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Abstract 

Introduction: S. cerevisiae is an economically important yeast strain because of its high-ethanol 
tolerance property. In order to develop strains expressing this characteristic even more, 
interest lies in identifying the genetic constitution of this trait. Based on bulk segregant high-
resolution Quantitative Trait Loci-mapping, data is provided from which this constitution could 
be derived. This data set contains SNP frequencies of which higher frequencies possibly 
indicate regions of interest. 

Methods: In order to get insight from the provided frequency data, wavelet shrinkage is used to 
smooth the data in order to find narrow chromosome regions of high-frequency. The wavelet 
shrinkage methodology shrinks the coefficients of the Discrete Wavelet Transform by a certain 
threshold in order to come up with a smoothed estimate of the curvature in the present data. 
Providing a wide variety of options; wavelet choice, threshold type and primary resolution 
level, the method can be fine-tuned to serve a specific purpose. Moreover, remedial measures 
to ensure assumptions are investigated, i.e. normalizing and variance stabilizing 
transformation and adaptive lifting. 

Results: The results confirm that changing the different characteristics of the wavelet shrinkage 
approach provides different results concerning smoothness and shape of the estimated curves. 
Different wavelets lead to differently shaped and smoothed estimated curves, various 
threshold procedures lead to different thresholds which provide diverse levels of denoising 
and exists an inverse relationship between the primary resolution level and the extent of effect 
of threshold. Considering the S. cerevisiae data, no narrow chromosome position regions could 
be identified which could lead to an easy genetic constitution. 

Conclusion: The present report acknowledges the versatility of the wavelet shrinkage approach in 
being applicable in a wide variety of cases through fine-tuning of its different characteristics. 
On the other hand, the possibly small signal-to-noise ratio contained in the data set did not 
enable the method to be successful in identifying some region of interest. 

Keywords: Wavelet shrinkage, adaptive lifting, Bulk segregant QTL-mapping 
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1 Introduction 

By virtue of its high-level ethanol tolerance trait, the yeast strain Saccharomyces cerevisiae is very 
important in several industrial fermentation processes. Its property is exploited, for example, in bio-
ethanol production (Matsushika et al., 2009) and alcoholic beverages by fermentation such as beer 
and wine (Nevoigt et al., 2002). Thus, identification of the genetic constitution of this important trait 
enabling the development of increased high-ethanol tolerance strains would be economically very 
valuable. 

Ethanol tolerance can be regarded as a genuine quantitative trait, controlled by many genetic 
elements, each contributing to it in varying ways. These genetic elements are called Quantitative 
Trait Loci (QTL) and comprise of specific parts of the genome – clustered or single genes – explaining 
some proportion of the variance observed in the quantitative trait. The interacting contributions in 
bringing forth ethanol tolerance in S. cerevisiae make it practically impossible to pinpoint these 
separate elements. In order to dissect the genetic basis of such quantitative traits, the Quantitative 
Trait Locus mapping approach can be adhered. This approach enables to genomically localize 
simultaneously the different loci contributing to a quantitative trait. 

1.1 Quantitative Trait Locus Mapping 

Quantitative Trait Locus mapping is based on the principles of meiotic recombination, i.e. the 
mechanism responsible for mixing genomic sequences during reproduction. Especially the inverse 
relation between the absolute distance separating two loci on the same chromosome and their 
recombination frequency, makes QTL-mapping possible. In short, the closer loci are positioned next 
to each other, the higher the probability of them being co-segregated (Lynch and Walsh, 1998). 
Based on this principle, QTL-mapping is the analysis of the extent of co-segregation of QTLs of which 
the positions are unknown (the loci of interest) and loci with positions which are known (genetic 
markers) in order to locate the QTLs of interest in the genome. Genetic markers represent genetic 
differences between individuals of an organism that are inherited in a Mendelian way and can 
therefore easily be followed over generations. Among the most widely used genetic markers are the 
molecular markers Single Nucleotide Polymorphisms (SNPs) (Strachan and Read, 1999). 

Applied to S. cerevisiae, QTL-mapping is performed as illustrated in Figure 1. In a first step, two 
strains, the target strain, expressing the quantitative trait of interest, and the reference strain, 
lacking the quantitative trait of interest, are crossed. After mating and sporulation, haploid 
segregants of different genetical composition – a result of the aforementioned meiotic 
recombination – are observed. Next, all these segregants are phenotyped and only those expressing 
the trait are retained. After the remaining segregants are genotyped for the genetic markers, the 
proportions of co-segregation of the genetic markers with the quantitative trait of interest are used 
to infer the position of the QTL of interest. Because of the inverse relation between absolute genetic 
distance and co-segregation, the higher the proportion of selected segregants carrying the same 
genetic marker, the closer these markers are to the QTL of interest. 

Applicability of QTL-mapping was, until recently, still limited due to low availability of molecular 
markers and the laboriousness of their genotyping, causing QTL to have low mapping resolution 
(Swinnen, 2011). The use of artificial markers as alternative for natural markers (Swinnen, 2011) 
together with recent advances in genotyping technologies allows for the simultaneous genotyping of 
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thousands of molecular markers. This leads to rapid, cost-effective methods to analyze genetic 
variation between strains. Winzeler et al. (1998) for example, proposed to use High-density 
oligonucleotide arrays, enabling high-resolution QTL-mapping. 

Of course, to have higher genome coverage and mapping resolution, i.e. having many genetic 
markers densely spread over the whole genome, it is advisable to simultaneously identify and 
genotype thousands and thousands of markers. This could become laborious and expensive to do for 
each individual retained segregant. In order to make such an approach more feasible, bulk segregant 
analysis is a possible solution (Brauer et al., 2006). By mixing the genomic DNA from all of the 
selected segregants before applying high-throughput high-resolution QTL-mapping to the pool, bulk 
segregant analysis avoids the time and costs disadvantages of QTL-mapping each individual 
segregant. 

 
Figure 1: Schematic illustration of QTL-mapping in S. cerevisiae. A. Process of recombination and segregation of 

reproduction of target and reference strain. The black circle denotes QTL of interest, white and black squares denote 
markers for target and reference strain’s genotype, respectively. Segregants depicted in grey express the phenotype of 
interest, so are retained for the next step. (for simplicity only 1 chromosome presented) B. By analysis of the proportion 
of selected segregants expressing the target strain’s genotype, the position of the QTL of interest can be inferred. 
(Figure from Swinnen, 2011) 

In creating the pool of selected segregants’ DNA and replication of randomly cut DNA parts to be 
able to extract information concerning the markers, variability is introduced. Moreover, not all 
markers are genotyped on the same amount of DNA-strings leading to observations of different 
efficiency for different markers. This is especially the case in the extremes of the chromosome. 

After application of the aforementioned techniques, the result is a frequency data set in which 
regions of chromosome positions, possibly containing the locus of interest, are indicated by higher 
than average frequencies – the frequencies expected with a recombination frequency of 50 percent. 
In order to identify these regions and possibly narrow them down even further – enabling fine-
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mapping of these regions on gene level – the current report considers the use of wavelet shrinkage 
as a smoothing tool. 

1.2 Wavelet Shrinkage 

The use of wavelets allows decomposing functions, or sequences, retaining both frequency and 
space characteristics. Moreover, because of the wide range of wavelet functions to choose from, 
from very discontinuous to very smooth, the method is particularly well equipped in decomposing 
functions which express erratic behaviour; i.e. swift jumps, spikes and other irregular patterns. After 
decomposition, shrinkage algorithms can be applied to the obtained coefficients and, after the 
inverse decomposition, a smoothed – denoised – version of the input data can be obtained. Given 
the noisy QTL-mapping data and the fact that the goal is to identify a detailed region of a possibly 
erratic function, wavelet shrinkage could be a very efficient tool to give an informative, useful 
description of the underlying signal incorporated in the data. 

