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Chapter 1

Introduction

The long-term promise that pharmacogenomics (the study of pharmacologi-
cally relevant genes) offers is likely to be the ability to stratify patients and
diseases based on genotype and to develop better strategies for therapy and
prevention based on these stratifications. Such knowledge is useful in the
development of novel pharmaceutical products, and hence pharmaceutical
industries has embraced genomics and greatly expanded their investment in
genomics-based research (Amaratunga and Cabrera, 2004). One promising
area of such research studies is oncology, that uses data from microarray data
and dose-response curves for cancer patients.

Microarrays allow the monitoring of expression levels of thousands to tens
of thousands of genes simultaneously in a given cell type. One can use this
microarray data to generate gene expression profiles, which can discriminate
between different known cell types or conditions. Many classification methods
are developped for this purpose as is shown by Van Sanden et al. (2007) .

However, in many situations one is interested in predicting responses
rather than classifying them. Potti et al. (2006) state that the develop-
ment of gene expression profiles that can predict response to commonly used
cytotoxic agents provides opportunities to better use these drugs, including
using them in combination with existing targeted therapies.

Standard existing statistical methods usually deal with situations where
the number of subjects (n) is (much) larger than the number of possible vari-
ables (p). With microarray data this is clearly not the case. The number of
variables, typically in the tens of thousands, is much larger than the number
of subjects, typically less than one hundred. Some methods already exist
for prediction when the number of features is much larger than the num-
ber of subjects as is typical in microarray settings, i.e. Supervised Principal
Components Analysis (Bair et al., 2006), Lasso (Tibshrani, 1996) and Elastic
Net (Zou and Hastie, 2005). In this thesis, we propose a new method based
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on a weighted resampling scheme in combination with existing methods like
Lasso and Elastic Net. We will apply this method on an oncology dataset
and compare the results to the existing methods.
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Chapter 2

Data

The data of this study consist of two major parts. The drug sensitivety data
(dose-response) and the gene expression data (microarrays).

2.1 Dose-response data

Dose-response data was collected for a certain oncology compound. The com-
pound was administered to 48 cell lines, each with a number of replicates.
For each cell line, doses within a range of 10−10 to 10−5 were administered
and values of the effect (expressed in percentage) were registered as response
for each dose-level. Doses are usually converted to the negative log-scale,
resulting in a range from 5 to 10. Effect is a (relative) response after calibra-
tion to get a biologically meaningful measure with values ranging between
approximately -30 and 120.

2.2 Microarray data

The microarray gene expression data was collected on 50 different tumor cell
lines each with 30,809 probe sets. For the sake of convenience, we will use
the term gene or the more general term feature instead of probe set in this
thesis. There were no repetitions, hence one microarray for each cell line.

There were some cell lines included in the microarray data but not in
the dose-response study and vice versa. Hence, there are only 42 cell lines
common to both the gene expression data and the dose-response data.
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Chapter 3

Modelling of the dose-response
curves

3.1 Logistic model formulation

In order to summarize the data we will fit a model to it. The model usally
used to describe the relationship between the response and the administered
dose is a three or four parameters logistic model (Pinheiro and Bates, 2000)
:

yij =
θ1i

1 + (
log(dij )

θ2i
)θ3i

+ εij, (3.1)

or

yij = θ0i +
θ1i

1 + (
log(dij)

θ2i
)θ3i

+ εij, (3.2)

where yij is the response of cell line i at the jth dose level, dij is the
administered dose and εi = (εi1, ..., εiJ) is the measurement error, which is
assumed to be normally distributed with mean zero and covariance matrix
Σ.

θ0i,θ1i, θ2i and θ3i represent the cell line-specific parameters to be esti-
mated. The parameter θ1i is the maximum effect, θ2i is the log-dose value
at which the response is θ1i/2 and θ3i is the slope. The additional fourth
parameter θ0i represents a vertical offset.

3.2 Summary measures

θ2i is often referred to as IC50. IC50, or the half maximal inhibitory con-
centration measures how much of a particular substance/molecule is needed
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Figure 3.1: Illustration of the four parameter logistic model with a graphical
representation of the different variables.

to inhibit some biological process by 50%. According to the FDA, IC50 rep-
resents the concentration of a drug that is required for 50% inhibition in
vitro.

