
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Defining an Embodiment Space for Intelligibility

Peer-reviewed author version

TAN, Chiew Seng Sean; LUYTEN, Kris & CONINX, Karin (2011) Defining an

Embodiment Space for Intelligibility. In: Proceedings of the Workshop on Intelligibility

and Control in Pervasive Computing. p. 1-6..

Handle: http://hdl.handle.net/1942/12353

Defining an Embodiment Space for Intelligibility
Tan Chiew Seng Sean, Kris Luyten, Karin Coninx

Hasselt University – tUL – IBBT
Expertise Centre for Digital Media,

Wetenschapspark 2, 3590
Diepenbeek, Belgium

{sean.tan, kris.luyten, karin.coninx}@uhasselt.be

ABSTRACT
One fundamental barrier to the wide-scale adoption of intelligible
systems is the lack of commonly available software designs that
allow system designers to readily refer to and complete the
finished product with intelligible capabilities. A number of
intelligible systems and toolkits that provide different kinds of
explanations have been proposed. It is still unclear how the
additional information needed to provide these explanations into
the engineering process of such an intelligible system. In this
paper, we propose a framework Embodiment Space that uses
Activity Theory as an instrument to help model the interaction for
improving end-user understanding of intelligible systems. We
then connect the Embodiment Space with software architectural
patterns as a tool for supporting the implementation process. We
present several examples, rooted in the Embodiment Space
framework, in which explanations are provided for each of the
difficult circumstances experienced by the end-user.

Categories and Subject Descriptors

H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms

Human Factors, Design.

Keywords

Intelligibility, Activity Theory, Embodiment Space, Task Model,
Software Architectural Pattern.

1. INTRODUCTION
As computational power grows exponentially and computer
systems are becoming cost-efficient over time for practical
everyday use, they play an increasing role in our lives, providing
us with increasingly diverse forms of services and information
access. Interactive applications, incorporating context-awareness
with our environment, creates whole new forms of interaction and
experience that we would never otherwise have imagined.

Grudin [10] describes the history of interaction moving from
being directly focused on the physical machine to participating the
user’s world and the social setting in which the user is embedded.
Wegner [21] brought forward the interactional approaches
conceptualizing computation as dynamic interaction amongst
different components in context to the user.

The ability to generate explanations or at least display the
system’s confidence is an important aspect for any system to be
perceived as intelligible [18, 1]. A wide variety of knowledge
engineering methodologies exists that focus on the explanatory
knowledge. Some of these features of explanations enhance the

user experience by adding either a level of self reflection about
the actions of the system or the importance of such explanations
into gaining the user’s trust towards the system’s capabilities [14].

In order to let users intervene in the computer system, especially
when something goes wrong, the system first needs to present
itself and the way it works to end-users with plausible logical
explanations. The design of explanatory capabilities should be
made an integral part of the system’s design process and made
commonly available for adoption by every system designers and
software engineers.

Understanding users and their intents is the first and foremost
critical principle in the software engineering process [20] as it
essentially drives all other stages in the process. The goal of our
work is to outline a design approach that starts from usage
scenarios and uses the Embodiment Space as a reference
framework for analysis of these scenarios. We expect to be able to
identify the expectations an end-user might have towards the
explanations provided by an intelligible system more precisely.

We see our work fitting in as part of the Architectural design
phase for planning the necessary software blueprint. Vermeulen’s
design space for intelligibility and control [19] could
subsequently be applied in the User-centric interface design
phase. Lim’s Intelligibility Toolkit [15] could be used to
implement the intelligibility capabilities into the system during the
Coding phase.

In this paper, we present our well-structured reference framework
that forms the design of intelligible systems based on practices
and experiences in both the social science and software
development domains. Thus, the expected outcome is a better
understanding how to expose the behavior of the system
according to the user expectations.