The current report investigates the application of wavelet shrinkage methodology to high-resolution 
quantitative trait loci mapping of whole-genome sequence data. The choice of wavelet, the algorithm 
used to shrink the wavelet coefficients, the primary resolution level and the impact of the underlying 
assumptions will be scrutinized.  

Concretely, the research question is twofold; firstly, how do the characteristics of the wavelet 
shrinkage methodology, wavelet function, shrinkage thresholds and underlying assumptions 
influence the results of smoothing high-density QTL-mapping frequencies? And secondly, can 
wavelet shrinkage methodology provide a narrow, detailed region in those frequencies for which it is 
useful to apply fine-mapping on the gene level? 
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2 Methodology 

2.1 Data 

The data stem from an experiment investigating the genetic characteristics of high-level ethanol 
tolerance in Saccharomyces cerevisiae (Swinnen, 2011). To this end, the commercial platform 
Illumina NGS was used to perform high-resolution quantitative trait loci mapping using whole-
genome sequencing on S. cerevisiae segregants. The data used in the following report are the pre-
filtered – only reliable SNPs are retained – SNP frequency data from three chromosomes, i.e. 
chromosome III, XIV and XVI. Due to the characteristics and intermediate steps of the platform to 
come up with the frequencies, variance and faults sneak in at several places causing some markers to 
be over- or under-genotyped, creating SNP frequencies based on different sample sizes. 

As can be seen from Figure 2, chromosome III and XVI express a generally flat profile, and it is 
believed no significant curvature is herein contained. For this reason chromosome III and XVI are 
used as control data. Chromosome XIV, on the other hand, is the chromosome of interest, with three 
regions already known to influence high-level ethanol tolerance in S. cerevisiae. These three regions, 
MKT1, SWS2 and APJ1 are indicated between the red, blue and green dashed lines, respectively. The 
grey dots denote observations which are discarded whenever a data set is required to be dyadic, i.e. 
having a length of 2௃ for some ܬ ∈ ℕ. The black dots represent the selected data set. From Figure 2, it 
is already visible that the region surrounding the known important regions mounts out from the 
data, but in this region no particular narrow high-proportion regions can be distinguished. 

  

  
Figure 2: Pre-filtered data from chromosome III (top left), XVI (top right) and XIV full and zoomed view (bottom 

left and right, respectively). Dots denote observed SNP proportions for the corresponding chromosomal positions. 
Grey dots are observations left out when data of dyadic size; a power of 2, is required. Red, blue and green dashed lines 
in bottom plots denote three known genes linked to high-ethanol tolerance. 

Considering chromosome XIV, 2581 frequency observations are available over a total chromosome 
length of 792354 base pairs. These observations are based on sample sizes of segregants’ DNA parts 
ranging from 5 to 403. For the control chromosome III and XVI, 863 and 2478 observations are 
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available, respectively. Chromosome III has a total chromosome length of 319712 base pairs, 
chromosome XVI of 955644 base pairs. Segregants’ DNA parts on which the SNPs were genotyped 
ranged between 2 to 107 and 9 to 104 for chromosome III and XVI, respectively. 

We can thus assume the data to come from a binomial process with proportion of success vector p 
and sample size vector n so that each SNP frequency ݕ௜ can be said to be a realization of a binomial 
distributed ࢅ: 

௜݊)݊݅ܤ~௜ࢅ ݅ ݎ݋݂ (௜݌, = 1, …ܰ. 

The main interest lies in the underlying function of proportions p bringing forth these observations. 
This function provides information on the location of possible genes affecting high-ethanol tolerance 
in S. cerevisiae and can be referred to as the underlying signal contained within the empirical 
observations. 

2.2 Wavelet Shrinkage Methodology 

Wavelet shrinkage is the application of wavelet methods as a form of non-parametric regression, also 
called curve estimation or wavelet regression. As described by Nason (2008), the idea behind wavelet 
shrinkage is the following. In case a function with additive noise is observed, take a wavelet 
transform, modify – shrink – its wavelet coefficients and take the inverse wavelet transform to 
estimate the underlying function. 

When observations y = (ݕଵ, …  :௡) are considered to come from modelݕ,

௜ݕ = (௜ݔ)݃ + ݁௜ ݅ ݎ݋݂                 = 1, …ܰ,     (2.1) 

the aim is to estimate the unknown function ݃(ݔ௜) using the observations ݕ௜. Under the assumptions 
that: 

1) The ݁௜ are independent and identically normally distributed 
2) The regression ordinates ݔ௜  are equally spaced 

In the next sections, the methodology of wavelet decomposition will be exemplified where after the 
implemented shrinkage algorithms will be described. To check for the impact of the assumptions 
which apply to the data at hand, some normalizing and variance stabilizing techniques will be 
discussed as well as the method of adaptive lifting to resolve the unequally spaced and not ideally 
sized data. 

2.2.1 Wavelets 

In mathematics, a wave is defined as an oscillating function, working on time or space. Fourier 
analysis, for example, can thus be considered as wave analysis since it expands signals in terms of 
sinusoids. Waves, such as the sinusoid, are defined with equal amplitude over the entire real line, 
expressing infinite energy. This is desirable for periodic, time-invariant or stationary phenomena – 
hence the widely spread use of Fourier analysis (Campbell and Robson, 1968). Intuitively, wavelet is 
understood as ‘little wave’, a function which oscillates but on a compact support (decays to zero very 
rapidly). These characteristics cause wavelets to have energy concentrated in space around some 
point allowing for the analysis of, not only frequency, but also time (space) characteristics. Therefore, 
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wavelet analysis is of great use in the analysis of transient, non-stationary phenomena (Burrus, 
Gopinath and Guo, 1997). 

Wavelet expansion or wavelet transform 

In what follows, only measurable functions f on ℝ belonging to the space of square integrable 
functions ܮଶ(ℝ) satisfying: 

න ଶ|(ݔ)݂|
ஶ

ିஶ
ݔ݀ < ∞ 

will be considered. As is the case for the Fourier’s basis functions, the wavelets are constructed to 
form a complete orthonormal system. 

The first step in analysing a signal or function is usually to express it as a linear decomposition, which 
allows for better description and processing. In the wavelet expansion case, such linear 
decomposition is defined as: 

(ݔ)݂ = ෍෍ ௝݀,௞ ௝߰,௞(ݔ)
௝௞

, 

a two-parameter system where j and k are integer indices. ௝߰,௞(ݔ) are the wavelet expansion 

functions. ௝݀,௞ are called the Discrete Wavelet Transform (DWT) or wavelet coefficients of ݂(ݔ). 

Compared to the Fourier transformation, the additional summation over space indicator k allows 
wavelets to also extract information localized in space. Since wavelets are constructed to form an 
orthonormal system, Burrus, Gopinath and Guo (1997) indicate that the wavelet coefficients ௝݀,௞ can 

be computed by taking the inner product: 

௝݀,௞  = 〈 ௝߰,௞(ݔ),݂(ݔ)〉 = න݂(ݔ) ௝߰,௞(ݔ)݀ݔ. 

For some defined wavelet ߰(ݔ), the whole set of wavelet expansion functions can be generated for 
integers j and k by dilation and translation of this generating (mother) wavelet function: 

௝߰ ,௞(ݔ) = 2௝/ଶ߰൫2௝ݔ − ݇൯          ݂ݎ݋ ݆,݇ ∈ ℤ. 

In this definition, the 2௝/ଶ term ensures that a constant norm is maintained independent of scale j. In 
other words, it ensures that the ‘output energy’ of the transform is the same as the ‘input energy’. 
Moreover, the space location and frequency or scale is parameterized by k and j, respectively 
(Burrus, Gopinath and Guo, 1997). 

