
De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee universiteiten in twee landen: 
de Universiteit Hasselt en Maastricht University

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

2010
2011

FACULTY OF SCIENCES
Master of Statistics: Epidemiology & Public Health
Methodology

Masterproef
Statistical analysis of the spatial symmetry of periodic
vegetation patterns in semi-arid lands

Promotor :
Prof. dr. Christel FAES

Promotor :
Prof. OLIVIER LEJEUNE

Vicky Dupont 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Epidemiology & Public Health Methodology



De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee universiteiten in twee landen: 
de Universiteit Hasselt en Maastricht University

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

2010
2011

FACULTY OF SCIENCES
Master of Statistics: Epidemiology & Public Health
Methodology

Masterproef
Statistical analysis of the spatial symmetry of periodic
vegetation patterns in semi-arid lands

Promotor :
Prof. dr. Christel FAES

Promotor :
Prof. OLIVIER LEJEUNE

Vicky Dupont 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Epidemiology & Public Health Methodology





Abstract

This master thesis was written in light of the ongoing research that is concerned with the existence and

expanse of spatially periodic distributions of plants in arid and semi-arid areas. Since the availability

of aerial photographs in the 1940s, many biological models have been developed to try to explain

the spatial arrangement of these periodic vegetation patterns. Recent models predict the following

sequence of patterns for increasing aridity: gaps of bare ground in a dense vegetation cover, alternat-

ing stripes of vegetation and bare ground, and spots of vegetation surrounded by bare ground. Most

interestingly, these models predict a hexagonal symmetry in these gapped and spotted patterns. This

statement has been investigated through the use of spatial statistics. In addition to the near-hexagonal

symmetry hypothesis, other near-regular symmetries were also investigated (rhomboidal, square and

triangular). The statistical analysis was performed on a gapped vegetation pattern in Kenya. The

Complete Spatial Randomness hypothesis was rejected in favour of the regularity alternative. Of the

investigated nearly regular point process models, the rhomboidal with angle 52◦ was the most likely

point process to describe the spatial structure in the observed data.

Keywords: Complete Spatial Randomness; Hexagonal symmetry; Nearly regular point process;

Spatial point pattern.
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Chapter 1

Introduction

This master thesis deals with a scientific problem in the field of ecology and biogeography. More

specifically, this research is concerned with the existence and expanse of spatially periodic distributions

of plants in arid and semi-arid areas. The statistical analysis of these periodic vegetation patterns

relates to the subdiscipline of spatial statistics. This section gives a thorough introduction on the

background and motivation of the research. The goal of the thesis is put forward as well as the

proposed approach to the scientific problem. Finally, the outline of the structure of this thesis is

provided.

1.1 Background and motivation of the research

Since the availability of aerial photographs in the early 1940s, many amazingly regular patterns in

the vegetation of arid and semi-arid areas have been revealed all over the world. These vegetation

patterns typically have wavelengths ranging from tens to hundreds of metres and can spread over ex-

tensive areas (up to several square kilometres), making them undetectable at ground level. Macfadyen

(1950a,b) was the first to describe this phenomenon in British Somaliland. Since then vegetation

patterns have been reported in several arid and semi-arid regions of the African, American and Aus-

tralian continents. These regions are characterised by climates where the potential evapotranspiration

substantially exceeds the mean annual precipitation.

(a) Gaps of bare soil (b) Labyrinth stripes (c) Spots of vegetation (d) Tiger bush

Figure 1.1: Periodic vegetation patterns.

The first discovered patterns were made up of stripes of vegetation alternating periodically with

sparsely vegetated areas or even bare ground. They were typically found on gently sloped terrains

with a dominant orientation, generally perpendicular to the ground slope. By the resemblance of a

tiger’s coat markings, these patterns were named tiger bush (Clos-Arceduc, 1956). General theory

1



CHAPTER 1. INTRODUCTION 2

for these spatially periodic patterns is provided by self-organisation theory. Early explanations were

based on water redistribution from bare areas to vegetated stripes through run-off (Thiéry et al., 1995;

Klausmeier, 1999). However, these explanations postulate that anisotropy caused by the ground slope

is necessary for pattern formation and were unable to explain the latter discovered spotted patterns

which occurred on flat terrains. Other more recent models, that are also based on the movement of

water, have been developed by Rietkerk et al. (2002); Meron et al. (2004). The occurrence of banded

patterns in the immediate vicinity of spots established the need for a unified understanding of this pat-

terning phenomenon. A recent explanation by Lefever & Lejeune (1997); Lefever et al. (2009) seems to

progress towards this unified framework. They pose that pattern formation is based on plant-plant in-

teractions. This thinking originates from the observation that the vegetation patterns are not specific

to a particular kind of vegetation or soil. Regular patterns arise from an interplay between short-range

facilitative interactions and long-range inhibitory interactions between plants. These interactions are

supposed to be mediated by limiting resources, more specifically water. In isotropic environments,

these models predict a sequence of spatially periodic patterns which are for increasing aridity: gaps

of bare soil (Fig. 1.1(a)) in a dense vegetation cover , alternating stripes of vegetation and bare soil

with no dominant orientation, i.e. labyrinths (Fig. 1.1(b)), and spots of vegetation (Fig. 1.1(c)) that

finally ends in a desert. These models also predict that anisotropic factors, such as a ground slope

lead to a shift from the aforementioned patterns towards stripes with a dominant orientation (tiger

bush) (Fig. 1.1(d)). Figure 1.2 shows the predicted sequence of patterns for increasing aridity level

and increasing ground slope. The vegetation density is represented by grey scale levels (dark: high

density, light: low density).

Figure 1.2: Continuous prediction of models for increasing aridity and ground slope (Deblauwe et al.,
2011).

A special feature of these models is that they predict spots and gaps arranged in a hexagonal lattice.