2. MOTIVATION AND CONTEXT
By investigating the intelligible capabilities that a system can have
starting from its conception, we can assure that the finished
system can sufficiently generate insights for its own behavior
under different circumstances. The user should be able to
understand what the system knows, how the system deduced this
information and what the system is currently doing. Therefore, an
analysis of how user consciousness and activities fit with the
system behavior should also be part of the software engineering
process. To the authors’ knowledge, this high-level approach has
not been investigated in literature to its full extent.

In related work by Ju et al [11] and Cassens [4], different
approaches taken for development of design framework for
building intelligible systems are presented. The design framework
described by Ju et al for reasoning about transitions between
implicit and explicit interaction utilizes three interaction

techniques [11]. These techniques are intended for users to
overcome errors in system’s behavior through user reflection,
system demonstration, and override. The first two can be seen as
interaction techniques for improving intelligibility, while the latter
is a technique for providing control. The theoretical framework
described by Cassens for context-aware applications uses Activity
Theory and Semiotics [4]. He had proposed to use problem frames
as the main approach to capture explanations for transparency,
justification, relevance, conceptualization, and learning.

In this paper, we investigate the use of Activity Theory [2, 13] as
a facilitating instrument to determine how improving
intelligibility and providing control to the user could help in the
achievement of predefined goal in work process. Many
applications are not “goal-driven” anymore rather they are
context-aware and thus become more and more dependent on the
situation for interaction with the user. Our approach of using
Activity Theory is to determine and understand the activity to
achieve the goal from the user’s point of view.

We utilize the descriptive properties in Activity Theory [16] and
its usage in workplace situations [9], to help us understand the
unity of consciousness and activity of individual and collective
work practice. Interaction encompassing both social nature and
dynamics features of human practices can be addressed within an
integrated framework that we define as the Embodiment Space.

We are now investigating how these different considerations –
socio-technical analysis, knowledge ontology synthesis, and
explanations generation – can fit into a design methodology that
can be handled by knowledge and software engineering
community. From the discussion of Yee et al. [22] on the
metaphor of embodiment and the expectations of artifacts
representation within virtual worlds, we hope the Embodiment
Space can uncover the following questions:

• How a user makes use of artifacts to perform a task?
E.g. navigating the neighborhood using a GPS device;

• How virtual representation aids user to complete a task?
E.g. searching places of interest using Augmented
Reality applications such as Layar Reality Browser1;

• How a user draws experience from reality and applies
them in virtual world? E.g. experiencing the lifestyle of
alternate reality in Second Life.

These questions will be revisited and discussed through three
examples in Section 3.3. The next step is to identify which aspects
of an Activity Theory-based analysis can help us to capture a
user’s interaction within the Embodiment Space. This
Embodiment Space should include knowledge about the acting
subject, the objects towards which activities are directed and the
community as well as knowledge about the mediating
components, like rules and tools.

We present an example scenario to illustrate our approach. Alice
is attending a conference in downtown San Francisco and she is
unfamiliar with the restaurants in the vicinity. She uses her smart-
phone to search for a posh Italian restaurant. The restaurant has to
be within walking distance from her current location. Location
tracking is done by a traditional GPS device, available in most

1 URL: www.layar.com

mobile devices nowadays. Her social network provides the
information to identify the most appropriate restaurant.

3. THE EMBODIMENT SPACE
Computers should be able to find the common skills and abilities
to interact with us, based on the way we create relationships
between physical and social interaction. Dourish [8] suggested
expanding on the observation that enables both human and
computer systems to interact by exploiting our sense of
familiarity. Intelligibility turns this around and we propose to
make the system state – and what lead to this – perceivable by the
human user, allowing user to understand and control the system
behavior, alongside this same sense of familiarity.

3.1 Parameterization of Activity Theory
By turning interaction into something that can be modeled in a
three-dimensional space, we are able to describe the interaction in
broader context. These models are relatively easy to convert to
designs that support the engineering process of intelligible
systems. The reference framework we suggest, Embodiment
Space, should lead to an informed development process that allow
system designers to focus on improving the end-user
understanding of the system from the conception stage onward.

Figure 1. Basic aspects of an activity.