Multiscale transform 

In this next section the wavelet function ߰(ݔ) will be derived from a scaling (father wavelet) function 
 defined from the concept of resolution. The scaling functions defined in terms of integer (ݔ)߮
dilation (scaling) and translation of the basic scaling function ߮(ݔ) is: 

߮௝ ,௞(ݔ) = 2௝/ଶ߮൫2௝ݔ − ݇൯     ݇ ∈ ℤ    ߮ ∈ ଶܮ . 
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For all integers ݇ ∈ ]−∞,∞[ the subspace of ܮଶ(ℝ) spanned by these scaling functions over k is 
defined as 

௝߭ = തതതതതതതതതതതതതതതതതതതതത{(ݔ2ఫ)௞߮}௞݊ܽ݌ܵ = ݇ ݈݈ܽ ݎ݋݂    ൟതതതതതതതതതതതതതതതതതതതത(ݔ)௞൛߮ఫ,௞݊ܽ݌ܵ ∈ ℤ. 

This can be understood as: 

(ݔ)݂ = ෍ܿ௞߮௞൫2௝ݔ + ݇൯
௞

(ݐ)݂    ݕ݊ܽ ݎ݋݂     ∈ ௝߭ , 

using the scaling functions ߮௝,௞(ݔ) as a basis, ௝߭  is the total set of functions ݂(ݔ) which can be 

constructed using the stated linear combination and ܿ௞ are the scaling coefficients. The over-bar 
indicates that this span also includes the limits of the infinite sum in addition to the linear 
combination of the basis set. Moreover, the larger j, the finer detail can be presented by narrower 
scaling functions translating in smaller steps. 

It is also possible to view wavelet decomposition in the light of multi-resolution analysis, where the 
decomposition of a signal is in terms of the resolution of detail (Burrus, Gopinath and Guo, 1997). 
The basic requirement of multi-resolution analysis is by providing the nesting of the spanned spaces: 

௝߭ ⊂ ௝߭ାଵ    for all    ݆ ∈ ℤ 

with: 

߭ିஶ = {0},      ߭ஶ = ଶܮ . 

The previous statements acknowledge that a space containing high resolution signals (larger j) will 
also contain lower resolution signals. Following this definition, the spaces have to satisfy a natural 
scaling condition ensuring that elements in a space are simply scaled versions of the elements in the 
next, higher resolution, space. This can be expressed as: 

(ݐ)݂ ∈ ௝߭     ⟺ (ݐ2)݂     ∈ ௝߭ାଵ . 

All together it can be stated that if ߮(ݔ) ∈ ߭଴, it also belongs to ߭ଵ, which is spanned by ߮(2ݔ). This 
means that ߮(ݔ) could be expressed in terms of a weighted sum of shifted ߮(2ݔ). Leading to the 
following result 

(ݔ)߮ = ෍                 
௡

ℎ(݊)√2߮(2ݔ − ݊)       ݊ ∈ ℤ, 

with h(n) a sequence called the scaling function coefficients (father wavelet coefficients or scaling 

filter) and √2 ensures maintaining the norm of the scaling function with the scale of 2. 

It can be shown (Daubechies, 1992) that if such scaling (father wavelet) function exists, an associated 
orthonormal wavelet basis exists such that a (mother) wavelet function can be defined as: 

(ݔ)߰ = ෍(−1)௡ିଵℎି௡ିଵതതതതതതതത߮ଵ,௡(ݔ)
௡

     ݊ ∈ ℤ. 

All these results eventually lead to the fine-scale representation of a function ݂(ݔ) by: 
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(ݔ)݂ = ∑ ௝ܿబ,௞߮௝బ,௞(ݔ) +∑ ∑ ௝݀,௞ ௝߰,௞(ݔ)௞∈ℤ
ஶ
௝ୀ௝బ௞∈ℤ .                                (2.2) 

In this equation, ௝ܿబ,௞ can be thought of as representing the average level of the function, where ݆଴ 

denotes the coarsest scale of the wavelet transform, while the ௝݀,௞ express the amount of detail, 

increasing with scale j. 

In practice, to transform a sequence ࢟ of length n, expected to come from some function f(x), the 
General Fast Discrete Wavelet Transform is performed. This transform is based on the fact that the 
coefficients denoted in equation 2.2, can be obtained by performing a dyadic decimation operation 
(Nason, 2008). Consider two quadrature mirror filters H – defined as a low pass filter, thought of as 
averaging – and G – a high pass filter, extracting detail by differencing. Then the scaling and wavelet 
coefficients ௝ܿ,௞ and ௝݀,௞ can be obtained in the following fashion: 

Firstly, apply filter H to the sequence ࢟ then: 

௃ܿିଵ,௞
∗ = ෍ℎ௡ି௞

௡
௃ܿ,௡        ݐ݅ݓℎ ௃ܿ,௡ =  .௡ݕ

Next, retain every other element of ௃ܿିଵ,௞
∗ ; known as dyadic decimation. Then all the scaling 

coefficients ௝ܿିଵ,௞ can be defined as ௃ܿିଵ,ଶ௞
∗ . The same approach holds for the wavelet coefficients 

௝݀,௞ where filter H is replaced by G. This way, as represented in Figure 3, the discrete wavelet 

transform can be performed by recursively applying filter operations H and G followed by dyadic 
decimation. The grey bars in this figure represent the scaling coefficients ௝ܿିଵ,௞ while the white bars 

depict the wavelet coefficients ௝݀ିଵ,௞. 

 
Figure 3: Graphical representation of the dyadic decimated discrete wavelet transform. 

This highly efficient and fast way of discrete wavelet transform is applied throughout the software 
used in this report with as most important disadvantage that in order to have this dyadic decimation 
filter sequence to work, the data have to satisfy a length of 2௃ for some ܬ ∈ ℕ. 

2.2.2 Wavelet functions 

In the report, three wavelet functions and their accompanying scaling functions are used. These 
three wavelet functions all belong to the family of Daubechies’ extremal phase compactly supported 
wavelets. As elaborated in Daubechies (1988), the wavelets in this family are constructed to be 
orthonormal wavelets each indexed by a number N, denoting twice the number of vanishing 
moments. Vanishing moments indicate the maximum degree of polynomials the wavelet will 
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decompose with all coefficients exactly equal to zero (Nason, 2008). The Daubechies’ extremal phase 
compactly supported wavelets with 1, 3 and 9 vanishing moments will be applied in the report. 

Haar wavelet 

The Daubechies wavelet characterised by 1 vanishing moment, is better known as the Haar wavelet 
and is the simplest orthogonal wavelet system, already defined by Haar in 1910, found out to be a 
special case of the Daubechies’ wavelet family. The mother and father Haar wavelet are shown in 
Figure 4. The Haar mother wavelet function is defined as: 

(ݔ)߰ =

⎩
⎪
⎨

⎪
ݔ    1    ⎧ ∈ ൤0,

1
2
൰ ,

ݔ   1−  ∈ ൤
1
2

, 1) ,

.݁ݏ݅ݓݎℎ݁ݐ݋  0     

 

while the Haar father wavelet function is the simple unit-width, unit-height pulse function ߮(ݔ). 

 
Figure 4: Mother and father Haar Wavelet function. 

Figure 4 shows how discontinuous the Haar mother and father wavelet functions are. Such wavelets 
allow estimation of functions that are characterised by similar discontinuities, one of the hallmarks of 
the wavelet shrinkage methodology. 

