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Abstract. Touch-based tabletop interaction with virtual environments (VEs) is 
a recent research interest. In particular, 3D navigation and object interaction on 
tabletops pose considerable research challenges given the flat, rectangular two-
dimensional workspace of an interactive tabletop. This paper explores the 
design of whole-hand gestures for urban modeling on an interactive, tilted 
tabletop system. These touch-based gestures fit a hybrid 2D/3D approach for 
navigation and object interaction in urban city modeling. In a formal user study 
the proposed whole-hand gestural interface was compared to a finger-based 
equivalent. The evaluation results reveal appreciation for aspects of the 
interaction concept, also illustrating the need for further tuning of the 
interaction concept and the input tracking. 

Keywords: interaction techniques, tabletop, gestures, touch-based interaction, 
navigation, urban modeling, user evaluation. 

1 Introduction 

The emergence of multi-touch surfaces [1, 2, 3] has been quite a boost for research in 
touch-based interaction in the past decade. In 2007 Grossman [4] presented an 
overview of research advances in interaction techniques on interactive tabletops, 
indicating that three-dimensional interaction was largely undeveloped. Several novel 
techniques for 3D interaction have since been presented, either simulating 3D 
interaction with finger-based interaction while touching the surface [5, 6, 7, 8] or 
above surface interaction using vision or additional sensors [9, 10, 11].  

Our approach explores interaction on the surface using whole-hand gestures, 
motivated by the versatility and the expressiveness of the human hand. We developed 
a set of novel gestures for navigating in a virtual environment and for modeling 3D 
objects (in our case, buildings in a virtual city). In the next sections we describe the 
interaction design and elaborate on the results of an initial user study, comparing 
whole-hand interaction and finger-based interaction.  
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3.2 Test Results and Discussion 

The finger-based interaction performed statistically significant faster than whole-hand 
interaction (using ANOVA, p<0.05), for navigation as well as object manipulation. 
With regard to the effect of city density or the use of a wireframe aura representation, 
we can’t report any statistically significant difference in task execution times. The 
subjective results indicate that the participants are convinced that finger-based 
interaction is faster and more precise. Finger-based interaction is generally considered 
to be more intuitive than hand-based interaction. When looking at the user preference 
for individual operations, 3 out of 16 users preferred travelling using whole-hand 
navigation, whereas 7 users preferred the panning operation in whole-hand 
navigation. We found similar results with regard to object manipulation: 3 
participants preferred the translation using whole-hand interaction, whereas half of the 
participants opted for rotation according to whole-hand interaction and a quarter of 
the test group chose whole-hand interaction for scaling.  

Eleven participants mentioned some kind of frustration with whole-hand 
interaction, as the system did not react to their expectations when gesturing. Although 
the majority of the reported issues were due to incorrect gesturing by the participants, 
the problems of 4 participants were a consequence of above average differences in the 
hand shapes of these users and should be solved by updating the hand shape 
calibration in the touch tracking software. The height of the test person and the arms’ 
reach is also a matter to take into further consideration: 3 participants, being smaller 
than 1.7 meter, had some difficulty when scaling the height of a building as their hand 
was not correctly positioned along the top edge of the building because of insufficient 
arms’ reach.  

Several factors, probably in a combination, could be responsible for the 
considerable difference in task completion time between finger-based navigation and 
whole-hand navigation. A first reason of this difference is that hand-based navigation 
is a more continuous action, hence requiring also more consciously calculating, in 
contrast to the sequence of discrete actions in finger-based navigation. A second 
factor is the presence of a sideward move in finger-based navigation, which was not 
available in whole-hand navigation because of the airplane metaphor. An additional 
element is that hand-based navigation was more difficult to master than finger-based 
navigation, as substantiated by the larger learning curve of whole-hand navigation 
over the 15 navigational tasks.  

