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This article aims to develop a probability-based model involving the use of direct likelihood formulation
and generalised linear modelling (GLM) approaches useful in estimating important disease parameters from
longitudinal or repeated measurement data. The current application is based on infection with respiratory
syncytial virus. The force of infection and the recovery rate or per capita loss of infection are the parameters
of interest. However, because of the limitation arising from the study design and subsequently, the data gen-
erated only the force of infection is estimable. The problem of dealing with time-varying disease parameters
is also addressed in the article by fitting piecewise constant parameters over time via the GLM approach. The
current model formulation is based on that published in White LJ, Buttery J, Cooper B, Nokes DJ and Med-
ley GF. Rotavirus within day care centres in Oxfordshire, UK: characterization of partial immunity. Journal
of Royal Society Interface 2008; 5: 1481–1490 with an application to rotavirus transmission and immunity.

1 Introduction

Respiratory syncytial virus (RSV) infection, which manifests primarily as bronchiolitis
and/or pneumonia, is the leading cause of viral lower respiratory tract (LRT) infection
in infants and young children. The clinical entity of bronchiolitis was described at least
100 years ago. In 1956, RSV, as the causative agent of most epidemic bronchiolitis cases,
initially was isolated by Morris et al.1 from chimpanzees with upper respiratory tract
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(URT) infections. Subsequently, Collins et al.2 associated this agent with bronchiolitis
and LRT infection in infants. Since then, multiple epidemiologic studies have confirmed
the role of this virus as a leading cause of LRT infection in infants and young children.
Cane and Pringle3 states that human RSV causes LRT disease in about 40% of primary
cases and is responsible for the hospitalisation of 0.1–2% of infants under the age
group of 1 year annually. Peak incidence of occurrence is observed at age 2–8 months.
Overall, 3.5–4 million children younger than 4 years acquire an RSV infection, and in
the United States alone, more than 100 000 children are hospitalised annually because
of this infection. This translates to 9–14 per 1000 children younger than 1 year who
are hospitalised annually because of this condition. The virus does not induce solid
immunity, re-infection is the norm (though progressively less severe), and, as yet no
vaccine appears to be on the horizon. Virtually all children have had at least one RSV
infection by their third birthday.4 Given the prevalence and potential severity of this
condition, it is not surprising that the World Health Organization has targeted RSV for
vaccine development. The frequency of RSV can be categorised as follows:

• Internationally: RSV infection is prevalent worldwide, with similar clinical manifes-
tations and young age of RSV LRT infection;

• Race: All races appear susceptible to RSV, with similar disease patterns;
• Sex: Although boys and girls are affected equally by milder RSV disease, the fre-

quency of hospitalisation for RSV disease is higher in males, with a male:female
ratio of approximately 2:1;

• Age: Severe RSV disease is primarily a disease of young infants and children, with a
peak occurrence at age 2–8 months. Reinfection with RSV occurs throughout life,
with disease becoming more limited to the URT.

In the field of infectious disease modelling, one area that is now re-attracting a lot of
attention, is that of the statistical estimation of key parameters associated with disease
processes. These key parameter estimates are based on observed data that are generated
by the underlying disease process. In this article, we consider the estimation of the force of
infection. It was not possible to estimate per capita loss of infection or recovery rate of the
disease process. The disease of interest is a respiratory infection of children mainly under
the age of 1 year. It is a viral disease caused by the RSV. Mathematical models to study
the disease are not new. Greehalgh et al.5 used both theoretical and deterministic models
to study the RSV dynamics. Other relevant references on previous modelling work on
RSV include Weber et al.6 and White et al.7,8 In this article, we address the problem
of combining the dynamics of the disease and the estimation of model parameters from
the observed data. The data used in our case are repeated measurements representing
the status of whether a child is infected (1) or not (0) at a particular time point tij
where the index i denotes an individual (child) and j denotes the observation occasion.
Thus, we are faced with the problem of repeated non-normal data suggesting the use of
statistical methods of analysis able to account for the correlation of responses within the
same subject or cluster. In the current study we employ direct likelihood estimation and
also discuss the use and implement the generalised linear modelling (GLM) approach9

for the estimation of time-varying stepwise force of infection and the per capita loss
of infection (recovery rate). White et al.10 solved a similar type of a problem using
hierarchical Bayesian formulation to study rotavirus transmission and immunity. In
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this article, application to repeated measurements data was implemented via Markov
Chain Monte-Carlo modelling using WinBuGs software. Thus the White et al.10 method
can also be applied to the current data set as an alternative method.

The description of the Kilifi RSV study and the available data are given in Section 2.
In Section 3, the basic dynamics of RSV are discussed in relation to the Susceptible-
Infected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR) and SIRS models. In
Section 4, we present how the estimation of the model parameters was carried out. One
complicating factor in the process is that of the time-varying disease parameters in the
underlying process, hence the need to allow time dependence in the estimation of the
parameters. A piecewise modelling approach was used to address this aspect. Section 5
is devoted to conclusions and suggestions of possible future extensions.