However, this hexagonal symmetry is rarely detected in the field and observed vegetation patterns

are expected to be far from this asymptotic structure. Possible reasons could be that environmental

anisotropies related to the soil, vegetation or climate have destabilised the hexagonal structure or that

not enough time has passed to allow for the emergence of a clear hexagonal symmetry. In this setting,

questions arise whether observed vegetation patterns (spots or gaps) actually tend towards a structure

of hexagonal symmetry as predicted by these models. And if so, how far away are they from perfect

hexagonal symmetry.
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1.2 Goal of the thesis

This master thesis investigates the theoretical prediction of the formation of gaps of bare soil or

spots of vegetation according to a hexagonal lattice. Spatial point pattern analysis provides methods

for exploring and analysing spatial structures. Spatial descriptive measures give primary insights

into the behaviour of point patterns, and give further rise to the development of tests to verify any

hypothesised point process model. Initial interest is in testing Complete Spatial Randomness against

the alternative hypothesis of regularity. This is done by comparing some of the descriptive measures

for the observed point pattern to Monte Carlo simulations of a homogeneous Poisson point process. In

case of rejection of the null hypothesis in favour of the alternative, further analyses are conducted with

respect to the expected hexagonal symmetry. However, since perfect hexagonality is never achieved

in reality, a sampling mechanism for near-hexagonal symmetry is developed. Simulations from such

a sampling mechanism should represent point patterns that arose from a perfect hexagonal lattice

by adding a certain amount of noise. These simulations can then be used to test the hypothesis of

near-hexagonal symmetry and to derive useful parameters that can serve as deviation indices from

perfect hexagonality.

1.3 Approach and outline of the thesis

Chapter 2 will elaborate on the scientific and statistical methods used. First, the general methodology

of spatial point processes is outlined. Further, several summary characteristics are explained, followed

by some edge correcting techniques. Also, the properties of the random, nearly hexagonal and some

other nearly regular point processes are explained. After elaborating on the estimation of parameters

and hypothesis testing, the chapter ends with an overview of the software used to perform the analyses.

The data under research and the results of the analyses are presented in Chapter 3. This master

thesis ends with the main conclusions, followed by a discussion of the conducted analyses and further

recommendations in Chapter 4.



Chapter 2

Methods on Spatial Point Processes

2.1 Basic concepts

A spatial point process is a random collection of points falling in some d-dimensional space (most often

2- or 3-dimensional). These points represent the locations of an event in space. In practice, one often

has only a single realisation of such a spatial point process, which is called a spatial point pattern.

Spatial point patterns are defined within a bounded observation window, which can be a rectangle or

any polygon. Most often the observed point pattern is only a sample of a pattern that is much larger.

Examples of spatial point patterns are positions of trees or plants (ecology), epicentres of earthquakes

(seismology), locations of stars (astronomy), home locations of infected individuals (epidemiology) ...

. The goal of point process statistics is to analyse the geometrical structure of these point patterns,

either by describing the geometrical properties of the pattern or by defining a suitable point process

model for the pattern. These models try to describe the mechanism behind the generation of the

observed point patterns.

Two main assumptions are made throughout this report: stationarity and isotropy. A stationary

point process is a point process that is invariant to translations in the d-dimensional space, i.e. any

relationship between two points depends only on the points’ relative positions, not on the point

locations. A point process is called isotropic if it is invariant to rotations about the origin. A point

process that is both stationary and isotropic is called motion-invariant.

2.2 Summary characteristics

Typically, main interest is in detecting whether a point pattern behaves randomly, since this would

mean that no interactions exist between the points in the point pattern. This state is referred to

as Complete Spatial Randomness (CSR) (see Section 2.4.1). However, more interestingly would be

when the point pattern deviates from this random nature, either by exhibiting regularity among the

points or by forming clusters of points. In order to obtain knowledge about the spatial arrangement of

point patterns, summary characteristics that describe the geometrical properties of point patterns are

needed. From these summary characteristics it is possible to not only obtain qualitative knowledge

about the spatial structure of point patterns, but also to quantify them for specific point pair distances.

The ones discussed here are applicable for stationary point patterns observed in a 2-dimensional space.

Summary characteristics can be either numerical or functional. Numerical characteristics are single

4



CHAPTER 2. METHODS ON SPATIAL POINT PROCESSES 5

numbers, while functional characteristics are usually defined in function of a distance r. In addition,

summary characteristics can be defined for either points or locations. Points refer to the observed

points in the point pattern, whereas locations refer to all possible points that could be generated by

the point process in the observation window.

2.2.1 Intensity

The mean behaviour of a stationary point process is described by the intensity λ, also called point

density and is defined according to

E[# points in B] = λ area(B),

i.e. the expected number of points in any subset B of the observation window W is equal to the

intensity λ times the area of the subset B. A standard unbiased estimator of the intensity can be

calculated from the observation window W by

λ̂ =
# points in W

area(W )
. (2.1)

Many other intensity estimators exist, some solving the issue of uncountable patterns or others that

are adapted to some edge-corrected estimator of another summary characteristic. Since these will not

be explicitly used here, the interested reader is referred to Illian et al. (2008).

2.2.2 Distributional indices

Distributional indices are numerical characteristics which describe the distribution of certain properties

allocated to each point or location. These properties are referred to as marks, denoted by m(x). This

mark is calculated from a local neighbourhood of x, which is either determined by the k nearest

neighbours or by a disc of radius r. Most indices are defined in function of the expected mark for a

random point or location x, denoted by Ex[m(x)]. This expectation is estimated as the mean mark

over all points or locations in the observation window W ,∑
xm(x)

# points or locations in W
. (2.2)

When locations instead of points are considered, a random set of test locations are used in the esti-

mation.