Daubechies (3 and 9 vanishing moments) 

The remaining two wavelets are the Daubechies’ wavelets with 3 and 9 vanishing moments. As 
apparent from their representation in Figure 5, increasing the number of vanishing moments, 
introduces smoother mother and father wavelet functions. Although the wavelets shown in Figure 5 
have smoother transitions, their pulse-like shape enables them to capture erratic information 
patterns. 
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Daubechies (3 vanishing moments) Daubechies (9 vanishing moments) 

  
Figure 5: Mother and father Daubechies’ 3 and 9 vanishing moments wavelet functions. Left hand side panels 

denote mother and father Daubechies 3 vanishing moments wavelet functions, right hand side panels Daubechies’ 
wavelet with 9 vanishing moments. 

2.3 Threshold Definitions 

The next sections will describe the three different methods for selecting the wavelet shrinkage 
thresholds which were used to obtain smoothed estimates of the QTL data set. The general idea is 
that at this stage the data are wavelet transformed and the scaling coefficient of the coarsest scale – 
expressed as ܿ଴,଴ – along with the wavelet coefficients are available. Due to the characteristics of the 

wavelet transform mentioned in the previous section, the expectation is that large wavelet 
coefficients contain true signal and noise, while small ones are considered to only contain noise, 
hence can be discarded. The goal of the wavelet shrinkage algorithms is to come up with a threshold 
value below which a wavelet coefficient is considered invaluable and remove it from the wavelet 
coefficients. 

We can rewrite model 2.1 by the wavelet-transformed model: 

݀∗ = ݀ +  (2.3)                                                                           ,ߝ

in which ݀∗ represents the wavelet transform of the original data y, d denotes the wavelet transform 
of the underlying true data and ߝ represents the wavelet transform of the noise. By Parseval’s 
identity of the preservation of squared error, estimating data in the wavelet coefficients space or in 
the data space resolves to the same thing. As introduced by Donoho and Johnstone (1994), the soft 
thresholding function will be applied in the current report. This function is denoted by: 

መ݀ = −|∗݀|)(∗݀)݊݃ݏ |∗݀|}ॴ(ߣ >  ,{ߣ

where ॴ is the indicator function, መ݀  the estimated coefficient of the wavelet transform of the true 
signal, ݀∗ the empirical coefficient to be thresholded and ߣ denotes the threshold. Figure 6 
represents an example of the soft thresholding function. In this function, the empirical coefficients 
smaller than the threshold are put to zero. But, in addition, the remaining coefficients are pulled 
towards zero by subtracting the threshold value. Since it is usually believed that the coarser scales 
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are less influenced by noise than finer scale levels, shrinkage is seldom applied to all coefficients. 
Usually wavelet shrinkage is applied starting from some coarse scale up to the finest scale level. The 
coarsest level at which thresholding is applied is referred to as the Primary Resolution Level (PRL) 
(Nason, 2008). 

The threshold value ߣ can be defined in different ways, minimizing some error measure, measuring 
the expected distance between the estimate and the true value (Nason, 2008). In the next sections, 
the applied definitions for ߣ are denoted. 

 
Figure 6: Example of a soft threshold function. (Figure adapted from Nason, 2008) 

After the estimated wavelet coefficients መ݀  are computed based on the chosen shrinkage threshold, 

the final step is to apply the inverse discrete wavelet transform and transform the coefficients መ݀  back 
to obtain an estimate of the true function of interest denoted by ݃(ݔ) in (2.1). 

2.3.1 SURE 

Sure thresholding, also referred to as SureShrink, is a threshold computation method developed by 
Donoho and Johnstone (1995). The method is based on Stein’s (1981) Unbiased Risk Estimation 
(SURE) technique for estimation of a quadratic loss involving the mean of a multivariate normal 
distribution. Applying Stein’s result together with the assumption of normally distributed noise, 
Donoho and Johnstone show that: 

;ߣ)ܧܴܷܵ (ݔ = ݊ − 2 ∙ #{݅: |௜ݔ| ≤ {ߣ +෍(|ݔ௜| ∧ ଶ(ߣ
ௗ

௜ୀଵ

 

is an unbiased estimator of the expected value of the difference between the true and estimated 
wavelet coefficients. The optimal SURE threshold value is then defined as the value of ߣ minimizing 
the above stated equation. 

2.3.2 FALSE DISCOVERY RATE (FDR) 

A second possibility of deciding which of the noisy wavelet coefficients ݀∗ are non-zero is proposed 
by Abramovich and Benjamini (1996). They formulate the problem as a multiple hypothesis testing 
problem where they test for each coefficient ௝݀,௞ whether: 
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:଴ܪ ௝݀,௞ = :஺ܪ    ݏݑݏݎ݁ݒ       0 ௝݀,௞ ≠ 0 . 

Intuitively, the method is constructed as follows. Consider R to be the number of coefficients which, 
by using some thresholding procedure, are not set to zero. Then, Q can be defined as the proportion 

of wrongly kept coefficients, Q =  ୚
ୖ

, with V equal to the number of coefficients falsely kept. If then 

the expectation of Q is defined as the False Discovery Rate of Coefficients (FDRC), Abramovich and 
Benjamini (1996) suggest using a threshold value which maximizes the number of retained 
coefficients while controlling the FDRC by some level q. 

In practice, the method is performed in the following four steps: 

1. For each ௝݀,௞
∗  calculate two-sided p-value ݌௝,௞ testing ܪ௝ ,௞: ௝݀,௞ = ௝,௞݌ .0 = 2(1 −Φ(

|ௗೕ,ೖ
∗ |

ఙ
)) 

2. Order all ݌௝,௞s to their size 

3. Let ݅଴ be the largest i for which ݌(௜) ≤ ( ௜
௠

  .ݍ(

4. Then ߣ =ߣ௜బ = Φିଵ(1 ߪ  −
௣೔బ
ଶ

) 

In which Φ() denotes the standard normal distribution function, since the noise is assumed to be 
normally distributed, while m denotes the number of coefficients to be thresholded. Moreover, in 
the application in the R-function WaveThresh, the ߪ will be estimated by the Median Absolute 
Deviation (MAD) of the wavelet coefficients on which shrinkage will be applied. 

2.3.3 UNIVERSAL THRESHOLDING 

Donoho and Johnstone (1994) propose to use the Universal threshold ߣ௨, defined as: 

௨ߣ = ඥ2ߪ log ݊. 

In this definition, ߪ represents the standard deviation of the error ߝ and n the number of 
observations. According to Donoho and Johnstone (1994), it can be proved that using ߣ௨ would 
eliminate the noise with high probability. As an estimate of ߪ they suggest to use the MAD of the 
finest-scale wavelet coefficients. 

The default option incorporated in the R-function WaveThresh assumes the MAD of all the 
coefficients to which the shrinkage eventually will be applied. Both estimates are investigated in the 
current report. 

2.4 Gaussianization and Variance Stabilizing 

In the definitions of the shrinkage thresholds from the previous section, the noise contained in the 
observed data set is assumed to be normal. From the description of the data, however, it is clear that 
the noise is coming from a binomial distribution. To investigate the impact of violating this normality 
assumption, three gaussianization and variance stabilizing transformations were considered. 

Anscombe 

In order to normalize the noise and ensure a stabilized variance, the data could be transformed to 
improve approximation of their distribution by a normal distribution. Anscombe (1948) suggested for 
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௜݊)݊݅ܤ~realizations of ௜ܻ ,{௜ݕ} ݅ ௜) for݌, ∈ {0, … ,ܰ}, the following transformation to make the data 
‘more normally’ distributed: 

௜ݕࣛ = ଵඨ൬ି݊݅ݏ
௜ݕ + ܿ
݊௜ + 2ܿ

൰ . 

Moreover, Anscombe (1948) suggests to use ܿ = ଷ
଼
 in order to ensure optimal performance. 