2 The Kilifi RSV study

The Kilifi RSV study yields a repeated measurement (longitudinal) data set measuring
the presence or absence of the RSV in children in coastal Kenya. A longitudinal study
is one where data are obtained when a response is measured repeatedly on the same
observational or experimental unit(s). The Kilifi data set is part of a study carried out by
the Kenyan Medical Research Institute in collaboration with the Wellcome Trust in Kilifi,
Kenya. The data used in this analysis comprise of a single birth cohort with observations
primarily over the first year of life11 and form part of a larger cohort study.12 The data
set exhibits, simultaneously, several forms of so-called coarsening,13,14 in the sense that
the data structure assumed is richer than the data that are actually observed. First, the
real underlying process of the disease is not directly observable, but only through the
explicitly observed outcomes of the process. Second, the observations are not equally
spaced within and between individuals and, importantly, the number of observations is
not the same between individuals. This is less refined, or coarser, than the hypothetical
observation of a continuous-time process. Third, information in between two observed
events is unknown, additional events could have happened between any such pair of
time points. Fourth, it is possible for children to drop out prior to the scheduled end of
the study. This last form of coarsening is the more conventional missingness or dropout.
A priori, it is possible for these coarsening processes, in particular dropout, to depend on
(1) observed outcomes, (2) covariates and (3) unobserved (and unobservable) outcomes.
If option (3) is the case, a so-called missing not at random (MNAR) mechanism is
operating15,16 and, arguably, a wholly satisfactory analysis is beyond reach, and the
most sensible route forward is by what is currently known as a sensitivity analysis,
where a variety of complex models, accommodating MNAR, is considered. In this
article, we will make the assumption of missing at random (MAR), where missingness,
or more generally coarsening, is allowed to depend on covariates and observed outcomes
but, conditional upon these, not further on unobserved outcomes. This is considered by
many a plausible assumption (for a review, see Molenberghs and Kenward16) and, very
importantly, in a likelihood-based inferential framework, MAR is sufficient (provided
some mild regularity conditions hold) to allow the analyst to ignore the missing data
mechanism, that is, there is no need to model it explicitly. In other words, one can proceed
by fitting a model, such as a generalised linear model, using maximum likelihood,
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provided all data are subjected to analysis, from both completely and incompletely
observed subjects.17,18 These considerations imply that our analyses are valid under the
assumption of MAR. Hence, this way of treating dropout is both broadly valid and,
from a practical standpoint, does not require additional programming or otherwise
technical work. Evidently, it might be of interest to conduct sensitivity analyses relative
to the assumption of MAR, but this would go beyond the current research. The model
that will be developed to represent this data will aid in understanding the process and
in the design of more complex models in the future in order to be able to capture the
kinds of incompleteness mentioned above. Proper inference about the disease process
can be drawn through such models and eventually to aid in the design of intervention
strategies. The Kilifi data set had 368 children that were recruited in the study; however,
only 334 childrens’ data were measured and recorded. In total, there are 9374 responses
that were measured and the number of times each child is measured varies from one
child to another. For example, child number 344 is measured at 12 different occasions
with unequal spaced time intervals while child number 368 was measured at 20 different
occasions with equally spaced time intervals. Let Yij denote the outcome at observation
time tij for individual i. Then assuming a first order Markov model,19 the observed matrix
of the number of transitions between the two states ‘infected’ and ‘uninfected’ can be
represented as in Table 1. The table is for anyone who ever transited in the entire study
period. It is meant to indicate the number of transitions into each of these states given
the immediate past state. Thus, they are conditional transitions. With reference to the
current data set, there are two important remarks about the state transitions. First, the
transitions from uninfected state to the infected state refer to symptomatic infections only
since samples from children without at least mild symptoms or a cold were not collected.
This means some infections will have been missed. Second, following a confirmed RSV
infection event it was assumed that the child was resistant to re-infection and hence no
further sampling was scheduled for 2 weeks. This will clearly lead to an underestimate
of ‘infected state to infected state’ transitions.

It should be noted that Table 1 gives the number of visits to the uninfected and
infected states conditional on the previous state indicated by the row label. From the
resulting matrix of transitions, it is clear that the rate of sampling far exceeded the
rate of infection because most of the transitions were from uninfected to uninfected
states. There are a total of 131 transitions among the children from the infected to
the uninfected state. Similarly, there are 132 transitions from uninfected to infected
states. This represents about 40% of infections in the first year of life. Furthermore, the
number of transitions from infected to infected (Table 1) is small (only 13), given the high
frequency of sampling, suggesting that the duration of infection is short (or equivalently

Table 1 Matrix of the number of transitions into the infected
and uninfected states conditional on the immediate past state

Yij

Uninfected Infected

Yij−1 Uninfected 8598 132
Infected 131 13
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high recovery rate). Later, the assumption that the rate of recovery far exceeds the rate
of infection is made. It is important to note that the time interval between transitions
was not constant. The time intervals were different within and between the children
which, as previously stated, makes the data set highly unbalanced. Therefore, standard
methods of analysis may not be directly applicable.