Aggregation or Clark-Evans index

The marks in the Clark-Evans index (Clark & Evans, 1954) are equal to the nearest neighbour dis-

tances. The index is defined as

CE = 2
√
λEx[d(x)] (2.3)

where Ex[d(x)] is the expected distance from a random point x in the point pattern to its nearest

neighbour. The Clark-Evans index was originally developed to test for CSR. Therefore, the expected
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nearest neighbour distance is standardised according to the nearest neighbour distance expected under

CSR, which is equal to 1/(2
√
λ). Therefore a CSR process is characterised by CE = 1.

Mean-direction index

The mean-direction index considers the vectors pointing from a random point x to its k nearest

neighbours. These vectors are standardised to each have length 1. For a random point x in the point

pattern, the mark is defined as the length of the sum of its unit vectors,

Rk(x) = |e1(x) + e2(x) + ...+ ek(x)|

for a fixed number of neighbours k. If two vectors are pointing in the exact opposite direction,

they cancel out in the sum. The sum becomes maximal when all unit vectors would point in the

same direction. The mean-direction index is simply the expectation of Rk(x), denoted by Ex[Rk(x)]

(Corral-Rivas, 2006). The mean-direction index is useful in identifying regular patterns, since then

each vector would match with a vector pointing in the exact opposite direction.

Degree of hexagonality

The degree of hexagonality aims at detecting a regular hexagonal lattice in the plain. Illian et al.

(2008) defines the mark of a random point x in the point pattern by

H6(x) =

√√√√√
1 +

6∑
j=2

cos 6βxj

2

+

 6∑
j=2

sin 6βxj

2

where i =
√
−1 and the angles βxj are the clockwise angles between a fixed reference unit vector

e1(x) and all other unit vectors ej(x) (j = 2, ..., 6). If the angles are integer multiples of 60◦, then

6βxj is equal to an integer multiple of 360◦. In this case the sine equals 0 and the cosine equals 1,

yielding H6(x) = 6 in case of hexagonality. The degree of hexagonality is again defined in function

of the expectation, Ex[H6(x)]/6. This index takes the value 1 for a hexagonal lattice. However, since

the index does not account for the distances to the nearest neighbours (which needs to be equal for

hexagonality), other structures such as clustered patterns also take values for Ex[H6(x)]/6 near 1.

Topological characteristics

Based on what is called the Voronoi tessellation, several useful characteristics can be defined. In

general, tessellations divide the plane into non-overlapping polygons. The Voronoi tessellation plays

an important role in spatial point pattern analysis. Define the nearest neighbour of a random point x

in the plane by n(x). The Voronoi tile T (x) of a random point x in the point pattern is defined as

T (x) = {all locations y ∈W for which n(y) = x} .

The Voronoi tile T (x) contains all locations in the observation window W that are closer to x than to

any other point in the point pattern. Points within a Voronoi tile have a unique nearest neighbour in

the point pattern, while points on the boundary of a Voronoi tile have two or more nearest neighbours
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in the point pattern. Figure 2.1 shows the Voronoi tessellation of a CSR pattern.

Figure 2.1: Voronoi tessellation.

Several marks can be defined to each point based on its Voronoi tile. Most commonly, these marks

are the area A(T (x)), perimeter P (T (x)) and the number of sides/vertices n(T (x)) of the Voronoi tile.

Useful characteristics are based on the mean and standard deviation of these marks. The number of

sides/vertices for each tile provides a geometrical definition for the number of neighbours of each point

in the point pattern.

In general, distributional indices are not the most informative summary characteristics in the presence

of mapped point patterns. They are aggregated in the sense that they only consider summary statistics

of the distribution. The distribution as a whole is not considered and other additional information

such as range, standard deviation and mode are not always provided. These indices merely represent

an easy way to get a quick first impression about the observed point pattern. Although these indices

are of a certain valuability, other summary characteristics need to be considered to add to a thorough

exploratory data analysis.

2.2.3 Functional characteristics

In contrast to the distributional indices, the functional summary characteristics are able to describe

the full distributions that characterise a point pattern. The main advantage is that they provide

knowledge on point interactions at different spatial scales.

Spherical contact distribution function or F -function

The spherical contact distribution function (also called the F -function) represents the probability that

there is at least one point in the point pattern that is located within a distance r from a randomly

chosen test location in the observation window W . This is equivalent to the probability that the

distance between a randomly chosen test location and its nearest neighbour within the point pattern

is less than r,

F (r) = P (d(x) ≤ r) for r ≥ 0,
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with d(x) equal the nearest neighbour distance for a randomly chosen test location x within the

observation window W . In order to estimate F (r), a random set of locations L within the window W

is considered. The F -function can then be estimated for each distance r by

F̂ (r) =

∑
x∈L I(d(x) ≤ r)

# locations in L
, (2.4)

i.e. the number of locations in the random set L which satisfy d(x) ≤ r (for which the indicator

function I(d(x) ≤ r) equals 1) divided by the total number of locations in L.

Morphological functions

Based on the spherical contact distribution function, three other important morphological functions

can be defined. They all relate to the morphological properties of the region defined by the Minkowski

addition of the point pattern with a disc of radius r (see Fig. 2.2). This Minkowski region Mr consists

of all locations that are within a distance r from an observed point in the pattern. These locations

are illustrated in Fig. 2.2 by the grey area.

Figure 2.2: Minkowski addition.

The F -function can also be interpreted as the fraction of the window W which is covered by the

Minkowski region, since this fraction equals the probability for a random test location to be within a

distance r from a point in the point pattern. The latter is exactly the definition of the F -function.

