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Preface

This master thesis investigates the performance of the trivariate correlated frailty model in the context
of serological current status data. The existing frailty methodology used in multivariate survival
analysis to model individual heterogeneity is reformulated to be applicable in the field of infectious
disease modelling. Furthermore, traditional frailty methodology is generalized in order to be applicable
in case of nonimmunizing infections. The thesis was performed under the supervision of my promotor
prof. dr. Niel Hens.
I would like to thank everybody who made it possible to complete my master thesis. First of all, I
would like to thank prof. dr. Niel Hens to organise this thesis project and for his continuous assistance
throughout the entire master thesis project. His input and ideas during our meetings were of crucial
importance in the completion of this work. Furthermore, I like to thank prof. dr. Andreas Wienke of
the Institut für Medizinische Epidemiologie, Biometrie und Informatik in Halle (Saale) for his valuable
contributions and viewpoints with respect to frailty modelling.
To conclude, I really appreciate the guidance and input of my promotor prof. dr. Niel Hens during
the entire period in which I worked on this interesting topic.
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Abstract

Frailty models have become increasingly popular in multivariate survival analysis to study indi-
vidual heterogeneity. Although the shared frailty models are widely applied, the correlated frailty
model has recently gained attention since it is quite more flexible as compared to the shared
model. In fact, the correlated frailty model elevates the restriction of unobserved factors to act
similarly within clusters. The estimation of model specific parameters is often complicated due
to the presence of censoring. Within this master thesis, trivariate frailty models are formulated
in line with recent work by Hens et al. (2009) and relying on serological current status data.
Furthermore, refinements of the traditional frailty models in order to cope with recurrent events
are suggested and illustrated on a combination of serology and social contact data. Applying the
extended models to serological data on nonimmunizing infections such as CMV and PVB19 has
shown to improve the model fit considerably. Although further research is certainly required, a first
attempt is made to model individual heterogeneity in the absence of lifelong immunity which differs
substantially from the current state-of-the-art methods used in the field of infectious disease modelling.

Keywords: Frailty models; Univariate frailty model; Shared frailty model; Correlated frailty
model; Trivariate current status data; SIRS infections; Social contact data.
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Chapter 1

Introduction

Infectious diseases remain today a leading cause of morbidity and mortality worldwide. Infectious
diseases are illnesses in humans, animals or plants resulting from the presence of microbial pathogens,
like viruses, bacteria and parasites (Goeyvaerts, 2011). New pathogens continue to emerge which
is demonstrated by the SARS epidemic of 2003 and the swine flu pandemic in 2009. Although
Hippocrates (458-377 A.D.) already documented epidemics, mathematical modelling of infections was
only introduced in 1760 by the work of Daniel Bernoulli (1760) on the mortality caused by smallpox
infections. In his publication, Bernoulli tried to demonstrate the benefits of variolation against
smallpox for the population of France using a mathematical transmission model. Deterministic
transmission models describe the dynamics of infectious diseases by partitioning the population into
different disease states or compartments. In general, mathematical models are applied increasingly
to elicidate the transmission of infections and to evaluate the impact of control strategies in
reducing morbidity and mortality. In addition to mathematical modelling, statistical models have
supplemented the mathematical compartmental models as they allow to estimate important disease
parameters from different types of data. One of the most important parameters which drives the
disease mechanism is the so-called force of infection. The force of infection is the equivalent of the
hazard function in survival analysis and represents the rate at which susceptible individuals acquire
the infection. Hugo Muench (1934, 1959) was the first to model the force of infection as a key
parameter in mathematical models. Muench’s work initiated the development of many parametric
and non-parametric methods to estimate the force of infection based on incidence and serological
data. An historical overview of the statistical methods that have been applied by many other authors
in order to estimate the force of infection, is addressed in a paper by Hens et al. (2009).

Frailty models are becoming increasingly popular and important in multivariate survival anal-
ysis. Although frailty models have been studied extensively in multivariate survival analysis, the
concepts are to be further implemented and extended in the field of infectious disease modelling.
Despite the importance of integrating individual heterogeneity in the statistical analysis of infectious
diseases as shown by Wienke (2010), frailty models are often applied to data concerning a single in-
fection or at most two diseases. Coutinho et al. (1999) were the first to treat individual heterogeneity
systematically in the assessment of the force of infection for different infections. A commonly used
approach to tackle the problem of modelling dependent multivariate data is to specify independence
among observations conditional on a set of latent variables. These latent variables are often referred
to as random effects. Frailty models for multivariate survival data rely on the assumption of condi-
tional independence when considering latent frailties acting multiplicatively on the baseline hazard.
Therefore, the concept of conditional independence provides a straightforward extension of the
univariate frailty model (Vaupel et al., 1979) in order to take dependence of observations into account
in the analysis of survival data. Two important frailty models are commonly used in multivariate
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survival analysis, the shared frailty model and the correlated frailty model. The shared frailty model
is widely applied and assumes the frailty to be common for individuals within a cluster. The shared
frailty term creates the dependency between different observations (see e.g. Wienke, 2010). Despite
the strong limitations of shared frailty models, they are most often used in practice. To overcome the
disadvantages of the shared frailty models, numerous correlated frailty models were established during
the last decade as mentioned by Wienke (2005). The correlated frailty model extends the shared frailty
model by assuming the frailties of individuals in a cluster to be correlated, but not necessarily shared.
In contrast to the shared frailty model in which all the correlation parameters are set equal to one,
additional parameters in the correlated model implicitly allow the correlation structure to be different.

Hens et al. (2009) already considered the correlated and shared gamma frailty models in the
context of bivariate current status data regarding hepatitis A and B infection. In this master thesis,
the bivariate models proposed by Hens et al. (2009) are extended in order to model trivariate
current status data. In the statistical analysis incorporated in this thesis, current status data with
respect to cytomegalovirus, parvovirus B19 and hepatitis A infection is analyzed to illustrate the
applicability of the derived frailty models. Although in many applications, the Gompertz baseline
hazard function seems to be a valuable candidate in describing seroprevalence data, sensitivity with
respect to the baseline hazard function is investigated. Since Wienke (2010) summarizes the wide
variety of available frailty distributions used in frailty model related publications, the trivariate
frailty models are formulated for other frailty distributions as well. In addition to modelling the
seroprevalence, a simulation study was performed to investigate the performance of the trivariate
correlated gamma frailty model. The latter model shows to be the most flexible one to account for
individual heterogeneity as the shared frailty model suffers from severe limitations.

In addition to the specification of different frailty models for infectious disease modelling, we
are also faced with problems concerning infections that do not confer lifelong immunity. As the
presented trivariate frailty models are derived under the assumption of immunizing infections, some
additional refinements of the models are made in order to be applicable as well when reinfections
with the pathogen are possible. A mathematical SIRS model is used to derive an expression for the
extended survival function and serological data is augmented with social contact data to estimate the
parameters of a model reflecting a realistic transmission scenario. The relationship between social
contact data and serology is based on the mass action principle as formulated in Farrington et al.
(2001) and touched upon in Appendix A.1.

The master thesis is organized as follows. First of all, in Chapter 2, the data sources are in-
troduced which are used to illustrate the use of the frailty models presented in this thesis. In Chapter
3, a brief overview of some of the most important concepts of survival analysis are included with special
emphasis on the elements relevant in frailty modelling. Chapter 4 focuses on trivariate frailty models
in the context of serological current status data. Univariate, shared and correlated frailty models
are formulated using the gamma frailty distribution among other candidate frailty distributions.
Furthermore, the likelihood functions for time-to-event, right censored and trivariate current status
data are derived which are used to obtain maximum likelihood estimates for the unknown frailty
model parameters in a fully parametric approach. Chapter 5 highlights potential misspecifications
in the frailty models. Especially, difficulties with respect to nonimmunizing infections are considered
and an alternative approach is suggested in which serology is augmented with social contact data.
In addition, the results of the statistical analysis regarding the seroprevalence of cytomegalovirus,
parvovirus B19 and hepatitis A in the Belgian population are incorporated in Chapter 6. Finally,
some concluding remarks and potential ideas for further research are written down in Chapter 7.
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Chapter 2

Data Sources

In this master thesis, two sources of data are used in order to evaluate the performance of the dis-
cussed models. The first data source is serological data on cytomegalovirus (CMV), parvovirus B19
(PVB19) and hepatitis A virus (HAV) which represents the age-specific prevalence of past infection
in a population in the absence of an immunization program. Secondly, serological data is augmented
with social contact data to be able to estimate the transmission rates for the specific infections under
study. In the present chapter, an overview is given of the different diseases discussed in this thesis.
In addition, some key notions with respect to the varying data sources enables the reader to have
an idea about the data structure before shifting towards the specification of frailty models and the
introduction of some useful concepts in univariate survival analysis.

2.1 Serological Data

Serological data consists of cross-sectional sets of residual blood samples which are tested for
infection-specific immunoglobulin G (IgG) antibodies using a so-called enzyme-linked immunosorbent
assay (ELISA) test. Blood samples for 3379 individuals were collected in Belgium between 2001 and
2003 and were tested for CMV, PVB19 and HAV among other infections. In serological data, past
infection with a certain pathogen is determined based on the antibody level with respect to a cut-off
value pre-specified by the manufacturer of the ELISA-test. Individuals having an antibody level
above the cut-off value are classified as being seropositive, and below as seronegative. The serological
status of an individual is a direct measure of immunity against the disease, at least if serological
protection is agreed upon. In this thesis, our focus is on dichotomized serological data which are in
fact type I interval-censored data or current status data. More details on current status data are
presented in Sections 3.3 and 4.5. In addition to the serological status of individuals, the age at the
time of data collection is obtained as well. In modelling the seroprevalence in the statistical analysis
incorporated in this thesis, the focus is on individuals characterized with a complete serological profile
concerning the infections under study. The latter implies that data on a total of 2890 blood samples
is used in our data applications.

Cytomegalovirus (CMV) is a member of the herpes family which is experienced by many indi-
viduals during their lives. The infection is very common during puberty and adolescence, the latter
corresponding to the start of sexual activity. In the population at large, primary infection occurs by
direct close personal contact via exposure to body fluids such as saliva, tears, urine, stool, semen, and
breast milk (Ho, 1990). The primary infection is often inapparent and associated disease is therefore
an exceptional event in normal individuals. However, in immunosuppressed patients, the infection
provokes several disparate outcomes. As is the case for other herpes viruses (e.g. Varicella Zoster
Virus), CMV remains latent within the human host until the host’s immune system is compromised.

3
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In addition, CMV is not highly contagious and has an incubation period of about three to twelve
weeks (Taylor, 2003).

Parvovirus B19 (PVB19) was the first human parvovirus to be discovered in 1975 (Goeyvaerts,
2011). Most cases of parvovirus B19 infection are asymptomatic. PVB19 causes a range of diseases
of which one of the most common clinical presentations is childhood exanthem called fifth disease or
erythema infectiosum (Anderson and Cherry, 2004). The childhood exanthem is characterized by a
slapped cheek rash (Young and Brown, 2004). In children and teenagers, the disease is usually mild
whereas in adults, and especially in women, the disease is often complicated by acute arthritis which
may persist in some cases (Cohen, 1995). The disease is primarily spread by infected respiratory
droplets and infection with PVB19 during pregnancy has been associated with intrauterine fetal
death, fetal anemia and hydrops fetalis (Tolfvenstam et al., 2001). The clinical symptoms of the
disease start to manifest about six days after exposure to the pathogen and last for approximately a
week. The development of the disease occurs after an incubation period of four to fourteen days and
after infection, the patients are infectious (and therefore able to infect other individuals) for five to
seven days (Hens et al., 2008). Although under development, a vaccine for PVB19 is currently not
available.

Hepatitis A (HAV) is one of the oldest diseases known to humankind. The disease is a signifi-
cant cause of morbidity and socio-economic losses in many countries all over the world. Transmission
of HAV is mainly by faeco-oral contact. The infections usually occur early in time in areas where
the sanitation is rather poor and living conditions are crowded. In the Western world, the infections
are delayed due to improvements in sanitation and hygiene. The virus interferes with the liver’s
functions which induces the immune system to produce a specific reaction to combat and possibly
eradicate the infectious agent. Consequently, the liver becomes inflamed due to pathological damage
(Melnick, 1995). The clinical symptoms of the disease are fever, exhaustion, loss of appetite, nausea
and abdominal discomfort, dark urine and jaundice. Hepatitis A has an incubation period of 15 to
50 days (Fiore, 2004).

2.2 Social Contact Data

Social contact data is obtained from the European POLYMOD survey conducted between May 2005
and September 2006. Prospective surveys of social contacts were held in eight European countries
such as Belgium, Polen, Germany and others. For an extensive description with respect to the survey
methodology and the obtained results, we refer to Mossong et al. (2008). In the applications pre-
sented in this thesis, the contact rates for Belgium with respect to close contacts with total contact
time per day exceeding 15 minutes are included. Although different estimation strategies are avail-
able for the contact rates, the elements of the social contact matrix are estimated using a bivariate
smoothing approach as described by Wood (2006). The average number of contacts is modelled as a
two-dimensional continuous function of the age of the respondent and the age of the contacted person.
The latter gives rise to a so-called contact surface. Details with respect to the bivariate smoothing
approach are out of the scope of this thesis. The interested reader is referred to Goeyvaerts (2011).
An exploratory investigation regarding the collected social contact data is found as well in Mossong
et al. (2008). The general idea in this thesis is to supplement the serology with data on contacts
among individuals in the population. As the spread of an infectious agent is greatly determined by
the number and types of contacts between subjects, it is interesting to use this kind of data to describe
infection dynamics.
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Chapter 3

Basic Concepts in Survival Analysis

As frailty models gained popularity in multivariate survival analysis over the years, it is interesting
to explore the usefulness of these models in the context of infectious disease modelling. Before im-
plementing these frailty models to identify infection characteristics, one needs to consider the basic
concepts and notions of frailty modelling. In fact, since these models originate from survival analysis,
some of the most relevant and important statistical aspects of univariate survival data are summa-
rized in this chapter. For more detailed information with respect to survival data, we refer to Wienke
(2010), Hougaard (1999), and Keiding and Andersen (2006).

3.1 Hazard Function

Survival data requires a special statistical theory due to the unique properties of the response variable.
The outcomes of interest in survival data are event times which are certainly not measured in the same
way as other variables. Consider a nonnegative random variable T ∗ and let T ∗ represent the time from
a well-defined starting point until the occurrence of an event (e.g. occurrence of disease). In survival
analysis, T ∗ is often referred to as the survival time which results from the fact that death is the
major event studied within this field. However, the term survival time will also be used when referring
to occurrence of infection in the remainder of this master thesis. Most often the survival time T ∗ is
assumed to follow a continuous distribution on the interval [0,∞). The probability density function
(p.d.f.) of T ∗ is denoted by f , and the cumulative distribution function (c.d.f.) by F . From basic
probability theory, one obtains:

F (t) = P (T ∗ ≤ t) =
∫ t

0
f(s)ds.

In survival analysis, the survival function is defined as S(t) = 1 − F (t). One of the most important
concepts in survival analysis is the so-called hazard function µ(t). It specifies the instantaneous event
(e.g. infection) rate at time t, given that the individual has not experienced the event before that
point in time. Hence, the hazard function (or hazard rate) is defined as:

µ(t) =
f(t)

1− F (t)
=
f(t)
S(t)

(3.1)

Sometimes, it is useful to deal with the cumulative or integrated hazard function M(t) which is
computed by integrating the hazard function over a finite interval:

M(t) =
∫ t

0
µ(s)ds. (3.2)

5
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From equation (3.1), one can easily derive the relationship between the cumulative hazard function
M(t) and the survival function S(t):

M(t) =
∫ t

0
µ(s)ds =

∫ t

0

f(s)
1− F (s)

ds = −ln(1− F (t)) = −ln(S(t)),

from which the main exponential formula in survival statistics is obtained, namely:

S(t) = 1− F (t) = e−
∫ t
0 µ(s)ds = e−M(t). (3.3)

The exponential formula characterizes the survival function S(t) in terms of the hazard function µ(t).
In infectious disease modelling, the event of interest is infection with a certain pathogen. The hazard
function, often called the hazard of infection or force of infection, is a very important epidemiological
parameter in practice. The force of infection is assumed to be time-varying and age-dependent.
Nevertheless, in order to estimate the force of infection from serological data, one often relies on the
untestable assumption of time homogeneity. The latter implies that the infection is assumed to be in
steady-state. For the purposes of this thesis, the force of infection is related to the transmission rate or
effective contact function by means of the mass action principle. The derivation of these relationships
are included in Appendix A.1. In Chapter 5, the mass action principle will be discussed in somewhat
more detail.

3.2 Laplace Transform

The concept of the Laplace transform is essential in frailty modelling. It gives the means to derive
the unconditional survival functions quite easily if a closed-form expression for the Laplace transform
is available and infections are assumed to confer lifelong immunity. The explanation of the latter idea
is postponed to Chapter 4 and a general introduction to the Laplace transform is formulated in the
present section. In probability theory, the Laplace transform of a random variable X is defined as
follows:

L(u) = E(e−uX) =
{ ∫∞

−∞ e−uxf(x)dx if X is continuous,∑
x e

−uxP (X = x) if X is discrete.

For the nonnegative continuous random variable T ∗ in univariate survival data, the Laplace transform
is represented by (Wienke, 2010):

L(u) = E(e−uT
∗
) =

∫ ∞

0
e−ut

∗
f(t∗)dt∗. (3.4)

Different distributional assumptions with respect to the random variable T ∗ will produce different
expressions for the Laplace transform (see also Section 3.4). If u is replaced by -u, one obtains the
so-called moment-generating function of the random variable T ∗. The moment-generating function
uniquely defines the distribution of a random variable as is the case for the p.d.f. and c.d.f..

3.3 Censored Data

Survival analysis differs from other fields of statistics due to the presence of censoring. A censored
observation is in fact an incomplete observation from which only partial information about the event
time is available. Such censored observations are the result of, for example, patients that are followed
over some period of time in which the event did not occur. For the described situation, one only knows
that the true event time exceeds the observed censoring time. There are different types of censoring
such as left, right and interval censoring. As it is the most common type of censoring in survival data,
we first consider type I right-censored (RC) data. Consider n i.i.d. random variables T ∗1 , T ∗2 , ..., T ∗n
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representing the survival times of n individuals. The c.d.f. and the censoring times are denoted by
F and C1, C2, ..., Cn, respectively. The censoring times are i.i.d. random variables with c.d.f. G. In
addition, let f and g refer to the p.d.f. with respect to F and G, respectively. In practice, one is only
able to observe the data (T1,∆1), (T2,∆2), ..., (Tn,∆n) where Tj = min{T ∗j ,Cj}, j = 1, ..., n, equals
the observation time of subject j. The random variables ∆j indicate whether the event is observed or
censored for individual j, i.e.

∆j =
{

1 if T ∗j ≤ Cj ,

0 if T ∗j > Cj .

The p.d.f of the right-censored survival data (Tj ,∆j) is given by:

f(tj , δj) = (f(tj)(1−G(tj)))δj (g(tj)(1− F (tj)))1−δj , (3.5)

under the assumption of independence between censoring and survival times which is assumed
throughout derivations in the entire thesis project. The derivation of equation (3.5) is included in
Appendix B.1.

The likelihood function for univariate right-censored survival data is now presented below. In
the remainder of this thesis, we consider only parametric situations in which the distribution of the
survival times T ∗j is assumed to be known up to an unknown parameter vector θ. In Section 3.4, some
parametric models often applied in survival analysis are presented, some of which are used here as
well in the context of frailty modelling. We assume the censoring to be noninformative which implies
that the censoring distribution does not contain information on the survival distribution. Moreover,
since we are not interested in estimating the parameters of the censoring distribution, the terms g(tj)
and G(tj) in the joint density function of (Tj ,∆j) (equation (3.5)) become additive constants in the
log-likelihood function. These components are therefore dropped from the likelihood function as they
do not contribute to the derivative of the log-likelihood function. The log-likelihood function is to
be maximized in the likelihood framework in order to obtain maximum likelihood estimates for the
unknown model parameters θ (Pawitan, 2001).