3 The model

In this section, we discuss (for the purpose of analysis) the transmission of RSV for this
particular cohort of children in relation to the SIS, SIR and SIRS disease models. In an
SIS disease model, each individual in the population is either infected (I) or susceptible
to infection (S). When a susceptible individual becomes infected, he/she is immediately
infectious and when an infected individual is cured, he/she is immediately susceptible
again. In a homogenous model assumption, every susceptible individual has the same
probability of being infected, and each infected individual has the same probability
of recovery. Ross20 introduced the deterministic SIS model, while Weiss and Dishon21

introduced the stochastic SIS model namely as a Markov birth-and-death process that is
used to model a variety of processes that range from epidemics, transmission of rumours
and chemical reactions. It is also important to note that the long-term behaviour of the
deterministic and stochastic versions of the SIS model are quite different and we will
not go into the details of this difference. In the current problem, it should be noted
that according to the biology of RSV, the disease process may not necessarily follow
an SIS disease model but rather a more appropriate model would be nearer to the SIRS
process6,8 with a possibility of gradual immunity acquisition. RSV tends to occur in
seasonal outbreaks, and while reinfections during one epidemic do occur, it tends to be
the case that repeat infections occur in sequential epidemics.

However, in the first year of life there is little opportunity of reinfection since only
one epidemic was experienced by the vast majority of this infant cohort, hence strictly
speaking there is no basis for choosing between SIS, SIR or SIRS model. Further, if the
SIRS model framework is actually the more reasonable structure for RSV, and given the
short period of followup (i.e. little opportunity for loss of immunity and reinfection) then
the more appropriate assumption would be to model the infection as a SIR structure.

We therefore restrict ourselves to modelling the process of primary infection and
recovery, and we do this by using the simplest of forms where we model the transi-
tion rates from the disease-free to the infected state (λ) and from the diseased state
to the disease-free state (ν) using an SIS type model. Thus according to the study
design and data λ is correctly specified but ν is not and later it will be denoted by
ν̃ to distinguish it from the true value. The problem is to estimate the parameters of
interest from observed data in the form of repeated (longitudinal) measures where each
child presents a sequence of responses of 1’s (diseased) and 0’s (disease-free). The time
duration between states (uninfected and infected) in days was also recorded; thus, the
parameter estimates will have day−1 as units. We emphasise such estimates and their
interpretations should always be carefully linked to the study design and not from the
data alone.
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3.1 Model governing differential equations
The SIS basic governing differential equation is given by

∂q(a, t)
∂t

+ ∂q(a, t)
∂a

= −λ(a, t)q(a, t) + ν(a, t)p(a, t), (1)

where q(a, t) and p(a, t) are, respectively, the proportion of susceptible and infected
individuals in the population at time t and age a such that

p(a, t) + q(a, t) = 1.

Thus for a purely SIS model it is enough to study the solution for Equation (1). However,
as already mentioned above, RSV is a viral disease; therefore, the most appropriate model
is the SIRS model where R is the class of recovered individuals with a possible loss of
immunity to revert back to the S class. Thus in this case the equation for p(a, t) would
become

∂p(a, t)
∂t

+ ∂p(a, t)
∂a

= λ(a, t)q(a, t) − r(a, t) p(a, t)

where r(a, t) is the rate at which individuals move from the infected state to the recovered
class with a possible loss of immunity at rate ν∗(a, t) different from ν(a, t) in Equation
(1). But because the data currently in use was based on children within the age of 1 year,
the immunity against the disease for such individuals is still not yet developed; therefore,
we assume ν∗(a, t) = 0. It therefore suffices to deal with Equation (1) ignoring the R to
S transition as explained in the main opening paragraph under Section 3. For the sake
of simplicity, we also ignore the complication of short term immunity from infection
in the first months of life due to maternally derived specific RSV antibodies. Hence, it
is assumed that all children are born susceptible. In addition, note that losses due to
natural mortality can here be assumed to be balanced by new births therefore in effect
we are assuming a constant population model. In the Kilifi data set, all the children were
all within 1 year of age, thus we can drop age, in Equation (1) and therefore write

dq(t)
dt

= −λ(t)q(t) + ν(t) p(t). (2)

If we assume λ(t) and ν(t) are time-independent then

dq(t)
dt

= −λq + ν(1 − q) = −(λ + ν)q + ν (3)

because p(t) + q(t) = 1. This equation can easily be solved using the ‘variation of coef-
ficients’ technique (Appendix 1). Applying the technique to Equation (3), a solution for
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q(t) is obtained as:

q(t) = ν

λ + ν
+ λ

λ + ν
e−(λ+ν)t, (4)

assuming q(0) = 1 and p(0) = 0 as the initial conditions and since p(t) + q(t) = 1
we get

p(t) = λ

λ + ν
− λ

λ + ν
e−(λ+ν)t (5)

as the general solutions for p(t). Note that if we relax the more restrictive initial
condition that q(0) = 1 and p(0) = 0 and rather use the more general initial condition
p(0) + q(0) = 1 the solutions for p(t) and q(t) are respectively given by

p(t) = λ

λ + ν
+

(
p(0) − λ

λ + ν

)
e−(λ+ν)t

and

q(t) = ν

λ + ν
+

(
q(0) − ν

λ + ν

)
e−(λ+ν)t

but for simplicity, we stick to Equations (4) and (5).