However, this definition should be handled with care. θ2i corresponds to
the dose with response halfway between θ0i and θ1i. In fact, θ2i will only be
the dose at 50% response when θ0i is equal to zero and θ1i equal to 100. If
one or both of these variables differ from these values θ2i will not correspond
to the 50% response dose. When θ2i is used to determine the responsiveness
of a cell line, misleading values could be observed. Figure 3.2 illustrates this.
In this figure two distinct dose-response curves are shown. The upper curve
represent a clear responsive cell line, while the lower curve is less responsive.
However, this can not be seen from the θ2i values, since these are equal for
both curves.

To overcome this drawback, we suggest a slightly different approach to
compute the IC50 values. Instead of taking θ2i from the model, we will
compute the value at which the response was 50% by inverting the function.
This approach guarantees that we work with the true dose at 50% response.
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When θ0i is close to zero and θ1i close to 100, both approaches will yield
similar values. However when these variables deviate from these values, the
estimations grow apart.

log(x)

y

θ2

Figure 3.2: Plot of two dose-response curves with distinct patterns but equal
IC50 values.

3.3 Univariate screening

In this section, we discuss a joint model for the gene expression and the IC50
score that allows us to identify which gene can serve as a biomarker. Let Xij

be the change from baseline of the jth gene expression j = 1, . . . , m, of the
ith subject, i = 1, . . . , n, and denote the estimate for the IC50 values of the
i’th cell line by θi. We define a gene-specific joint model in which the linear
predictors of the IC50 scores and the gene expression are given by

E(Xij) = µXij
, j = 1, . . . , m ; i = 1, . . . , n,

E(θi) = µθi
.

(3.3)

Note that (3.3) is a gene-specific model and, in practice, is fitted for each
gene separately, a procedure often termed “gene-by-gene” analysis. The pa-
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rameters µXij
are gene-specific fixed means. It is further assumed that the

two outcomes are normally distributed:

(
Xij

θi

)

∼ N

((
µXij

µθi

)

, Σj =

(
σ

jj
σ

jθ

σ
jθ

σ
θθ

))

. (3.4)

In the context of surrogate-marker evaluation in randomized clinical trials,
Buyse and Molenberghs (1998) proposed the adjusted association as a mea-
sure of association, a coefficient derived from the covariance matrix of gene-
specific joint model (2):

ρj =
σ

jY√
σ

jj
σ

Y Y

. (3.5)

Indeed, ρj = 1 indicates a deterministic relationship between the gene expres-
sion and the IC50, in the sense that, given the biomarker (gene expression),
a perfect prediction of the IC50 score is possible.

Note that in this setting ρj can be equal to 1 even if the gene is not
differently expressed. Thus, to select genes which can predict the response,
there is no need for the gene to be differentially expressed.
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Chapter 4

Prediction methods

4.1 Supervised principal component analysis

Principal component analysis (PCA) is concerned with explaining the variance-
covariance structure of the set of variables through a few linear combinations
of these variables, its general objective being data reduction and interpreta-
tion. For a dataset with large p (number of variables) and small n (number
of samples), one wants to reduce the p original variables to k new variables,
where k is a compromise between the minimum number of variables and the
maximum amount of information kept.

Let X = (X1, X2, ..., Xp) be a random vector with variance-covariance
matrix Σ and correlation matrix. The ordered eigenvalue-eigenvector pairs
for Σ are (λj, ej), j = 1, ..., p. The principal components are then given by:

Zj = eT
j X = ej1X1 + ... + ejpXp (4.1)

where the variance of Zj is λj , and the covariance between any two prin-
cipal components Zj and Zk is zero. Thus, principal components are those
uncorrelated linear combinations Z1, ... , Zp containing the most information
possible, i.e. have the largest variances.

Often only the first (or first few) principal components are used since
this linear combination captures the direction of the largest variation in the
dataset. However, due to the large amount of noise features, the first principal
component might be very noisy, or even consist entirely out of noise.

The idea of supervised principal component is that rather performing
PCA using all the genes in the dataset, we use only those that are the
strongest correlated to the outcome.

Bair et al (2006) propose a method for gene selection based on a certain
threshold value of the regression coefficient γ̂. In our setting, we quantify the
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magnitude of association using an R-square type measure, based on which we
select a set of genes. Once genes that are associated with the response have
been selected, they will be used for further analysis. For example, Bair et al

(2006) proposed the supervised principal component analysis to predict the
response by the first principal component analysis of the reduced expression
matrix. Let U(X)i be the first principal component for the reduced expression
matrix and consider the following joint distribution for θi and U(X)i:

θi = δ0 + δ1U(X)i + εi.