The likelihood contribution of right-censored survival data (tj ,δj) (j = 1, ..., n) is derived
from equation (3.5) after removing the components associated with the censoring distribution as
stated previously. The dependence of the density function and survival function on the parameter
vector θ is suppressed from notation for simplicity in the following equation.

Lj(θ) = f(tj)δj (1− F (tj))1−δj = f(tj)δjS(tj)1−δj , (3.6)

where S(tj) is the survival function defined in Section 3.1. From equation (3.6), the likelihood function
for a sample of independent right-censored survival times (t1,δ1), (t2,δ2), ..., (tn,δn), equals:

L(θ) =
n∏
j=1

f(tj)δjS(tj)1−δj . (3.7)

The likelihood function in equation (3.7) simplifies to the product of the density values f(tj) in case of
uncensored survival data (i.e. T ∗j equals Tj , j = 1, ..., n) as in the case of standard situations without
censoring. However, a right censored observation induces an evaluation of the survival function to be
used as contribution in the likelihood function. We refer to uncensored survival data by means of the
term time-to-event (TTE) data in the subsequent chapters.

Sometimes, event times are only known to lie in a specific time interval. Such kind of data
arises when study subjects are not under continuous supervision and is called interval censored
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data. Furthermore, one can easily understand that right-censored data in general is a special case
of interval-censored data. Although some of the methods for RC data are readily applicable for
interval-censored data, one often faces some difficulties in analyzing interval-censored data. For
the purposes of this master thesis, we consider an important special type of interval-censored
data, namely current status (CS) data (type I interval-censored data). The term current status
data has its origines in the field of demography as mentioned in Wienke (2010). Individual event
times are known to be in an interval containing either zero or infinity and these observations are
usually found when subjects are examined only once. In the case of serological data in the field
of infectious disease modelling, the only available information is whether the pathogen has infected
the individual in the past or not. Based on a cut-off value for the amount of antibodies present
in the serum sample of a person, one classifies the patient as either being infected or not before
the monitoring time. Therefore, let Tj denote the monitoring time for individual j (j = 1, ...,
n), T ∗j the unknown true point in time at which infection occurred and ∆j the random variable
representing the immunological status of individual j. This means that ∆j indicates whether
the infection has occurred before the monitoring time Tj or not. However, note that the speci-
fication of ∆j depends on the specified cut-off value for the amount of antibodies present in blood sera.

The likelihood function function of a sample of univariate (serological) current status data
(t1,δ1), (t2,δ2), ..., (tn,δn) can be written as (Sun, 2006):

L(θ) =
n∏
j=1

(1− S(tj))δjS(tj)1−δj . (3.8)

The likelihood functions in case of trivariate TTE, RC and CS data are included in Chapter 4.

3.4 Parametric Models

In the present section, we will summarize some of the distributional assumptions often made for the
event times in survival analysis. The selected distribution needs to fulfill the requirement of having zero
mass on the negative part of the real axis. Hence, any distribution for nonnegative random variables
can describe the time until an event is going to occur. In survival literature, some distributions arise
repeatedly due to their simple nature and good performance in general. These distributions are the
exponential, Weibull and Gompertz distributions. In addition, although less convenient as survival
time distribution in survival analysis, the gamma distribution shows to be of great value in frailty
modelling as illustrated later on. The gamma distribution is one of several candidate distributions
for the frailty variables in the presented models. Other frailty distributions will be considered in the
subsequent chapters. The event times T ∗j (j = 1, ..., n) are assumed to be i.i.d. random variables.

3.4.1 Exponential Distribution

One of the simplest distributions to assume for the event times T ∗j is the exponential distribution.
The exponential distribution is the fundamental distribution in survival analysis even though event
time data is rarely following this distribution. An exponential model has only one positive parameter
λ and assumes a constant hazard over time (which implies the famous and restrictive lack of memory
property of the exponential distribution), i.e. µ(t∗j ) = λ. Consider T ∗j ∼ Exp(λ) then the p.d.f. (for
t∗j > 0) is given by:

f(t∗j ) = λe−λt
∗
j , λ > 0.

Consequently, the survival function S(t∗j ) equals e−λt
∗
j . The exponential distribution is a special case

of the Weibull, Gompertz and gamma distributions discussed next.
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3.4.2 Weibull Distribution

The Weibull model (Weibull, 1939) is a generalization of the one-parameter exponential model with
two positive parameters α and β. The second parameter increases the flexibility of the model such
that different shapes of the hazard function can be modelled. For α = λ and β = 1, one obtains the
exponential distribution as a special case of the Weibull distribution. A Weibull distributed random
variable T ∗j (T ∗j ∼ W (α,β)) has probability density function (for t∗j > 0):

f(t∗j ) = αβt∗β−1
j e−αt

∗β
j , α > 0, β > 0.

The survival function S(t∗j ) simplifies to e−αt
∗β
j which leads to µ(t∗j ) = αβt∗β−1

j for the hazard function.
Therefore, the hazard function is either constant or a monotone function of time.

3.4.3 Gompertz Distribution

The Gompertz distribution, in 1825 introduced by the British actuary Benjamin Gompertz, is widely
used in biological and demographic applications. A random variable T ∗j follows a Gompertz distribu-
tion with parameters a and b, i.e. T ∗j ∼ GP (a,b), if the p.d.f. is given by (Gompertz, 1825):

f(t∗j ) = aebt
∗
j e−

a
b
(e

bt∗j−1), a > 0,

and the survival function equals S(t∗j ) = e−
a
b
(e

bt∗j−1). The hazard function µ(t∗j ) = aebt
∗
j is increasing

starting from a at time zero. If b < 0 then the hazard function is decreasing, and the cumulative
hazard function M(t∗j ) defined in Section 3.1 converges to the value -a/b for t∗j→ ∞. Hence, not all
individuals in the population experience the event under investigation given these conditions.

3.4.4 Gamma Distribution

Finally, the well-known gamma distribution is briefly introduced here. The gamma distribution is
also an extension of the exponential distribution and is characterized by a shape parameter k and an
inverse scale parameter ψ. A gamma distributed random variable T ∗j , T ∗j ∼ Γ(k,ψ) has the following
density function:

f(t∗j ) =
ψk

Γ(k)
t∗k−1
j e−ψt

∗
j , k > 0, ψ > 0, (3.9)

where Γ(.) represents the gamma function. The gamma function can be expressed as a definite integral
for all complex numbers with positive real part:

Γ(u) =
∫ ∞

0
tu−1e−tdt, Re(u) > 0.

Furthermore, in general we have Γ(u + 1) = uΓ(u). The mean and variance of T ∗j are equal to k/ψ
and k/ψ2, respectively. Since the gamma distribution does not have closed-form expressions for the
survival and hazard function, it is less appealing in modelling event data. However, the gamma
distribution is a frequently used frailty distribution in frailty models as discussed in Chapter 4. The
Laplace transform plays an important role in the computations associated with frailty modelling as
stated earlier. Therefore, the Laplace transform, defined in Section 3.2, for a gamma distributed
random variable reduces to:

L(u) = (1 +
u

ψ
)−k. (3.10)

In Appendix B.2, details regarding the derivation of the Laplace transform of a gamma distributed
random variable are presented. For k equal to one, the gamma distribution simplifies to the exponential
distribution in Subsection 3.4.1.

9



Chapter 4

Frailty Models for Trivariate Current
Status Data

In basic survival models, one deals with independent and identically distributed survival data. The
underlying assumption in all these models is that the population under study is homogeneous up to
some observed covariates. However, it is clear that individuals differ greatly in their reaction to, for
example, drugs, treatments, acquisition of infections, etc. Individual heterogeneity is an important
source of variability and needs to be taken into account in the statistical analysis of survival data.
In that way, frailty models are introduced into survival analysis and are found to be valuable as
well in modelling the seroprevalence in case of current status data. The aim of this chapter is to
extend existing frailty models to the multivariate setting. Especially, frailty models are formulated
to handle trivariate serological data. First of all, the simplest univariate frailty model is described
to introduce the concepts of frailty variables and to clarify the importance of the Laplace transform
in frailty modelling. In addition, the most commonly used shared frailty model and the far more
flexible correlated frailty model are presented in this chapter. Special attention is directed towards
the gamma frailty distribution due to the simplicity of the Laplace transform for a gamma distributed
frailty variable. However, since other frailty distributions are also frequently used in survival analysis,
the frailty models are formulated as well assuming an underlying inverse Gaussian, positive stable and
power variance function frailty distribution.

4.1 Univariate Frailty Models

Individuals in a population differ greatly with respect to the acquisition of infections. This unobserved
heterogeneity is of great importance and is implicitly taken into account in frailty models. In order
to address the problem of unobserved heterogeneity resulting from unobserved covariates, a random
effects model was suggested by Beard (1959), and later independently from each other Vaupel et
al. (1979) and Lancaster (1979). These random effects models are called frailty models whereas the
random effects are named individual frailties. The key idea in frailty modelling is that individuals
have different frailties, and that the most frail individuals suffer from the event, in our case acquire the
infection, earlier in time. Univariate frailty models assume independence between frailties associated
with different diseases. Therefore, let λi(ti,Zi) represent the hazard function for infection i at time ti
conditional on the frailty Zi (i = 1, 2, 3). The conditional survival function Si(ti|Zi) (i = 1, 2, 3) for
immunizing infections equals (Hens et al., 2009):

Si(ti|Zi) = e−
∫ ti
0 λi(s,Zi)ds. (4.1)

The most frequently applied frailty models rely on a proportional hazard assumption in which the
frailty Zi acts multiplicatively on the baseline hazard function λi0(ti), i.e. λi(ti,Zi) = Ziλi0(ti). Under
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the proportional hazard assumption, the conditional survival function can be written as follows:

Si(ti|Zi) = e−Zi

∫ ti
0 λi0(s)ds = e−ZiMi0(ti), (4.2)

where Mi0(ti) =
∫ ti
0 λi0(s)ds is the cumulative baseline hazard function (i = 1, 2, 3) as introduced in

Chapter 3. Consequently, the unconditional survival functions can be computed by integrating out
the random frailties Zi. The Laplace transform Li of Zi can be used to write down the unconditional
survival functions Si(ti) (i = 1, 2, 3):

Si(ti) = E(Si(ti, Zi)) = E(e−ZiMi0(ti)) = Li(Mi0(ti)). (4.3)

From equation (4.3), one can observe that the choice of the univariate frailty distribution determines
the expression for the unconditional survival functions. Indeed, the choice of the frailty distribution
influences the expression of the Laplace transform. In addition, depending on the selected frailty dis-
tribution, the Laplace transform has either an explicit closed-form expression or one requires numerical
integration techniques to obtain the unconditional survival functions. Relation (4.3) underlines the
key role of the Laplace transform in frailty modelling. Furthermore, the derivatives of the Laplace
transform are used to obtain general results about the unconditional survival functions Si(ti) (i = 1,
2, 3). For example, the density function and hazard of infection can be characterized by the Laplace
transform in a convenient way (Wienke, 2010):

fi(ti) = −λi0(ti)L′(Mi0(ti)). (4.4)

λi(ti) = −λi0(ti)
L′(Mi0(ti))
L(Mi0(ti))

. (4.5)

The gamma distribution is widely applied as a frailty distribution from an analytical and computational
point of view. Its convenience results from the easy to derive closed-form expressions of unconditional
survival, cumulative density and hazard functions, which are entirely due to the simplicity of the
Laplace transform. Some background information on the gamma distribution is included in Subsection
3.4.4. As a consequence, the gamma distribution has been extensively used in most of the applications
published to date. In general, the Laplace transform of a gamma distributed random variable Z with
parameters k and ψ (i.e. Z ∼ Γ(k,ψ)) is given by equation (3.10) and derived in Appendix B.2. For
identifiability purposes, one often assumes that the expectation of the frailty variables Zi equals one.
We will refer to this assumption as the standard assumption regarding the frailty expectation. As a
result of this assumption, one easily obtains:

E(Zi) = −L
′
i(0) =

ki
ψi

= 1, (4.6)

hence ki = ψi. Consequently, V ar(Zi) = L
′′
i (0)− (L

′
i(0))2 = 1/ψi = σ2

i and the unconditional survival
functions for the univariate gamma frailty model simplifies to:

Si(ti) = (1 + σ2
iMi0(ti))−1/σ2

i . (4.7)

In the context of trivariate event data, one can derive bivariate and trivariate unconditional survival
functions under the independence assumption of the frailties Zi. In general, they are equal to the
product of the marginal univariate survival functions. The latter result does not longer hold in the
case of correlated frailty terms as demonstrated in the following sections.

In the univariate gamma frailty model, the unconditional hazard of infection in equation (4.5)
simplifies to:

λi(ti) =
λi0(ti)

(1 + σ2
iMi0(ti))

(4.8)

In the following section, the restrictive assumption of independence between frailty terms is changed
into one of perfect correlation. This gives rise to the popular shared frailty models.
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4.2 Shared Frailty Models

The shared frailty model extends the univariate frailty models by relaxing the assumption of indepen-
dence among the frailty variables Zi (i = 1, 2, 3). Especially, the shared frailty model assumes perfect
correlation and equal frailty variances, i.e. Z1 = Z2 = Z3 = Z. The marginal unconditional survival
functions in a shared frailty model are similar to those obtained in equation (4.3). In general, the
unconditional bivariate survival functions are expressed in terms of the Laplace transform L of the
frailty variable Z. Under the assumption of conditional independence, we have for i = 1, 2, j = 2, 3
and i 6= j:

Sij(ti, tj) = E(e−ZMi0(ti)e−ZMj0(tj)) = L(Mi0(ti) +Mj0(tj)) (4.9)

The unconditional trivariate survival function can be written in the same way as the bivariate survival
functions. The formula in equation (4.9) is extended in the following way:

S(t1, t2, t3) = E(e−ZM10(t1)e−ZM20(t2)e−ZM30(t3))
= L(M10(t1) +M20(t2) +M30(t3)).

(4.10)

Considering a gamma frailty distribution for the shared frailty Z with parameters k = 1/σ2 and ψ =
1/σ2 (i.e. the equalities k = ψ = 1/σ2 result from the standard assumption with respect to the frailty
expectation), the unconditional bivariate survival functions have a closed-form expression derived from
equations (4.9) and (3.10):

Sij(ti, tj) = (1 + σ2(Mi0(ti) +Mj0(tj)))−1/σ2

= (S−σ
2

i (ti) + S−σ
2

j (tj)− 1)−1/σ2
.

(4.11)

The unconditional trivariate survival function for the shared gamma frailty model corresponds to the
expression:

S(t1, t2, t3) = (1 + σ2(M10(t1) +M20(t2) +M30(t3)))−1/σ2

= (S−σ
2

1 (t1) + S−σ
2

2 (t2) + S−σ
2

3 (t3)− 2)−1/σ2
.

(4.12)

Note that σ2 represents the frailty variance of Z. In fact, the shared frailty model is a constrained
version of the general correlated frailty model which is the subject of the following section. For some
applications, the shared frailty model shows an improvement in modelling the population heterogeneity
in the acquisition of infections as compared to the univariate frailty models presented previously.
However, the constraints on the frailty variables associated with the different diseases are quite strong,
and therefore need to be relaxed in most of the real-life applications.

4.3 Correlated Frailty Models

Although shared frailty models offer a convenient way of dealing with population heterogeneity, they
suffer from lack of flexibibilty as a consequence of the strong assumptions made therein. In contrast,
correlated frailty models are a more flexible alternative to account for heterogeneity in the statistical
analysis regarding the spread of infections. Yashin et al. (1995) introduced the correlated gamma
frailty model with an additive decomposition of the frailty variables. These frailties are decomposed
into sums of independent gamma distributed random variables. Following this approach, one is able
to construct a trivariate frailty distribution for (Z1,Z2,Z3) in which the frailty variables Zi (i = 1,
2, 3) are neither independent nor shared. Although, a decomposition of the frailty variables has the
advantage of flexibility over the shared gamma frailty model described in the preceeding section,
the model implied correlation between pairs of frailty variables will be constrained. This remark is
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illustrated below in the context of the trivariate correlated gamma frailty model.

The additive decomposition of the three frailty variables, as proposed by Yashin et al. (1995),
for the correlated gamma frailty model assumes the component variables to be independent gamma
distributed random variables. Although the gamma frailty distribution is used frequently in practice
as stated in Wienke (2010), one can also select other frailty distributions instead which implies a
different additive composition in the correlated model. The general decomposition in case of three
diseases is a direct generalization of the bivariate correlated gamma frailty model described in Hens
et al. (2009), and inspired by the seminal work of Yashin et al. (1995):

Z1 = σ2
1(Y0 + Y1 + Y4 + Y5)

Z2 = σ2
2(Y0 + Y2 + Y4 + Y6)

Z3 = σ2
3(Y0 + Y3 + Y5 + Y6)

(4.13)

where Yl, l = 0, 1,..., 6, are independent gamma distributed random variables with parameters k = kl
and ψ = 1 (i.e. Yl∼Γ(kl,1)). Therefore, the mean and variance of the component variables Yl equal
kl (see Subsection 3.4.4). The constants σ2

i are the variance components of the frailties Zi, i = 1, 2,
3. The components Yl, l = 1, 2, 3, represent infection-specific components of the frailties whereas Y0

reflects a shared part among the three frailty variables. In addition, the remaining variables allow for
differing correlation coefficients between pairs of frailties. Under the standard assumption in equation
(4.6), one obtains the following relationships with respect to the frailty variances:

σ2
1 = (k0 + k1 + k4 + k5)−1

σ2
2 = (k0 + k2 + k4 + k6)−1

σ2
3 = (k0 + k3 + k5 + k6)−1

(4.14)

Since the parameters kl (l = 0, 1,..., 6) are real-positive constants, we have σ2
i > 0 (i = 1, 2, 3). The

additive structure of the frailty variables implies a correlation structure among the frailty variables.
Let ρij denote the correlation between Zi and Zj , i 6= j, then we have:

ρ12 =
k0 + k4√

(k0 + k1 + k4 + k5)(k0 + k2 + k4 + k6)

ρ13 =
k0 + k5√

(k0 + k1 + k4 + k5)(k0 + k3 + k5 + k6)

ρ23 =
k0 + k6√

(k0 + k2 + k4 + k6)(k0 + k3 + k5 + k6)

(4.15)

From expression (4.15), one easily observes that the correlation coefficients are constrained, i.e.
0 ≤ ρij ≤ min

{
σi
σj
,
σj

σi

}
. This disadvantage of the correlated gamma frailty model was already

highlighted in the beginning of this section. Although computational unfeasible, a lognormal frailty
model with lognormal frailty distribution for Zi (i = 1, 2, 3) and without additive decomposition
does not suffer from this limitation. The Laplace transform of a lognormal distributed random
variable exhibits no closed-form expression which induces the use of numerical integration techniques
to obtain the unconditional survival functions in the likelihood function. Therefore, the choice of the
lognormal frailty distribution becomes unpopular, certainly when more than two frailty variables are
involved. Other frailty distributions considered in this report do not overcome this restriction on the
correlation coefficients.