Also the fraction of the boundary length of the Minkowski region within W can be interpreted as the

probability for a random test location to be at exactly a distance r from a point in the point pattern,

which is nothing less than the density function of F (r). Both functions are normalised by the area or

boundary length fraction for non-overlapping discs, which equals λπr2 and 2λπr respectively. Denote

the normalised area fraction by

a(r) = f(r)/(λπr2) for r ≥ 0, (2.5)

where f(r) is the density function of F (r) and denote the normalised boundary length fraction by

l(r) = F (r)/(2λπr) for r ≥ 0. (2.6)
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The third function is related to the Euler or connectivity number. The specific Euler number for the

Minkowski region Mr is defined as

N(r) = lim
K↑R2

Eχ(Mr ∩K)

area(K)
for r ≥ 0

where K ↑ R2 is a sequence of growing sets K. The Euler number χ(Mr ∩K) is equal to the number

of components in the set Mr ∩K minus the number of holes in the set Mr ∩K. This function is again

normalised by the corresponding quantity for non-overlapping discs, which equals λ,

n(r) = N(r)/λ for r ≥ 0.

All three functions are equal to 1 for r = 0. For increasing r, both a(r) and l(r) decrease monotonically

to zero. Only n(r) is not necessarily monotonic, and can take on negative values. Estimators are

obtained by calculating the observed fractions of the area, boundary length and Euler number of

the Minkowski region within the observation window W . Illian et al. (2008) provides the estimation

software for these functions at Penttinen (2008).

Nearest neighbour distance distribution function or G-function

The nearest neighbour distance distribution function (also called the G-function) is quite similar to

the F -function, except that a random point within the point pattern is considered instead of a random

test location in W . Similarly, the G-function can be interpreted as the probability that there is at

least one point in the point pattern that is located within a distance r from a randomly chosen point

in the point pattern. Again, this is equivalent to the probability that the distance between a randomly

chosen point in the point pattern and its nearest neighbour within the point pattern is less than r,

G(r) = P (d(x) ≤ r) for r ≥ 0,

where d(x) equals the nearest neighbour distance for a randomly chosen point x in the point pattern.

The naive estimator for G(r) equals

Ĝ(r) =

∑
x I(d(x) ≤ r)

# points in W
, (2.7)

i.e. the number of points in the point pattern which satisfy d(x) ≤ r (for which the indicator function

I(d(x) ≤ r) equals 1) divided by the total number of points in the observation window W . The

G-function interpreted on its own can provide misleading conclusions. Consider for instance a point

pattern consisting of isolated pairs of points with an interdistance of d. The observed G-function for

this clustered point pattern cannot be distinguished from a regular lattice with grid cells of side length

d. The G-function will conclude regularity in both cases. It is therefore advisable to always consider

the intensity in addition to the G-function, since then it would be possible to differentiate between

the two point patterns.
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Ripley’s K-function

All previous mentioned summary characteristics were of first-order, i.e. they refer to properties that

relate to single points. Ripley’s K-function is a second-order characteristic which refers to properties

that relate to pairs of points. Many argue that second-order characteristics are more powerful to

describe a point pattern. The distributional indices provide only aggregated information on point

interactions that are confined to a local neighbourhood. Also, the G- and F -function give little or no

information on points beyond the nearest neighbour. Although, second-order characteristics give more

insights into the correlations among the points, previous discussed summary characteristics should still

be considered as they explain other worthwhile aspects of a point pattern, that cannot be derived from

second-order characteristics.

Ripley’s K-function is defined as the expected number of other points located within a distance r from

a random point in the point pattern divided by the intensity,

K(r) = Ex[# points within a distance r from x]/λ for r ≥ 0.

The estimator for the K-function can be written in function of the number of pairs of points in the

point pattern that lie within a distance r from each other (for which the indicator function I(dij ≤ r)
equals 1),

K̂(r) =
1

λ̂2 area(W )

∑
i

∑
j

I(dij ≤ r), (2.8)

where dij represents the distance between the ith and the jth point in the point pattern.

Remark. It should be noted that not one summary characteristic describes a point pattern completely.

Each characteristic describes different aspects of the point pattern and therefore contains valuable

information. Consequently, hypothesis tests based on these summary characteristics can only accept

or reject the null hypothesis with respect to the described behaviour. A typical point pattern analysis

investigates several summary characteristics in order to draw an overall conclusion about the point

pattern.

2.3 Edge corrections

Since the observed point pattern is restricted to a sample of a possibly much larger pattern, summary

characteristics as introduced in Section 2.2 suffer from edge effects. In the absence of extra points

outside the observation windowW , points near the boundary ofW will introduce bias in the calculation

of summary characteristics if no edge correction mechanisms are applied. The naive estimators in

Section 2.2 are adjusted with weights in order to alleviate the bias. In what follows, the most commonly

used edge corrections will be explained shortly. These involve no edge correction, the border method,

the nearest neighbour edge correction and the second-order edge corrections.

If both the observation window and the number of points are large, no edge correction is necessary.

The bias introduced as such will only be minor and therefore edge effects can be ignored.

First-order summary characteristics typically use only the few neighbours that are located within a
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distance r from each point in the point pattern. Therefore, considering only those points located at

least a distance r away from the border of the window corrects for the bias. In Fig. 2.3(a) only those

points crossed in red would be considered in the estimation. This edge correction is called the border

method. The same method is sometimes also referred to as minus or reduced sampling, explained

by the fact that only those points within a subwindow of W are considered in the estimation. This

method has however the disadvantage to discard many data points for large r.

(a) Border method (b) Nearest neighbour method

Figure 2.3: First order edge corrections.

The nearest neighbour edge correction is an improvement on the border method since it determines

for each point separately whether its nearest neighbours will be inside the window W . If the summary

characteristic makes use of the k nearest neighbours, only those points for which the kth nearest

neighbour distance (red in Fig. 2.3(b) for k = 1) is smaller than its distance to the boundary

of the window (blue in Fig. 2.3(b) for k = 1) are considered in the estimation. In Fig. 2.3(b)

these points are represented by red crosses. By this criterion large k-nearest neighbour distances are

underrepresented and therefore the considered points are weighted by the inverse of the area of the

subwindow constructed by reducing each boundary edge of W by the kth nearest neighbour distance.