For example, we want the Embodiment Space to contain
information about the user as acting subject, the tools and its
social settings so that the user can receive real-time feedback
about actions that occur. To this end, we propose a mapping from
the basic structure of an activity into the taxonomy of three
distinct yet interrelated aspects as depicted in Figure 1. By logical
aggregation of the basic activity structure, we are able to associate
the activity elements into three distinct functional groupings
namely, technological, social and binding aspects.

We also identified parallels with the work on activity theory from
Leont’ev [13]. The technological aspect includes physical changes
in the environment whilst the social aspect includes acquisition of
intangible assets from the environment. The binding aspect
involves the driving forces behind development in the
technological and social aspects and provides meanings through
engaged interaction with objects in the world.

Using our example case, we can see that the technological aspect
contains information we would associate with the acting subject
itself, the mediating tool and the object, constituting towards an
activity. For instance, Alice (acting subject) is looking up her
smart-phone (mediating tool) to search for an Italian restaurant
(object) near her present location. The social aspect contains
information on the community entanglement and division of labor

Mediating
Tool

Object Subject

Rules
Community Division

of Labor

TECHNOLOGICAL

BINDING
SOCIAL

which can be attributed to the proper individual and in turn better
supports the accumulation of social capital. E.g. Alice searches
through her network of online friends (community) and receives
many responses (division of labor) from them. The binding
aspect contains the information on the rules which promote
accountability, trust, responsibility and predictable behavior that
affect the overall technological and social fabric of the user. Such
as the GPS location tracking and path-finding algorithms (rules)
in Alice’s smart-phone that helps her navigate to the nearest
recommended Italian restaurant. The smart-phone incorporating
these rules, as part of its intelligibility capability, enables Alice to
understand how its computational states are linked, processed and
managed over time to reach the outcome of restaurant selection.

Until now, we have only proposed a reference framework for the
description of technological, social and binding aspects from the
instrumentation of Activity Theory. These descriptions need to be
bridged with an integral view with the implementation of the
intelligible system. Embodiment Space is a foundational
component that can be put in used as a (set of) software
architectural pattern(s). With our reference framework, system
designers are able to identify possible expectations an end-user
might have towards the explanatory capabilities of an intelligible
system, and we shall explain the working details in Section 4.

3.2 Notion of Embodiment Space
Embodiment Space denotes a three dimensional space of the
status of entities embedded in the world with the granularity of
their exposure in the world depending on what is being
embedded. Embodiment Space defines the ways in which their
presentation (both real and virtual) as shown in figure 2 depends
on where they can be situated on the Embodiment, Environment
and Event dimensions.

Figure 2. Three dimensional framework of Embodiment Space

Just as tangible computing, described in [8], explores this in three
corresponding ways: the configurability of space, the relationship
of body to task, and the physical constraints; the Embodiment
Space is intended as a superset comprising both tangible
computing and social computing. By providing a reference
framework that situates the model that describes our engagement
with the world, the Embodiment Space is contextualized with
different plausible interpretations according to the activities that
are taking place in a larger-scale organizational context. Likewise,

the same interpretation can be part of distinctive representations
which is based on the task at hand.

The technological, social and binding aspects of the user take into
account the progression of user interaction, technology
involvement, and the overall social atmosphere to be model in the
Embodiment Space. The complexity of the interaction in each
aspect is directly proportional to their representations within the
Embodiment Space. This is explained using the circumstance that
Alice is experiencing as depicted in figure 2. Our usage of the
term “circumstance” refers to the condition that the user is
experiencing in term of bearings along the Embodiment,
Environment and Event dimensions.

The binding aspect for Alice is the strict compliance to the
physical laws involving distance and time, in the Embodiment
dimension, which are used to determine her current location and
shortest path to the recommended Italian restaurant. The
representation of the binding aspect contains the direct
manipulation of physical laws into algorithms for location tracing
and path finding computation. The social aspect can be described
as somewhere between Virtual Locale and Virtual World
(depending on the social circle of Alice) along the Virtual
Environment dimension. The social aspect representation
encompasses the communication and friend-listing services for
Alice to keep in touch with her friends. Her technological aspect
involves her physical presence for location update in the Event
dimension. The technological aspect representation shows the use
of GPS technology for location updates as well as computation
methods for processing the restaurant recommendations.