Obviously, the unconditional univariate survival functions are those presented in equation (4.3). The
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unconditional bivariate and trivariate survival functions for the trivariate correlated gamma frailty
model are derived under the assumption of conditional independence and can be formulated in terms
of the Laplace transforms of the additive components Yl, l = 0, 1, ..., 6. For the correlated gamma
frailty model, the expressions are given by:

S12(t1, t2) = (1 + σ2
1M10(t1) + σ2

2M20(t2))−(k0+k4)

(1 + σ2
1M10(t1))−(k1+k5)(1 + σ2

2M20(t2))−(k2+k6)
(4.16)

S13(t1, t3) = (1 + σ2
1M10(t1) + σ2

3M30(t3))−(k0+k5)

(1 + σ2
1M10(t1))−(k1+k4)(1 + σ2

3M30(t3))−(k3+k6)
(4.17)

S23(t2, t3) = (1 + σ2
2M20(t2) + σ2

3M30(t3))−(k0+k6)

(1 + σ2
2M20(t2))−(k2+k4)(1 + σ2

3M30(t3))−(k3+k5)
(4.18)

The unconditional trivariate survival function can be expressed as follows:

S(t1, t2, t3) = (1 + σ2
1M10(t1) + σ2

2M20(t2) + σ2
3M30(t3))−k0

(1 + σ2
1M10(t1) + σ2

2M20(t2))−k4

(1 + σ2
1M10(t1) + σ2

3M30(t3))−k5

(1 + σ2
2M20(t2) + σ2

3M30(t3))−k6

(1 + σ2
1M10(t1))−k1(1 + σ2

2M20(t2))−k2(1 + σ2
3M30(t3))−k3

(4.19)

The specification of the frailty models introduced in this chapter is also possible for frailty distributions
which differ from the selected gamma frailty distribution. The expressions related to the shared and
correlated frailty models using an inverse gaussian, positive stable, or power variance function frailty
distribution are incorporated in the following section.

4.4 Other Frailty Distributions

In the present chapter, we include the formulation of the univariate, shared and correlated frailty
models when assuming a frailty distribution different from the gamma distribution as proposed in
the preceeding sections. As described in Wienke (2010), some other popular choices for the frailty
distribution are the inverse Gaussian, the positive stable and the power variance function distribu-
tions. Although the lognormal frailty distribution is also often applied in frailty modelling, it is not
considered here due to the absence of a closed-form expression for the Laplace transform of a log-
normally distributed random variable. Therefore, numerical integration techniques would be required
to integrate out the frailty variables which is computer-intensive, especially for the trivariate models
included in this master thesis.

4.4.1 Inverse Gaussian Frailty Distribution

A useful alternative for the gamma frailty distribution is the inverse Gaussian frailty distribution. The
probability density function for an inverse Gaussian distributed random variable Z with parameters
φ > 0 and ζ > 0 is given by:

f(z) =
√
ζ√

2πz3
e
− ζ

2φ2z
(z−φ)2 (z > 0). (4.20)
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The density function presented here can be used to obtain the Laplace transform of an inverse Gaussian
distributed random variable. The Laplace transform is given by (Wienke, 2010):

L(u) = e
ζ
φ
(1−

√
1+ 2φ2u

ζ
)

(4.21)

The derivation of the Laplace transform for an inverse Gaussian distributed random variable is included
in Appendix B.3. The expectation and variance of Z can be computed using the derivatives of the
Laplace transform (see also equation (4.6)) as follows:

E(Z) = −L
′
(0) = φ,

V ar(Z) = L
′′
(0)− (L

′
(0))2 =

φ3

ζ
.

Assuming E(Z) = φ = 1 and V ar(Z) = σ2 = 1
ζ , the Laplace transform has the following simplified

expression:
L(u) = e

1
σ2 (1−

√
1+2σ2u). (4.22)

The univariate inverse Gaussian frailty model for three infections assumes the frailty variables Zi (i
= 1, 2, 3) to be independent inverse Gaussian distributed random variables with parameters φi = 1
and ζi = 1/σ2

i (i.e. Zi∼IG(1,1/σ2)). The unconditional univariate survival functions Si(ti) (i = 1, 2,
3) are equal to (see equation (4.3)):

Si(ti) = Li(Mi0(ti)) = e
1

σ2
i

(1−
√

1+2σ2
iMi0(ti))

, (4.23)

where Mi0(ti) is the cumulative baseline force of infection for infection i in ti and Li the Laplace
transform of Zi. In the shared inverse Gaussian frailty model, one restricts the frailty variables to be
perfectly correlated. The shared frailty is denoted by Z and one assumes that Z∼IG(1,1/σ2). The
unconditional marginal survival functions are similar to those in equation (4.23) with σ2

i = σ2. In
addition, the unconditional bivariate survival functions can be written as:

Sij(ti, tj) = e
1

σ2 (1−
√

1+2σ2(Mi0(ti)+Mj0(tj))), (4.24)

for i = 1, 2 and j = 2, 3, i 6= j. The trivariate survival function is immediately obtained from
the unconditional bivariate survival functions, being the Laplace transform of Z evaluated in∑3

i=1Mi0(ti). Therefore the explicit expression of the unconditional trivariate survival function is
omitted here.

Finally, one can formulate the correlated inverse Gaussian frailty model for trivariate data.
We propose an additive decomposition of the frailty variables as was already discussed in Section 4.3.
The independent component variables are now assumed to follow an inverse Gaussian distribution. In
order to satisfy the standard proporty in equation (4.6), one has Yl∼IG(φl,φ2

l ). Moreover, the frailty
variables can be expressed similarly as before:

Z1 = σ2
1(Y0 + Y1 + Y4 + Y5)

Z2 = σ2
2(Y0 + Y2 + Y4 + Y6)

Z3 = σ2
3(Y0 + Y3 + Y5 + Y6)

(4.25)

Note that the mean and variance of the component variables Yl are both equal to φl. As in the case
of the gamma frailty distribution, one can write down the expressions for the model implied frailty
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variances σ2
i , i = 1, 2, 3:

σ2
1 = (φ0 + φ1 + φ4 + φ5)−1

σ2
2 = (φ0 + φ2 + φ4 + φ6)−1

σ2
3 = (φ0 + φ3 + φ5 + φ6)−1

(4.26)

The correlation coefficients for the pairs of frailty variables are similar to those included for the
correlated gamma frailty model. For completeness, the expressions are included below.

ρ12 =
φ0 + φ4√

(φ0 + φ1 + φ4 + φ5)(φ0 + φ2 + φ4 + φ6)

ρ13 =
φ0 + φ5√

(φ0 + φ1 + φ4 + φ5)(φ0 + φ3 + φ5 + φ6)

ρ23 =
φ0 + φ6√

(φ0 + φ2 + φ4 + φ6)(φ0 + φ3 + φ5 + φ6)

(4.27)

The constraints imposed by the model specification in the gamma frailty decomposition mentioned in
Section 4.3 hold for the inverse Gaussian frailty proposition made in this section. The unconditional
bivariate and trivariate survival functions for the trivariate correlated inverse Gaussian frailty model
are equal to:

S12(t1, t2) = e
(φ0+φ4)

(
1−
√

1+2(σ2
1M10(t1)+σ2

2M20(t2))
)

e
(φ1+φ5)

(
1−
√

1+2σ2
1M10(t1)

)
e
(φ2+φ6)

(
1−
√

1+2σ2
2M20(t2)

) (4.28)

S13(t1, t3) = e
(φ0+φ5)

(
1−
√

1+2(σ2
1M10(t1)+σ2

3M30(t3))
)

e
(φ1+φ4)

(
1−
√

1+2σ2
1M10(t1)

)
e
(φ3+φ6)

(
1−
√

1+2σ2
3M30(t3)

) (4.29)

S23(t2, t3) = e
(φ0+φ6)

(
1−
√

1+2(σ2
2M20(t2)+σ2

3M30(t3))
)

e
(φ2+φ4)

(
1−
√

1+2σ2
2M20(t2)

)
e
(φ3+φ5)

(
1−
√

1+2σ2
3M30(t3)

) (4.30)

The unconditional trivariate survival function can be expressed as follows:

S(t1, t2, t3) = e
φ0

(
1−
√

1+2(σ2
1M10(t1)+σ2

2M20(t2)+σ2
3M30(t3))

)

e
φ4

(
1−
√

1+2(σ2
1M10(t1)+σ2

2M20(t2))
)

e
φ5

(
1−
√

1+2(σ2
1M10(t1)+σ2

3M30(t3))
)

e
φ6

(
1−
√

1+2(σ2
2M20(t2)+σ2

3M30(t3))
)

e
φ1

(
1−
√

1+2σ2
1M10(t1)

)
e
φ2

(
1−
√

1+2σ2
2M20(t2)

)
e
φ3

(
1−
√

1+2σ2
3M30(t3)

)
(4.31)

4.4.2 Positive Stable Frailty Distribution

The gamma and inverse Gaussian distribution are very popular choices for the frailty distribution in
frailty models since they have nice properties and easy expressions for the Laplace transforms. As
illustrated in Chapter 4, the unconditional survival functions are easily obtained from the Laplace
transform under the assumption of immunizing infections conferring lifelong immunity. Therefore,
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implementation of the frailty models is much more straightforward in case of closed form expressions for
the Laplace transform. In addition to the gamma and inverse Gaussian distribution, the positive stable
distribution also has a closed-form expression for the Laplace transform. In general, a distribution is
stable if the normalized sum of n independent random variables from this distribution has the same
distribution as a scale factor multiplied by a single random variable (Wienke, 2010). In order to ensure
a distribution on the positive numbers, we restrict ourselves to the positive stable distributions suited
for frailty modelling. The p.d.f. for a one-parameter positive stable distribution is given by (Feller,
1971):

f(z) =
1
π

∞∑
κ=1

(−1)κ+1 Γ(κη + 1)
κ!

z−κη−1sin(κηπ), (z > 0), (4.32)

where 0 ≤ η ≤ 1. In the special case of η = 1, the frailty distribution becomes degenerated at the point
mass Z = 1. Although the probability density function of a positive stable distributed random variable
with parameter η can only be expressed as an infinite power series, the Laplace transform has an easy
closed form. This makes the distribution very attractive in frailty modelling as a frailty distribution
as stated by Wienke (2010). The Laplace transform can be deduced easily and is characterized by the
expression:

L(u) = e−u
η
. (4.33)

All moments of a positive stable distributed random variable are infinite which distinguishes the
positive stable distribution from the other frailty distributions proposed until now. Since the
expectation equals infinity and the variance does not exist, one can argue that the distribution
is useless for frailty variables. However, it was one of the major reasons why the positive stable
distribution was introduced as frailty distribution. As the standard assumption in equation (4.6)
is invalid, an individual with frailty one can not serve as a reference individual as is the case for
the gamma and inverse Gaussian frailty models. The parameter η can be interpreted as a measure
of heterogeneity. Values of η close to 1 indicate a small heterogeneity within the population with
respect to the infection under consideration whereas values close to zero indicate a large heterogeneity.

Results regarding the unconditional survival functions are presented here for the univariate
and shared frailty models. Details with respect to the correlated positive stable frailty model are
omitted since it will be clear that the gamma, inverse Gaussian and positive stable frailty distributions
are part of the general power variance function frailty distribution discussed in Section 4.4.3. Using
the Laplace transform in equation (4.33), the unconditional univariate survival functions Si(ti) (i =
1, 2, 3) for immunizing infections are given by:

Si(ti) = Li(Mi0(ti)) = e−Mi0(ti)
ηi , (4.34)

where Zi ∼ PS(ηi). The shared positive stable frailty model can be formulated by assuming the
frailty variables to be perfectly correlated and to have equal variances (i.e. Z1 = Z2 = Z3 = Z).
Letting Z ∼ PS(η), the unconditional marginal survival functions presented in formula (4.34) simplify
when replacing ηi by η (i = 1, 2, 3). Furthermore, the unconditional bivariate and trivariate survival
functions are summarized below. For i = 1, 2, j = 2, 3 and i 6= j, one has:

Sij(ti, tj) = e−(Mi0(ti)+Mj0(tj))
η

, (4.35)

and
S(t1, t2, t3) = e−(M10(t1)+M20(t2)+M30(t3))η

. (4.36)
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4.4.3 Power Variance Function Frailty Distribution

The power variance function (PVF) distribution is a generalized family of frailty distributions that
includes the gamma, inverse Gaussian and positive stable distributions. The power variance function
distribution is a three-parameter family with parameters φ, ζ and 0 ≤ η ≤ 1. The probability density
function for the PVF distribution is given by (see e.g. Hougaard, 2000):

f(z) = e
−ζ(1−η)

(
z
φ
− 1

ζ

)
1
π

∞∑
κ=1

(−1)κ+1 (ζ(1− η))κ(1−η) φκη

ηκ
Γ(κη + 1)

κ!
z−κη−1sin(κηπ), (z > 0). (4.37)

The Laplace transform of a random variable following the PVF distribution is (Wienke, 2010):

L(u) = e
ζ(1−η)

η

(
1−
(
1+ φu

ζ(1−η)

)η)
. (4.38)

The derivation of the Laplace transform is very difficult as shown in Aalen (1992) and is omitted in
this thesis. As E(Z) = φ and V ar(Z) = φ2/ζ = σ2, one obtains under the standard assumption in
frailty modelling, and introducing the frailty variance σ2 as model parameter, the simplified version
of the Laplace transform in equation (4.39):

L(u) = e
1−η

ησ2

(
1−
(
1+ σ2u

1−η

)η)
. (4.39)

The latter expression is used in the formulation of the unconditional survival functions for the
different frailty models discussed in this section. From the Laplace transform in equation (4.39), one
can easily observe that for η equal to 0.5, the power variance function distribution reduces to the
inverse Gaussian distribution. For η = 0, the gamma distribution with parameters k = 1/σ2 and ψ
= 1/σ2 is obtained. The power variance function frailty models are very flexible since they contain
many other interesting frailty models as special cases. Therefore, the model is very attractive and
often applied in real-life applications.

The univariate power variance function frailty model for trivariate data is specified using the
unconditional marginal survival functions Si(ti) (i = 1, 2, 3) equal to:

Si(ti) = e
1−ηi
ηiσ2

i

(
1−
(

1+
σ2

i Mi0(ti)

1−ηi

)ηi
)
. (4.40)

Details concerning the shared PVF frailty models are omitted since these expressions are straightfor-
ward and the derivations are directly obtained using conditional independence of the survival times
given the shared frailty Z.

The trivariate correlated PVF frailty model consists of the same additive decomposition of the
frailty variables Zi as described already for the correlated gamma and correlated inverse Gaussian
frailty models. The additive decomposition originates from the seminal work of Yashin et al. (1995)
in the context of the gamma frailty distribution, and is easily extended to other frailty distributions
as demonstrated earlier. The independent component variables Yl (l = 0, 1, ..., 6) are assumed to
follow a PVF distribution with parameters φl, ζl and η. Note that the underlying frailty distributions
for the three infections are assumed to be equal in order to obtain a well-defined frailty distribution.
Moreover, the parameters ζl are taken equal to φl. The additive decomposition is summarized here:

Z1 = σ2
1(Y0 + Y1 + Y4 + Y5)

Z2 = σ2
2(Y0 + Y2 + Y4 + Y6)

Z3 = σ2
3(Y0 + Y3 + Y5 + Y6)

(4.41)
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As a consequence, one derives that Zi ∼ PVF(1,1/σ2
i ,η) under the standard assumption presented in

equation (4.6). The frailty variances and implicit correlation coefficients for pairs of frailty variables
are entirely the same as in the case of the inverse Gaussian frailty model (equations (4.26) and (4.27),
respectively). Only the joint unconditional survival function for the trivariate correlated PVF frailty
model is presented:

S(t1, t2, t3) = e

φ0(1−η)
η

(
1−
(

1+
(σ2

1M10(t1)+σ2
2M20(t2)+σ2

3M30(t3))
η

)η)
e

φ4(1−η)
η

(
1−
(

1+
(σ2

1M10(t1)+σ2
2M20(t2))

η

)η)

e

φ5(1−η)
η

(
1−
(

1+
(σ2

1M10(t1)+σ2
3M30(t3))

η

)η)
e

φ6(1−η)
η

(
1−
(

1+
(σ2

2M20(t2)+σ2
3M30(t3))

η

)η)

e

φ1(1−η)
η

(
1−
(

1+
(σ2

1M10(t1))
η

)η)
e

φ2(1−η)
η

(
1−
(

1+
(σ2

2M20(t2))
η

)η)
e

φ3(1−η)
η

(
1−
(

1+
(σ2

3M30(t3))
η

)η)

(4.42)

In the following section, the likelihood function for trivariate current status data is derived which is of
importance when implementing the above frailty models within the maximum likelihood framework.
In addition, the likelihood functions for trivariate time-to-event (TTE) and right censored (RC) data
are formulated as well.

4.5 Maximum Likelihood Estimation

In the thesis, the aim is to fit full parametric frailty models using selected parametric forms for the
baseline force of infection. First of all, the likelihood function is formulated for the simplest situation
in which the data consists of exactly observed event times for three infections. Time-to-event (TTE)
data, as introduced in Section 3.3, refers to the situation in which the point in time at which the event
occurs is exactly known. Let T ∗i , i = 1, 2, 3, denote the points in time at which an individual acquires
the three infections under consideration. The likelihood contribution can be expressed in terms of the
unconditional trivariate survival function. The likelihood contribution for an observation (t∗1,t

∗
2,t

∗
3) is

equal to:

L(t∗1, t
∗
2, t

∗
3) = f(t∗1, t

∗
2, t

∗
3) = − ∂3

∂t∗1∂t
∗
2∂t

∗
3

S(t∗1, t
∗
2, t

∗
3), (4.43)

where f(.) is the joint probability density function for T ∗1 , T ∗2 and T ∗3 , and S(.) refers to the trivariate
unconditional survival function (see e.g. equation (4.42)). Equation (4.43) results from the rela-
tionship between the survival function S and cumulative density function F in basic probability theory.

As mentioned earlier, the analysis of time-to-event data is often complicated due to the pres-
ence of censoring. One can distinguish between different types of censoring such as right censoring
(RC) and interval censoring which are of interest here. Right censored (RC) data and interval
censored data are introduced in Section 3.3. Trivariate right censored (RC) data is obtained from
trivariate time-to-event data by specifying monitoring times Ci and consequently defining the random
variables Ti as the minima of T ∗i and Ci (i = 1, 2, 3). Furthermore, the random variables ∆i indicate
whether the event occurred at time Ti (∆i = 1) or the true time point is censored (∆i = 0). The
likelihood contribution for trivariate right censored data is a generalization of the contributions in
the likelihood function for univariate right censored survival data presented in equation (3.7):
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L(t1, t2, t3,δ1, δ2, δ3) =

δ1δ2δ3(−
∂3

∂t1∂t2∂t3
S(t1, t2, t3)) + δ1δ2(1− δ3)(

∂2

∂t1∂t2
S(t1, t2, t3))

+δ1(1− δ2)δ3(
∂2

∂t1∂t3
S(t1, t2, t3)) + (1− δ1)δ2δ3(

∂2

∂t2∂t3
S(t1, t2, t3))

+δ1(1− δ2)(1− δ3)(−
∂

∂t1
S(t1, t2, t3)) + (1− δ1)δ2(1− δ3)(−

∂

∂t2
S(t1, t2, t3))

+(1− δ1)(1− δ2)δ3(−
∂

∂t3
S(t1, t2, t3)) + (1− δ1)(1− δ2)(1− δ3)S(t1, t2, t3)

(4.44)

Interval censoring occurs when event times are only known to be in a specific interval. In the case of
serological data, an individual is examined only once. Consequently, one can only determine whether
the individual was already infected before the monitoring time. When the individual experienced the
disease, based on his/her serological sample, one is not able to pinpoint the exact point in time at
which the infection has occurred. Moreover, when the disease did not affect the individual before the
monitoring time, it is also not clear whether the individual is going to experience the infection in the
near future. Therefore, in either case, the event will take place in an interval containing either zero
or infinity. This is an example of type I interval-censored data or current status data. Trivariate CS
data is presented in the form (Ti,∆i) (i = 1, 2, 3), where Ti equals the monitoring time for infection
i and ∆i represents the immunological status of the individual. Hence, ∆i indicates whether the
infection already occurred before time Ti or not. The observations are denoted by (ti,δi) (i = 1, 2, 3).