Note that U(X)i is a latent variable.

(
U(Xi)
θi

)

∼ N

((
µUi

µθi

)

, Σj =

(
σ

jj
σ

jθ

σ
jθ

σ
θθ

))

. (4.2)

Bair et al. (2006) used a gene specific regression model as a means of
selecting a subset of k genes (k ≤ m) that forms the reduced expression
matrix. Hence, within the supervised principal component approach the
predictive model is based on the first principal component. However, this
might be too restrictive. Perhaps, other genes that are less correlated to the
response vector might play an important role in the gene signature as well.
Indeed, SPCA can be seen as a gene selection scheme (1,...,1,0,...0) where the
first K genes have probability 1 of being selected, while all other genes have
a zero probability. In a later section we propose a slightly different approach
in which the joint model (4.2) and the conditional model (??) are used in
order to calculate weights for the genes for weighted resampleing and the
predictive model is based on LASSO and elastic net models.

4.2 Lasso

In this section we will discuss a popular method for prediction in a high-
dimensional setting called Least Absolute Selection and Shrinkage Operator
(Lasso). Tibshirani (1996) proposed minimizing the residual sum of squares,
subject to a constraint on the sum of absolute values of the regression coef-
ficients,

∑p
j=1 |βj | ≤ t. This is equivalent to minimizing the sums of squares

of residuals plus an l1 penalty on the regression coefficients,

‖Y − Xβ‖2
2 + θ

p∑

j=1

|βj|. (4.3)

In contrast to ridge regression where all coefficients immediately become
nonzero, LASSO coefficients only become nonzero one at a time. Hence the

12



l1 penalty results in variable selection, as variables with coefficients of zero
are effectively omitted from the model.

Another important difference occurs for the predictors that are most sig-
nificant. Whereas an l2 penalty pushes all coefficients toward zero with a
force proportional to the value of the coefficient, an l1 penalty exerts the
same force on all nonzero coefficients. Hence the most important variables,
that clearly should be in the model and where shrinkage toward zero is less
desirable, an l1 penalty might be more appropriate. This is important for
providing accurate predictions of future values.

However, the Lasso method also has it’s limitations. The Lasso method
can only select a number of features at most equal to the number of samples.
Clearly, there will be situations where more features are required.

A second limitation of the Lasso method is it’s inability to do grouped
selection. When a group of highly correlation features exist, the method will
only select one of the features and discard the others.

To overcome these limitations, the elastic net method is introduced.

4.3 Elastic net

The (naive) elastic net criterion is defined as follows for any fixed non-
negative λ1 and λ2,

L(λ1, λ2, β) = |y − Xβ|2 + λ2|β|2 + λ1|β|1, (4.4)

where |β|2 =
∑p

j=1 β2
j and |β|1 =

∑p
j=1 |βj|.

The (naive) elastic net estimator β̂ is the minimizer of equation (4.4):

β̂ = arg min
β

L(λ1, λ2, β) (4.5)

This procedure can be viewed as a penalized least squares method. Let
α = λ2/λ1 + λ2 then solving β̂ in equation (4.4) is equivalent to the opti-
mization problem

β̂ = arg min
β

|y − Xβ|2, subject to(1 − α)|β|1 + α|β|2 ≤ t. (4.6)

The function (1 − α)|β|1 + α|β|2 is called the elastic net penalty, which
is a convex combination of the lasso and ridge penalty. When α = 1, the
naive elastic net becomes simple ridge regression and when α = 0 we have
the lasso method.
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The l1 part of the penalty function ensures the sparsity of the model,
while the l2 part removes the limitations on the number of features that can
be used in a model and even encourages the grouping of highly correlated
features.

Zou and Hastie (2005) note that the naive elastic net estimator incurs an
undesired double amount of shrinkage. To remove this double shrinkage they
rescale the naive estimator as follows:

β̂(elastic net) = (1 + λ2)β̂(naive elastic net). (4.7)

This scaling transformation preserves the variable selection property of
the naive elastic net and is the simplest way to undo shrinkage.

4.4 Weighted ensemble prediction

Both the lasso method and the elastic net approach suffer from a decrease
in accuracy when the number of feature grow exponentially compared to the
number of samples. Since both methods yield good results when the number
of features is reasonably small compared to the number of samples (factor
10), it might be a good idea to select a group of important features first and
then perform lasso or elastic net on this subset. The practical implementation
of this technique will be discussed in this section.