3.3 Examples involving Embodiment Space
Activity Theory is capable of capturing changing contexts in
breakdown circumstances [16], we will include such breakdowns
in our three examples. Our examples focus on the user shifting
away from the task at hand to the problem source and being
involved in a different task where she will have to work with the
intelligible system for an explanation for her difficulty. Therefore
other factors of the activity, such as the community, division of
labor, rules, subject and object will change as well. It is clear that
the intelligibility should reflect these changes to the users.

In the first example, a user is using domestic activity monitoring
assistant, such as Unified Room Control Interface [6] or Home
Activity Recognizer [15], to customize the room settings for her
reading purpose. However, she is experiencing difficulty in setting
the illumination to the correct comfort for reading when she is
leaning against a particular wall. The operation of using the
domestic activity monitoring assistant now becomes a part of the
qualitative evaluation process.

Figure 3 shows the possible parameters for searching and
generating the information to explain the physical difficulty as
experienced by the user. The binding aspect can be described as
somewhere between the confinement of Standard and
Practice/Guideline along the Embodiment dimension for her
physical qualitative evaluation purpose. There is lesser
consideration for the social aspect in the Environment dimension
as the user is working within her personal space, and the
technological aspect involves the physical activity of working
with the domestic activity monitoring assistant and the room
lightings control in the Event dimension.

SOCIAL

BINDING

Embodiment

Environment

Preference

Practice
Guideline

Law
Standard

Personal

Locale

Universe
World

Presence
Existential Activity

Inter-activity

Collaborative
Situation

Event

Virtual
Embodiment

Virtual
Environment

Virtual
Event

Alice’s circumstance

+ve

+ve

+ve

-ve

-ve

-ve

0

Legend

+ve Positive value

-ve Negative value

TECHNOLOGICAL

Figure 3. User unable to set the correct illumination for
reading purpose

In the second example, a group of engineers working remotely
through their meeting boards, such as DUMMBO [7], experience
a screen update on their meeting boards. The operation of using
the meeting boards now becomes a conscious action for the
investigative process on who made the update and how the update
fits into the project discussion. Figure 4 show the possible
parameters for searching and generating the information to
explain the screen update on the meeting boards. The binding
aspect can be described as extension of the Preference toward the
Practice and Guideline of the meeting boards in the Virtual
Embodiment dimension for traceability purpose. The social aspect
can be viewed as physical locale in the Environment dimension
where the meeting boards are remotely situated. The technological
aspect involves inter-activity among users working with the
meeting boards in the Event dimension.

Figure 4. Meeting boards showing a screen update to remote
group members

In the third example, a group of online gamers playing a
massively multiplayer online role-playing game (MMORPG such
as EverQuest, Star Wars Galaxies or World of Warcraft)
experience a rejection error when they wanted to join a particular
quest. The operation of playing the game now becomes a
conscious action for the troubleshooting process. Figure 5 shows
the possible parameters for searching and generating the
information to explain the rejection error as experienced by the
gamers. The binding aspect can be described as the software
configuration settings between the Standard and the Practice
along the Virtual Embodiment dimension for the rejection error
troubleshooting purpose. There is high consideration for the
social aspect in the Virtual Environment dimension as the gamers
are living through their game character(s) or avatar(s) in the
immersive virtual world with other gamers. The technological

aspect involves inter-activity among multiple gamers playing
towards collaborative situation in the Virtual Event dimension.

Figure 5. A massively multiplayer online role-playing game
refusing a particular quest for online gamers

4. Models for Intelligibility
Design patterns have been described across many problem
domains, including user interfaces, reactive systems, real-time
processes, hypermedia and transport systems [3]. As such, we
think they can capture a substantial amount of information that is
required to create an intelligible system.