Under time homogeneity, lifelong immunity once infected and the lifelong presence of antibod-
ies with respect to the infections considered here, one can estimate the hazard of infection (i.e. the
force of infection) from cross-sectionally collected serological data. Therefore, the time unit of interest
is the age of the individual under investigation and Ti refers to the age at inspection of a study
subject. As a consequence, the force of infection is assumed to be age-dependent. Since serological
samples are often tested for more than one antigen, multivariate methods allow for the investigation
of the association between the acquisition of different infections.

The likelihood function for trivariate current status data can be expressed in terms of the uni-
variate, bivariate and joint unconditional survival functions (see also Sections 4.1, 4.2 and 4.3). The
likelihood contribution for an observation (t1,t2,t3,δ1,δ2,δ3) is given by:

L(t1, t2, t3,δ1, δ2, δ3) =
δ1δ2δ3(1− S1(t1)− S2(t2)− S3(t3) + S12(t1, t2) + S13(t1, t3) + S23(t2, t3)− S(t1, t2, t3))

+δ1δ2(1− δ3)(S3(t3)− S13(t1, t3)− S23(t2, t3) + S(t1, t2, t3))
+δ1(1− δ2)δ3(S2(t2)− S12(t1, t2)− S23(t2, t3) + S(t1, t2, t3))
+(1− δ1)δ2δ3(S1(t1)− S12(t1, t2)− S13(t1, t3) + S(t1, t2, t3))
+δ1(1− δ2)(1− δ3)(S23(t2, t3)− S(t1, t2, t3))
+(1− δ1)δ2(1− δ3)(S13(t1, t3)− S(t1, t2, t3))
+(1− δ1)(1− δ2)δ3(S12(t1, t2)− S(t1, t2, t3))
+(1− δ1)(1− δ2)(1− δ3)S(t1, t2, t3)

(4.45)

For serological data on the immunological status of individuals, sera are often tested for different
diseases at the same monitoring time. Therefore, in case of univariate monitoring times, we have t1 =
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t2 = t3 = t in equation (4.45). As stated by Hens et al., frailty models are not identifiable for current
status data without any covariates when using a nonparametric baseline hazard function. Therefore,
a parametric baseline hazard function is used for the three diseases under study.

One of the possibilities for the baseline force of infection is the Gompertz baseline hazard
function, λi0(t) = aie

bit, which is often used in practice. The Gompertz baseline hazard function is
obtained by assuming that the time until infection with pathogen i follows a Gompertz distribution
with parameters ai and bi (see Section 3.4.3). Consequently, one can also assume the event times to be
exponentially distributed which implies a constant baseline force of infection in contrast to the mono-
tone shape of the Gompertz hazard function. Alternatively, the Weibull baseline force of infection
λi0(t) = αiβit

βi−1 can be applied. As those are the most commonly used baseline hazard functions
in survival analysis, the focus will be on these parametric distributions for the remaining of this thesis.

In case of serological current status data, one can estimate the force of infection under the as-
sumption of time homogeneity as mentioned earlier. In fact, one is interested in modelling the
seroprevalence of an infection in order to determine the force of infection. In general, the age-specific
seroprevalence is defined as the proportion of individuals in the population that are infected in the
past with the disease under investigation. For the purposes of this master thesis, the trivariate
seroprevalences are denoted by π.... For example, π111 represents the proportion of individuals
that suffered from all three diseases before the monitoring time. Since ∆i (i = 1, 2, 3) refers to
the immunological status of an individual with respect to infection i, one can define the trivariate
seroprevalences as π... = P (∆1 = ., ∆2 = ., ∆3 = .) where . equals 0 or 1 depending on whether
the individual is infected in the past or not. Consequently, the additive components of the likelihood
contribution in equation (4.45) are by definition equal to the trivariate seroprevalences, e.g. for π111

one obtains:

π111 = P (∆1 = 1,∆2 = 1,∆3 = 1)
= P (T1 ≤ t1, T2 ≤ t2, T3 ≤ t3)
= 1− S1(t1)− S2(t2)− S3(t3) + S12(t1, t2) + S13(t1, t3) + S23(t2, t3)− S(t1, t2, t3).

The marginal seroprevalences are expressed as π1++, π+1+ and π++1 for the proportion of past infec-
tions with CMV, PVB19 and HAV, respectively irrespective of the acquisition of the other infections.
Therefore, the random variables ∆i follow a binomial distribution with probability of success equal to
their marginal prevalence (e.g. ∆1 ∼ Bin(1,π1++)). Consequently, in the trivariate setting discussed
in this master thesis the random vector ∆ = (∆1,∆2,∆3) follows a multinomial distribution with
parameters π....
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Chapter 5

Misspecifications in Frailty Models

The frailty models presented in Chapter 4 are applied to describe the disease mechanisms of specific
infections while accounting for individual heterogeneity. However, one of the key underlying assump-
tions in this context is that infection with the pathogen occurs at most once within the human’s life
for the diseases under study. Nevertheless, some infections are characterized by the possibility of
reinfection after recovery from a past infection. The latter implies that the seroprevalence of such
diseases exhibits patterns which can not be observed under the assumption of lifelong immunity af-
ter experiencing infection. Especially, although the seroprevalence is monotonically increasing with
increasing age for immunizing infections, one generally does not observe this pattern for diseases for
which reinfections are possible. In this chapter, the age of an individual is denoted by a whereas the
calendar time is represented by t which is different from the notation used in the previous chapters.

5.1 Mathematical Models for Infectious Disease Transmission

Deterministic transmission models describe infectious disease dynamics through partitioning of the
population into different disease states or compartments. Therefore, these mathematical models are
also referred to as compartmental models. The flows between the different disease states within the
transmission model are usually described by means of a set of partial differential equations, expressing
the time- and age-dependent evolution of the proportion of individuals in each compartment.
Although mathematical transmission models are very useful to model the spread of infections in large
populations, they are inappropriate to use in case of small populations. For this purpose, stochastic
models were developed which are not discussed within this master thesis. Our aim is to present
models that estimate the age-related heterogeneity inherent to the spread of infections that allow for
reinfection in large populations.

First of all, one of the most basic deterministic models to capture disease transmission is in-
troduced. The so-called SIR transmission model assumes individuals to be in one of the three
compartments: S, I and R. All individuals are born into state S in which they are susceptible to
infection. As they age from birth onwards, they may become infected and infectious to others (state
I ). After the infectious individuals are recovered (state R), they are not longer able to transmit the
infection and are assumed to be immune for life. The number of individuals in each disease state can
be expressed as a function of age and time by S∗(a,t), I∗(a,t) and R∗(a,t). The superscript is added
to avoid confusion with the notation used for the survival functions in the preceeding chapters. The
total number of individuals of a certain age a at a point in time t is denoted by N(a,t) = S∗(a,t)
+ I∗(a,t) + R∗(a,t). The set of partial differential equations describing the flows withing the SIR
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transmission model is given by:

∂S∗(a,t)
∂a + ∂S∗(a,t)

∂t = −(λ(a, t) + µ(a, t))S∗(a, t),

∂I∗(a,t)
∂a + ∂I∗(a,t)

∂t = λ(a, t)S∗(a, t)− (γ(a, t) + µ(a, t))I∗(a, t),

∂R∗(a,t)
∂a + ∂R∗(a,t)

∂t = γ(a, t)I∗(a, t)− µ(a, t)R∗(a, t).

(5.1)

In the system of PDEs, the natural mortality rates are represented by µ(a,t), the force of infection is
traditionally denoted by λ(a,t) and the age- and time-dependent recovery rates are equal to γ(a,t).
In general, the disease-specific mortality is neglected which is a valid assumption for most of the
childhood diseases in developed countries.

The equations in (5.1) are computationally difficult to work with and therefore some simplify-
ing assumptions are made in order to estimate age-specific transmission dynamics (Goeyvaerts, 2011).
First of all, the population is assumed to be in endemic and demographic equilibrium meaning that
the disease is in endemic steady state and that the population age distribution is stationary. In
addition, the number of births and deaths is taken constant over time and exactly balanced. Under
the assumption of endemic equilibrium (i.e. time homogeneity), the time dependency cancels out
such that the set of partial differential equations in (5.1) reduces to a system of ordinary differential
equations (ODEs): 

dS∗(a)
da = −(λ(a) + µ(a))S∗(a),

dI∗(a)
da = λ(a)S∗(a)− (γ(a) + µ(a))I∗(a),

dR∗(a)
da = γ(a)I∗(a)− µ(a)R∗(a).

(5.2)

Furthermore, the following differential equation describes the stationary age distribution N(a):

dN(a)
da

= −µ(a)N(a), (5.3)

such that:
N(a) =

N

L∗
e−
∫ a
0 µ(u)du,

where L∗ is the life expectancy. More information concerning the derivation of the life expectancy is
found in Appendix A.1. The latter expression can be easily derived by solving the differential equation
(5.3) under the initial condition that the number of newborns and deaths are equally balanced. Note
that e−

∫ a
0 µ(u)du corresponds to the survival function introduced in Section 3.1. The system of ODEs

can be easily expressed in terms of the proportion of individuals in each disease state. Since the
proportion of individuals in the susceptible class corresponds to the survival function in the context
of disease events, the proportions are denoted by S, I and R. In that way, we have:

dS(a)
da = −λ(a)S(a),

dI(a)
da = λ(a)S(a)− γ(a)I(a),

dR(a)
da = γ(a)I(a).

(5.4)

The set of ordinary differential equations can be solved in a straightforward way by means of the
method of separation of variables. The expression for the survival function then becomes S(a)
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= e−
∫ a
0 λ(u)du which is the same formula as the one presented in Chapter 3. The SIR model is

just one, though fundamental, example of a mathematical deterministic model used to capture the
disease dynamics (Goeyvaerts, 2011). In practice, many extensions of the SIR model are found
in which the number and interpretations of the compartments differ. Although the SIR model
is the most frequently used model in literature, it may be interesting to relax the assumption of
lifelong immunity as mentioned earlier. As it is clear from the previous discussion, the frailty models
presented previously support the idea of infections governing an SIR transmission model. An obvious
and straightforward extension thereof is the SIRS transmission model, allowing for reinfections
with the pathogen. The SIRS model allows individuals that already experienced infection in the
past to become susceptible again some time after recovery. Hence, the model is a valuable can-
didate to describe the behaviour of diseases for which multiple infections can occur during one lifetime.

The SIRS model allows for loss of disease-acquired immunity and potential reinfection as al-
ready highlighted. Individuals are assumed to move again from the recovered state to the susceptible
state at a rate σ(a). Under the same assumptions as formulated above, the set of ordinary differential
equations in terms of the fraction of individuals in each compartment simplifies to:

dS(a)
da = −λ(a)S(a) + σ(a)R(a),

dI(a)
da = λ(a)S(a)− γ(a)I(a),

dR(a)
da = γ(a)I(a)− σ(a)R(a).

(5.5)

As stated in Goeyvaerts et al. (2011), one can solve the corresponding set of equations by assuming
that R(a) ≈ 1−S(a) and derive an expression for the proportion of susceptible individuals at a specific
age (i.e. the survival function). The set of ODEs is solved using the method of integrating factors
under the boundary condition S(0) = 1:

S(a) = e−
∫ a
0 {λ(u)+σ(u)}du

(
1 +

∫ a

0
σ(u)e−

∫ 0
u {λ(v)+σ(v)}dvdu

)
= e−

∫ a
0 {λ(u)+σ(u)}du +

∫ a

0
σ(u)e−

∫ a
u {λ(v)+σ(v)}dvdu.

(5.6)

Equation (5.6) gives us the means to refine the frailty models as presented previously and to circumvent
the strong assumption of lifelong immunity made therein. However, some remarks are to be formulated
with respect to the previous expression. As the simple form of the survival function in the SIR situation
is not longer present, one needs to rely on numerical integration methods to evaluate the integral part
in equation (5.6). In the following section, we define the univariate frailty model in case of an SIRS-
type infection. Multivariate extensions are possible but are not incorporated in this master thesis.

5.2 Univariate Frailty Model for an SIRS Infection

The univariate frailty model discussed in Chapter 4 accounts for individual heterogeneity in the acqui-
sition of a single infection. Let us denote the frailty variable with respect to a specific SIRS infection
as Z. As proposed by Farrington et al. (2001), the individual frailty Z acts multiplicatively on the
baseline force of infection λ0(a) and the survival function derived in equation (5.6) can be extended
to include the frailty term Z as follows:

S(a|Z) = e−
∫ a
0 {Zλ0(u)+σ(u)}du +

∫ a

0
σ(u)e−

∫ a
u {Zλ0(v)+σ(v)}dvdu. (5.7)
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The unconditional survival function has a complicated form due to the presence of the integral term
as indicated in the preceeding section. Consequently, one can not write the unconditional survival
function as simply the Laplace transform of Z evaluated at the cumulative baseline force of infection
(see Section 4.1). Nevertheless, one can integrate out the frailty variable and simplify the resulting
expression using the theorem of Fubini:

S(a) = e−
∫ a
0 σ(u)due−Z

∫ a
0 λ0(u)du +

∫ ∞

0

∫ a

0
σ(u)e−

∫ a
u {Zλ0(v)+σ(v)}dvdu

= e−
∫ a
0 σ(u)duL(M0(a)) +

∫ a

0
σ(u)e−

∫ a
u σ(v)dvL(M0(a)−M0(u))du.

(5.8)

where L equals the Laplace transform of the frailty variable Z and M0 represents the cumulative base-
line force of infection as before. The implementation of the univariate frailty model in the likelihood
framework for an infection with SIRS dynamics requires the specification of a parametric form for the
baseline force of infection as well as for the age-dependent replenishment rate σ(a). Furthermore, one
of the proposed frailty distributions in Chapter 4 for the random variable Z needs to be selected.

5.3 A More Realistic Approach

In the discussion included in this section, we require the definition of the effective contact function or
transmission rate β(a,a′). Farrington et al. (2001) identified the effective contact function as one of
the most important quantities in infectious disease modelling. The effective contact function drives
the infection process and is defined as the per capita rate at which a susceptible individual of age
a makes an effective contact with an infectious individual of age a′. In this definition, an effective
contact is defined as an event such that an infectious individual of age a′ infects a susceptible individual
of age a. Farrington et al. (2001) suggested a decomposition of the effective contact function into
the contact rate c(a,a′) and a proportionality factor q(a,a′|c) given a contact which corresponds to
degree of infectiousness and susceptibility of the individuals. The mass action principle relates the
effective contact function to the force of infection. Under the assumption that the mean duration of
infectiousness is short as compared to the time scale on which the transmission and mortality rates
change, the mass action principle can be written in terms of the following integral equation:

λ(a) =
ND

L∗

∫ ∞

0
β(a, a′)λ(a′)S(a′)e−

∫ a′
0 µ(u)duda′, (5.9)

where λ(a) equals the age-dependent force of infection, β(a,a′) is the effective contact function
or transmission rate between an individual of age a and a′, S(a′) is the proportion of susceptible
individuals of age a′ in the population and µ(a) is the natural mortality rate as before. Furthermore,
the population size is assumed to be constant, denoted by N , D equals the mean duration of
infectiousness and L∗ is the life expectancy in the population under study. A more elaborate
explanation on the important results with respect to the mass action principle and force of infection
is found in Appendix A.1. The interested reader is also referred to the excellent paper of Farrington
et al. (2001) regarding these concepts.

An alternative approach to the problem introduced in Section 5.2 is to use social contact data
in combination with seroprevalence data to estimate the force of infection and the replenishment
rate (Wallinga et al., 2006). Mathematical models describing the spread of infectious diseases require
assumptions concerning the underlying transmission process. Infectious diseases are transmitted
via different routes and the acquisition of infections is related to the social contact behaviour of
individuals. The frequency and intensity of human social interactions depend on age. Anderson and
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May (1991) proposed the use of preconditioned mixing patterns in combination with serological data
to estimate the transmission rates in mathematical models, i.e. the age-specific average per capita
rate at which two individuals make an effective contact, per time unit. The main disadvantage of this
method is the sensitivity of the results with respect to the assumed mixing patterns (Goeyvaerts, 2011).

Therefore, Wallinga et al. (2006) argued that serological data can be augmented with social
contact data in order to estimate age-dependent transmission parameters. Consequently, it was as-
sumed that the transmission rates are proportional to rates of conservational contact as demonstrated
by Farrington et al. (2001). In the remaining part of this chapter, the transmission rates β(a,a′) are
decomposed into the contact rate c(a,a′) and the proportionality factor q(a,a′|c). For simplicity, one
often assumes a constant proportionality factor q. The constant proportionality (CP) assumption
is considered throughout this thesis. Using the decomposition of the effective contact function and
assuming type I mortality, the integral equation (5.9) simplifies to:

λ(a) =
ND

L∗

∫ L∗

0
qc(a, a′)λ(a′)S(a′)da′. (5.10)

Type I mortality implies that for a ≤ L∗, µ(a) equals 0 and infinity otherwise. In the situation of
an SIRS infection, the fraction of susceptible individuals is given by equation (5.6) when individual
frailties are ignored. Estimating the transmission rates using seroprevalence data can not be done
analytically since the integral equation (5.10) in general has no closed form solution. However, the
equation can be solved numerically by turning towards discrete age intervals and assuming a constant
force of infection in each interval. Denote the first age interval by (a[1], a[2]) and the jth age interval
by [a[j], a[j+1]), j = 2, ..., J , where a[1] = 0 and a[J+1] = L∗. Under the assumption of a constant
replenishment rate σ and making use of formula (5.6), the age-dependent proportion of susceptibles
can be discretized as follows:

S(a) = e−
∑j−1

l=1 (λl+σ)(a[l+1]−a[l])−(λj+σ)(a−a[j])

+
j−1∑
l=1

σ

σ + λl

(
e−
∑j−1

m=l+1 (λm+σ)(a[m+1]−a[m])−(λj+σ)(a−a[j])
[
1− e−(λl+σ)(a[l+1]−a[l])

])
+

σ

σ + λj

[
1− e−(λj+σ)(a−a[j])

]
,

(5.11)

if a belongs to the jth age interval. Furthermore, the integral equation (5.10) can be discretized using
equation (5.11) to obtain the force of infection for age class i (i = 1, ..., J):

λi =
ND

L∗

J∑
j=1

βij
λj

λj + σ

{(
e−
∑j−1

l=1 (λl+σ)(a[l+1]−a[l]) − e−
∑j

l=1 (λl+σ)(a[l+1]−a[l])
)

+
[
1− e−(λj+σ)(a[j+1]−a[j])

] j−1∑
l=1

σ

σ + λl

{
e−
∑j−1

m=l+1 (λm+σ)(a[m+1]−a[m])
[
1− e−(λl+σ)(a[l+1]−a[l])

]}
+

σ

σ + λj

[
e−(λj+σ)(a[j+1]−a[j]) − 1

]
+ σ

}
(5.12)

In order to estimate the constant proportionality factor q and the constant replenishment rate σ from
seroprevalence data, an iterative procedure is applied as described in Farrington et al. (2001) and
Kanaan and Farrington (2005). First, some plausible starting values for q and σ are selected and
one solves the equation (5.12) iteratively for the piecewise constant force of infection λi, i = 1, ..., J .
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Again the estimates for the piecewise constant force of infection are contrasted to the serological data
in order to update the proposed values for q and σ. This procedure is repeated under the constraints
q ≥ 0 and σ ≥ 0 until the binomial likelihood function for univariate current status data (equation
(3.8)) is maximized (Goeyvaerts, 2011).