We could now, similar to the supervised principal component analyis,
select the top K ranked genes according to their individual correlation to
the response. On this subset of K genes we could then apply the method of
our choice, Lasso, Elastic net or any other suited method. However, in this
ranking we only consider the working of individual genes. As is well known,
genes don’t usually work alone, but rather there is an interaction between
several genes. Therefor it makes sense to investigate which genes have show
a close connection to the response with respect to the other genes.

4.4.1 Multivariate screening

In this subsection we will discuss how to screen for genes that are related
to the response with respect to other genes. The basis idea behind it comes
from the concept of random forests.

A classification tree can be used to decide the classification of new entries,
based on the available data. A random forest (Breiman, 2001) is an ensemble
of many of such trees, based on a subset of the original data, where each tree
is called a base classifier. Classes are assigned to test cases by majority vote:
when given a test case, each tree assigns it a class according to its classifier;
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this information is collated and overall the forest assigns it the most frequent
class. The out-of-bag cases in any tree can be regarded as test cases for that
tree as they were not used to build it and thus they can be used to assess
the performance of the forest as a whole; this is done via the out-of-bag error
rate, which is the proportion of times an out-of-bag case is misclassified.
Thus only patterns truly present in the data would be detected consistently
by a majority of the base classifiers and the majority votes turn out to be
good indicators of class.

When the number of possible features is huge and the percentage of truly
informative features is small, a problem arises. The performance of the base
classifiers degrades. This is because, if simple random sampling is used for
selecting the subset of g eligible features at each node, almost all these subsets
are likely to contain many non-informative features. This can be remedied
by using weighted random sampling instead of simple random sampling as
suggested by Amaratunga et al. (2008) .

The key to the modified algorithm is to score each feature based on how
well it separates the two groups. Such a score can be generated by testing
each feature for a group mean effect using a two-sample t test and calculating
the p-value, small p-values indicating greater separation and large p-values
indicating less. Once the weights have been determined, the random forest is
run with the only modification being that when, at any node, the subset of
g eligible features is selected, it is selected using weighted random sampling
rather than simple random sampling. This way, highly informative gene have
a higher probability to be selected for a tree, guaranteeing that most classi-
fication trees are based on informative genes, protecting the performance of
the random forest.

In our setting, we will use the R2 measure between individual features
and the response as score statistic. How to use this score statistic for the
sampling of subsets will be discussed in the following section.

4.4.2 Weights

What we are looking for is a way to convert the R2 measures into weights
that can be used for the subset selection. Different weight functions can be
considered for the sampling of the subsets. Four different function will be
considered here. The first and second function are based on p-values (pi)
coming from the correlation between individual genes and the IC50 values.
The first function has the form:

wi = min(
1

pi

− 0.99, 999) (4.8)
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and the second:

wi = min(− log(pi), 999) (4.9)

The third function is based on q-values which are calculated from the
p-values as: qi = mink≥1min((G/k)pk, 1), where p(i) and q(i) are the p-value
and q-value associated with the feature with the i-th smallest p-value. The
q-values provide false discovery rate (FDR)-adjusted measures of significance
for the features and are in the same order as the p-values. The corresponding
weight function is then given by:

wi = min(
1

qi

− 0.99, 999) (4.10)

As a reference function we also consider a weight function where are genes
get equal weight of getting sampled. This can be achieved by:

wi = 1 (4.11)

4.4.3 Application of the prediction method to the sub-
sets

Once the weights are computed, we can sample a subset of features and apply
the preferred prediction method (i.e. Lasso, Elastic net, ...). This process
can be repeated many times, each time with a new subset of genes. To avoid
overfitting, only 90 % of the subjects will be used in each step. From each
of the steps a record is kept of the features that were used in the prediction
model. After these steps, a binomial test is used with the number of times
a feature was sampled and the number of times a feature was used in the
prediction model to see which features appeared above average times in the
prediction models.

The features that are in this final subset are thus judged to be important
and form the final subset on which the prediction method is used one last
time to obtain the final prediction model.
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Fitting the logistic 
model

Retrieving the 
IC50 values

Computing the
individual correlations

Select subset of
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Perform one final
 prediction step on 
the important genes

Figure 4.1: Flowchart of the steps involved in the Weighted Ensemble Pre-
diction method.