Freeman and Tukey 

In line with the Anscombe transformation, Freeman and Tukey (1950) propose a more general 
transformation based on an averaged inverse sine function defined as: 

௜ݕߚ = ଵඨ൬ି݊݅ݏ
௜ݕ

݊௜ + 1
൰+ ଵඨ൬ି݊݅ݏ

௜ݕ + 1
݊௜ + 1

൰. 

Nunes and Nason Haar transformation (NN-Haar) 

Nunes and Nason (2009) propose a normalizing and variance stabilizing transformation based on 
modification of the wavelet coefficients of the Haar discrete wavelet transform (using wavelet filters 
(1,1)/2 and (1,-1)/2) of the observations. Nunes and Nason (2009) suggest the following 
transformation scheme leading to a transformed data vector u which contains elements which are 
more normally distributed: 

1) Obtain the vector of Haar discrete wavelet transform coefficients (ࢉ૙,ࢊ૙,ࢊ૙, …  ૚) andିࡶࢊ,

modify these coefficients as follows: 

௝݂,௞ = ௝݀,௞

ඨ
( ௝ܿ,௞( ௝݊ାଵ,௞ିଵ + ௝݊ାଵ,௞ − 2௃ି௝ ௝ܿ,௞))

௝݊ାଵ,௞ିଵ + ௝݊ାଵ,௞

. 

2) Perform the inverse Haar discrete wavelet transform using the modified vector 
,૙ࢌ,૙ࢌ,૙ࢉ) …  .૚) to obtain the transformed data vector uିࡶࢌ,

As noted by Nunes and Nason (2009), by undoing these steps 1 and 2, the transform can be inverted. 

2.5 Adaptive Lifting 

Next to the assumption of normally distributed noise, two other assumptions are made to be able to 
apply the Fast Wavelet Transform algorithm and the shrinkage definitions described above. First of 
all, a very important and influencing requirement is that the data set should be dyadic. As clearly can 
be seen in Figure 2, a large part of the data set is not used in the analyses due this restriction needed 
to use the pyramidal algorithm to come up with the DWT. Secondly, in the wavelet shrinkage 
methodology the assumption is made that the regression ordinates ݔ௜  are equally spaced. Also this 
assumption is not satisfied since the observed SNP frequencies are not observed at chromosome 
positions which are a fixed distance apart. 
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One way to resolve these two issues at the same time is the adaptive lifting method suggested by 
Nunes, Knight and Nason (2006). By making the ‘lifting one coefficient at a time’ method, elaborated 
by Jansen, Nason and Silverman (2001), adaptive, they are able to resolve the non-equispaced and 
size problem of a data set. Adaptive lifting can be explained by six steps in which Nunes, Knight and 
Nason (2006) built some adaptive characteristics. The general idea is to lift the sampled function 
values one by one into a set of detail and scaling coefficients, not unlike the discrete wavelet 
transform. Consider the observed values as function values on an irregular grid and use them as the 
initial scaling coefficients. 

1) From the initial scaling coefficients, select the point ௝ܿ೙  with the finest detail as the first point 

to be lifted. This point is found by means of the minimum scaling function integral. 
2) Identify the set of neighbours of ௝ܿ೙  denoted by ܫ௡ . 

3) Make use of these neighbours to predict the value of the function at position ݆௡ by means of 
simple regression techniques. 

4) Compute the detail coefficient ௝݀೙by computing the difference between ௝ܿ೙  and that 

prediction. 
5) Remove the selected point ௝ܿ೙  and update the identified neighbours in order to keep the 

total ‘energy’ constant (recall wavelet transform, Jansen, Nason and Silverman, 2001). 
6) Repeat this process 

Nunes, Knight and Nason (2006) introduce adaptive characteristics to steps 2 and 3. The definition of 
the neighbourhood is important because it will influence the prediction of the candidate to be lifted 
and thus the smoothness of the eventual fit. Considering the simple regression technique used in 
step 3, Nunes, Knight and Nason (2006) suggest to use polynomials of different orders to come up 
with the prediction, suited to the pattern in the data at hand. After repeating this procedure r times, 
the function f can be represented as a linear combination of n-r+1 wavelet coefficients, generated 
during each ‘step 4’, and the remaining, during each ‘step 5’ updated, scaling coefficients. This could 
be regarded as a kind of wavelet transform but without orthogonality of the wavelet and scaling 
functions (Jansen, Nason and Silverman, 2001). Because of this, the assumption of independent 
normally distributed noise will not hold and the aforementioned shrinkage techniques will not be 
applicable to the lifted coefficients. For this reason, Nunes, Knight and Nason (2006) make use of a 
modified version of the empirical Bayesian wavelet shrinkage approach. 

Modified empirical Bayesian wavelet shrinkage 

Since for a wide class of functions it is known that their DWT coefficients lead to a sparse 
representation in which few coefficients are larger than zero (Nunes, Knight and Nason, 2006). It is 
suggested by Johnstone and Silverman (2005) to use the following prior distribution for a DWT 
coefficient: 

௝݀,௞
∗ ~(1− ଴ߜ(ߨ +  ,ߛߨ

where ߨ denotes the prior probability of the true wavelet coefficient ௝݀,௞
∗  to be non-zero. ߛ 

represents the distribution of this true wavelet coefficients conditional on it being non-zero. Based 
on nice theoretical results and practical advantages Nunes, Knight and Nason (2006) propose a quasi-
Cauchy prior as a choice for ߛ. 
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Since the approach of lifting one coefficient at a time does not lead naturally to discrete dyadic 
scales, Nunes, Knight and Nason (2006) suggest to estimate the ߨ௝  using level-wise marginal-

maximum likelihood but then on artificially created scales, obtained from quantizing the detail 
coefficients. To overcome the problem of noise which is not independent and identically normally 
distributed, the empirical Bayes method is applied to the normalized detail coefficients. With this 
modification the likelihood of ௝݀.| ௝݀.

∗  is again given by ௝݀~ܰ( ௝݀.
∗  ଶ). This way the detail coefficientsߪ,

can be estimated by the median of the posterior distribution. Here after the estimated coefficients 
are denormalized and the adaptive lifting transform can be inverted to obtain the estimated true 
function (Nunes, Knight and Nason, 2006). 

2.6 Software 

All computations, as well as most of the figures in the report at hand were performed and created 
using R 2.13.1 (R Development Core Team, Vienna, Austria). As an example, part of the codes is 
contained in Appendix6. 
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3 Results 

In order to investigate the impact of the choice of wavelet, the wavelet shrinkage threshold, the 
primary resolution level and violation of the assumptions of normality and equally spaced 

observations in a dyadic data set of length 2௃ for some ܬ ∈ ℕ, wavelet shrinkage methodology was 
applied to the high-ethanol level tolerance QTL-mapping data set. 

In the application of the aforementioned methodology, several aspects and characteristics were 
varied in order to investigate their effect. First of all, the type of wavelets used to obtain the discrete 
wavelet transform was investigated by comparing results for the Haar wavelet and Daubechies 
wavelet with 3 and 9 vanishing moments, respectively. Secondly, it was examined how the choice of 
threshold in the shrinkage procedure affects the estimated curves. In this light, four different 
approaches were followed: SURE, FDR and Universal thresholding were applied. In the case of the 
Universal threshold, also the difference between using the MAD of only the finest scale coefficients 
or the MAD of all coefficients to be thresholded, was studied. Finally, the primary resolution level 
was also varied between scale 3, 6 or 9. 

To explore the consequences of violating the assumption of normality of the noise distribution, the 
Anscombe, Freeman and Tukey and NN-Haar transformations where applied to the raw data before 
applying the wavelet shrinkage methodology with all the varying characteristics just described. 