The approach presented previously can be extended in order to account for individual hetero-
geneity. Each individual differs in the rate at which it acquires a specific infection in the population.
Therefore, Farrington et al. (2001) proposed a straightforward extension of the mass action principle
in which the effective contact function is extended with individual frailty terms. The augmented
effective contact function is denoted by β(a,u;a′,v) representing the per capita rate at which an
individual of age a and frailty u makes an effective contact with a person of age a′ and frailty v.
Under the simple assumption of multiplicative frailty terms, one obtains β(a,u;a′,v) = uvβ0(a,a′).
Furthermore, the frailties act multiplicatively on the baseline force of infection as a consequence of
the previous assumption. Given these simplifying conditions, the integral equation in (5.9) can be
reformulated as stated by Farrington et al. (2001):

λ(a, u) =
ND

L∗

∫ ∞

0

∫ ∞

0
uvβ0(a, a′)vλ0(a′)S(a′|v)e−

∫ a′
0 µ(u)duda′f(v)dv

=
ND

L∗

∫ ∞

0
v2f(v)

∫ ∞

0
uβ0(a, a′)λ0(a′)S(a′|v)e−

∫ a′
0 µ(u)duda′dv,

(5.13)

where f(.) is the p.d.f. of the frailty variable v and λ(a,u) = uλ0(a). The functions λ0(a) and
β0(a,a′) are called the baseline force of infection and baseline effective contact function, respectively.
A thorough explantion on the deduction of the augmented integral equation (5.13) is included in
Appendix A.1. concerning the mass action principle. The simplified expression which is used in the
thesis is based on type I mortality thereby reducing equation (5.13) to:

λ0(a) =
ND

L∗

∫ ∞

0
v2f(v)

∫ L∗

0
β0(a, a′)λ0(a′)S(a′|v)da′dv. (5.14)

Analogue to the discretized version of the proportion of susceptible individuals of age a in the absence
of individual frailties (see equation (5.11)), the discretized version of the conditional survival function
S(a|v) can be obtained by replacing the piecewise constant force of infection λj by vλj . Furthermore,
the discretized version of the mass action principle including individual heterogeneity describes the
piecewise constant baseline force of infection in age class i (i = 1, ..., J):

λ0i =
ND

L∗

∫ ∞

0
vf(v)


J∑
j=1

β0ij
vλj

vλj + σ

{(
e−
∑j−1

l=1 (vλl+σ)(a[l+1]−a[l]) − e−
∑j

l=1 (vλl+σ)(a[l+1]−a[l])
)

+
[
1− e−(vλj+σ)(a[j+1]−a[j])

] j−1∑
l=1

σ

σ + vλl

{
e−
∑j−1

m=l+1 (vλm+σ)(a[m+1]−a[m])
[
1− e−(vλl+σ)(a[l+1]−a[l])

]}
+

σ

σ + vλj

[
e−(vλj+σ)(a[j+1]−a[j]) − 1

]
+ σ

}}
dv

(5.15)

If one assumes that the baseline effective contact function β0ij equals a constant proportionality
factor q0 times the contact rates cij , one can estimate the piecewise constant baseline force of infection
using the iterative procedure introduced above (Kanaan and Farrington, 2005). Serological data is
augmented with social contact data to be able to compute maximum likelihood estimates for the
unknown model parameters q0, σ and the frailty variance σ2

f . The latter notation is preferred to avoid
confusion with the notation of the constant replenishment rate σ.
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Chapter 6

Simulation Results and Data
Application

In this chapter, the results of our statistical analysis concerning the serological data introduced in
Chapter 2 are presented. The main interest is in the comparison between different strategies to account
for individual heterogeneity in the acquisition of infections. Univariate, shared and correlated gamma
frailty models are considered in order to model the seroprevalence of CMV, PVB19 and HAV, and
consequently to estimate the underlying age-dependent force of infection under the assumption of time
homogeneity. As the focus of this thesis is on parametric frailty modelling, we use different parametric
forms for the baseline force of infection and illustrate the use of different frailty distributions. The
Akaike Information Criterion (Akaike, 1973) is used to evaluate the performance of the different frailty
models in modelling the seroprevalence. Furthermore, results of the univariate SIRS frailty model are
contrasted to those of the univariate SIR frailty model. The statistical analysis presented in this
chapter is performed using the free software package R, version 2.11.0 in which the function optim was
used for general optimization purposes. In addition, the software package SAS version 9.2. is applied
to verify the results obtained with R. Especially, the SAS procedure PROC NLMIXED allowed us to
implement the frailty models by specification of the corresponding likelihood functions. Details about
optimization algorithms and numerical integration are included in Appendix A.

6.1 Frailty Models for Immunizing Infections

First of all, the univariate gamma frailty model is used to account for individual heterogeneity in the
acquisition of CMV, PVB19 and HAV. The univariate gamma frailty model is described in Section 4.1.
The baseline force of infection is assumed to be of the Gompertz type for the three infections under
study, i.e. λi0(ti) = aie

biti , i = 1, 2, 3 (see Subsection 3.4.3). The Gompertz baseline hazard function
was selected based on its improved fit to the serological data as compared to frailty models with
Weibull or exponential baseline hazard functions. The results of the univariate gamma frailty model
are incorporated in Table 6.1. The AIC-value corresponding to the univariate gamma frailty model
was found to be equal to 9956.7. The correlation coefficients are set equal to zero in the univariate
frailty model assuming independence between pairs of frailty variables Zi, i = 1, 2, 3. Furthermore,
the parameter estimate for a1 and its standard error estimate are very large. These extreme
parameter values for both a1 and b1 induce the estimated seroprevalence to level-off very quickly.
This is already a first indication of the limitations with respect to the application of traditional
frailty models in the context of infections that do not confer lifelong immunity as stated in Chapter 5.

In Table 6.1, parameter estimates and corresponding standard error estimates are displayed as
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Table 6.1: Gamma frailty models with Gompertz baseline hazard functions. Parameter estimates and
corresponding standard error estimates of the Gompertz baseline hazard function, estimated frailty
variances, estimated correlation coefficients and AIC-values of the frailty models.

Univariate Shared Correlated
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

a1 11.5988 (57.7456) 0.2837 (0.0941) 0.3286 (0.1391)
b1 -0.3002 (0.3420) -0.6816 (0.2311) -0.7226 (0.3163)
a2 0.1158 (0.0075) 0.1197 (0.0079) 0.1173 (0.0077)
b2 -0.0687 (0.0070) -0.0638 (0.0070) -0.0665 (0.0072)
a3 0.0095 (0.0008) 0.0097 (0.0008) 0.0104 (0.0009)
b3 0.0223 (0.0034) 0.0227 (0.0035) 0.0258 (0.0107)
σ2

1 15.8959 (16.5598) 0.1215 (0.0327) 0.5505 (0.1578)
σ2

2 0.0001 (0.0054) 0.1215 (0.0327) 0.0507 (0.0398)
σ2

3 0.0003 (0.0074) 0.1215 (0.0327) 0.6251 (0.7088)
ρ12 0.0000 (-) 1.0000 (-) 0.2981 (0.1281)
ρ13 0.0000 (-) 1.0000 (-) 0.9363 (0.4221)
ρ23 0.0000 (-) 1.0000 (-) 0.2842 (0.1799)

AIC 9956.7 9937.2 9916.8

well for the shared and correlated gamma frailty models. Based on the Akaike Information Criterion,
the unrestricted correlated gamma frailty model seems to outperform the univariate and shared
gamma frailty models. Furthermore, it turns out that the estimates for the parameters of the
Gompertz baseline hazard functions are similar for the three models, except for those representing
the baseline infection hazard of CMV. Moreover, the correlation between the frailty variables for
CMV and HAV is approximately equal to one. Therefore, one can conclude that transmission of
the pathogens for both CMV and HAV is similar based on the correlated trivariate gamma frailty
model. Since the univariate and shared gamma frailty models are in fact different versions of the
unrestricted correlated gamma frailty model, restricting the values of the correlation coefficients and
frailty variances (see Table 6.1), we enlarge our analysis by investigation of the performance of other
restricted correlated gamma frailty models. In Table 6.2, parameter estimates and standard error
estimates are summarized for the submodels of the unrestricted correlated gamma frailty model.

The first model assumes that the correlation between the frailty variables of CMV and PVB19
is exactly one and that they have equal variances. In other words, the frailty variable is shared with
respect to the acquisition of CMV and PVB19. The unrestricted correlated gamma frailty model
as formulated in Section 4.3 is therefore fitted with Y1 = Y2 and k4 = k5 = k6 = 0. The latter
restrictions imply that the frailty variances σ2

1 and σ2
2 are equal. The AIC-value does not indicate

an improvement in model fit as compared to the unrestricted correlated gamma frailty model.
Alternatively, the correlation coefficient ρ13 is set equal to one in the second model in combination
with equal frailty variances. This restricted frailty model gives rise to a smaller AIC-value (AIC-value
= 9909.2) compared to the one obtained in case of the unconstrained model. Furthermore, the
resulting estimates confirm the conclusions derived from the unconstrained model in which the
correlation coefficient between frailties for CMV and HAV was found to be approximately equal to
one. Results concerning the model with ρ23 = 1 and σ2

2 = σ2
3 are omitted since this model performed

worse (AIC-value = 9944.1) as compared to the other models. The third model assumes that k1

= k3 and k4 = k5 = k6 = 0 which implies the frailty variances of Z1 and Z3 are equal. Model 3
outperforms the other submodels presented in Table 6.2 based on the Akaike Information Criterion.
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Finally, results are included for the frailty model in which the frailties exhibit only an overal shared
component Y0 and an infection-specific term Yl (l = 1, 2, 3). The parameter estimates for the fourth
model are close to the ones from the third model. This conclusion is supported by the fact that the
AIC-values of these two models only differ by two, resulting from one extra parameter to be estimated
in the fourth model (i.e. k1 6= k3).

Table 6.2: Restricted Correlated Gamma frailty models with Gompertz baseline hazard functions.
Parameter estimates and corresponding standard error estimates of the Gompertz baseline hazard
function, estimated frailty variances, estimated correlation coefficients and AIC-values of the frailty
models.

σ2
1 = σ2

2, ρ12 = 1 σ2
1 = σ2

3, ρ13 = 1 σ2
1 = σ2

3 k4 = k5 = k6 = 0
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

a1 0.2737 (0.0783) 0.2820 (0.0743) 0.3000 (0.1129) 0.3160 (0.1169)
b1 -0.6553 (0.1918) -0.6156 (0.1666) -0.6601 (0.2561) -0.6921 (0.2636)
a2 0.1197 (0.0079) 0.1173 (0.0077) 0.1170 (0.0077) 0.1170 (0.0077)
b2 -0.0637 (0.0070) -0.0672 (0.0073) -0.0660 (0.0071) -0.0660 (0.0071)
a3 0.0097 (0.0008) 0.0105 (0.0009) 0.0105 (0.0009) 0.0104 (0.0009)
b3 0.0229 (0.0035) 0.0244 (0.0038) 0.0243 (0.0040) 0.0253 (0.0057)
σ2

1 0.1237 (0.0335) 0.5338 (0.0925) 0.5437 (0.1194) 0.5610 (0.1696)
σ2

2 0.1237 (0.0335) 0.0371 (0.0481) 0.0540 (0.0375) 0.0530 (0.0417)
σ2

3 0.1362 (0.0571) 0.5338 (0.0925) 0.5437 (0.1194) 0.5893 (0.3126)
ρ12 1.0000 (-) 0.2636 (0.1351) 0.3113 (0.1174) 0.2844 (0.1542)
ρ13 0.9158 (0.1537) 1.0000 (-) 0.9876 (0.1055) 0.9485 (0.2136)
ρ23 0.9158 (0.1537) 0.2636 (0.1351) 0.3113 (0.1174) 0.2914 (0.1341)

AIC 9942.0 9909.2 9908.9 9910.9

All fitted frailty models indicate a strong correlation between the frailty variables Z1 and Z3,
and a small frailty variance for Z2. Moreover, assuming that the frailty variances σ2

1 and σ2
3 are

equal seems to improve the model fit. In Figure 6.1, the estimated seroprevalences based on the
univariate, shared and unconstrained correlated gamma frailty models are plotted. The circles
represent the observed seroprevalence for the different serological profiles. The blue, red and green
lines are the results obtained from the univariate, shared and correlated gamma frailty model,
respectively. Although the estimated seroprevalences roughly follow the general trends in the data,
they are not able to describe the bumps in the seroprevalence π111, π110 and π000 as shown in Figure
6.1. In addition, the marginal seroprevalences for the three infections are depicted in Figure 6.2.
From this graph, the choice of the Gompertz baseline force of infection seems inadequate to describe
the observed curvature in the marginal seroprevalences of CMV, PVB19 and HAV. However, as
pointed out in Chapter 5, the underlying assumption of lifelong immunity after recovery in the
presented frailty models is violated for CMV and PVB19. This statement is based on the decline
of the observed seroprevalence after an initial increase which clearly does not support the idea of
immunizing infections. We will focus on this item in Section 6.3.

Instead of the gamma frailty distribution used previously, one can also apply the power variance
function distribution as described in Chapter 4. The PVF distribution is a generalized family of
distributions including the gamma, inverse Gaussian and positive stable distribution. Therefore, it
is interesting to consider the performance of the correlated PVF frailty model in the context of the
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Figure 6.1: Estimated seroprevalences based on the gamma frailty models with Gompertz baseline
hazard function.

Figure 6.2: Estimated marginal seroprevalences based on the gamma frailty models with Gompertz
baseline hazard function. CMV (upper left), PVB19 (upper right) and HAV (lower).
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serological data at hand. The results of the trivariate correlated PVF frailty model with Gompertz
baseline force of infection is included in Table 6.3. One observes that the correlated PVF frailty
model outperforms the correlated gamma frailty model based on the Akaike Information Criterion.
The estimated parameters of the Gompertz baseline force of infection are close to the estimates
obtained in the unrestricted correlated gamma frailty model. Furthermore, the inverse Gaussian
frailty distribution is derived when restricting the parameter value of η to 0.5 (see Subsection 4.4.3).
Results of the correlated inverse Gaussian frailty distribution are included as well in Table 6.3. Among
all presented frailty models, the smallest AIC-value is observed for the correlated inverse Gaussian
frailty model.

Table 6.3: Correlated PVF and inverse Gaussian frailty models with Gompertz baseline hazard func-
tions. Parameter estimates and corresponding standard error estimates of the Gompertz baseline
hazard function, estimated frailty variances, estimated correlation coefficients and AIC-values of the
frailty models.

PVF Inverse Gaussian
Parameter Estimate (s.e.) Estimate (s.e.)

a1 0.3332 (0.1322) 0.4241 (0.1529)
b1 -0.2879 (0.0828) -0.3370 (0.0960)
a2 0.1280 (0.0096) 0.1146 (0.0075)
b2 -0.0768 (0.0093) -0.0669 (0.0075)
a3 0.0530 (0.0442) 0.0427 (0.0180)
b3 0.0911 (0.0221) 0.0759 (0.0052)
σ2

1 6.3646 (3.3299) 10.1570 (4.7892)
σ2

2 0.0629 (0.0636) 0.0107 (0.0613)
σ2

3 38.9558 (24.7869) 65.4141 (33.7265)
ρ12 0.0991 (0.0587) 0.0020 (0.0085)
ρ13 0.3411 (0.0458) 0.3940 (0.0380)
ρ23 0.0401 (0.0250) 0.0041 (0.0140)
η 0.3605 (0.0677) 0.5000 (-)

AIC 9833.7 9830.6

Although the correlated frailty models have the advantage of being more flexible as compared to the
shared frailty models, the implied correlation structure for the infection-specific frailties is constrained
as mentioned in Section 4.3. For our application, one can easily observe that the correlation coefficients
are at the implicit boundaries resulting from the additive decomposition of the frailty variables in
the correlated frailty models. Therefore, one can argue that the proposed correlated frailty models
are not flexible enough to model the true underlying correlation structure. The solution for this
shortcoming of the presented correlated frailty models will probably involve a reformulation of the
models without additive decomposition of the frailty terms. The latter reformulation in order to
overcome the boundary constraints on the correlation coefficients is beyond the scope of this master
thesis.
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6.2 Simulation Study

In order to assess the performance of the unconstrained correlated gamma frailty model, we conducted
a simulation study in which different parameter settings are considered. Furthermore, the aim is also
to evaluate the amount of information that is lost when turning from time-to-event (TTE) data which
is seldomly observed in practice to right censored (RC) data, and finally to current status (CS) data.
Without loss of generality ns = 150 serological datasets of size n = 2890 are generated for which the
motivation lies in the sample size of the original serological dataset. First of all, we consider as a
starting point the parameter estimates corresponding to the trivariate correlated gamma frailty model
with Gompertz baseline hazard functions included in Table 6.1. Consequently, trivariate TTE data
is generated using the following stepwise procedure. In the first step, the correlated gamma frailties
(Z1,Z2,Z3) are obtained via its additive component variables Yl (l = 0, 1, ..., 6) which are assumed to
follow a gamma distribution with parameters kl and 1 as discussed in Section 4.3. Given a value zi for
the frailty variables Zi, the event times t∗i (independent values generated from the random variable
T ∗i ) (i = 1, 2, 3) are calculated using the transformation formula:

t∗i =
1
bi

log(1− bi log(ui)
aizi

),

where ui is sampled at random from a uniform distribution on the unit interval and ai and bi are to be
replaced by the corresponding parameter estimates in Table 6.1. However, in the extreme parameter
setting with respect to the baseline hazard of infection for CMV, the sampling of u1 is restricted to
the possible range of the survival function. Indeed, sampling values too close to zero makes no sense
since these values can never been achieved given the selected parameter configuration. In addition,
values for the censoring time variable Ci are generated from a uniform distribution on the interval
ranging from zero to 72. Therefore, the censoring indicators δi are derived from the comparison of
the true event times t∗i and the censoring times ci. Especially, δi equals 1 whenever ci > t∗i and zero
otherwise (i = 1, 2, 3).

The correlated gamma frailty model with Gompertz baseline hazard function is fitted for the
simulated TTE, RC and CS data derived from each of the generated serological datasets. The
likelihood functions are specified using the likelihood contributions included in Section 4.5. In Table
6.4, the simulation results are summarized for the original parameter setting obtained from the
correlated gamma frailty model. These include the averaged parameter estimates and empirical
standard error estimates for the frailty model parameters. One can observe that the averaged
parameter estimates are in general quite far from the true values for all three data types. This
observation is surprising especially for TTE data since TTE data consists of the most detailed
information with respect to the parameters of the underlying simulation process and therefore is
believed to yield estimates very close to the true parameter values. Moreover, the difficulty lies in
the estimation of the parameters a1 and b1, which was already highlighted in the previous section.
The value of a1 is consistently overestimated whereas the averaged estimates of b1 have the opposite
sign of the true parameter value. A more interesting parameter configuration consists of less extreme
parameter values for the parameters describing the first baseline force of infection. In Table 6.5,
averaged parameter estimates and empirical standard error estimates are presented for the correlated
gamma frailty model with Gompertz baseline hazard function. Furthermore, the simulated datasets
used in the simulation study are generated under the parameter setting in which the true value for b1
is changed to -0.0226 in contrast to the first parameter setting.

The averaged parameter estimates turn out to be much closer to the true parameter values as
compared to the previous results. Although the averaged parameter estimates of the Gompertz
baseline hazard functions can be considered stable, the empirical standard errors are increasing
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Table 6.4: Simulation results for ns = 150 simulated datasets of size n = 2890 with respect to time
to event (TTE) data, right censored (RC) data and current status (CS) data.