3.2 Linking the model to data
Note that the model solution for q(t) implies that q(∞) = ν

λ+ν
and hence p(∞) =

λ
ν+λ

which give the equilibrium proportions of susceptible and infected individuals,
respectively. This means that for a rare disease, we expect ν � λ. Now, let the indicators
1 and 0 denote respectively the infected and uninfected states of an individual and let Yit
denote a binary response variable taking on one of these values. The subscript i denotes
a particular subject in the sample for i = 1, . . . , n, where n is the number of subjects
and t the time. Thus over a time interval (0, t), we can define the four conditional state
transition probabilities as follows:

π00(t) = P(Yit = 0|Yi,0 = 0),

π01(t) = P(Yit = 1|Yi,0 = 0),

π10(t) = P(Yit = 0|Yi,0 = 1),

π11(t) = P(Yit = 1|Yi,0 = 1).

Suppose that at t = 0 the proportion infected is 0, that is q(0) = 1 and p(0) = 0. It is noted
that since the disease process is reversible, individuals cannot remain infected forever.
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The solutions for q(t) in (4) imply that, given an individual was initially uninfected, then
the probability that this individual is still uninfected after a time duration t is given by,

π00 = ν

λ + ν
+ λ

λ + ν
e−(λ+ν)t, (6)

and since π01 + π00 = 1, then

π01 = λ

λ + ν
− λ

λ + ν
e−(λ+ν)t. (7)

Following similar arguments, we can write expressions for π11(t) and π10(t) as:

π11 = λ

λ + ν
+ ν

λ + ν
e−(λ+ν)t, (8)

and

π10 = ν

λ + ν
− ν

λ + ν
e−(λ+ν)t. (9)

Note that the process satisfies the ergodic property namely, π00(∞) = π10(∞) = ν
ν+λ

and π01(∞) = π11(∞) = λ
ν+λ

, the equilibrium proportion of susceptible and infected,
respectively. Estimates of λ and ν can be obtained from these equations via maximum
likelihood estimation since the transitions conditionally on previous state represent two
separate Bernoulli distributions with probabilities π01 and π10 or their complements,
whenever necessary. The general form of the likelihood can be written as:

{
N∏

i=1

P(Yi,0)

}
N∏

i=1

ni∏
j=1

P(Yi, j|Yi, j−1),

using the notation Yi,j to denote the binary observation from child i at time occasion
j out of ni occasions. The second part of the likelihood, obtained by conditioning on
the previous measurement Yi,j−1, is the same as that of a product of two independent
Bernoulli likelihoods:

N∏
i=1

ni∏
i=1

P(Yi, j|Yi, j−1) ∝ (π01)n01(1 − π01)n00(π10)n10(1 − π10)n11,

where nk,l are the total number of transitions from state k ∈ (0, 1) to state l ∈ (0, 1) and
therefore explicit maximisation is possible. There is an inherent assumption here that
the time intervals are of equal length which in practice is not the case. It is possible to
estimate the transition probabilities by maximising this conditional likelihood instead
of the full likelihood, since the initial measurement Yi,0 contributes a limited amount
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of information only if some steady state assumptions are made. Thus, conditional on
the initial states {Yi,0}, the free parameters π01 and π10 are orthogonal. This allows a
separate analysis of the two independent Bernoulli distributions leading to the maximum
likelihood estimates of the two transition probabilities given

π̂01 = n01

n01 + n00

and

π̂10 = n10

n10 + n11
.

Subsequently π̂00 = 1 − π̂01 and π̂11 = 1 − π̂10. Upon equating theses estimates of the
transition probabilities to Equations (7) and (9) (or equivalently working with their
complements and Equations (6) and (8)) one can ideally obtain estimates of the transition
rates λ and ν. The problem with this approach is that the estimating equations are
highly non-linear and the method works well for equally spaced observation times, as
in Nagelkerke et al.22 In our case, we are faced with a more complex situation. The
observations are not equally spaced within and between subjects and in addition, the
number of observations is not constant over individuals. Thus, we are dealing with
a more complex scenario than that described in Nagelkerke et al.22 requiring some
simplifying assumptions. The alternative formulation adopted in Section 4 allows the
use of GLM approach. This approach has an advantage of easily allowing for time-
varying (in our case monthly specific) parameters as will be seen in Section 4.2 of this
article. We are not at all against the above approach, but we are merely presenting an
alternative approach to a similar problem.