A set of intelligibility patterns represents part of the body of
knowledge that can be accessed for creating suitable system
interfaces. They are reusable models that include the core
concepts for providing correct explanations at the right time. Task
modeling, for example, is an implementation of design patterns
and is used to elicit requirements in early stages of development
by describing a set of tasks people perform to achieve goals.

In our study, we use the Tasks Interactor Modeling concept [17]
for the explanation generation task to update user of the system
state. The task models are used as patterns to inform the software
architectural design – in this case – and attribute it with the
capabilities to provide explanations. Mapping tasks directly to
interactors, which forms the building elements of software
architecture, ensures integration of information to steer the design
of the behavior of a system into the software. Notice the similarity
with the COMETS approach by Demeure et al. [5], in which an
interactive system is considered to be a graph of interconnected
models that can be queried for their semantics at runtime.

We adapted the example from Paternò [18] on his Search
Architectural Software for our explanation generation purpose,
and then applied to our Alice example as depicted in figure 6.

Figure 6. Explanation generation task specification

Our task for generating specific explanatory information is done
through the matching of query results to the perceived
circumstance of Alice (derived from the Embodiment Space

Practice
Guideline

Virtual
Environment

Virtual
Event

TECHNOLOGICAL

SOCIAL BINDING

Standard

Virtual
Embodiment

World
Universe

Inter -Activity
Collaborative

Situation

Search for
explanation

Close Iterative Search*

DefineQuery Show&Match CloseRefinement

Cancel* EnterParam Submit

PerformQuery ShowResult

PerformContextMatch

EnterEmbodiment* EnterEnvironment* EnterEvent*

DecideMatch

DecideRefinement

Practice
Guideline

Environment

Event

TECHNOLOGICAL

BINDING

Standard

Embodiment

Personal

Activity

SOCIAL

Virtual
Embodiment

Practice

Environment

Event

TECHNOLOGICAL

BINDING

Preference

Locale

Inter-activity

SOCIAL

analysis). From our example, the input for Embodiment,
Environment and Event are as described in Section 3.2. An
explanation generation task is used to inform Alice of the system
state when it is determining the nearest Italian restaurant based on
the recommendations from Alice’s friends. Whenever the system
has no precise ideas on searching for the desired data, it
automatically refines the query along each dimension of the
Embodiment Space until a matching result is found.

Alice defines a first query (DefineQuery task) and only after the
performance of this task, the application tasks will perform the
query execution in the Embodiment Space and show the result.
When Alice’s friends responded with their recommended Italian
restaurant in downtown San Francisco, the system starts searching
for an explanation as to which recommendations is most suitable
while presenting the system state and its related information. For
instance, Alice asks the system why the restaurant recommended
by Bob is selected. The task (DecideMatch) receives information
from an application task (ShowResult) and produces input for the
next interaction task (DecideRefinement). An example could be
Alice trusted Bob’s culinary taste and will place high priority on
any restaurants that Bob recommends.

The system refines the query for each dimension in the
Embodiment Space several times until the Close Refinement task
is performed. At that time, it will be possible to start another
completely different search without closing the session. In such a
case, the restaurant that Bob recommended (satisfactory result
matched in Environment dimension) is within walking distance to
Alice’s location (second result matched in Event dimension) and
has highest priority score (third result matched in Embodiment
dimension), and so the system selects Bob’s recommendation and
presents the restaurant details and directions to Alice.

The objects identified at the task level will be associated with
interactors in Table 1 and actions among objects have been used
to identify the composition among interactors.

Table 1. Association between objects and interactors

Object Name Type Interactor associated

InputParam-
Embodiment

Perceivable IEnter Embodiment

InputParam-
Environment

Perceivable IEnter Environment

InputParam-
Event

Perceivable IEnter Event

Init-submit Perceivable ISubmit

Init-cancel Perceivable ICancel

Database Application IEmbodimentSpaceDatabase

Init-close Perceivable IClose

Close-refining Perceivable ICloseRefining

ReturnQuery-
data

Perceivable IShowQueryResult

For each task of editing a data attribute we have a corresponding
interactor, which receives input data from the system and sends
them to the Database. The system has to wait for the control event

(input_trigger) from the ISubmit interactor which provides it
when it receives the input from the user and disables it. E.g. Alice
starts querying her friends for restaurant recommendations. The
Database sends the result data to the IShowQueryResult interactor
which then presents the result to Alice. E.g. the selected restaurant
details and directions.