TTE RC CS
Parameter True Value Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

a1 0.3286 0.8615 (0.0257) 0.8614 (0.0241) 0.9239 (1.0980)
b1 -0.7226 0.0188 (0.0947) 0.0071 (0.0429) 0.5593 (0.9543)
a2 0.1173 0.1281 (0.0040) 0.1324 (0.0039) 0.1272 (0.0086)
b2 -0.0665 -0.0135 (0.0051) -0.0198 (0.0032) -0.0125 (0.0069)
a3 0.0104 0.0107 (0.0009) 0.0107 (0.0006) 0.0101 (0.0015)
b3 0.0258 0.0236 (0.0062) 0.0167 (0.0024) 0.0337 (0.0352)
σ2

1 0.5505 0.0829 (0.1228) 0.0680 (0.0513) 0.7050 (1.1712)
σ2

2 0.0507 0.0346 (0.0603) 0.0174 (0.0247) 0.0478 (0.0616)
σ2

3 0.6251 0.5412 (0.2449) 0.0772 (0.1103) 1.0686 (2.0888)
ρ12 0.2981 0.5758 (0.3348) 0.4585 (0.3270) 0.3057 (0.2937)
ρ13 0.9363 0.3755 (0.2583) 0.9429 (0.1441) 0.8230 (0.2550)
ρ23 0.2842 0.2132 (0.1713) 0.4562 (0.3270) 0.3021 (0.2909)

when going from TTE data to RC data, and turning finally to CS data. The latter consideration is
important when comparing the performance of the correlated frailty model since TTE is often not
available. An investigation of the effects with respect to the parameter estimates obtained from the
restrictive CS data is therefore crucial. In addition, the variance estimates are in general not close
to the true values as observed in Table 6.5. Although it seems difficult to estimate the variance and
correlation parameters given the specified parameter configuration, we already pointed out a major
limitation of the correlated gamma frailty model in the sense that the correlation coefficients are
constrained. For the parameter setting under investigation, the correlation coefficients with respect
to the frailty variables are at the boundary as demonstrated in Section 6.1.

Table 6.5: Simulation results for ns = 150 simulated datasets of size n = 2890 with respect to time to
event (TTE) data, right censored (RC) data and current status (CS) data. Less extreme parameter
values for a1 and b1 are considered.

TTE RC CS
Parameter True Value Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

a1 0.3286 0.3316 (0.0133) 0.3285 (0.0119) 0.3208 (0.0487)
b1 -0.0226 0.0087 (0.0058) 0.0006 (0.0094) -0.0025 (0.0188)
a2 0.1173 0.1286 (0.0035) 0.1332 (0.0038) 0.1262 (0.0068)
b2 -0.0665 -0.0131 (0.0023) -0.0183 (0.0034) -0.0134 (0.0051)
a3 0.0104 0.0102 (0.0005) 0.0102 (0.0006) 0.0102 (0.0011)
b3 0.0258 0.0281 (0.0023) 0.0283 (0.0043) 0.0306 (0.0141)
σ2

1 0.5505 0.6751 (0.0675) 0.6214 (0.0770) 0.5746 (0.2043)
σ2

2 0.0507 0.0427 (0.0240) 0.0365 (0.0243) 0.0365 (0.0406)
σ2

3 0.6251 0.7196 (0.0879) 0.7563 (0.2238) 0.8967 (0.7835)
ρ12 0.2981 0.2229 (0.0774) 0.2051 (0.0852) 0.1986 (0.1355)
ρ13 0.9363 0.8175 (0.0460) 0.8527 (0.0921) 0.8230 (0.1527)
ρ23 0.2842 0.1955 (0.0697) 0.1901 (0.0790) 0.1817 (0.1253)

The simulation results concerning the same parameter setting and an increased sample size of
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n = 1000 is documented in Appendix C. One final extension of the simulation study presented in this
thesis covers the situation in which the correlation coefficients are away from the implied boundary.
The averaged parameter estimates and empirical standard error estimates are included in Table 6.6.
The parameter estimates are in line with those obtained in Table 6.5 and the correlation coefficients
are quite closer to the true values in all three cases.

Table 6.6: Simulation results for ns = 150 simulated datasets of size n = 2890 with respect to time
to event (TTE) data, right censored (RC) data and current status (CS) data. Correlation coefficients
away from the boundary contraints.

TTE RC CS
Parameter True Value Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

a1 0.3286 0.3384 (0.0129) 0.3349 (0.0136) 0.3510 (0.0851)
b1 -0.0226 0.0136 (0.0045) 0.0090 (0.0110) 0.0141 (0.0285)
a2 0.1173 0.1286 (0.0034) 0.1328 (0.0037) 0.1270 (0.0086)
b2 -0.0665 -0.0132 (0.0023) -0.0178 (0.0033) -0.0134 (0.0055)
a3 0.0104 0.0105 (0.0005) 0.0103 (0.0006) 0.0101 (0.0013)
b3 0.0258 0.0252 (0.0031) 0.0270 (0.0078) 0.0344 (0.0261)
σ2

1 0.5505 0.7235 (0.0544) 0.6835 (0.0887) 0.7417 (0.3249)
σ2

2 0.0507 0.0413 (0.0242) 0.0389 (0.0262) 0.0382 (0.0422)
σ2

3 0.6251 0.5984 (0.1241) 0.6844 (0.4342) 1.0909 (1.4430)
ρ12 0.2981 0.2105 (0.0666) 0.2080 (0.0784) 0.1885 (0.1407)
ρ13 0.3063 0.2849 (0.0567) 0.2999 (0.0802) 0.2807 (0.1720)
ρ23 0.2842 0.2463 (0.0796) 0.2460 (0.1143) 0.2233 (0.1815)

6.3 SIRS Infections

In Chapter 5, the univariate frailty model is extended to capture the disease dynamics for infections
that do not confer lifelong immunity. In Section 6.1, we pointed out that the estimated seroprevalence
did not fit the observed data well, especially for CMV and PVB19. However, these infections are
known to be nonimmunizing infections for which individuals can be reinfected during their lives.
Therefore, we investigate the performance of the univariate frailty model under the assumption of an
SIRS transmission process for both diseases. In order to illustrate the limitations of the traditional
univariate frailty model (see Section 4.1) in this context, univariate current status data is generated
under the assumption of an underlying SIRS infection process. Afterwards, the univariate frailty
model for immunizing infections is fitted to the simulated data. For convenience, a Gompertz baseline
force of infection with parameters a1 = 0.3286 and b1 = -0.0226 is assumed in addition to a constant
replenishment rate σ = 0.05. The gamma frailty distribution is considered with a frailty variance σ2

f

equal to 0.2. In the left panel of Figure 6.3, the simulated current status data is plotted together with
the estimated seroprevalence using a univariate SIR frailty model (black solid line) and a univariate
SIRS frailty model (red dashed line). One can easily observe that the univariate frailty model derived
under the assumption of an SIR infection mechanism is not able to describe the simulated data well.
In addition, the estimated frailty variance using the SIR model is substantially smaller than 0.2 which
supports the previous conclusion. Alternatively, it is also very useful to check whether the univariate
SIRS model yields a proper fit to generated current status data on immunizing infections. The results
of this analysis are included in the right panel of Figure 6.3. The SIRS model (red dashed line) turned
out to model the observed prevalence quite good while estimating the replenishment rate to be nearly
equal to zero (3.5e-9). Furthermore, the estimated model parameters are almost equal for both the
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SIR as SIRS models (see Appendix C.2.). Therefore, one can conclude that it is worthwhile to consider
the univariate SIRS frailty model when the observed prevalence lacks a monotone pattern.

Figure 6.3: Estimated seroprevalence based on the univariate SIR (black solid line) and SIRS (red
dashed line) gamma frailty models. The data is generated based on an SIRS infection process with
Gompertz baseline force of infection (a1 = 0.3286 and b1 = -0.0226) and constant replenishment rate
σ = 0.05 (left panel), and based on an SIR infection with Gompertz baseline force of infection (a1 =
0.3286 and b1 = -0.0226) (right panel).

Secondly, a parametric baseline force of infection λ0(a) and parametric age-dependent replenishment
rate σ(a) are assumed in the univariate SIRS model as stated in Section 5.2. Therefore, the Gompertz
baseline force of infection (with parameters ai and bi, i = 1, 2) is applied together with a Gaussian
replenishment rate, i.e.

σ(a) =
d√
2πs2

e
1

2s2
(a−m)2 , m > 0, s > 0, d ≥ 0,

where m represents the mean, s represents the standard deviation and d is an amplifying factor. In
addition, the convenient gamma frailty distribution is assumed again. The parameter estimates and
standard error estimates for the univariate gamma frailty models with respect to CMV and PVB19
infection are presented in Table 6.7. Furthermore, in Figure 6.4, the estimated seroprevalence for
CMV and PVB19 is depicted based on the univariate frailty models with Gompertz baseline force
of infection and Gaussian replenishment rate σ(a). The estimated seroprevalence describes the data
better as compared to the frailty models in Section 6.1 (see Figure 6.2). The AIC-values corresponding
to these models are equal to 3578.9 and 3297.3 for CMV and PVB19, respectively. For comparison, the
univariate frailty models derived under the assumption of immunizing infections have AIC-values equal
to 3667.9 and 3304.2, respectively. Therefore, an improvement with respect to the model fit is observed
by turning towards the extended univariate frailty models allowing for reinfections with the pathogens.

Although the presented univariate frailty models outperform the frailty models in Section 6.1, the
parametric assumptions made to model the seroprevalence are based on visual examination of the
data pattern. However, a Gompertz baseline force of infection seems to contradict the natural history
of the infections and induces a somewhat strange assumption with respect to the parametric form of
σ(a). An alternative approach to model the seroprevalence of CMV and PVB19 and thereby to avoid
the ad hoc method considered previously, is the use of social contact data to augment the serological
data. In other words, contact rates supplement the serological data as described in Chapter 5.

The univariate SIRS gamma frailty model is considered and the procedure is illustrated for
serological data on PVB19 and Belgian social contact data obtained from the POLYMOD survey.
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Table 6.7: Parameter estimates and standard error estimates for the parametric Gompertz baseline
force of infection λ0(a) = aie

bia and Gaussian replenishment rate σ(a) in the SIRS univariate frailty
model.

CMV PVB19
Parameter Estimate (s.e.) Estimate (s.e.)

a1 1.5948 (0.0480) -
b1 0.0449 (0.0066) -
a2 - 0.1080 (0.0074)
b2 - -0.0202 (0.0105)
d 40.8586 (1.2264) 0.5629 (0.2695)
m 28.7919 (0.0537) 23.6923 (1.4679)
s 6.1796 (0.0715) 14.1951 (0.6810)
σ2

1 11.6325 (0.3237) -
σ2

2 - 0.1933 (0.1001)

AIC 3578.9 3297.3

Figure 6.4: Estimated seroprevalence of CMV (upper graph) and PVB19 (lower graph) based on the
univariate gamma frailty models for SIRS infections with Gompertz baseline force of infection and
Gaussian replenishment rate.

Furthermore, the constant proportionality assumption (i.e. q(a, a′|c) = q0) is supplemented with the
assumption of a constant replenishment rate σ. The iterative procedure suggested by Farrington et
al. (2001) and Kanaan and Farrington (2005) is applied to estimate the piecewise constant force
of infection from contact data (see Section 5.3). Consequently, the model parameters q0, σ and σ2

f

are estimated based on the serology and the estimated piecewise force of infection. In Figure 6.5,
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the estimated age-dependent seroprevalence of PVB19 is plotted (left panel) in combination with
the estimated piecewise constant force of infection (right panel) driving this infection process. The
AIC-value of the described model equals 3291.6 which is smaller than the values corresponding to the
previous models for the seroprevalence of PVB19. The estimated model parameters are equal to q̂0
= 0.2785, σ̂ = 0.0241 and σ̂2

f = 0.1104. After an initial increase in the estimated seroprevalence, the
seroprevalence seems to stabilize after which it slightly decreases with age. Furthermore, the general
trend in the estimated piecewise force of infection is a decrease with age wich seems reasonably due
to the natural history of PVB19 infection. Despite the improved fit to the observed current status
data, further refinements of the univariate SIRS model need to be considered and a more thorough
examination of the derived results is essential. One of the first extensions of the basic SIRS model
should allow for a nonconstant replenishment rate. Therefore, a piecewise constant replenishment rate
could be useful instead of the constant one proposed earlier. Moreover, the constant proportionality
assumption can be relaxed by assuming a parametric form for q(a,a′|c).

These frailty models are quite complex and require a considerable amount of time to run.
Consequently, further refinements of the specified model such as relaxing the constant proportionality
assumption or the assumption of a nonconstant replenishment rate are not included in this master
thesis. Since the univariate SIRS gamma frailty model shows to have advantages over the univariate
SIR model, multivariate extensions are important to consider as well. These shared and correlated
frailty models were not touched upon in this master thesis and are an interesting topic for further
research. Although a deeper investigation with respect to frailty models in the context of nonimmu-
nizing infections is required, the idea was to present some exploratory results in this section in order
to illustrate the usefulness of such scientific research.

Figure 6.5: Estimated seroprevalence of PVB19 (left panel) based on the univariate SIRS gamma
frailty model with Gompertz baseline force of infection and constant replenishment rate. The piecewise
constant force of infection (right panel) is derived from social contact data augmenting the serology.

38



Chapter 7

Conclusion

Individuals within a population differ greatly in their responses towards specific events such as
treatment, drugs or disease. Ordinary methods in survival analysis assume implicitly that the
population under study is homogeneous and all individuals are having the same risk of experiencing
these events. Consequently, more advanced techniques need to be considered in order to account for
individual heterogeneity within a population. Frailty models constitute a specific area in survival
analysis and provide a convenient way of introducing individual heterogeneity into models for survival
data. In fact, in its most simple form, a frailty represents an unobserved random proportionality
factor modifying the hazard function of an individual or related subjects. The concept of univariate
frailty modelling goes back to the work of Beard (1959) considering different mortality models whereas
the term frailty was suggested by Vaupel et al. (1979) in the univariate setting. Later, extensions of
the univariate frailty models were made to analyse multivariate survival data. Shared frailty models
and correlated frailty models were found very useful in describing the dependence of event times in
a natural way. As frailty models have shown their strength in modelling multivariate survival data
and individuals also differ in the acquisition of infections, frailty modelling has been introduced in
infectious disease modelling as well. After the seminal work of Coutinho et al. (1999), many authors
have studied the performance of the univariate, shared and correlated frailty models to describe
infection dynamics within human populations. Hens et al. (2009) suggested the use of the shared
and correlated gamma frailty model to model the seroprevalence of hepatitis A and B in the Belgian
population. As time-to-event data is very hard to collect, they relied on cross-sectional serological
data with respect to the presented infections. In this master thesis, we focused on the extension of the
existing bivariate frailty models proposed by Hens et al. (2009) to trivariate models useful in modelling
current status data on CMV, PVB19 and HAV. In addition, misspecifications of these trivariate frailty
models in case of nonimmunizing infections were considered in more detail in the thesis. The deriva-
tions in the context of frailty misspecifications are illustrated by augmenting the serological data at
hand with data on the frequency of close social contacts between individuals in the Belgian population.

Following the standard assumption of a gamma frailty distribution and selecting the frequently used
Gompertz baseline hazard function, the trivariate correlated gamma frailty model was found to have
an advantage over the shared and univariate models when applying these models to describe the
serological data. Due to its flexibility, the correlated frailty model elevates the restrictive assumption
of a shared frailty while allowing infections with different diseases to be dependent. The latter refers
to the classical assumption of independence between events in univariate frailty models. Furthermore,
relaxing the assumption of a gamma frailty distribution when using inverse Gaussian and PVF
frailty distributions supported the idea that the correlated frailty model outperforms the shared
and univariate models in an obvious way. Although some credit has been given to the correlated
frailty models, one also needs to be aware of the limitations regarding these models. First of all,
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the simplicity of the additive decomposition of the frailties comes with the price of an implicit
constraint on the correlation coefficients. For the data application included in this thesis, it was
shown that the estimated correlations are precisely at the boundary which leads to the conclusion
that the correlated frailty models are not able to fully capture the disease mechanisms. Additional
work needs to be done to avoid these restrictions on the correlation coefficients. The latter implies
that the additive decomposition of the frailty terms needs to be reconsidered. Secondly, these models
were fitted under the assumption of a Gompertz baseline force of infection for the three diseases. As
illustrated within the thesis, the Gompertz parametric form is a questionable choice for the infections
at hand. However, the choice was inspired by the comparison of the performance of models using
other popular parametric assumptions for the baseline hazard. A simulation study was performed
to evaluate the usefulness of the trivariate correlated frailty model. Therefore, three different
parameter settings were selected to generate datasets which are then analyzed using the trivariate
correlated gamma frailty model. The simulation results pointed out that the variance components
and correlation coefficients are difficult to estimate, especially when the correlation coefficients are at
the implicit boundaries. In general, the usefulness of the correlated model in case of trivariate current
status data is underlined as information loss when turning from TTE data to CS data is rather limited.

The traditional trivariate frailty models were implemented assuming that the infections confer
lifelong immunity. However, CMV and PVB19 clearly do not fulfill this requirement since reinfections
with the pathogens are possible. Consequently, some refinements of the traditional frailty models are
made. In this thesis, we limited ourselves to the univariate frailty model for infections with dynamics
that can be successfully described using a mathematical SIRS transmission model. Nevertheless,
multivariate models allowing for reinfections are an interesting topic for further research. The survival
function for an SIRS infection was found to have an additional integral term. We turned to numerical
integration techniques in order to calculate the unconditional survival function after inclusion of
the frailty terms. Both a parametric approach as well as a more realistic alternative based on the
combination of serology and social contact data are illustrated within this thesis. Although the para-
metric version in which a Gompertz baseline force of infection and Gaussian replenishment rate were
assumed, performed quite well in modelling the observed seroprevalence data for CMV and PVB19, a
more realistic approach is to estimate a piecewise constant force of infection based on social contact
data. The mass action principle is thereby of crucial importance while relating the force of infection
to an augmented effective contact function. In the present monologue, the augmented effective
contact function is assumed to factorize into individual frailties acting multiplicatively on the baseline
effective contact function. In addition, the baseline effective contact function reduces to the product
of a constant proportionality factor times the age-dependent contact rates. Under the assumption
of a constant replenishment rate, a univariate frailty model is fitted to the serology of PVB19 and
social contact data. The univariate SIRS model outperforms both the univariate SIR frailty model
and the parametric SIRS model. However, the aim in this master thesis was primarily to sketch the
approach required to tackle the problem of modelling the seroprevalence for nonimmunizing infections.

