same or different random division before each removal step: ETR
model. Different choices of fold K were evaluated for the ETR model.
The goal was to find a linear regression model with better SBC than the
reference and at the same time using less parameters. (A) When keeping
the same random division during the stepwise regression, selection bias
resulted in more overfitting, when lowering K. By altering the random
division before each removal step, for K = 3 the reference goal SBC was
reached with the lowest number of parameters. (B) The difference
between SBCCV and SBC (calculated as n ln(CVPRESS/SSE)) was found to
be larger when lowering the number of folds K, in case a different
random division was used before each removal step. (C) When lowering
K, using a different random division before each removal step resulted in
more parameter removals. Whereas for K = 3, a model with the required
SBC was found using 700 backward-forward cycles, for K = 2, the model
size did not increase fast enough during the stepwise procedure as 2000
backward-forward cycles were not sufficient to reach the goal SBC.
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