After showing the result to Alice, the IShowQueryResult
interactor re-enables the IEnter for the Embodiment, Environment
and Event inputs. The ISubmit interactors then allow the system
to input data again. An example could be a new recommendation
is received from Charlie 10 minutes later, whom Alice had also
placed same culinary priority weightage as Bob.

The IClose interactor disables all the other interactors when it
receives an input from the system. The ICloseRefining interactor
allows the system to start a new search, so it sends an
input_trigger to all of IEnter type and IShowQueryResult
interactors to cancel the data associated with the previous query.
E.g. Charlie’s recommendation is nearer to Alice than Bob’s
recommendation; in this case, the system will then prompt Alice
for a selection between Bob’s or Charlie’s recommendation.

The software architectural pattern for explanation generation, in
figure 7, has six outcomes and the procedure is as described:

1. Input_send to the disable_gate of: IEnterEmbodiment,
IEnterEnvironment, IEnterEvent, ICancel
2. Input_send to the enable_gate of: ICloseRefining,
IEmbodimentSpaceDatabase
3. Input_send to the enable_gate of: IShowQueryResult
4. Input_send to the enable_gate of: IEnterEmbodiment,
IEnterEnvironment, IEnterEvent, ISubmit
5. Input_send to the trigger_gate of: IEnterEmbodiment,
IEnterEnvironment, IEnterEvent
6. Input_send to the disable_gate of all interactors

Figure 7. Software architectural pattern for explanation
generation

The result of the tasks-to-interactors association in figure 8
depicts the interactors associated to each task. The relationships
between tasks and interactors are straightforward for one task to
be performed by one interactor, with exception for the Database
interactor which actually supports the performance of two tasks.

As part of our future work, we consider the hierarchical
compositions of interactors as they allow both input and output
flows of information. This will make the compositions among the
interactors, dynamic and reconfigurable according to specific
circumstances, allowing us to study the developmental
transformation which will lead to the improvement for user to
understand the system.

IEmbodimentSpace
Database

IEnter *
Embodi-

ment

IEnter *
Event

ISubmit ICancel

IShow
Query
Result

IClose
Refining

IClose

System
input

IEnter *
Environ-

ment

3

6

5 4

2
1

System
input

System
input

User
input

User
input

User
output

System
input

System
input

Figure 8. Tasks-to-interactors association

5. CONCLUSION
We presented a reference framework for intelligibility based on
activity theory: the Embodiment Space framework. We are
exploring how this framework can be used to improve the users'
understanding of system behavior. The framework uses Activity
Theory as an instrument to identify the technological, social and
binding aspects that can be mapped to the task model. As such,
the framework is a foundational component that can be employed
for a (set of) software architectural pattern(s) that enables system
designers to build the software blueprint for intelligible systems.

Our next step is to formalize the relationship between the
technological, social and binding aspects with the Embodiment
Space to ensure scalability of intelligible system design for large
and complex applications.

6. REFERENCES
[1] Antifakos, S., Kern, N., Schiele, B. and Schwaninger, A.

2005. Towards improving trust in context-aware systems by
displaying system confidence. In Proc. MobileHCI ’05, pp
9–14. 2005.

[2] Bødker, S. 1991. Activity theory as a challenge to systems
design. In Information Systems Research: Contemporary
Approaches and Emergent Traditions. pp 551–564, 1991.

[3] Bosch, J. 2000. Design & Use of Software Architectures -
Adopting and Evolving a Product Line Approach, Addison-
Wesley, 2000.

[4] Cassens, J. 2008. Explanation Awareness and Ambient
Intelligence as Social Technologies. Doctoral Thesis for the
degree doctor scientiarum, Norwegian University of Science
and Technology, Trondheim, Norway, 2008.