17



Chapter 5

Results

5.1 Modelling of the dose-response curves

We will apply the logistic model described in the methodology to the provided
dataset. Since several cell lines start at values below 0, the four-parameter
logistic model seems the more appropriate choice. The fitting itself was done
with the R-package mrdrc developped by Ritz et al. (2008). The package
provides a self-starting function for the estimation of the logistic model, which
removes the burden of providing start values.
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Figure 5.1: Plot of the curves of the first subject. The left panel shows the
curves that were used to model the dose-response curve. The solid black line
represents the fitted curve. The right panel shows the two curves that were
removed from the model fit.

As indicated by the people that provided the data, the setup of the ex-
periments was as follows. A few dose-response curves were made per cell
line. If the curves of this cell lines were all similar the experiment was com-
plete. However, when there was a deviating pattern detected, a few more
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curves were made until it became clear what the dominant pattern was. To
avoid possible influence of these deviating curves, they were removed from
the analysis. An example of deviated curves that were removed from the
data is shown in Figure 5.1.
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Figure 5.2: Plots of some of the dose-response curves. The top row shows
clear responsive curves, the middle row show slow responding curves and the
bottom row consists of non responsive curves. The solid line represents the
fitted logistic model.

As is illustrated in Figure 5.2, different patterns can be observed. Some
cell lines can clearly be categorized as either responsive or non-responsive.
These are the cell lines that are used in classification studies. For example,
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19 of these cell lines where used in a study where the goal was to classify
the cell lines using microarray data. Obviously a lot of information is lost in
this study. Not only is the information for these 19 cell lines greatly reduced,
but even more severe is the fact that all other cell lines are discarded all
together. Figure 5.3 shows the plot of the IC50 values of the 19 responsive
and non-responsive cell lines. It can be seen that all cell lines that were
catergorized as non-responsive indeed all have lower IC50 values compared
to the responsive cell lines. This confirms the validity of the model.
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Figure 5.3: Plot of the IC50 values of the different cell lines. ”R” indicates
the responders, ”N” the non responders.

5.2 Univariate screening for important genes

Once the IC50 values are computed, we can proceed to see which genes have
the highest correlation and are the most promising genes with respect to
predicting the IC50 values. Figure 5.4 shows a histogram of the p-values
corresponding to the individual correlations. When there is no signal in the
data, we expect to see uniformly distributed p-values. Luckily, this is not
the case here, we can clearly see a peak at the smal p-values, indicating that
there might be a gene signature in the data.

Figure 5.5 shows plots of the 9 genes with the highest correlation with
respect to the IC50 values. Immediately one sees that these correlations
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Figure 5.4: Histogram of the p-values corresponding to the individual corre-
lations between the genes and the response.

are greatly driven by one particular outlier, i.e. cell line 29. One could
worry that this might negatively affect the selection of important genes for
the prediction model. However, the weigthed ensemble prediction method
seems not affected by this situation. Anaysis was done with and without
the cell line and using more robust correlation measures, but results did not
change significantly, with exception of the analysis where the Spearman rank
correlation was used, which gave worse results.

This might be explained by the fact that due to the repeated sampling in
the weighted ensemble method important genes are still selected often enough
in the different subsets even if they are dominated by some less important
genes. This also illustrates the importance of not only looking at individ-
ual correlations only, but also to groups of genes, since results of individual
correlation might be misleading as such.

5.3 Leave-one-out cross-validation

In order to evaluate the prediction methods, we use a leave-one-out cross
validation scheme. This means that we use an outer loop in which we exclude
one subject each time, which we will try to predict using only the other
subjects. This way we can objectively compare the new method with other
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Figure 5.5: Plot of the 9 genes with the highest correlation with respect to
the response.

methods and compare between different setting.
In the basic setting we use standard Pearson correlation for the univariate

screening, a loop of 500 lasso steps, using each time 90 % of the subjects with
one final lasso step at the end. As result we will rapport both the correlation
and mean squared error (MSE) between the observed IC50 values and the
ones predicted by the method. The lasso step were implemented with the
R-package glmnet developed by Friedman et al. (2009).

Figure 5.6(a) gives the plot of the observed versus the predicted IC50
values, while Figure 5.6(b) shows the individual squared contributions to
the total error. Immediately becomes clear that all possible results will be
clouded by the one outlying cell line that we also mentionned in the previous
section. Since we are interested in an overall idea how good the IC50 values
are predicted rather than only the one, we will from now on rapport corre-
lation and mean squared error based on all the cell lines except the outlying
one. Note that does not mean that we remove this cell line from the dataset,
only that we focus for results on the other cell lines.