This weight is large for large kth nearest neighbour distances. For a square window, this area is simply

(l − 2 ∗ kth nearest neighbour distance)2 where l is the edge length of the window.

(a) Stationary edge correction (b) Isotropic edge correction

Figure 2.4: Second order edge corrections.

The border method and the nearest neighbour edge correction are primarily applied to first-order

characteristics. Second-order characteristics will need other edge corrections in order to be unbiased.

These characteristics typically involve all pairs of points and use their interpoint distances. The
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stationary and isotropic edge corrections are constructed as such to give large weight to pairs with

a large interpoint distance. The reason for which is the underestimation of the number of pairs

with a large interpoint distance due to the bounded window. The stationary edge correction can be

applied to all stationary point processes, whereas the isotropic edge correction can only be applied

if the point process is isotropic in addition to the stationarity. The stationary or translational edge

correction assigns the weight 1/area(W ∩Wx2−x1) where Wx2−x1 represents the window W that has

been translated according to the vector x2 − x1 (Fig. 2.4(a)). If the interpoint distance is large, the

overlap will be small and therefore the weight will be large. The isotropic or rotational edge correction

assigns the weight 1/w(x1, x2), which represents the boundary length in the window W of the circle

with radius ‖x1 − x2‖ and centre x1 divided by the perimeter length of the circle, 2π‖x1 − x2‖ (Fig.

2.4(b)). Again, if the interpoint distance is large, only a small proportion of the boundary will be

inside the window, which corresponds to a large weight.

The edge-corrected estimators are constructed by weighting the summations in (2.2), (2.4), (2.7) and

(2.8).

2.4 Point process models

This section introduces the point process models underlying the hypotheses of randomness and near-

hexagonal symmetry. In addition, if the hypothesis of near-hexagonal symmetry would be rejected, it

is worthwhile to investigate other near-regular symmetries.

2.4.1 Homogeneous Poisson point process

The Poisson point process plays a central role in point process statistics. When analysing a spatial

point pattern, interest lies in the interaction that exist between the points, since they explain their

spatial arrangement. When no such interactions exist, the pattern is said to exhibit Complete Spatial

Randomness. The theoretical basis for patterns with this property is established by the homogeneous

Poisson point process. Deviations from CSR can go both ways, towards a more clustered pattern or

towards a more regular pattern. However, more complex models can be build based on combinations

of these three types of patterns (regular, CSR, clustered).

Formally, a homogeneous Poisson point process is defined by two fundamental properties (Illian et al.,

2008):

• The number of points of the point pattern in any bounded set B follows a Poisson distribution

with mean λ area(B) for some constant λ.

• The number of points of the point pattern in k disjoint sets form k independent random variables,

for arbitrary k.

The constant λ in the first property corresponds to the intensity as introduced in Section 2.2. The

second property reflects the completely random behaviour of the points. Figure 2.5 shows an example

of such a homogeneous Poisson point pattern.
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Figure 2.5: Homogeneous Poisson point pattern.

Based on the just mentioned properties, a point pattern from a homogeneous Poisson process is

simulated as follows.

• Determine the total number of points N within the observation window W by drawing a random

number from a Poisson distribution with mean λ area(W ).

• Generate N times u and v coordinates from a uniform distribution on the intervals corresponding

to the width and height of the observation window W .

For a homogeneous Poisson process, the analytical expressions of the summary characteristics are

known. For instance, under a Poisson process the following relationship exists between the mean

nearest neighbour distance δ and the intensity λ,

δ2 =
1

4λ
. (2.9)

The Clark-Evans index was developed in such a way to take the value 1 for a Poisson process. Values

larger than 1 correspond to regularity and values smaller than 1 to clustering. Although the mean

direction index and the degree of hexagonality were originally developed to detect regularity or even

more specific hexagonality, the theoretical values under a Poisson process are known and can be used,

although maybe less powerful. The mean direction index takes on the values 1.575, 1.799, 2.007,

2.193 for k = 3, 4, 5, 6 respectively. Small values indicate a regular pattern, while large values refer to

clustering. The degree of hexagonality takes the value 2.193/6 = 0.366.

The topological indices for the Voronoi tessellation of a Poisson pattern follow the formulas in table

Table 2.1.

Table 2.1: Theoretical topological indices for the Voronoi tessellation of a homogeneous Poisson pro-
cess.

Characteristic Mean Variance Standard deviation

Area λµ(A) = 1 λ2σ2(A) = 0.2802 λσ(A) = 0.5293

Perimeter
√
λµ(P ) = 4 λσ2(P ) = 0.9455

√
λσ(P ) = 0.9724

Vertices µ(n) = 6 σ2(n) = 1.7808 σ(n) = 1.3345
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The CSR F - and G-function coincide at the function FCSR = GCSR = 1 − exp(−λπr2). However,

the direction of the deviation from this function has opposite meanings for the F - and G-function. If

F̂ > FCSR or Ĝ < GCSR, the point process is more regular, while for F̂ < FP or Ĝ > GP the point

process is more clustered. Since these function coincide for the Poisson process, it is natural to define

the J-function (van Lieshout & Baddeley, 1996) as

J(r) =
1−G(r)

1− F (r)
for r ≥ 0, with F (r) < 1,

which equals 1 for a Poisson process. If J(r) ≤ 1, then the process is more clustered, while the reverse

is true for more regular processes. In essence, the J-function compares the environment of a random

point to the environment of a random location. An estimator for J(r) is constructed from estimators

for F (r) and G(r).

The morphological functions take on the following expressions in case of a Poisson process

nP (r) = (1− λπr2) exp(−λπr2),

lP (r) = exp(−λπr2),

aP (r) = (1− exp(−λπr2))/(λπr2).

Regular patterns show a larger behaviour for small r, while for larger r they decrease rapidly and

approach the Poisson process counterparts from below for increasing r. Clustered patterns show a

smaller behaviour than the Poisson process counterparts for small r. The behaviour for larger r

depends on the further spatial arrangement of the clusters.