[5] Demeure, A., Masson, D. and Calvary, G. 2011. Graphs of
models for exploring design spaces in the engineering of
Human Computer Interaction. In Proc 2nd SEMAIS
workshop of the IUI 2010 conference. 2011

[6] Dey, A. K., Salber, D. and Abowd, G. D. 2001. A
Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications. In
Human-Computer Interaction Journal, pp. 97-166, 2001.

[7] Dey, A. K. and Newberger, A. 2009. Support for context-
aware intelligibility and control, Proc. 27th Int’l conference
on Human factors in computing systems, pp 859-868, 2009.

[8] Dourish, P. Where the Action Is: Foundations of Embodied
Interaction. MIT Press, 2001.

[9] Fjeld, M., Lauche, K., Bichsel, M., Voorhoorst, F., Krueger,
H. and Rauterberg, M. 2002. Physical and Virtual Tools:
Activity Theory Applied to the Design of Groupware. CSCW
11, pp 153–180, 2002.

[10] Grudin, J. 1990. The computer reaches out: The historical
continuity of interface design. Proc. CHI '90, pp 261-268,
1990.

[11] Ju, W., Lee, B., and Klemmer, S. 2008. Range: Exploring
implicit interaction through electronic whiteboard design. In
Proceedings of the ACM 2008 Conference on Computer
Supported Cooperative Work, pp. 17-26, 2008.

[12] Kuutti, K. 1995. Activity theory as a potential framework for
human-computer interaction research. Context and
consciousness: Activity theory and human computer
interaction, pp 17-44, MIT Press, 1995.

[13] Leont’ev, A. N. 1978. Activity, Consciousness, and
Personality. Prentice-Hall, 1978.

[14] Lim, B. Y., Dey, A. K. and Avrahami, D. 2009. Why and
why not explanations improve the intelligibility of context-
aware intelligent systems, In Proc. 27th Int’l conference on
Human factors in computing systems, pp 2119-2128, 2009.

[15] Lim, B. Y. and Dey, A. K. 2010. Toolkit to support
intelligibility in context-aware applications. In Proc
Ubicomp’10, pp 13-22, 2010.

[16] Nardi, B. A. 1995. Context and Consciousness: Activity
Theory and Human-Computer Interactions. ACM
Interactions, 1995.

[17] Paternò, F., 1994. A Theory of User-Interaction Objects,
Journal of Visual Languages and Computing, 5, 3., pp 227-
249, Academic Press, 1994.

[18] Roth-Berghofer, T. R. and Cassens, J. 2005. Mapping Goals
and Kinds of Explanations to the Knowledge Containers of
Case-Based Reasoning Systems. Case Based Reasoning
Research and Development 2005, pp 451-464, 2005.

[19] Vermeulen, J. 2010. Improving Intelligibility and Control in
Ubicomp. In Ubicomp '10 Doctoral Colloquium. pp 485-
488, 2010.

[20] Warfel, T. Z. 2009. Prototyping: A Practitioner’s Guide,
Rosenfeld Media, 2009.

[21] Wegner, P. 1997. Why interaction is more powerful than
algorithms. In Communications of the ACM, 1997.

[22] Yee, N., Ellis, J., and Ducheneaut, N. 2009. The Tyranny of
Embodiment. Artifact, 2, pp 1-6, 2009.

IEmbodimentSpace
Database

Search for
explanation

Close Iterative Search*

DefineQuery Show&Match CloseRefinement

Cancel* EnterParam Submit

PerformQuery ShowResult

PerformContextMatch

EnterEmbodiment* EnterEnvironment* EnterEvent*

DecideMatch

DecideRefinement

IEnter *
Embodi-

ment

IEnter *
Event

ISubmit ICancel

IShow
Query
Result

IClose
Refining

IClose

System
input

IEnter *
Environ-

ment

3
6

5 4

2
1

System
input

System
input

User
input

User
input

User
output

System
input

System
input