4 Estimation of the model parameters

An alternative estimation procedure is developed by assuming that the residence or
sojourn times in each disease state is exponentially distributed. As already explained,
the reason for changing to an alternative estimation procedure is that the data we
are dealing with are highly unbalanced with unequal time intervals between sampling
visits and in addition, all individuals do not have equal number of observations. Thus,
we need some simplifying assumptions in order to easily work with the data via the
GLM approach (Section 4.1). In the current model, assume that the duration in the
susceptible or disease-free state is exponentially distributed with parameter λ. If recovery
was possible, then the duration in the disease state would be exponentially distributed
with parameter r. Thus, we could correctly interpret λ and r as the force of infection and
the recovery rate, respectively. The two parameters can also be viewed as the hazard of
infection and recovery, respectively. In effect, we are assuming that the time of stay in
the infected class is exponentially distributed with mean r−1 days. Likewise, the time of
stay in the susceptible class is assumed to be exponentially distributed with mean λ−1

days. Thus one can ideally consider two Poisson stochastic processes with exponential
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inter-arrival times. If we observe the processes within an interval of time (0, d), we can
infer that given an individual is in the susceptible class, the probability of on infection at
or before time d is 1 − e−λd and the probability of no infection event is e−λd. Similarly,
given an individual is in the infected class the probability of a recovery at or before time
d is 1 − e−rd and the probability of no recovery event e−rd. Thus, conditional on the
previous state we have two independent stochastic processes that need to be studied.
This argument is the basis of the current formulation which was previously published
by White et al.10 However, after careful inspection of the full study design and the data
generated, it became clear that it was not possible to estimate the true recovery rate, r
for RSV. Thus, to emphasise this fact, we change notation and use ν̃ instead of r and ν̄ to
denote an estimate of this parameter apparently estimable using the current data which
should not be interpreted as the recovery rate. We therefore define the four observable
transition probabilities for the current data as follows:

π00 = P(Yij = 0|Yi, j−1 = 0, dij) = e−λdij ,

π01 = P(Yij = 1|Yi, j−1 = 0, dij) = 1 − e−λdij ,

π10 = P(Yij = 0|Yi, j−1 = 1, dij) = 1 − e−ν̃dij ,

π11 = P(Yij = 1|Yi, j−1 = 1, dij) = e−ν̃dij . (10)

The quantity dij = tij − tij−1, is the time interval between samples at time tij and tij−1.
The full likelihood can therefore be written as:

L(ν̃, λ) = (P0(1))
∑

δi (P0(0))N−∑
δi

∏
0→0

e−λdij
∏
0→1

(1 − e−λdij )
∏
1→0

(1 − e−ν̃dij )
∏
1→1

e−ν̃dij .

Now, δi is an indicator variable denoting the initial state of a child where δi = 1 when
the child is initially infected and 0 otherwise. Here P0(1) is the unconditional probability
that the child is initially in the infected state. Likewise, the unconditional probability that
an individual is uninfected is P0(0) = 1 − P0(1). If N is the total number of individuals
in the study then

∑
δi are individuals who are initially in the infected state. Since P0(1)

and P0(0) are unknown it is simpler to consider the conditional likelihood given the
initial states Yi,0 ∈ {P0(1), P(0)} in order to find the MLEs of the parameters λ and ν̃.

Using the Fisher scoring method (Appendix 2) to iteratively solve for λ and ν̃

the estimates together with approximate 95% confidence intervals (CIs) are λ̂ =
0.001169(0.000953, 0.001388) and ν̄ = 0.45495(0.32362, 0.58826) respectively. It
should be noted that the estimate of the rate parameter (ν̃) is high, compared to the
estimate of the force of infection. We further emphasise that the time duration given
by ν̄−1 of 2 days cannot be interpreted as an estimate of the shedding duration of RSV
based on the current data. The reason is because samples were not taken during infec-
tion. Thus, the current data cannot support the estimation of the true recovery rate and
hence the shedding duration. Based on observational studies carried out recently on the
same population this duration is estimated to be between 4 and 11 days.23 The current
analysis is a very good example of a requirement in experimental design theory where it
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is stated that the analysis and therefore results of a designed study or experiment should
directly be linked to the design. The estimated force of infection is justified and it is
for infants in the primary phase of the disease where for simplicity we have assumed
negligible maternal protection duration.

4.1 Application of GLM estimation to the RSV data
As earlier defined, λ will denote the force of infection but ν̃ will note denote the per

capita loss of infection or the recovery rate for the disease process. If we apply the
generalised linear model to derive the force of infection for RSV, it will be necessary
to consider data on the transitions from the uninfected to infected states namely, from
state 0 to state 1 or 0 → 1 and the transitions from uninfected to uninfected that is
0 → 0. These transitions would make up 2 binary events for the response variable and
once these transitions are coded as 1 for 0 → 0 and a 2 for 0 → 1, the response variable
can be seen to conditionally follow a Bernoulli distribution. Likewise, another pair
of binary responses can be similarly defined by considering the transitions 1 → 1 and
1 → 0. The residence times in the disease-free and disease states are assumed to follow
the exponential distribution with parameters λ and ν̃, respectively. In survival analysis
terminology, λ can also be interpreted as the hazard of infection or per capita risk of
infection. The simpler model is where the only explanatory variable is the inter-state
time duration that is, the quantity dij. Using generalised linear model (GLM) with log
link function we obtain

log(π00) = −λdij

and

log(π11) = −ν̃dij

Since the data consist of four transition probabilities as defined in Equation (10), in
order to formulate an appropriate GLM we define an indicator variable