The CSR K-function is equal to πr2. More regular patterns correspond to smaller values, and more

clustered patterns to larger values. When testing for CSR, the K-function is compared to a parabolic

curve, which makes the interpretation somewhat more difficult. Therefore, one has defined the L-

function

L(r) =

√
K(r)

π
for r ≥ 0

which is compared to the straight line r. This root transformation also has the tendency to stabilise

the variance, which had an increasing behaviour for increasing r when estimating the K-function. Note

that the L-function represents the same information as the K-function, only now with graphical and

statistical advantages. For regular patterns, L(r) < r and for clustered patterns, L(r) > r. Estimating

the L-function is done by applying the root transformation on the estimator forK. The pair correlation

function is another function derived from the K-function, but with an easier interpretation due to its

non-cumulative nature. It is defined in function of the derivative of K(r),

g(r) =
K ′(r)

2πr
.

In case of a Poisson process, g(r) equals 1. Larger values refer to a clustered process, and smaller

values to a regular process. If a distance rcorr exists such that

g(r) = 1 for r ≥ rcorr,
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then rcorr is called the range of correlation. No correlations are observed between points located more

than a distance rcorr from each other. If a distance r0 exists such that

g(r) = 0 for r ≤ r0,

then r0 is called the hard-core distance or minimum interpoint distance. Estimators for the pair

correlation function are based on a kernel smoothing method (Stoyan & Stoyan, 1994), which will not

be discussed here.

2.4.2 Nearly hexagonal point process

In geometry, a regular hexagon is a polygon with 6 edges of the same length and 6 angles of 120◦

each. In a perfect hexagonal lattice each point has 6 neighbours which are located at the vertices of a

regular hexagon that is centred at this point. Such a lattice is completely determined by the nearest

neighbour distance. For a perfect hexagonal lattice, all Voronoi tiles are regular hexagons.

For a hexagonal lattice, the following relationship holds between the nearest neighbour distance δ and

the intensity λ,

δ2 =
2√
3λ
. (2.10)

Consequently, the Clark-Evans index equals
√

2/(λ
√

3). Therefore CE will reach his maximum value

at 2
√

2/
√

3 = 2.1491. Naturally, the mean direction index with k = 6 equals 0 and the degree of

hexagonality is equal to 1. The topological indices of the Voronoi tessellation for a hexagonal pattern

are given by λµ(A) = 1,
√
λµ(P ) =

√
24/
√

3 ≈ 3.72 and µ(n) = 6. Due to its deterministic nature,

all corresponding variances are equal to zero.

By using the geometrical properties of a hexagonal lattice, the expressions for the functional summary

characteristics can be derived analytically. However, the expressions will not be given here, but will

be illustrated in Chapter 3.

In nature, a perfect hexagonal lattice is difficult to find. However, patterns exist which seem to be

almost perfectly hexagonal. A nearly hexagonal process can be simulated by allowing a deviation

in some random direction for each point in the hexagonal lattice. One should however be aware

that unobserved points located outside the window could end up inside the window by applying

this deviation. Therefore, a larger initial window than the window of interest is considered for the

hexagonal lattice. First a perfect hexagonal pattern is constructed in the enlarged window with a

random positioning relative to the window. After adding the random deviations to the lattice of

points, only those points that are located within the window of interest are considered further. The

deviations are obtained by random sampling from a bivariate symmetric normal distribution with

mean (0, 0) and variance σ2I2 (Fig. 2.6) with I2 equal to the 2× 2 identity matrix. Theoretically, the

range of possible deviations is infinite according to the normal distribution, which makes it difficult to

decide upon the size of the enlarged window. However a good choice would be to extend the window

on each side by the critical value that corresponds to the 99th percentile of the corresponding normal

distribution. Instead of defining the absolute deviation σ, it is more interesting to work with the
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relative deviation β defined according to β2/λ = σ2. Since a large intensity corresponds to a small

interpoint distance, a fixed relative deviation β0 corresponds to a small absolute deviation. Small

intensities correspond to large interpoint distances and therefore the absolute deviation for the same

β0 is larger. This approach will be useful when comparing different regular structures.

Figure 2.6: Random deviation according to a bivariate standard normal distribution N((0, 0), I2).

Figure 2.7 shows a perfect hexagonal point pattern with three random examples of nearly hexagonal

point patterns for β = 0.1, 0.2 and 0.5.

(a) β = 0 (b) β = 0.1 (c) β = 0.2 (d) β = 0.5

Figure 2.7: Nearly hexagonal point patterns.

2.4.3 Other nearly regular point processes

Nearly square point process

Geometrically, a regular square is a polygon with 4 edges of the same length and 4 angles of 90◦ each.

In a perfect square lattice each point has 4 neighbours which are located at the vertices of a regular

square that is centred at this point. For a perfect square lattice, all Voronoi tiles are regular squares.

The summary characteristics for a square lattice are derived in a similar fashion as before. Here, the

relationship between the nearest neighbour distance and the intensity becomes

δ2 =
1

λ
. (2.11)

Consequently the Clark-Evans index is equal to 2 and the mean direction index with k = 4 is equal

to 0. The topological indices become λµ(A) = 1,
√
λµ(P ) = 4 and µ(n) = 4 with zero variances.
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Other summary characteristics will be illustrated in Chapter 3. Figure 2.8 shows a perfect square

point patterns with three random examples of nearly square point patterns for β = 0.1, 0.2 and 0.5.

(a) β = 0 (b) β = 0.1 (c) β = 0.2 (d) β = 0.5

Figure 2.8: Nearly square point patterns.

Nearly triangular processes

A regular triangle is a polygon with 3 edges of the same length and 3 angles of 60◦ each. In a perfect

triangular lattice each point has 3 neighbours which are located at the vertices of a regular triangle

that is centred at this point. For a perfect triangular lattice, all Voronoi tiles are regular triangles.