Multivariate models have shown to be important in modelling the associations among infec-
tions such that additional extensions of the univariate SIRS models are essential. Moreover, the
restrictive assumptions with respect to the constant replenishment rate and constant proportionality
factor need to be relaxed. In addition to SIRS infections, numerous other mathematical transmission
models are available in literature to describe infections without lifelong immunity and derivations of
the survival functions will give rise to an extensive amount of frailty models. In conclusion, despite
the promising results with respect to the SIRS frailty models, there exists some remaining work to be
done in the future.
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Appendix A

A.1. Mass Action Principle

One of the most important parameters in infectious disease modelling is the so-called force of infection.
The force of infection, also called the hazard of infection, is the per-capita rate at which a susceptible
individual acquires the infection from an infectious individual. The force of infection resembles the
hazard function in survival analysis as described in Section 3.1 and is considered to be time-varying
and age-dependent. Often, one assumes time homogeneity which implies that the infection under
investigation is in endemic steady state at the population level, thereby allowing the disease incidence
to undergo cyclical epidemics and fluctuating around a stationary average over time (Farrington et
al., 2001). Under the assumption of time homogeneity the force of infection can be estimated from
serological data. An excellent overview of the available methods to estimate the force of infection from
serological data is given in Hens et al. (2010). In general, let λ(a) represent the age-dependent force
of infection for an infection in steady state. Anderson and May (1991) stated that the age-dependent
force of infection λ(a) can be written as:

λ(a) =
∫ ∞

0
β(a, a′)I∗(a′)da′, (1)

where β(a,a′) represents the effective contact function or transmission rate. Farrington et al. (2001)
argued that the infection process is driven by the effective contact function β(a,a′), representing the
per capita rate at which an individual of age a′ makes effective contacts with individuals of age a.
An effective contact is an event such that an individual of age a′ infects a person of age a, given that
the person of age a′ is infectious and the other is susceptible for the infection under study. Equation
(1) reflects the so-called mass action principle. The mass action principle implicitly assumes that
the susceptible and infectious individuals in the population mix homogeneously with each other.
However, this signals immediately one of the major drawbacks of definition (1) since contacts are
often directed and clustered which is not taken into account in the formula (Goeyvaerts, 2011).

The effective contact function β(a,a′) can be factorized in terms of the contact rate between
individuals of age a′ and age a, denoted by c(a,a′) and a proportionality factor related to the degree
of infectiousness and susceptibility of the two individuals, given a contact between those, say q(a,a′|c)
(Farrington et al., 2001):

β(a, a′) = q(a, a′|c)c(a, a′). (2)

The contact rate c(a,a′) is characterized by a definition of a contact relevant for the disease under
consideration. In fact, the contact rate resembles the mixing pattern in the population with respect
to the relevant route of transmission, as pointed out by Farrington et al. (2001). The proportionality
factor q(a,a′|c) determines an age-related transmission probability for the infectious antigen, given
that a contact between a susceptible and infectious individual has occurred. Hence, the effective
contact function is a joint feature of population characteristics and the organism. Furthermore, due
to the nature of contacts between individuals, the contact rate c(a,a′) needs to be symmetric, as
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discussed by Wallinga et al. (2006) and Goeyvaerts et al. (2010).

For the purposes of this thesis, infection- or disease specific mortality is ignored. The assump-
tion of no excess mortality associated with disease holds for most of the common childhood diseases,
at least in developed countries. As mentioned earlier, the infection is considered to be in endemic
steady state and the present discussion is only valid for large populations. Assuming the population to
be large makes it possible to rely on deterministic epidemiological theory. In addition, the population
size N is taken fixed and births and deaths are equally balanced (demographic equilibrium). In that
way, one can easily derive the following expression for the life expectancy L∗ if the natural mortality
rate is represented by µ(a):

L∗ =
∫ ∞

0
e−
∫ a
0 µ(u)duda. (3)

The mean duration of infectiousness is denoted by D and the age-dependent recovery rate for the
infection equals γ(a). Therefore, the mean infectious period can be written as (Goeyvaerts, 2011):

D =
∫ ∞

0
e−
∫ a
0 γ(u)duda,

analogue to the results for the life expectancy in equation (3). Consider now the situation in which
an infectious individual of age a′ is introduced into a population of size N with a fraction n(a) of
individuals of age a from which a proportion of S(a) is susceptible for the specific infection. The latter
notation refers to the fact that S(a) resembles the survival function in Section 3.1 given that the event
of interest here is infection with the pathogen. Under these circumstances, the average number of
newly infected individuals of age a which are infected by the single individual of age a′ during his or
her entire infectious period equals

Nn(a)S(a)
∫ ∞

0
β(a, a′ + u)e−

∫ u
0 γ(v)dve−

∫ a′+u
a′ µ(v)dvdu. (4)

If the infectious period is short compared to the timescale on which the effective contact rates and
natural mortality rates vary, equation (4) simplifies to

NDn(a)S(a)β(a, a′). (5)

Often, one writes the density of the population age distribution n(a) in terms of the natural mortality
rate µ(a) and the life expectancy L∗. Since we assume demographic equilibrium and a constant
population size N , one obtains:

n(a) =
1
L∗
e−
∫ a
0 µ(u)du. (6)

The next generation operator G acting on a single instantaneous infected individual with density i(a′)
gives rise to the next generation of infected individuals of age a, i.e.

G[i](a) = NDn(a)S(a)
∫ ∞

0
β(a, a′)i(a′)da′. (7)

From the next generation operator, one can determine the total number of cases infected by the
distributed individual during its infectious period on average,

∫∞
0 G[i](a)da. Another key parameter

in describing an epidemic is the reproduction number R. The reproduction number R is defined
as the average number of secondary infections produced by a single infectious individual during his
or her infectious period. Consequently, the reproduction number equals the spectral radius of the
next generation operator G (Diekmann et al., 1990). In a fully susceptible population, i.e. S(a) =
1, the reproduction number is called the basic reproduction number R0. Knowledge of the (basic)
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reproduction number is important since it summarizes in a very simple and convenient way the
amount of effort required to eradicate an epidemic within a population. This statement results from
the fact that an infection with reproduction number larger than one in a large population can become
epidemic whereas reducing the reproduction number to a level lower than one induces the infection
to disappear (Farrington et al., 2001).

The mass action principle relates the age-dependent force of infection λ(a) to the effective
contact function β(a,a′) as in equation (1). Farrington et al. (2001) reformulates this formula as
follows:

λ(a) =
N

L∗

∫ ∞

0

(∫ ∞

0
β(a, a′ + u)e−

∫ u
0 γ(v)dve−

∫ a′+u
a′ µ(v)dvdu

)
λ(a′)S(a′)e−

∫ a′
0 µ(u)duda′. (8)

Again under the assumption that the mean duration of infectiousness is short compared to the
timescale on which the transmission and mortality rates change, equation (8) can be approximated
by:

λ(a) =
ND

L∗

∫ ∞

0
β(a, a′)λ(a′)S(a′)e−

∫ a′
0 µ(u)duda′. (9)

For infections conferring lifelong immunity, the proportion of susceptible individuals S(a) of age a
equals:

S(a) = e−
∫ a
0 λ(u)du, (10)

where λ(u) is the age-dependent force of infection. As demonstrated in the master thesis, the survival
function (fraction of seronegatives) has a different expression for nonimmunizing infections following
an SIRS transmission model.

Coutinho et al. (1999) were pioneers in accounting for heterogeneity in the acquisition of in-
fections. Following the work of Farrington et al. (2001), the mass action principle as explained
previously, can incorporate individual heterogeneity in a straightforward way. The authors focus on
an augmented effective contact function denoted by β(a,u;a′,v) which represents the per capita rate
of acquisition of the infection by an individual of age a and frailty u from an individual of age a′ and
frailty v (see Section 5.3). The frailties are assumed to follow a continuous nonnegative distribution
with density function f(x), x in [0,∞). As before, the mortality rate is assumed to be independent of
the infection and the frailties. For infections conferring lifelong immunity and a short mean infectious
period, the mass action principle in (9) reduces to:

λ(a, u) =
ND

L∗

∫ ∞

0

∫ ∞

0
β(a, u; a′, v)λ(a′, v)e−

∫ a′
0 λ(r,v)dre−

∫ a′
0 µ(r)drf(v)da′dv. (11)

Under a simple multiplicative decomposition of the augmented effective contact function, i.e.
uvβ0(a,a′), as suggested by Farrington et al. (2001) and a standard assumption of expectation one
for the frailty distribution, the force of infection factorizes into λ(a,u) = uλ0(a). λ0(a) is called the
baseline hazard function and β0(a,a′) is equal to the baseline effective contact function. This sim-
ple multiplicative decomposition of the augmented effective contact function justifies the use of the
term frailty for the activity levels u and v as each individual has a specific frailty with respect to the
acquisition of infections. The mass action principle in equation (11) equals then:

λ0(a) =
ND

L∗

∫ ∞

0

∫ ∞

0
v2β0(a, a′)λ0(a′)e−

∫ a′
0 vλ(r)dre−

∫ a′
0 µ(r)drf(v)da′dv. (12)
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A.2. Optimization Algorithms

Optimization is an important tool in many areas such as decision theory and the analysis of physical
systems. In statistics, one is also frequently faced with numerical optimization problems. One of the
most important examples is the maximization of the likelihood function in the likelihood inferential
framework. In general, optimization problems are defined using an objective function which needs
to be optimized. The objective function depends on several parameters, variables or unknows and
quantifies the performance of a system by means of a single number. The process of identifying the
objective function is called modelling. The construction of a model is a first step in the optimization
problem and is often the most important one. Indeed, too simple models are not able to capture
the particularities associated with a certain physical system whereas too complex models are often
very difficult too solve. After the identification of the model, optimization algorithms can be used
to select plausible values for the unknown variables of the objective function for which the objective
is optimized. Although there exists no universal optimization algorithm, numerous possibilities are
available to solve different problems. Often it is the responsibility of the user to select carefully the
optimization algorithm which is best suited for the problem at hand. After the application of an
optimization algorithm, one needs to verify whether the algorithm converged to a valid solution for
the optimization problem. In many cases, nice mathematical expressions called optimality conditions
are derived based on which one determines whether the algorithm successfully solved the optimization
problem of interest (Nocedal and Wright, 1999).

In the present elaboration, we summarize the most important optimization algorithms which
are used to solve the optimization problems throughout this master thesis. We initiate out discussion
with the basic mathematical formulation of an optimization problem. Mathematically speaking,
optimization is the maximization or minimization of a function subject to constraints on its variables.
Let us denote x as the vector of variables, also called parameters or unknowns. The objective function
f is a function of x which is to be maximized or minimized. In the applications included in this
thesis, the objective function equals the likelihood function L. Finally, c equals the constraints which
are to be satisfied by the variables x. In full generality, one can formulate the optimization problem
as follows (Nocedal and Wright, 1999):

minx f(x) subject to c(x),

where c(x) is a matrix of scalar-valued functions of the variables in the vector x. In maximization
problems, one can change f into -f in the above problem formulation.

Optimization algorithms are iterative procedures. This implies that they start with an initial
guess, often called starting values, for the unknown parameters and consequently generate a sequence
of improved estimates until hopefully convergence towards the optimal values has been achieved.
The strategy applied to move from one iteration point to the next distinguishes one algorithm from
another. Most of the approaches make use of the value of the objective function f and possibly the
first and second derivative of f . In order to evaluate an optimization algorithm, concepts such as
accuracy, robustness and efficiency are essential. However, these notions are out of the scope of this
master thesis and are therefore not handled in this part. For an extensive presentation with respect
to the key items in optimization problems, the reader is referred to Nocedal and Wright (1999),
Nocedal (1992), and Bulirsch and Stoer (1980).

44



Individual Master Thesis Abrams Steven

Overview of Algorithms

The last fourty years has seen the development of many powerful optimization algorithms for
unconstrained problems of smooth functions. All algorithms require the user to specify a starting
point, denoted by x0. Beginning at this starting point, the algorithms generate a sequence of points
{xk}∞k=0 which is terminated when either no more progress is made or when a solution point is
approximated with a specified accuracy. In order to decide in which direction one moves from xk to
xk+1, the algorithm uses information on the function f at xk, and possibly some other information
regarding the other iterates and the derivatives of f in xk. There exist two fundamental strategies to
move from one iterate to the next.

In the line search strategy, the algorithm chooses a direction pk and searches along the direc-
tion from the current iterate xk for a new iterate xk+1 with a smaller function value. The distance
to move along the direction pk can be found by approximately solving the following one-dimensional
minimization problem to find a step length α:

minα f(xk + αpk), α ≥ 0.

The equation is solved approximately by consideration of a limited number of trial step lengths until
it finds one that loosely approximates the minimum of the equation. The process is repeated over
and over again.

The second algorithmic strategy is known as trust region and consists of the construction of a
model function mk using the information gathered about f . The behaviour of the model function
around xk is similar to that of the actual function f . Because the model function mk can approximate
the function f poorly when x is far from xk, one minimizes mk in a small region of xk. Therefore, the
candidate step p is obtained by solving:

minp mk(xk + p),

where xk+p lies within the trust region. Usually the trust region is a ball defined by ||p||2 ≤ ∆, where
∆ > 0 represents the trust region radius. The model function is often defined as a quadratic function
of the form:

mk(xk + p) = fk + pT∇fk +
1
2
pTBkp,

where fk, ∇fk and Bk are a scalar for the function value, vector for the gradient and matrix
representing the Hessian ∇2fk or some approximation of it, respectively with the indices referring to
the evaluation of these functions in xk. The equation is the Taylor series expansion of f around xk.
Therefore, the functions mk and f are in agreement upto order one in iterate xk.

In fact, the line search and trust region strategies differ in the order in which they choose the
direction and distance of the move to the next iterate. Indeed, line search starts by fixing the
direction pk and then identifying the appropriate distance, i.e. the step length αk. However, in trust
region optimization, first the maximum distance is chosen, i.e. the trust region radius ∆k, after which
the direction and step are selected which attain the best improvement.
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Line Search Methods

The most straightforward and obvious direction to move from xk to xk+1 in a line search approach
is the steepest-descent direction -∇fk. From all possible directions, this is the one in which f
decreases most rapidly. The latter conclusion can be verified using the Taylor series expansion of
f around xk. The steepest descent method is a line search method that moves along pk = -∇fk in
each iteration step. One of the advantages of the steepest descent direction is that it only requires
the calculation of the gradient ∇fk, but not of the Hessian matrix Bk. The disadvantage how-
ever is that the steepest descent method can be excruciatingly slow for complex optimization problems.

Another important search direction in the line search approach is the Newton direction. This
direction is derived from the second order Taylor series approximation of f(xk + p), which is equal to:

f(xk + p) ≈ fk + pT∇fk +
1
2
pT∇2fkp.

Assuming that the Hessian matrix ∇2fk is positive definite, we obtain the Newton direction by mini-
mizing the approximation with respect to p. Setting the derivative of the approximation equal to zero,
one easily obtains:

pNk = −∇2f−1
k ∇fk.

The Newton direction is reliable when the difference between the true function value f(xk + p) and
the quadratic model is not too large. The Newton direction can be used in a line search approach
when -∇2fk is positive definite. There is in contrast to the steepest descent direction, a step length
of size 1 associated with the Newton direction. The main drawback of the Newton direction is the
requirement of the Hessian matrix ∇2fk for which explicit calculation is sometimes an error-prone
and expensive process.

Quasi-Newton search directions are therefore a quite useful alternative to the basic Newton di-
rection. They do not require the explicit calculation of the Hessian matrix and use an approximation
Bk instead which is updated after each step in order to account for the additional information gained
after each iteration step. These updates make use of the fact that changes in the gradient provide
knowledge about the second derivative of f along the search direction of interest. One can proof that
(Nocedal and Wright, 1999):

∇f(x+ p) = ∇f(x) +∇2f(x)p+
∫ 1

0

[
∇2f(x+ tp)−∇2f(x)

]
pdt.

Because ∇f(.) is a continuous function, the size of the integral term is equal to o(||p||). Setting x =
xk and p = xk+1 − xk, the equation simplifies to:

∇fk+1 = ∇fk +∇2fk+1(xk+1 − xk) + o(||xk+1 − xk||).

If xk and xk+1 lie in a region near the solution x∗, i.e. the true minimum of the objective function f ,
within which∇f is positive definite, the final terms is eventually dominated by the term∇2fk+1(xk+1−
xk). Therefore, one can write:

∇2fk+1(xk+1 − xk) ≈ ∇fk+1 −∇fk.

Consequently, the new Hessian approximation Bk+1 such that the previous property of the true Hessian
is satisfied. Therefore, Bk+1 needs to satisfy the following condition, known as the secant equation:

Bk+1sk = yk,
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where sk = xk+1−xk and yk = ∇fk+1−∇fk. Typically, additional requirements on Bk+1 are imposed
such as symmetry. The initial approximation B0 needs to be specified by the user.

Two of the most popular formulae for updating the Hessian approximation Bk are the symmetric-
rank-one (SR1) formula and the BFGS formula. The SR1 formula is defined by:

Bk+1 = Bk +
(yk −Bksk) (yk −Bksk)

T

(yk −Bksk)
T sk

.

The BFGS formula is named after its inventors, Broyden, Fletcher, Goldfarb, and Shanno, which is
defined by:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
.

The Quasi-Newton search direction equals the basic Newton direction except for the replacement of
the true Hessian matrix by the Hessian approximation Bk, i.e.

pQNk = −B−1
k ∇fk.

A last class of search directions is generated by nonlinear conjugate gradient methods. They have the
following form:

pk = −∇fk + βkpk−1,

where βk ensures that the directions pk and pk−1 are conjugate. Further details regarding this approach
are omitted here.

Nelder-Mead Simplex Method

The Nelder-Mead Method is a simplex method for finding a local minimum of a function of severable
variables devised by Nelder and Mead (1965). For two variables, a simplex is a triangle, and the
Nelder-Mead method is a pattern search that compares function values at the three vertices of a
triangle. The worst vertex (at which the function evaluation is largest), is rejected and replaced
with a newly selected vertex. Consequently, a new triangle is formed and the search procedure
is continued. Therefore, a sequence of triangles is generated by the algorithm in which the size
of the triangles is reduced such that eventually the coordinates of the minimum point are found.
The algorithm can be generalized to triangles in N dimensions in order to find the minimum of
a function in N variables. The Nelder-Mead simplex method is effective and computationally compact.

We formulate the Nelder-Mead simplex method for a two-dimensional optimization problem.
Let f(x,y) be the objective function to be minimized (Note that the notation is slightly different
from the one used in the preceeding sections). The starting values constitute the three vertices of a
triangle: Vk = (xk,yk), k = 1, 2, 3. The objective function is then evaluated in the three vertices,
zk = f(xk,yk), k = 1, 2, 3. The ordered function values are given by z(1) ≤ z(2) ≤ z(3). We now
introduce the notation (Mathews and Fink, 2004):

B∗ = (x(1), y(1)) G∗ = (x(2), y(2)) W ∗ = (x(3), y(3)),

to distinguish between the best vertex, the second best and the worst vertex respectively. The con-
struction process uses the midpoint of the line segment between B∗ and G∗ defined by:

M =
B∗ +G∗

2
=
(
x(1) + x(2)

2
,
y(1) + y(2)

2

)
.
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The function decreases as we move along the side of the triangle from W ∗ to B∗, and if we move along
the side from W ∗ to G∗. Therefore it seems feasible that f(x,y) takes on smaller values at points
away from W ∗ on the opposite side of the line connecting B∗ and G∗. One chooses a test point R∗ by
reflecting the triangle through the side B∗G∗. In order to determine the test point R∗, the midpoint
M is connected with the worst point W ∗ and its length equals d. The vector point R∗ is defined by:

R∗ = M + (M −W ∗).

If the function value at R∗ is smaller compared to the evaluation of the objective function at W ∗, then
we have moved in the correct direction towards the minimum value. As the minimum can be located
just a bit further than the point R∗, one extends the line segment through M and R∗ to the point
E∗. In such a way, one obtains an expanded triangle B∗G∗E∗. The point E∗ is found by moving an
additional distance d along the line segment connecting M and R∗. The point E∗ is a better vertex
than R∗, if the function value is decreases. The formula for E∗ equals:

E∗ = R∗ + (R∗ −M) = 2R∗ −M.