Zij =

⎧⎪⎪⎨
⎪⎪⎩

1 Yij = 0, Yi, j−1 = 0,

0 Yij = 0, Yi, j−1 = 1,

0 Yij = 1, Yi, j−1 = 0,

1 Yij = 1, Yi, j−1 = 1.

Let θij = P(Zij = 1) and consider the following linear predictor

log(θij) = −λdij × (1 − Yij) − ν̃kdij × (Yi, j−1), (11)

it follows that

log(θij) =
{−λdij if Yij = 0, Yi, j−1 = 0,

−ν̃dij if Yij = 1, Yi, j−1 = 1.
(12)

Thus, using this approach we obtained λ̂ = 0.0021 (95% CI 0.0018–0.0024) and ν̄ =
0.503 (95% CI 0.386–0.657) for the force of infection and the parameter ν, respectively.
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Again as with estimates found using direct likelihood maximisation the force of infection
leads to a disease-free duration of about 1.5 years and the estimate ν̄ leads to a duration
of 2 days which as earlier stated cannot be interpreted as the shedding duration of RSV
for this population of infants.23

4.2 Time-dependent force of infection
The above estimation procedures helped us only to estimate a single constant force of

infection and per capita loss of infection over the time period of the study. However, there
is enough evidence that a disease such as RSV does exhibit clear temporal variation in
its incidences, which is a function of the force of infection. Thus, we extended the above
approach to obtain monthly piecewise estimates of the force of infection. For months 14
and 15, there are no data because none of the children completed the study up to months
14 and 15; hence, no estimate is available for these 2 months. A piecewise constant force
of infection with log link function was assumed. Hence, the linear predictor is given by

log(θij) = −λkdij × (1 − Yij) − ν̃kdij × (Yi, j−1). (13)

Here, λk is the monthly force of infection but we re-emphasise that ν̃k is not the per
capita loss of infection or recovery rate. Note that the model in (13) can be re-expressed
in terms of a complementary-log-log link, in which the linear predictor is given by

g(θij) = − log(λk) × (1 − Yij) − log(ν̃k) × (Yi, j−1) + log(dij) (14)

where g is the complementary-log-log link function. In such a model, the monthly
regression parameter estimates for the force of infection and the parameter ν are equal
to log(λk) and log(ν̃k), respectively. As a result, the parameter estimates for the monthly
force of infection and the additional parameter ν̃ are constrained to be non-negative, as
required. In this article, the complementary-log-log link function was used to estimate
the model’s parameters. 95% CIs were obtained either by exponentiating the model
parameters and their CIs or by applying the delta method for the log of the parame-
ters. Table 2 presents the parameter estimates for the monthly force of infection. For
completeness, Table 3 presents the monthly estimates for the parameter ν̃. The force
of infection peaks with different heights in month 3 (λ̂3 = 0.007); then, it decreases to
zero at month 9 and increase to secondary peaks at months 11 and 12 (λ̂11 = 0.0022
and λ̂12 = 0.0022, respectively). Month 1 had too few transitions recorded in it while
months 14 and 15 did not have any data in them since the children did not complete
the study for these months. Hence, these months have been omitted in the analysis.
Figure 1 shows a plot of the force infection against time together with 95% CIs from
direct exponentiation and the delta method. There is virtually no difference between
the two sets of CIs.

For completeness, the monthly estimates of the parameter ν̃ were also similarly
obtained and the values are tabulated below for comparison purposes. However we
re-iterate that these do not represent estimates of monthly recovery rate of RSV.

Months 14 and 15 did not have any data in them because none of the children
completed the study up to months 14 and 15. The estimate of the parameter ν̃ is fairly
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Table 2 Monthly estimates of the force of infection and CIs

Exponentiation Delta method

Month Lambda Estimate (day−1) 95% CI 95% CI

2 λ̂2 0.0053 0.0032 0.0086 0.0027 0.0079
3 λ̂3 0.0070 0.0053 0.0092 0.0051 0.0089
4 λ̂4 0.0051 0.0038 0.0070 0.0036 0.0067
5 λ̂5 0.0024 0.0016 0.0037 0.0014 0.0034
6 λ̂6 0.0019 0.0011 0.0033 0.0009 0.0029
7 λ̂7 0.0010 0.0005 0.0020 0.0003 0.0017
8 λ̂8 0.0001 0.0000 0.0008 −0.0001 0.0003
9 λ̂9 0.0000 0.0000 0.0000 0.0000 0.0000
10 λ̂10 0.0001 0.0000 0.0009 −0.0001 0.0004
11 λ̂11 0.0022 0.0014 0.0033 0.0013 0.0031
12 λ̂12 0.0022 0.0015 0.0032 0.0013 0.0030
13 λ̂13 0.0014 0.0007 0.0029 0.0004 0.0024