Finally, adaptive lifting with empirical Bayesian wavelet shrinkage was applied to the normalized and 
variance stabilized data set. Comparing these results to the previous ones provides an indication of 
how the violation of equally space data affects results. 

In all instances, methods were applied to the chromosome of interest, XIV, in which a clear estimated 
curvature would be expected, as well as to chromosomes III and XVI, which should show a flat signal. 
This enabled testing the method for applicability to the problem at hand. 

3.1 Wavelet choice 

Considering the effect of the choice of wavelet used in the DWT, the Haar wavelet was compared to 
the Daubechies wavelet with 3 and 9 vanishing moments. To this end, the middle 2ଵଵ = 2048  data 
points were discrete wavelet transformed using the different wavelets of interest. Next, wavelet 
shrinkage was applied using a Universal threshold approach with primary resolution level equal to 3 
and the MAD of all wavelet coefficients to be thresholded as an estimate for ߪ. Finally, the shrunken 
coefficients were back transformed to obtain a smoothed estimate for the signal in the data. 

Some results are plotted in Figure 7. From this figure it becomes apparent that the Daubechies 
wavelets produce smoother estimates over chromosomal position. The discontinuous jumps seen in 
the function estimated with the Haar wavelet are less pronounced in the estimated function 
obtained with the Daubechies wavelet with 3 vanishing moments. Moreover, the estimates from the 
two Daubechies wavelets differ in terms of smoothness of the curves. The more vanishing moments 
a wavelet possesses, the smoother the estimated curve. 

Considering the information coming from the zoomed plots, no apparent small regions of higher 
proportions can be noticed, not even in the coloured intervals already known to affect high-ethanol 
tolerance. Overall, the estimates seem smoothed to a good extent, but still unsmoothed spikes are 
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observed. Moreover, also the smoother wavelets with a higher number of vanishing moments, show 
these unsmoothed parts, albeit to a lesser extent. Comparing the results of chromosome XIV with 
those for control chromosomes III and XVI (results presented in Appendix 1), reveals that indeed 
some curvature is observed in the estimated function for chromosome XIV and picked up by the 
method. The estimated functions for the control chromosomes are characterised by much flatter 
curves. 

 Chromosome XIV 
 Full Chromosome Zoomed 
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Figure 7: Comparison of wavelet shrinkage method for three different wavelets. Solid black lines denote estimate 

of underlying function using Universal threshold with MAD estimator of all coefficients from primary resolution level = 3 
onwards. Different wavelets used are Haar and Daubechies waveletes with 3 or 9 vanishing moments. Left panels show 
estimation on full chromosome, right panels zoom in on region already known to contain important genes. 
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3.2 Wavelet shrinkage thresholds 

Next, we focussed on the wavelet shrinkage threshold. Four different threshold types were 
compared; the SURE, FDR, Universal with MAD computed on the finest detail scale and Universal 
with MAD computed on all wavelet coefficients to be thresholded. Results are presented for the case 
when the selected data set was first expanded using the Haar wavelet transform. The four different 
wavelet shrinkage methods were applied using primary resolution level 3 where after the shrunken 
wavelet coefficients were back transformed to obtain the estimates. 

From the results depicted in Figure 8, it can be seen that the different thresholds produce different 
results. As the thresholds progress from SURE to FDR to the Universal thresholds, the estimated 
functions get smoother. Moreover, the “unsmoothed” spikes also seem to decrease in size, providing 
a generally smoother curve. This result seems to carry over to the region of interest. Also in this 
region the peaks are compressed when treading from SURE to the Universal threshold in which the 
standard deviation estimate is based on all wavelet coefficients to be thresholded. 

Comparison of the results of the same setting to the control chromosomes reveals again that the 
approach is picking up some curvature in the chromosome of interest. Showing overall flat curves 
with occasional peaking also in those estimates (Appendix 2). In addition, it seems to be the case that 
the SURE threshold is well performing on the control chromosomes lacking a clear curvature, 
resulting in curves as smooth as provided by the Universal threshold approach. 
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 Chromosome XIV 
 Full Chromosome Zoomed 
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Figure 8: Comparison of wavelet shrinkage method for three different threshold definitions. Solid black lines 
denote estimate of underlying function using Haar DWT and PRL equal to 3. Comparison between the use of SURE, FDR 
or Universal, with MAD computed for different levels, thresholds. Left panels show estimation on full chromosome, 
right panels zoom in on region already known to contain important genes. 
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3.3 Primary Resolution Level (PRL) 

Another question of interest was the influence of the primary resolution level on estimation. As 
before, this characteristic was varied and results compared. The coarsest level from which the 
wavelet coefficients were shrunken was set to scale level 3, 6 and 9, respectively. Figure 9 shows the 
results from the situation in which the selected data were expanded by discrete wavelet transform 
using the wavelet from the Daubechies family with 9 vanishing moments. The obtained wavelet 
coefficients were then shrunk by means of the Universal threshold where the estimate for ߪ was the 
MAD computed on all wavelet coefficients to be thresholded. After thresholding, the inverse 
transform was applied to obtain the estimated curves. 

From the plots included in Figure 9 it can be seen that with increasing PRL the estimates are getting 
less compressed. Since more wavelet coefficients are retained and not put or pulled towards zero – 
charcteristic of the soft thresholding function, shrinkage will have less effect on the estimates and 
curves will be less smoothed. This observation can be made for the estimated function of the whole 
chromosome, as well as the results of the region of interest. In this region, no specific narrow-regions 
of increased proportion seem to stand out. 

Comparison of the presented results with the results of the control chromosomes reveals the same 
characteristics with respect to increasing PRL but no curvature seems to be estimated. Again, this 
shows the approach to capture some curvature in the chromosome of interest which is not present 
in chromosomes III and XVI (Appendix 3). 
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Figure 9: Comparison of wavelet shrinkage method for three different primary resolution levels. Solid black lines 

denote estimate of underlying function using DWT with Daubechies wavelet with 9 vanishing moments and Universal 
threshold with MAD computed for scaling levels from PRL to finest detail level. Different PRLs are 3, 6 and 9. Left panels 
show estimation on full chromosome, right panels zoom in on region already known to contain important genes. 
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3.4 Normality assumption 

Concerning the violation of the normally distributed noise in the current data set, the three 
aforementioned transforms were applied and the results compared. The wavelet transform 
coefficients, adopting Daubechies wavelet with 9 vanishing moments, of the normalized selected 
data were shrunken using the Universal threshold with MAD estimate of all coefficients to be 
thresholded. Results are depicted in Figure 10. In addition, the untransformed curve estimate is also 
included in the figure. 

The first observation that can be made from Figure 10 is that the NN-Haar transform proposed by 
Nunes and Nason (2009) does not seem to be adapted to incorporate a binomial sequence based on 
binomial processes with different sample sizes. The problem seems to be connected to the back 
transformation in which proportionality is not guaranteed and proportions are estimated to exceed 
1. The transformations proposed by Anscombe (1948) and Freeman and Tukey (1950) are performing 
well, in providing smooth curves occasionally interrupted by spikes. Moreover, there seems to be 
little difference in the performance of both transformations, although the Freeman and Tukey (1950) 
transformation appears to provide peaks which are a fraction smaller. When comparing to the results 
of the untransformed case, it seems that ignoring the non-normality of the noise results in 
underestimating the error, causing smaller peaks and a possibly too smooth curve estimate. The 
same observations can be made for the region of interest. 