The relationship between the intensity and the nearest neighbour distance is defined as

δ2 =
4

3
√

3λ
. (2.12)

Consequently the Clark-Evans index takes the value 4/
√

3
√

3 = 1.7548. The topological characteristics

become λµ(A) = 1,
√
λµ(P ) =

√
36/
√

3 ≈ 4.56 and µ(n) = 3 with zero variances. Other summary

characteristics will be illustrated in Chapter 3. Figure 2.8 shows a perfect triangular point pattern

with three random examples of nearly triangular point patterns for β = 0.1, 0.2 and 0.5.

(a) β = 0 (b) β = 0.1 (c) β = 0.2 (d) β = 0.5

Figure 2.9: Nearly triangular point patterns.

Nearly rhomboidal processes

A rhomboidal lattice is closely related to both a hexagonal lattice as a square lattice, but allows for

more flexibility in the pattern. In such a lattice, each point still has 6 neighbours as determined by the

Voronoi tessellation, but these are not necessarily located around the point with the same distance.

The lattice is constructed by reducing the 90◦ angle in a perfect square raster to an angle within the
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range (0◦ − 90◦). The initial square raster unit changes into a rhomboidal raster unit. Choosing the

angle equal to 60◦ or 90◦ corresponds respectively to the hexagonal and square lattice. Denote the

angle by ϑ. Then all Voronoi tiles are hexagons with 2 opposite angles of 180◦ − ϑ and 4 other angles

of 90◦−0.5ϑ. When ϑ lies between 0◦ and 60◦ there are only 2 nearest neighbours located at the same

distance. For ϑ between 60◦ and 90◦ there are 4 nearest neighbours located at the same distance.

When ϑ is exactly equal to 60◦, all 6 neighbours are located at the same distances, corresponding to

the hexagonal pattern.

The relationship between the intensity and the nearest neighbour distance now becomes

δ2 =
1

2λ sin(ϑ/2) cos(ϑ/2)
for 60◦ < ϑ < 90◦ (2.13)

and

δ2 =
2 sin(ϑ/2)

λ cos(ϑ/2)
for 0◦ < ϑ < 60◦. (2.14)

Consequently the Clark-Evans index is equal to
√

2/(sin(ϑ/2) cos(ϑ/2)) for angles above 60◦ and

to
√

8 sin(ϑ/2)/ cos(ϑ/2) for angles below 60◦. When the angle lies between 0◦ and 60◦, the mean

direction index with k =2 or 6 takes the value 0. When the angle lies between 60◦ and 90◦, the mean

direction index with k =4 or 6 equals 0. The behaviour of other summary characteristics is similar

to the other regular patterns for ϑ > 40◦. Angles smaller than 40◦ lead to patterns that exhibit

both clustering and regularity. These are not of interest in this context. Figure 2.10 shows a perfect

rhomboidal point pattern (angle 70◦) with three random examples of nearly rhomboidal point patterns

for β = 0.1, 0.2 and 0.5.

(a) β = 0 (b) β = 0.1 (c) β = 0.2 (d) β = 0.5

Figure 2.10: Nearly rhomboidal point patterns (70◦).

In general, each nearly regular process has two main parameters, the intensity λ and the deviation

β. The nearly rhomboidal point process has one additional parameter, the angle. For perfect regular

patterns, the intensity has a one-to-one correspondence with the nearest neighbour distance δ through

the relations in (2.10), (2.11), (2.12), (2.13) and (2.14). It is expected that the intensity will stay

rather constant upon allowing a normal deviation in the perfect regular pattern. However, the nearest

neighbour distance δ changes from a single value to a distribution of nearest neighbour distances.

Also, the mean of this distribution is expected to differ from the initial nearest neighbour distance δ

that defines the perfect regular pattern.
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2.5 Parameter estimation in point process models

The parameters as estimated from the observed point pattern help in understanding the underlying

process that constructed the observed point pattern. Typically, a point process model is characterised

by only a few parameters, since too complex models are difficult to simulate and interpret. Therefore,

the method often used in practice is the method of moments. This method tries to minimise a criterion

with respect to the model parameters. Denote these model parameters collectively by θ. This criterion

is equal to the difference between the theoretical form of a chosen summary characteristic S under

the point process model of interest (denoted by Sθ) and this summary characteristic as estimated

from the data Ŝ. The estimator θ̂ is the value θ for which Ŝ and Sθ are ’as close as possible’. A

suitable summary characteristic is one that depends on θ and is sensitive to variation in θ. It is either

known analytically or can be easily derived from simulations. Model parameters that are among the

summary characteristics explained in Section 2.2, can be estimated directly from the point pattern.

For example, when the intensity λ is a model parameter, the estimator is simply λ̂ as in (2.1), which

is consistent with the method of moments. When the model parameter cannot be directly estimated

from the data as such, one uses functional summary characteristics through the minimum contrast

method. Basically, ∫ s2

s1

|Ŝ(r)− Sθ(r)|pdr (2.15)

is minimised with respect to θ. The parameters p, s1, s2 and the summary characteristic S(r) can be

chosen arbitrarily, but common practice is to use p = 2, s1 = 0, s2 = s with s a suitable maximum

distance. Typical choices for S(r) are the L- or F -function. Many proposals about the choice for the

maximum distance s have been made. Large distances r are often not bounded within the window W

and there S(r) cannot be estimated or only with large variance. Diggle (2003) suggests that s should

not be bigger than 0.25l where l is the side length in case of a square window. In practice, the integral

in (2.15) is replaced by a sum

k∑
i=0

|Ŝ(zi)− Sθ(zi)|p (2.16)

where z0 = s1, zi = s1 + iγ (i = 1, ..., k − 1) and zk = s2 with γ = (s2 − s1)/k. As a function of θ,

the expression in (2.16) can contain many local minima. Therefore, it is not recommended to use a

automated optimisation algorithm, since then the global minimum will be missed. Instead, one often

uses a grid search on the parameters.