Applying the weighted ensemble prediction method with the basic settings
described above, we get a correlation of 0.621 and a MSE of 0.070.
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Figure 5.6: Comparison between observed and predicted values. Panel (a)
shows a plot of predicted versus observed values. The solid line represents the
y=x line. Panel (b) gives a barplot of the squared errors for the individual
cell lines.

5.4 Weight functions

In this section we will investigate the effect of the different weight function
discussed in Section 4.4.2. Figure 5.7 shows the number of genes that are
sampled and selected by the four respective weight functions. The red line
gives the total number of genes that are sampled by that particular weight
function. As can be seen in panel (a), the least number of genes are sampled
with weights defines as in (4.8). Even after 1000 permutations, only 50% of
the available number of genes are selected. Consequently, a small number of
genes receive high weights, and hence have a high chance of getting sampled.
Most genes have low weights and will only be sampled infrequently.

The other weight functions yield less outspoken weights, meaning that the
probability of getting sampled is spread over more genes, in stead of a few
genes that get (very) high probabilities. Weights from (4.11) are the extreme
case here, since all genes get the same probability of getting sampled.

In every permutation, the Lasso method is applied to the sampled genes.
The resulting set of genes used by the Lasso method to fit the model, are
indicated here as the selected genes. These are shown on the respective plots
as blue lines. As can be expected, the basic setting uses the smallest number
of different genes in the resulting sets, while this number is the highest for
the weight function with equal weights for all genes.

Table 5.1 shows us that there is not much difference between the results
for the first two weight functions. One could conclude that the important
choice here is to choose to use the p-values, rather than the choice of the
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Figure 5.7: Plots of the number of sampled and selection genes for each of
the weight functions.

Table 5.1: L-o-o correlation and MSE for the different weight functions.

Corr MSE
Basic weight function 0.609 0.073

Log p-values 0.586 0.075
Weights based on q-values 0.307 0.128

Equal weights 0.276 0.128
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conversion function.
Differences come when we move to the q-values and equal weights, which

show clear lower values for both correlation and MSE. The only real difference
was noticed for the weight function with equal weights. This function yields
quite lower values for both correlation and MSE. In the case of the q-values,
the q-values tend to keep only very few gene with a higher weights, while all
other receive the same baseline weight. This means that we get close to the
situation with all equal weights.

Equal weights in its turn implies that all genes are only selected a few
times, including the important genes and thus separation of important and
unimportant genes is very difficult. This might be solved by increasing the
number of lasso steps inside the loop. We tried this for an increasing number
of step with results shown in Table 5.2. We see a slight improvement for
a higher number of steps, but still more steps are needed to approach the
results of the first two weight functions. This becomes of course too time
consuming, indicating the importance of the choice for appropriate weights.

Table 5.2: L-o-o correlation and MSE for equal weights function for increasing
number of permutations.

Corr MSE
500 perms 0.276 0.128

1000 perms 0.391 0.160
1500 perms 0.374 0.120
2000 perms 0.493 0.106

5.5 Number of step in the loop

In the previous section we showed that increasing the number of permutations
for the case where all weights where equal improved the predictions in terms
of both correlation and MSE. A logical question thus is, what happens to the
correlation and MSE for the basic setting when we increase the number of
permutations.

The result for values ranging from 100 to 3000 is shown in Figure 5.8.
Only minor changes are seen, especially when looking at values starting from
500 upwards. The minor changes are caused by the inherent randomness of
the sampling of both features and subjects inside the loop. Since more step
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is equal to a longer computation time, we tend to choose a lower number of
steps, i.e. something in the range of 500 to 1000.
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Figure 5.8: Plot of the MSE and Correlation in function of the number of
permutations.

5.6 Influence of the correlation inside/outside

the loop

Thusfar we compute the individual correlations once and converted the p-
values of these correlations to the weights which we use for the sampling of
features in the loop. Since we use only 90 % of the subjects each step of
the loop, the top features with respect to correlation to the response could
differ from those that would come out on top when we look at the subset
of subjects in each step seperately. Therefor we suggest to recompute the
correlation each step of the loop, to obtain each time the optimal weigths for
that particular subjects.

Table 5.3 shows the comparison between the situations where the indi-
vidual correlations are computed once outside the loop or each time inside
the loop respectively. As can be seen, the prediction improves considerably
when correlation is recomputed each time, so this will become our default
strategy for the remainder of the analysis.