If the function values at R∗ and W ∗ are the same, another test point must be selected. Perhaps the
function is smaller at M, but we cannot replace W ∗ with M since a traingle needs to be constructed.
Consider the two midpoints C1 and C2 of the line segments W ∗M and MR∗, respectively. The point
with the smaller function value is called C∗, and the new triangle is B∗G∗C∗. If the function value at
C∗ is not less as compared to the function value at W ∗, one shrinks the points G∗ and W ∗ towards
B∗. Hence, G∗ is replaced by M whereas W ∗ is substituted with P ∗, i.e. the midpoint of the line
segment joining B∗ and W ∗. In each iteration step, a new vertex point is found, which replaces
the worst vertex W ∗ at the previous iteration. More details concerning a wide variaty of numerical
optimization algorithms are found in Nocedal and Wright (1999), and Mathews and Fink (2004).

The Nelder-Mead Simplex Method is implemented as default optimization procedure in the R-
function optim. In the thesis, this algorithm is used due to its good general performance. Different
optimization algorithms are implemented in the SAS procedure PROC NLMIXED. For the purposes
of this master thesis, the Quasi-Newton methods are used in order to maximize the loglikelihood
functions for the trivariate frailty models. However, the trust region method, Newton-Raphson
method with line search, Nelder-Mead Simplex Method and conjugate gradient mehods can be
requested as well in the NLMIXED procedure among several others.
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A.3. Numerical Integration

Most of the applications of integration within and outside of mathematics, involve the evaluation of
the definite integral:

I =
∫ b

a
f(x)dx.

The Fundamental Theorem of Calculus enables us to evaluate such definite integrals by first finding
an antiderivative of f . Therefore, one has spent considerable time developing several integration
techniques. However, there are in general two obstacles in the calculation of the definite integral I.

• Finding the antiderivative of f in terms of familiar functions may be impossible, or at least
extremely difficult.

• We may not have a formula for f(x) in terms of the unknown x, e.g. f(x) may be an unknown
function whose values at certain points in the interval [a, b] have been determined by means of
experimental research.

We now investigate the problem of approximating the value of the definite integral I using only the
values of f(x) at finitely many points of the interval [a, b]. Obtaining such an approximation of the
definite integral I is called numerical integration. Upper and lower sums, and in fact any Riemann
sum, can be used for these purposes, but they usually require much more calculations to yield a desired
precision then the methods that are most often used for numerical integration. Special attention is
directed towards the Trapezoid Rule, the Midpoint Rule and Simpson’s Rule for numerical integration.
All the techniques require the calculation of the values of f(x) at a set of equally spaced points in [a, b].
The computational expense involved in approximating the definite integral I is roughly proportional
to the number of function values required. Therefore, the fewer function evaluations needed to achieve
a certain degree of accuracy, the better the method that is used to approximate the integral I (Adams,
2006).

Trapezoid Rule

Consider the function f(x) and assume that the function is continuous on the interval [a, b]. In
addition, subdivide [a, b] into n subintervals of equal length h = (b - a)/n using the n+ 1 points:

x0 = a, x1 = a+ h, x2 = a+ 2h, ..., xn = a+ nh = b.

Moreover, we assume that the value of f(x) at each of these points is known:

y0 = f(x0), y1 = f(x1), y2 = f(x2), ..., yn = f(xn).

The Trapezoid Rule approximates the definite integral I by using straight line segments between the
points (xj−1,yj−1) and (xj ,yj) (1 ≤ j ≤ n) and consequently summing the areas of the resulting n
trapezoids. A trapezoid is defined as a four-sided polygon with one pair of parallel sides.

The first trapezoid has vertices (x0,0), (x0,y0), (x1,y1) and (x1,0). The two parallel sides are
vertical and have lengths y0 and y1. The perpendicular distance between them equals h = x1 − x0.
The area of the trapezoid is h times the average of the parallel sides:

h
y0 + y1

2
square units.
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We can then approximate the integral of f over any subinterval as follows:∫ xj

xj−1

f(x)dx ≈ h
yj−1 + yj

2
, (1 ≤ j ≤ n).

The original definite integral I can be approximated by the sum of these trapezoidal areas:∫ b

a
f(x)dx ≈ h

(
y0 + y1

2
+
y1 + y2

2
+ ...+

yn−1 + yn
2

)
= h

(
1
2
y0 + y1 + y2 + ...+ yn−1 +

1
2
yn

)
.

Midpoint Rule

A somewhat simpler approximation of the definite integral I is based on the partition of [a, b] into n
equal subintervals and involves forming a Riemann sum of the areas of rectangles whose height are
taken at the midpoints of the n subintervals. The Midpoint Rule is defined by:

h (f(m1) + f(m2) + ...+ f(mn)) = h

n∑
j=1

f(mj),

where mj = a + (j − 1
2)h, 1 ≤ j ≤ n. The Midpoint Rule can be used in combination with the

Trapezoid Rule in the approximation of the integral I. More details regarding this approach are
included in Adams (2006).

Simpson’s Rule

The Trapezoid Rule approximation to I results from approximating the graph of f by straight line
segments through adjacent pairs of data points on the graph. Intuitively, one would expect to do
even better if we approximate the graph by more general curves. Since straight lines are the graphs
of linear functions, the simplest obvious generalization is to use the class of quadratic functions
to approximate the graph of f by segments of parabolas. This constitutes the basis for Simpson’s Rule.

Suppose that three points are given in the plane, one on each of three equally spaced vertical
lines, spaced, say h units apart. If one selects the middle line as being the y-axis, then the coordinates
of the three points are equal to (-h,yL), (0,yM ), and (h,yR). Constants A, B, and C can be chosen so
that the parabola y = A + Bx + Cx2 passes through these points. By substituting the coordinates
of the three points into the equation of the parabola, we get (Adams, 2006):

yL = A−Bh+ Ch2

yM = A−Bh+ Ch2

yR = A+Bh+ Ch2

Therefore, one obtains A = yM and 2Ch2 = yL − 2yM + yR. Now one can easily derive that:∫ h

−h

(
A+Bx+ Cx2

)
dx =

(
Ax+

B

2
x2 +

C

3
x3

) ∣∣∣h−h
= 2Ah+

2
3
Ch3

= h

(
2yM +

1
3
(yL − 2yM + yR)

)
=
h

3
(yL + 4yM + yR) .

50



Individual Master Thesis Abrams Steven

Hence, the area of the plane region bounded by the parabolic curve, the interval of length 2h on the
x-axis, and the left and right vertical lines is equal to (h/3) times the sum of the heights of the region
at the left and right edges, and four times the height at the middle. In order to approximate the
definite interval I based on the subdivision of the interval [a, b] into an even number n of subintervals
of equal length h, we have:∫ b

a
f(x)dx ≈ h

3
y0 + 4y1 + 2y2 + 4y3 + 2y4 + ...+ 2yn−2 + 4yn−1 + yn

=
h

3

(∑
yends + 4

∑
yodds + 2

∑
yevens

)
.

The Simpson’s Rule approximation for I requires no more data than does the Trapezoid Rule
approximation, but it requires the values of f(x) at n+ 1 equally spaced points. However, in contrast
to the Trapezoid Rule, Simpson’s Rule treats the data differently by weighting successive values
differently. In general, the latter can produce a much better approximation of the definite integral I
of interest (Adams, 2006).

The methods presented above are all based on an equal subdivision of the interval [a, b]. This
restriction can be avoided using for example Gaussian approximations. Gaussian approximations
involve selecting evaluation points and weights in an optimal way such that the most accurate results
are obtained for well-behaved functions (Adams, 2006).

Adaptive Gaussian Quadrature Approximation

The principle underlying the most state-of-the-art deterministic approximations of I is Gaussian
quadrature. A quadrature rule is an approximation of the definite integral of a function, e.g. the
definite integral I as introduced earlier. A quadrature rule is most often stated as a weighted sum of
function values at specified points within the domain of integration. An n-point Gaussian quadrature
rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to give rise to an exact result
for polynomials of degree 2n− 1 or less by suitable choices for evaluation points xi and weights ωi, i
= 1, 2, ..., n. The domain for such integration is conventionally taken to be equal to [−1, 1], so that
the rule is stated as: ∫ 1

−1
f(x)dx ≈

n∑
i=1

ωif(xi).

Gaussian quadrature will produce only accurate results for the integration problem if the function
f(x) is well approximated by a polynomial function on the interval [−1, 1]. However, if the integrated
function can be written as f(x) = p(x)w(x), where p(x) is approximately polynomial of degree 2n− 1
or lower and w(x) is a known basis function, then there exist points xi ∈ [−1, 1] and alternative weights
ω
′
i associated with each point xi such that:∫ 1

−1
f(x)dx =

∫ 1

−1
p(x)w(x)dx ≈

n∑
i=1

ω
′
ip(xi).

These points and weights only depend on a, b and the basis function w(x). Infinite intervals and
semi-infinite intervals can be treated through appropriate transformation of the variable to a finite
interval. Different choices for the basis function or weighting function w(x) can be made such that
one obtains Gauss-Legendre quadrature, Chebyshev-Gauss quadrature, Gauss-Hermite quadrature,
Guass-Jacobi quadrature, etc. For many purposes Gauss-Legendre quadrature, with w(x) = 1, is
adequate to evaluate the integral of interest. Moreover, it can be shown (Press et al., 2007) that
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the evaluation points are just the roots of a polynomial belonging to a specific class of orthogonal
polynomials. Gaussian quadrature is preferred over the traditional methods presented earlier since
they have fewer function evaluations for a given order. With Gaussian quadrature the weights and
evaluation points are determined such that the integration rule is exact to as high an order as possible.
As mentioned in the preceeding paragraph, the evaluation points xi, i = 1, 2, ..., n, are the roots of
the Legendre polynomial of degree n in case of Gauss-Legendre quadrature. The weights ω

′
i, i = 1,

2, ..., n, are called the Christoffel weights. By transforming the function variable, one can derive an
estimate for the definite integral I on a more general interval [a, b] by means of the Gauss-Legendre
integration formula presented previously.

In applied mathematics, adaptive quadrature is the process in which the definite integral of a
function f(x) is approximated using the static quadrature rules introduced above on adaptively
refined subintervals of the integration domain. Generally, adaptive algorithms are just as efficient
and effective as traditional algorithms for well-behaved integrands, but they are also effective for
badly-behaved integrands for which traditional algorithms fail. In general, an approximation Q of the
integral I by means of a static quadrature rule gives rise to an error estimate. If the error estimate is
larger than the tolerance, one subdivides the interval in two parts and the quadrature rule is applied
on the two intervals. Either the initial estimate or the sum of recursively computed halves is returned.
A more thorough explanation on the fundamental aspects of numerical integration is incorporated in
Press et al. (2007). The Adaptive Gaussian Quadrature Approximation is used for the approximation
of the definite integrals within this thesis and implemented using the integrate function in R.
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Appendix B

B.1. Derivation of the probability density function for right-censored
survival data

Let H denote the cumulative distribution function of the observation times Tj = min{T ∗j ,Cj}. In
survival analysis, one often relies on the assumption of independence between the event times and the
censoring times. Therefore, under the independence assumption, the cumulative distribution function
H is equal to:

H(tj) = P (min{T ∗j , Cj} ≤ tj) = 1− P (min{T ∗j , Cj} > tj)

= 1− P (T ∗j > tj , Cj > tj) = 1− (1− F (tj))(1−G(tj))

Furthermore, let H0 and H1 denote subdistribution functions of the observation time Tj defined by:

Hk(tj) = P (Tj ≤ tj ,∆j = k), k = 1, 2.

The following relationship holds for the subdistribution function H1 under the assumption of inde-
pendence between event and censoring times:

H1(tj) = P (Tj ≤ tj ,∆j = 1) = P (T ∗j ≤ tj , T
∗
j ≤ Cj)

=
∫
t∗j≤tj ,t∗j≤cj

∫
f(t∗j )g(cj)dt

∗
jdcj

=
∫
t∗j≤tj

f(t∗j )

(∫
t∗j≤cj

g(cj)dcj

)
dt∗j

=
∫
t∗j≤tj

f(t∗j )(1−G(t∗j ))dt
∗
j

An analogue result can be obtained for H0, namely:

H0(tj) =
∫
cj≤tj

g(cj)(1− F (cj))dcj .

Consequently, for the corresponding density function h0 and h1, we have h0(tj) = dH0(tj)/dtj =
g(tj)(1-F (tj)) and h1(tj) = dH1(tj)/dtj = f(tj)(1-G(tj)). The joint probability density function of
the right-censored survival data, represented by the random vector (Tj ,∆j) is given by:

f(tj , δj) = δjh1(tj) + (1− δj)h0(tj)

= h1(tj)δjh0(tj)(1−δj

= (f(tj)(1−G(tj)))δj (g(tj)(1− F (tj)))1−δj .
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B.2. Laplace transform of a gamma distributed random variable

The Laplace transform is defined in equation (3.4) for a continuous random variable X. Let X follow
a gamma distribution with shape parameter k and inverse scale parameter ψ. In that case, one has:

L(u) = E(e−uX) =
∫ ∞

0
e−uxf(x)dx,

where f(x) equals the probability density function of the random variable X (see Section 3.4.4). Using
partial integration and induction, one can calculate the previous definite integral as follows:

L(u) =
∫ ∞

0
e−ux

ψk

Γ(k)
xk−1e−ψxdx

=
ψk

Γ(k)

∫ ∞

0
xk−1e−(ψ+u)xdx

=
ψk

Γ(k)

(
−1

(ψ + u)
xk−1e−(ψ+u)x |∞0 +

k − 1
(ψ + u)

∫ ∞

0
xk−2e−(ψ+u)xdx

)
=

ψk

Γ(k)

(
k − 1
ψ + u

∫ ∞

0
xk−2e−(ψ+u)xdx

)
= ...

=
ψk

Γ(k)

(
(k − 1)(k − 2)...2.1

(ψ + u)k−1

∫ ∞

0
e−(ψ+u)xdx

)
=

ψk

Γ(k)

(
(k − 1)!
(ψ + u)k

(−e−(ψ+u)x |∞0 )
)

=
ψk

(ψ + u)k

Therefore, the above expression reduces to:

L(u) =
(
ψ + u

ψ

)−k
=
(

1 +
u

ψ

)−k
.

The latter expression corresponds to the one presented in equation (3.10).
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B.3. Laplace transform of an inverse Gaussian distributed random
variable

The Laplace transform of an inverse Gaussian distributed random variable X is derived using the
probability density function f(x) in equation (4.20). The Laplace transform is defined as:

L(u) = E(e−uX) =
∫ ∞

0
e−uxf(x)dx.

The Laplace transform reduces to (Wienke, 2010):

L(u) =
∫ ∞

0
e−ux

√
ζ√

2πx3
e
− ζ

2φ2x
(x−φ)2

dx

=
∫ ∞

0

√
ζ√

2πz3
e
− (ζ+2φ2u)x2−2φζx+ζφ2

2φ2x dx

=
∫ ∞

0

√
ζ√

2πz3
e
−x

2
(ζ+2φ2u)

φ2 + ζ
φ
− ζ

2xdx

= e
−

ζ

√
1+

2φ2u
ζ

φ
+ ζ

φ

∫ ∞

0

√
ζ√

2πz3
e
− ζx

2

1+
2φ2u

ζ

φ2 +
ζ

√
1+

2φ2u
ζ

φ
− ζ

2xdx

The following relationship is used to simplify the above expression:

−ζx
2

1 + 2φ2u
ζ

φ2
+
ζ
√

1 + 2φ2u
ζ

φ
− ζ

2x
= − ζ

2 φ2

1+ 2φ2u
ζ

x

x− φ√
1 + 2φ2u

ζ

2

.

Indeed,

√
ζ√

2πz3
e
− ζx

2

1+
2φ2u

ζ

φ2 +
ζ

√
1+

2φ2u
ζ

φ
− ζ

2x =
√
ζ√

2πz3
e

− ζ

2
φ2

1+
2φ2u

ζ

x

x− φ√
1+

2φ2u
ζ

2

is the probability density function of an inverse Gaussian distributed random variable such that the
definite integral from zero to infinity of this expression equals one. Therefore, the expression for the
Laplace transform simplifies to:

L(u) = e
−

ζ

√
1+

2φ2u
ζ

φ
+ ζ

φ

which corresponds to the expression in equation (4.21).
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Appendix C

C.1. Additional Simulation Results

Additional simulation results are provided here with respect to the same parameter setting as
described in Section 6.2 while increasing the sample size of the simulated data sets to 10000
instead of 2890. The idea is to compare the averaged estimates and emperical standard error esti-
mates with those obtained in the original situation. The number of simulated data sets equals ns = 50.

TTE RC CS
Parameter True Value Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

a1 0.3286 0.3324 (0.0096) 0.3290 (0.0083) 0.3128 (0.0279)
b1 -0.0226 0.0086 (0.0043) 0.0013 (0.0067) -0.0059 (0.0128)
a2 0.1173 0.1282 (0.0023) 0.1323 (0.0023) 0.1264 (0.0038)
b2 -0.0665 -0.0126 (0.0019) -0.0182 (0.0022) -0.0143 (0.0030)
a3 0.0104 0.0102 (0.0003) 0.0104 (0.0003) 0.0104 (0.0006)
b3 0.0258 0.0278 (0.0014) 0.0275 (0.0035) 0.0283 (0.0078)
σ2

1 0.5505 0.6775 (0.0490) 0.6268 (0.0555) 0.5365 (0.1407)
σ2

2 0.0507 0.0472 (0.0190) 0.0346 (0.0167) 0.0283 (0.0235)
σ2

3 0.6251 0.7117 (0.0589) 0.7289 (0.1935) 0.7928 (0.4472)
ρ12 0.2981 0.2419 (0.0577) 0.2114 (0.0651) 0.1940 (0.1134)
ρ13 0.9363 0.8167 (0.0353) 0.8585 (0.0774) 0.8302 (0.1421)
ρ23 0.2842 0.2097 (0.0520) 0.1961 (0.0622) 0.1767 (0.1009)

In general, the same conclusions hold as those stated in Chapter 6 with respect to the amount of
information lost by turning from TTE data to RC data, and consequently to CS data. In addition,
the empirical standard error estimates are found to be somewhat smaller as those included in Table
6.5. Of course, this is what we would expect if the sample size of the simulated datasets is increased.
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C.2. Comparison between SIR and SIRS Models

The parameter estimates and estimated standard error estimates obtained from fitting the univariate
SIR and SIRS gamma frailty models to simulated current status data (see Section 6.3) are included
in the following table. The current status data is generated under the assumption of an SIRS and
SIR infection process, respectively for the disease under investigation. The Gompertz baseline force
of infection with parameters a1 = 0.3286 and b1 = -0.0226 is used in both cases. The frailty variance
is assumed to be equal to 0.2. Under an SIRS infection process, the replenishment rate σ is taken
equal to 0.05 for both simulation sets. The simulated datasets have a sample size equal to N = 10000.

SIRS CS data SIR CS data
Para- True SIRS model SIR model True SIRS model SIR model
meter Value Estimate (s.e.) Estimate (s.e.) Value Estimate (s.e.) Estimate (s.e.)
a1 0.3286 0.3447 (0.0449) 0.5328 (0.0579) 0.3286 0.2936 (0.0220) 0.2943 (0.0203)
b1 -0.0226 -0.0264 (0.0032) -0.5051 (0.0558) -0.0226 -0.0245 (0.0176) -0.0241 (0.0153)
σ 0.0500 0.0413 (0.0075) - 0.0000 3.5e-9 (5.5e-7) -
σ2
f 0.2000 0.3180 (0.2051) 0.0003 (0.0108) 0.2000 0.1040 (0.1210) 0.1078 (0.1049)

AIC 12347.1 12913.2 1720.5 1718.5

As stated earlier, the SIR model describes the dynamics of an SIRS infection rather poorly
such that the more complex SIRS model seems worthwhile to consider. Moreover, the SIRS model
is also capable of fitting the univariate SIR simulation data while estimating the replenishment
rate almost equal to zero. These observations are in favor of the SIRS model in the situation of
nonimmunizing infections following an SIRS transmission model.
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