Table 3 Monthly estimates of the per capita loss of infection

Month Nu Estimate (day−1) Standard errorI

2 ν̄2 0.4990 0.067
3 ν̄3 0.5000 0.06
4 ν̄4 0.5036 0.064
5 ν̄5 0.5021 0.062
6 ν̄6 0.4990 0.066
7 ν̄7 0.500 0.076
8 ν̄8 0.5002 0.072
9 ν̄9 0.5022 0.065
10 ν̄10 0.5009 0.06
11 ν̄11 0.5006 0.071
12 ν̄12 0.4996 0.061
13 ν̄13 0.5004 0.069

constant over all the months with no unusual peaks in the estimates. Graphically the
monthly estimates of ν̃ are plotted over the study period as shown in Figure 2. Since from
Table 3, we see that the monthly estimates of ν̃ were very stable within a very narrow
range we opted for a common recovery rate estimate. A formal likelihood ratio test
was performed to compare the two models (constant versus monthly specific estimates)
and the difference was not statistically significant (LR statistic = 11.36 on 11 d.f. and
p-value = 0.4743). Thus a combined estimate was calculated by finding a weighted
average of the 12 estimates and the variance of this common estimate calculated by
weighting the within and between component variances (Appendix 3). However because
of the similarity of the 12 monthly specific values the contribution from the between
component variance was very small and negligible. The overall estimate of the transition
rate ν̃ estimated this way was ν̄1 = 0.5006 with a SE of 0.0189 and an approximate
95% CI given by (0.4635, 0.5377). The two horizontal lines in Figure 2 represent the
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Figure 1 The force of infection in months together with 95% CIs using the exponentiated and delta methods.
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combined estimate by the method above (lower horizontal line, ν̄ = 0.5006) and the
common rate parameter ν̃ from a GLM (upper horizontal line, ν̄2 = 0.5032). A Wald test
for a difference between these two estimates shows they are not significantly different.

5 Conclusion

In this article, GLM combined with likelihood estimation was used to estimate the force
of infection for a childhood respiratory disease (RSV). In the process, an additional
parameter ν̃ associated with the data was also estimated. Estimation using the full
likelihood was not possible; therefore a form of conditional likelihood was used to
model the data. The generalised modelling approach was modified to estimate monthly
specific force of infection for the disease thus allowing the model to capture the temporal
trends of disease incidence via piecewise parameter estimation. The force of infection
was estimated as λ̂ = 0.0012 and the rate parameter ν̃ is estimated as ν̄ = 0.4550 using
the direct maximum likelihood estimation method. Corresponding estimates using the
GLM approach are 0.0021 and 0.5032. These two approaches gave quite similar sets
of parameter estimates for the parameter ν̃ but the GLM approach yielded a force of
infection around twofold higher. However, we prefer the GLM approach because of
its flexibility in allowing us to come up with monthly piecewise parameter estimates. It
is also seen from the estimation of the monthly parameters that RSV force of infection
peaks at months 3, 11 and 12 which correspond to the months of May, January and
February according to the original study period. This is consistent with the discussions
by Cane,24 Chew et al.25 and Simoes26 who all state that RSV has a seasonal signal
attributed to meteorological or sociological factors. Furthermore, the force of infection
is not constant and varies with time. It will be important at this point to discuss the
validity of the estimates in relation to the limitations of the data collected in the study.
First, we argue that the force of infection is from both methods an underestimation not
because the methods are wrong but because of failure in the study design to collect data
on asymptomatic infections. Second, the parameter ν̃ by both methods cannot be used
to derive the shedding duration, because samples were not taken over the 2 week period
following infection. The issue of average shedding duration has recently been reviewed
by Okiro et al.23 Other shedding studies show that the viral load starts declining only
after 4 days or so.27 In summary, it should be noted that a data generation process
is a reflection of the study design which should be linked to the analysis and results.
The parameter estimates also imply that the equilibrium proportion of susceptible and
infected children stabilises at around 99.74% and 0.26% largely the result of very
short duration of infection. Note that from this analysis, the susceptible prevalence is
an estimate of both naive individuals and those treated from a previous infection and
re-entered the S class. Nonetheless, since the force of infection is actually quite high, a
significant proportion of infants are infected in the first year of life where disease risk and
severity are highest. Thus, statistical and mathematical models are an important tool
in understanding its dynamics and hence assist in designing control and intervention
strategies for it. Further analyses to investigate child-to-child heterogenous effects and
to account for the different forms of incompleteness mentioned in Section 2 are currently
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in progress. A sensitivity analysis to assess the impact of different forms of missing data
types on the stability of parameter estimates is also proposed.
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Appendix 1

Solutions for p(t) and q(t)
The steps to the solution of the SIS governing differential equation (3) are outlined

below. Put the linear equation in the standard form as

dy
dt

+ G(t) y = f (t).