5.7 Weighted Ensemble Elastic Net

In this section we will investigate how result could be affected by the predic-
tion method used. As was discussed in Section 4.3, the Elastic Net can be
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Table 5.3: L-o-o correlation and MSE for correlation out-/inside the Lasso
loop.

Corr MSE
One correlation 0.609 0.073

Correlation in each step 0.713 0.055

seen as a generalization of the Lasso method. In a similar way we could see
Weigthed Ensemble Elastic Net as a generalization of Weighted Ensemble
Lasso. We investigated the effect of a change in the parameter alpha on the
results. Alpha equal to 1 gives us the original Lasso method alpha equal
to zero stands for ridge regression, while values in between 0 and 1 can be
associated with a combination of both methods.

As can be seen from Figure 5.9 the best results are obtained with values
of alpha close to 1. When alpha goes down towards zero the correlation
drops and MSE rises. Similar to regular elastic net, a lower value of alpha
stands for methods closely related to ridge regression and hence more non-
zero coefficients. The evolution of the number of non-zero coefficients from
ridge regression towards lasso is given in Figure 5.9(c).

5.8 Comparison to other methods

In a final step we will compare the weigthed ensemble prediction method
to the popular Supervised Principal Component Analysis and regular Lasso
method. Note that the Lasso steps were implemented using the R-package
lars developed by Hastie et al. (2007) in stead of glmnet. This was due to
the memory issues that occurred when the dimension of the feature matrix
exceeded 15000 features.

As can be seen in Table 5.4, the Weighted Ensemble Prediction outper-
forms both SPCA and Lasso.

Table 5.4: L-o-o correlation and MSE for different prediction methods.

Corr MSE
SPCA 0.510 0.082
Lasso 0.670 0.067

Weighted Ensemble Prediction 0.713 0.055
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Figure 5.9: Plots of respectively the MSE and correlation in function of the
parameter alpha.

When we compare for example the Weighted Ensemble Lasso versus reg-
ular Lasso, it becomes clear that feature selection before applying the Lasso
method can improve the accuracy of the prediction. This could be explained
by the fact that the important genes are not swamped in a sea of noise
features, which makes it easier for the method to fit the correct genes.

From the comparison with the SPCA method we learn that only uni-
variate screening might not be sufficient to filter out the important genes.
It seems plausible that it is more important to look at which set of genes
shows a good connection to the response rather than to limit the search for
individual genes.
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Chapter 6

Discussion and conclusions

DNA microarrays were developed as a mean of monitoring thousands of genes
at once. Nowadays, the study of microarray data is becoming an important
research area in pharmaceutical industries for the discovery and development
of novel pharmaceutical products.

The goal of this study was to find a gene signature that could accurately
predict the dose-response relationship. In order to quantify the dose-response
relationship we fitted a four-parameter logistic model and obtained the cor-
responding IC50 values.

Several existing linear prediction methods could be considered including
Supervised Principal Component Analysis and Lasso. A possible drawback
of these methods is the fact that the important genes might be masked by
the vast number of noisy uninformative genes. However, as can be seen from
the results coming from the leave-one-out cross-validation set-up, results are
remarkably good. This might indicate that the present gene signature is
strong and can be picked up even with noise present. In the remainder of the
analysis, we tried to improve results with a Weighted Ensemble approach.

The rationale behind the Weighted Ensemble method was to reduce the
number of genes before performing the actual prediction method. The goal
was to reduce the number of noisy uninformative genes, so the method could
accurately detect the requested gene signature. Many schemes could be used
to do feature selection, ranging from discarding features whose range falls
below a certain threshold, removing features that display little to no variation
among cell lines to selecting features based on their individual correlation
with the response. However, all these selection methods don’t take into
account the interaction of groups of genes that might be activated together,
i.e. gene signatures.

Weighted Ensemble Lasso proved this view by further improving the ac-
curacy of the Lasso model, resulting in a lower MSE and higher correlation.
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In this example, moving from Lasso towards Ridge Regression as prediction
method did not improve the resuls, indicating that Lasso was the optimal
choice for this dataset.

Thusfar, we only considered combinations of either Lasso or Elastic Net as
prediction method in both the feature selection step and the final prediction
step. One could extend this concept by using one prediction method for
feature selection and another for the final step. Or one might think of different
prediction methods altogether.
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