These results can again be carried over to the control chromosomes in which any indication of a clear 
curvature is absent (Appendix 4). 
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Figure 10: Comparison of wavelet shrinkage method after normalizing and variance stabilizing transformations. 
Solid black lines denote estimate using DWT with Daubechies’ wavelet (9 vanishing moments) and Universal threshold 
with MAD of wavelet coefficients from PRL(3) to finest detail level. Transformations are Anscombe, Freeman and Tukey 
and NN-Haar normalization and variance stabilizing transformations accompanied by untransformed fit. Left panels 
show estimation on full chromosome, right panels zoom in on region already known to contain important genes. 
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3.5 Non-equally spaced observations 

Adaptive lifting was performed to take the non-equally spaced observations in the data into account. 
At the same time, since the method does not incorporate the discrete wavelet transform, no 
restrictions on length of the data set are imposed. After transforming the data using the Freeman 
and Tukey (1950) normalization and variance stabilizing transformation, adaptive lifting with two 
orders of simple regression and three neighbourhood definitions was applied. Linear versus 
quadratic regression predictions with symmetric neighbourhood definitions of 2, 10 and 20 
observations were compared. Thus, 2, 10 or 20 observations surrounding the to-be-lifted point on 
each side – 4, 20 or 40 observations in total – were used to come up with a linear or quadratic 
prediction. 

The R-function adlift proposed by Nunes, Knigth and Nason (2006) was adjusted to be able to fit data 
sets larger than 500 observations. Still, the application was very computer intensive so adaptive 
lifting was solely applied to chromosome III and XIV. Moreover, in the quadratic case only 
neighbourhood lengths of 10 and 20 were computationally possible for the data of chromosome XIV. 

The results provided in Figure 11 show the effects of both regression order and neighbourhood size. 
In the linear prediction case, the estimated function tends to be more linear. While the quadratic 
prediction, on the other hand, allows more curvature in the estimated curve. Increasing the size of 
the symmetric neighbourhood causes this observation to be intensified, levelling out the data. This is 
clearly shown in the case of 20 neighbours where the region of interest is smoothed strongly 
downwards, to create a practically linear curve. In all cases, unsmoothed parts with large spikes in 
both directions are observed. Moreover, no candidate regions for fine-mapping are provided in the 
results of the region of interest. Also, these regions are very comparable in all cases, with increased 
neighbourhood size leading to downward smoothed curves. 

These observations are replicated in the results for chromosome III, albeit to a lesser extent since the 
observations already express a more flat profile (Appendix 5). 
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Figure 11: Adaptive lifting applied to chromosome XIV. Comparison of two different prediction orders (linear vs 
quadratic) and three neighbourhood sizes (2, 10 and 20 symmetrical neighbours) for full chromosome (left hand size 
plots) and region of interest (right hand side plots) smoothing.  

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

465000 470000 475000 480000 485000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

465000 470000 475000 480000 485000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

465000 470000 475000 480000 485000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

465000 470000 475000 480000 485000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on

465000 470000 475000 480000 485000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chromosomal Position

S
N

P
 P

ro
po

rti
on



27 
 

4 Discussion and Conclusion 

Wavelet function 

Three different wavelet functions were employed to obtain smoothed estimates of the underlying 
probability curve generating the observed SNP frequencies, from the selected yeast segregants. 
Characterised by an increased number of vanishing moments, the Haar, Daubechies 3 and 9 wavelet 
functions are different in terms of smoothness; increased number of vanishing moments induces a 
smoother wavelet. Since the wavelet shrinkage methodology makes use of wavelet expansion, this 
behaviour is also found in the estimated curves. The estimated curves get softer, express less 
discontinuous jumps when wavelets with increasing vanishing moments are deployed. Though, 
unsmoothed parts with spikes are still observed, albeit to a lesser extent, in the case of smoother 
wavelets. 

Applied to the selected yeast segregants problem, the idea was to find narrow plateau-like regions 
indicating increased co-segragation frequencies. This suggests that, based on its discontinuous 
characteristics, the Haar wavelet could provide good results. Nevertheless, due to the spiky 
behaviour of the fit, struggling to smooth out the curve, no such regions could be identified. The 
comparison to the control chromosomes, revealed that the wavelet shrinkage method is able to pick 
up some curvature out of the noise, since the estimated curves for the controls are overall flat. 

Shrinkage threshold 

The results of four different thresholds were compared to obtain an idea about their smoothing 
characteristics. As was suggested by Nason (2008) and is observed in the results, the SURE, FDR and 
Universal thresholds can be ordered providing the coarsest to smoothest estimates, respectively. 
Within the family of Universal thresholds, a different MAD estimate for ߪ leads to different results. In 
the case that the MAD of only the finest scale coefficients is used, the estimated curve is less smooth 
than in the case the MAD of all coefficients to be thresholded is computed. This is to be expected 
when the MAD is larger in the second case, implying extra noise is taken into account to compute the 
threshold. 

In the problem of smoothing the selected yeast segregants data, the Universal method, which 
provides the smoothest estimated curve, is recommended. The results show that indeed the 
shrinkage method using the Universal threshold does a good job in retaining the available curvature 
in the data. Though, no useful narrow regions of increased proportions of co-segregation can be 
observed. In the case of the control chromosomes, the expected ordering of threshold methods is 
not observed. The SURE threshold does not differ very much from the largest Universal threshold of 
the two. This could indicate that applied to data in which no particular curvature is contained, the 
SURE threshold produces equally smooth estimate curve as the Universal threshold. 

Primary resolution level 

Considering the PRL, it can be concluded that the more wavelet coefficients are included in the 
shrinkage procedure, the more effect the shrinkage procedure has. Translated in terms of the 
primary resolution level, there exists an inverse relationship between primary resolution level and 
smoothness of the estimated curve. 
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For the problem at hand, the smallest of the selected primary resolution levels provides the 
smoothest results, but again no narrow region of increased proportions could be found. 

Violation of normal noise assumption 

To overcome the violation of the assumption that the noise incorporated in the data is independent 
identically distributed normal noise, three data transformations were investigated. The 
straightforward angular based transformations of Anscombe (1948) and Freeman and Tukey (1950) 
are performing well. Both transformations indicate that when not taking into account the binomial 
noise, wavelet shrinkage is over-smoothing the estimated curve. Between these two 
transformations, little difference in performance could be observed. Nevertheless, the estimates 
after the Freeman and Tukey (1950) transform were more compressed, leading to smoother curves. 

Investigation of the recently proposed NN-Haar transform by Nunes and Nason (2009) provided 
degenerate results in which proportions were estimated to exceed 1. The problem seems to be 
occurring in the back transformation. The NN-Haar transformation is build to work on the frequency 
level instead of the proportion level. This means that some erratic parts in the frequency curve, 
caused by a small binomial sample size, will get smoothed upwards, even above their binomial 
sample size. The back transformation incorporates this smoothing and causes these upward 
smoothed parts eventually to exceed 1 on the proportion scale. 

In terms of the selected yeast segregants problem, the results indicate that the Freeman and Tukey 
(1950) transformation is advisable. Compared to the untransformed case, there is not too much 
difference in results – probably due to sufficient binomial sample sizes – but this transformation 
ensures the assumption of normal distributed noise to be upheld. 

Violation of non-equally spaced observations 

To take the non-equally spaced observations in the data into account, adaptive lifting was applied. At 
the same time, since adaptive lifting does not impose a dyadic data set length, wavelet shrinkage 
could be performed on the whole data set. Results from two prediction orders, linear and quadratic 
regression, and three symmetric neighbourhood lengths, 2, 10 and 20 on each side of the to-be-lifted 
observation, were compared. The effect of prediction order reflects itself in an estimated curve 
featuring curvature close to the same order of the prediction order. Where the number of 
neighbours influences the extent to which this is the case. The more neighbours are taken to come 
up with the prediction, the more the prediction order will affect the estimated curve. 