The integrating factor of the standard form is given by e
∫

G(t)dt. Next multiply the
standard form of the equation by the integrating factor and note that the left hand side
of the resulting equation is automatically the derivative of the product of the integrating
factor and y that is,

d
dt

[
e
∫

G(t)dty
]

= e
∫

G(t)dtf (t).

Lastly integrate both sides of this last equation and solve for y subject to the initial
conditions of the system.

Thus, the solution to the equation

dq(t)
dt

= −λq + ν(1 − q),
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can be constructed by first noting that,

dq(t)
dt

= −λq + ν − νq,

⇒ dq(t)
dt

= −(λ + ν)q + ν,

implying that

dq(t)
dt

+ (λ + ν)q = ν.

Multiplying both sides by the integrating factor yields

e(λ+ν)t dq(t)
dt

+ e(λ+ν)t(λ + ν)q = e(λ+ν)tν

d
dt

[
e(λ+ν)tq(t)

]
= νe(λ+ν)t

∫
d
dt

[
e(λ+ν)tq(t)

]
=

∫
νe(λ+ν)tdt

e(λ+ν)tq(t) = ν

λ + ν
e(λ+ν)t + c

q(t) = ν

λ + ν
+ ce−(λ+ν)t

Imposing the initial condition q(0) = 1 and p(0) = 0, that at t = 0 the proportion
infected is 0 implies that we can solve for c as c = 1 − ν

λ+ν
= λ

λ+ν
. Thus we can find q(t)

and p(t) by using the condition p(t) + q(t) = 1.

Appendix 2

Fisher scoring method equations
The full likelihood can be written as:

L(ν, λ, dt) = (P0(1))
∑

δi (P0(0))N−∑
δi

∏
0→0

e−λdij
∏
0→1

(1 − e−λdij )
∏
1→0

(1 − e−νdij )
∏
1→1

e−νdij

where δi is an indicator variable denoting the initial state of a child with δi = 1 when
the child is initially infected and 0 otherwise. Hence P0(1) is the probability that the
child is initially in the infected state such that P0(0) = 1 − P0(1), N is the total number
of individuals in the study and

∑
δi are the individuals who are initially in the infected

state and N − ∑
δi are initially not infected. It is thus simpler to consider the conditional
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likelihood given the initial states {Yi,0} in order to find the maximum likelihood estimates
(MLEs) of the parameters λ and ν. If we take the log of the likelihood we get the
log-likelihood as:

� = log L = log(constant) − λ
∑
0→0

dij +
∑
0→1

log(1 − e−λdij ) +
∑
1→0

log(1 − e−νdij ) − ν
∑
1→1

dij

Taking the first and second partial derivative with respect toλand ν gives us the following
set of equations to work with:

∂�

∂λ
= −

∑
0→0

dij +
∑
0→1

[
1/(1 − e−λdij )

]
(e−λdij )(dij)

∂�

∂ν
= −

∑
1→1

dij +
∑
1→0

[
1/(1 − e−νdij )

]
(e−νdij)(dij)

∂2�

∂λ2
= −

∑
0→1

[
1/(1 − e−λdij )

]2 [
(e−λdij )dij

]2 +
∑
0→1

[
1/(1 − e−λdij )

]
(e−λdij )d2

ij

∂2�

∂ν2
= −

∑
1→0

[
1/(1 − e−νdij )

]2 [
(e−νdij )dij

]2 +
∑
1→0

[
1/(1 − e−νdij )

]
(e−νdij )d2

ij

∂2�

∂ν∂λ
= ∂2�

∂λ∂ν
= 0

Next the Fisher’s scoring method to iteratively solve for λ and ν is briefly described.
Longford28 and Searle et al.29 state that the Fisher’s scoring method is preferred to
Newton–Raphson method since it avoids the heavy computational burden of finding
the Hessian matrix (the matrix of second derivatives of the log-likelihood) by using the
inverse of the information matrix I−1 (i.e. replace the Hessian by the negative of its
expected value, which is often easier to compute than the Hessian). The inverse of the
information matrix will be required to get the estimated variance–covariance matrix of
our parameters. For generality purposes let the parameters λ and ν to be contained in
a vector θ . The iterative scheme is then given by:

θ (m+1) = θ (m) + [I(θ )(m)]−1
[

∂�

∂θ

]
θ=θ (m)

where the superscript (m) denotes the m-th iteration and I(θ )(m) is the estimate of the
information matrix given θ = θ (m). The process is repeated until convergence.

Appendix 3

Common recovery rate
Assume we have M (M = 12 in our case) estimates θ̂1, θ̂2, . . . , θ̂M and that each has

an estimated variance V1, V2, . . . , VM respectively, calculated as the square of its SE.
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For each estimate we create a weight given by

Wi =
1
Vi

M∑
i=1

1
Vi

for i = 1, 2, . . . , M. Then we calculate our overall common recovery rate (PLOI) as a
weighted average θ̃ as:

θ̃ =
M∑

i=1

Wi θ̂i

whose variance is given by

V =
M∑

i=1

W2
i Vi +

M∑
i=1

W2
i (θ̂i − θ̃ )2

and standard error given by SEV = √
V .