About half of the test population caused accidental moves of buildings when using 
whole-hand manipulation as they “released” the building incorrectly, by lifting the 
fingers not synchronously from the surface or by slightly dragging across the surface 
when lifting their hand. This situation will have led to greater attention and caution 
while performing the tasks using whole-hand interaction, at least with the users that 
weren’t able to master the gesture completely. Hence one might conclude that whole-
hand interaction was also more difficult to learn, albeit that 7 test participants 
managed to rotate buildings on average faster with whole-hand interaction than with 
finger-based interaction. As the whole-hand gesture for rotation has many similarities 
with rotating physical 3D objects on a table and as it supports proprioception, many 
users might have felt quite comfortable with this gesture and might therefore have 
expressed their preference for this gesture.  
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4 Conclusions and Future Work 

This paper presented whole-hand gestures for hybrid 2D/3D navigation and object 
manipulation in a tabletop environment. A comparative user study showed that, given 
the current gesture design and implementation, finger-based interaction maintains the 
efficiency advantage. Most participants preferred finger-based interaction in general, 
but up to half of the participants expressed a preference for certain hand-based 
gestures and in particular for rotation. Besides enhancing the interaction design and 
the input tracking, we will perform further research on the application context where 
either finger-based interaction or whole-hand gestures are beneficial. 

Acknowledgements. The authors would like to thank their former colleagues, Rohita 
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research was performed in the context of the IBBT-project Hi-Masquerade.  

References 

1. Dietz P., Leigh D.: DiamondTouch: a Multi-user Touch Technology. In: 14th ACM 
Symposium on User Interface Software and Technology, pp. 219--226, ACM Press (2001) 

2. Microsoft Surface, http://www.microsoft.com/surface/  
3. Han J.Y.: Low-cost Multi-touch Sensing through Frustrated Total Internal Reflection 

(FTIR). In: 18th ACM Symposium on User Interface Software and Technology, pp. 115--
118, ACM Press, New York (2005) 

4. Grossman T., Wigdor D.: Going Deeper :a Taxonomy of 3D on the Tabletop. In: IEEE 
International Workshop on Horizontal Interactive Human-Computer Systems (2007) 

5. Hancock M., Carpendale S., Cockburn A.: Shallow-depth 3D Interaction: Design and 
Evaluation of One-, Two- and Three-touch Techniques. In: ACM Conference on Human 
Factors in Computing Systems 2007, pp. 1147--1156, ACM Press (2007) 

6. Hancock M., ten Cate T., Carpendale S.: Sticky Tools: Full 6 DOF Force-based Interaction 
for Multi-touch Tables. In: ACM Conference on Interactive TableTops and Surfaces, pp. 
145--152, ACM Press, Banff (2009)  

7. Kruger R., Carpendale S., Scott S.D., Tang A.: Fluid Integration of Rotation and 
Translation. In: ACM Conference on Human Factors in Computing Systems, pp. 601--610, 
ACM Press (2005) 

8. Reisman J.L., Davidson P.L., Han J.Y.: A Screen-space Formulation for 2D and 3D Direct 
Manipulation. In: 22nd annual ACM symposium on User Interface Software and 
Technology, pp. 69--78, ACM Press (2009) 

9. Hilliges O., Izadi S., Wilson A.D., Hodges S., Mendoza A.G., Butz A.: Interactions in the 
Air: Adding Further Depth to Interactive Tabletops. In: 22nd ACM Symposium on User 
Interface Software and Technology, pp. 139--148, ACM Press, New York (2009).  

10. Benko H.: Beyond Flat Surface Computing: Challenges of Depth-aware and Curved 
Interfaces. In: 17th ACM International Conference on Multimedia, pp. 935--944 (2009) 

11.Takeoka Y., Miyaki T., Rekimoto J.: Ztouch: an Infrastructure for 3D Gesture Interaction in 
the Proximity of Tabletop Surfaces. In: ACM Conference on Interactive Tabletops and 
Surfaces, pp. 91 --94, ACM Press (2010) 

12. Harrier, http://www.britannica.com/EBchecked/topic/255852/Harrier  
13. Pierce J.S., Forsberg A.S., Conway M.J., Hong S., Zeleznik R.C., Mine M.R.: Image Plane 

Interaction Techniques in 3D Immersive Environments. In: ACM symposium on Interactive 
3D Graphics, pages 39--44, ACM Press (1997) 