Considering the QTL-mapping data, no candidate regions of interest were provided. Overall, the 
estimated curves, of both chromosome XIV and III, are observed to have many unsmoothed spiky 
parts. This could be an indication that the empirical Bayesian shrinkage approach is under-smoothing 
the curve and perhaps different smoothing methods could be developed. 

Conclusion 

Considering the methodology, the current report has shown the versatility of the wavelet shrinkage 
approach in non-parametric curve estimations. Several characteristics can be tuned to fit specific 
needs of the researches in a very wide range. Wavelets can be chosen to fit an enormous range of 
different curves. Thresholds in combination with primary resolution levels can be selected based on 
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smoothing characteristics. Even when certain assumptions are violated, transformations in 
combination with different expansion algorithms – i.e. adaptive lifting – can be applied to ensure 
sound results. 

Nevertheless, no clear narrow region of increased probability concerning the high-ethanol tolerance 
in S. cerevisiae could be extracted. Spiky behaviour of the estimated curves could not be excluded 
and in the region of interest an overall flat function was estimated. Probably a low signal-to-noise 
ratio imbedded in the data could be responsible for these observations. 

In order to guide the selection of the wavelet shrinkage approach’s characteristics and improve the 
application to the S. cerevisiae data, several suggestions for further research can be formulated. To 
give more insight in the efficiency of the curve estimations, confidence intervals could be 
constructed. This could also equip the researcher with a tool to fine-tune the wavelet functions and 
maximize the extracted information. Considering the application, careful thought in how to make the 
data collection less error and noise prone could potentially increase the signal-to-noise ratio in the 
data, providing better results from applying wavelet shrinkage. 

Concerning, adaptive lifting, it seems like a promising method to apply wavelet shrinkage 
methodology to data sets containing non-equally spaced observations. Moreover, since no discrete 
wavelet transform is performed, the dyadic data length assumption no longer applies. Though, 
applicability of this method should be improved to ensure a more stable computer application. 
Preferably the method should allow the possibility to incorporate different threshold types, to have 
an alternative to the empirical Bayesian shrinkage, using a less computer intensive lifting algorithm. 
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Appendix 1: Comparison of wavelet shrinkage method for three different wavelets. Solid black lines denote 

estimate of underlying function using Universal threshold using MAD of all coefficients from PRL(3) onwards. 
Comparison between the use of Haar and Daubechies wavelets with 3 or 9 vanishing moments. Left panels show 
estimation on full chromosome for chromosome III, right panels on chromosome XVI. 
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Appendix 2: Comparison of wavelet shrinkage method for three different threshold definitions. Solid black lines 
denote estimate of underlying function using Haar discrete wavelet transform and PRL 3. Comparison between the use 
of SURE, FDR or Universal, with MAD computed for different levels, thresholds. Left panels show estimation on full 
chromosome for chromosome III, right panels on chromosome XVI. 
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Appendix 3: Comparison of wavelet shrinkage method for three different primary resolution levels. Solid black 

lines denote estimate of underlying function using DWT with Daubechies wavelet with 9 vanishing moments and 
Universal threshold with MAD computed for wavelet coefficients from PRL to finest-detail level. Different PRLs are 3, 6 
and 9. Left panels show estimation on full chromosome for chromosome III, right panels on chromosome XVI. 
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Appendix 4: Comparison of wavelet shrinkage method when assumption of normality is violated. Solid black 
lines denote estimate of underlying function using Daubechies’ wavelet with 9 vanishing moments and Universal 
threshold with MAD computed for scaling levels from PRL to finest-detail level. Different transformations are 
Anscombe, Freeman and Tukey and NN-Haar accompanied by untransformed fit. Left panels show estimation on full 
chromosome for chromosome III, right panels on chromosome XVI. 
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Appendix 5: Adaptive lifting applied to chromosome III. Comparison of two different prediction orders (linear and 

quadratic) and three neighbourhood sizes (2, 10 and 20 symmetrical neighbours) for full chromosome (left hand size 
plots) and region of interest (right hand side plots) smoothing. 
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Appendix 6: R-Codes 

Wavelet Denoising after Freeman and Tukey (1950) 
transformation. 

 
# PACKAGES 
library(wavethresh); 
library(EbayesThresh); 
library(binhf); 
 
### DISCRETE WAVELET TRANSFORM 
filtnr = 9;   # 1 = HAAR 
fam = "DaubExPhase"; 
ThType = "soft";    # Threshold type: 'soft' or 'hard' 
ThLev = 3;    # Primary Resolution Level (3 = default 

in WaveThresh) 
type = 'wavelet';    # 'wavelet' = Decimated DWT, 

'station' = time-ordered Non-Decimated DWT 
 
# Removing extentive obs 
J = floor(log2(N)); 
ex_ob = N-(2^J); 
rm_obs = c(1:floor(ex_ob/2),(N-(ceiling(ex_ob/2)-

1)):N); 
 
prop = prop[-rm_obs]; 
position = position[-rm_obs]; 
n = n[-rm_obs]; 
 
counts <- as.matrix(Data[-rm_obs,14:18]) 
diMs <- dim(counts) 
counts[which(counts=="-")] <- 0 
counts <- 

matrix(as.numeric(counts),nrow=diMs[1],ncol=di
Ms[2]) 

 
#in case of an insertion, the column with deletions 

has to be set to 0. Otherwise the total number of 
successes equals the number of trials. 

counts[which(Data[-rm_obs,6]=="-"),5] <- 0 
SNP_freq <- rowSums(counts,) 
 
new_N = 2^J; 
 
# Apply Freeman and Tukey transformation 

SNP_freq_norm = free(SNP_freq,n); 
 

# Fast Pyramidal Wavelet Transform 
wave_trans = wd(SNP_freq_norm , 
filter.number=filtnr, family = fam, type = type); 
 
## SURE thresholding of coefficients 
Thsure_coeff = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="sure", dev=madmad); 
 

Thsure = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="sure", dev=madmad, 
return.threshold=T)[1]; 
 
## Take the inverse Discrete Wavelet Transform 
freq_trans = wr(Thsure_coeff); 
 
# Inverse Freeman and Tukey transform 
freq_est = freeinv(freq_trans, n); 
estimates = freq_est/n; 
 
## False Discovery Rate thresholding of coefficients 
Thfdr_coeff = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="fdr", dev=madmad); 
 
Thfdr = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="fdr", dev=madmad, return.threshold=T)[1]; 
 
# Take the inverse Discrete Wavelet Transform 
estimates = wr(Thfdr_coeff); 
 
# Inverse Freeman and Tukey transform 
estimates = freeinv(estimates,n); 
estimates = estimates/n; 
 
## Universal thresholding of coefficients (Donoho 
and Johnstone(1994b)) computed on finest scale 
FineCoefs = accessD(wave_trans, 
lev=nlevels(wave_trans)-1); 
sigma = mad(FineCoefs); 
UthDJ = sigma*sqrt(2*log(length(prop))); 
 
Th_coeff = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="manual", value=UthDJ, 
return.threshold=F); 
ThDJ = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="manual", value=UthDJ, 
return.threshold=T)[1]; 
 
# Take the inverse Discrete Wavelet Transform 
estimates = wr(Th_coeff); 
 
# Inverse Freeman and Tukey transform 
estimates = freeinv(estimates,n); 
estimates = estimates/n; 
 
## Universal thresholding of coefficients 
Thun_coeff = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="universal", dev=madmad); 
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Thun = threshold(wave_trans, levels = 
ThLev:(nlevels(wave_trans) - 1), type = ThType, 
policy="universal", dev=madmad, 
return.threshold=T)[1]; 
 
# Take the inverse Discrete Wavelet Transform 
estimates = wr(Thun_coeff); 
 
# Inverse Freeman and Tukey transform 
estimates = freeinv(estimates,n); 
estimates = estimates/n; 
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