For a Poisson process, the theoretical function Sθ̂(r) is often known, but for many other point process

models no analytical expressions exist or are difficult to derive. These can however be estimated from

the pointwise average of the summary characteristic coming from simulations from the point process

model with fixed parameters θ. However, many simulations are needed to obtain a valid approximation

of the theoretical function. Here, ’valid’ is used in the context that enough simulations need to be

conducted as to obtain the same estimates as would be obtained when the theoretical function was

known exactly. The number of simulations needed is strongly connected to the precision by which one

wishes to estimate the parameters. The higher the precision, the more simulations are necessary.
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2.6 Hypothesis testing

Comparing the observed summary characteristic to the theoretical summary characteristic as expected

under the null hypothesis does not provide any sense of variability. Therefore, when formally testing

hypotheses, one typically uses Monte Carlo simulations. These simulations represent realisations of the

point process model underlying the null hypothesis. As such, it is possible to define which deviations

from the theoretical summary characteristic are small enough to be able to accept the null hypothesis.

Based on numerical summary characteristics

Denote the estimate of some numerical summary characteristic M by M̂ . A two-sided null hypothesis

is rejected with significance level α if

M̂ > Mα/2 or M̂ < M1−α/2.

The critical values Mα/2 and M1−α/2 can be derived through simulations of the underlying point

process model. Denote by M̂l the estimate of M for the lth simulated point pattern (l = 1, ..., k).

Then, either the observed two-sided p-value can be calculated as

p̂ =
1 +

∑k
l=1 I(M̂l > M̂)

k + 1

or the critical values corresponding to significance level α can be derived by taking the (α/2)kth high-

est and lowest value in the ordered sequence of M̂l.

When the null hypothesis is CSR, one-sided hypotheses can be tested with as alternative either clus-

tering or regularity. The CSR hypothesis is then rejected if M̂ < M1−α or M̂ > Mα in favour of the

alternatives clustering or regularity depending on the definition of the summary characteristic. Here,

Mα and M1−α are respectively the αkth highest and lowest values in the ordered sequence of M̂l.

Based on functional summary characteristics

A hypothesis test based on a functional summary characteristic can follow two main approaches: an

envelope test or a deviation test. The envelope test is based on k simulated point patterns (l = 1, ..., k)

from the point process model underlying the null hypothesis. The upper and lower limits of the α-

envelope of the summary characteristic S(r) can be derived by taking the (α/2)k lowest and (α/2)k

highest value of the sorted Ŝl(r) (l = 1, ..., k) for each r. The null hypothesis is accepted if the observed

summary characteristic Ŝ(r) lies within this envelope for each r, otherwise it is rejected. For a fixed r,

the error probability for a two-sided test equals (αk)/(k + 1). However, this error probability cannot

become smaller than 1/(k+ 1), since this would correspond to the pointwise minimum and maximum

of Ŝl(r). In literature, choices for k satisfying αk ≥ 5 are recommended (Illian et al., 2008). However

if all r are considered simultaneously, the true error probability will be larger than α. Although the

envelope test has a pointwise interpretation, it is still a popular method that is used as a visual in-

spection to test hypotheses.
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The deviation test provides a more formal and simultaneous hypothesis test. The deviation test is

based on the same integral as in (2.15). The null hypothesis is rejected if

∆̂ =

∫ s

0
|Ŝ(r)− Sθ̂(r)|pdr ≥ ∆α

where Sθ̂(r) is the theoretical summary characteristic for the point process model underlying the null

hypothesis with estimated parameter θ̂, and Ŝ(r) is the estimated summary characteristics for the

observed point pattern. The critical value ∆α can be derived from simulated point patterns from the

point process model underlying the null hypothesis. Therefore, define

∆̂l =

∫ s

0
|Ŝl(r)− Sθ̂(r)|pdr

where Ŝl(r) is the estimated summary characteristic for the lth simulated point pattern. In the same

manner as in (2.16) the integrals are replaced by a sum. Now the observed p-value and critical value

∆α can be calculated from the ordered sequence ∆̂l in the same way as for the numerical summary

characteristics.

The most commonly used functional summary characteristics to test hypotheses are the F -function,

the G-function and the L-function. The pair correlation function can also be used in the envelope test,

but is not recommended for the deviation test. It is important to note that the envelope or deviation

test should be based on a different summary characteristic than the one used for estimation. A test

result based on the same summary characteristic as the one used for estimation is expected to be too

optimistic.

2.7 Software

The software R 2.13.0 was used to define and explore point patterns, to estimate summary character-

istics, to fit point process models and to test hypotheses. The main package used was ’spatstat’ which

provides several functions for the basics of point pattern analysis. Other more complex algorithms

were programmed manually with these functions as basic elements.

As mentioned earlier Illian et al. (2008) provided a software package called Morph2D at Penttinen

(2008) in order to estimate the morphological functions.



Chapter 3

Point Pattern Analysis

3.1 Point pattern under study

Figure 3.1(a) shows the satellite image of a vegetation pattern in the sub-Saharan Sahel, more specif-

ically in Kenya with center coordinates 0◦45’N 40◦24’E. The image was obtained through Google

Earth TM on January 22th, 2006 and stretches over a square area of 2530m × 2530m (6.4 square

kilometres)). This flooded plain is vegetated with trees and shrubs and is characterised by spots of

(almost) bare ground, shown in a brighter colour in Fig. 3.1(a). The points in the point pattern (Fig.

3.1(b)) represent the centres of the spots of bare ground. The scale unit is expressed in pixels and the

pattern stretches over a square window of [0,863]×[0,863] pixels. The point pattern consists of 436

points and gives the impression of being a regular point pattern. The intensity of the observed point

pattern as estimated by (2.1) was equal to 5.85×10−4 points per square pixel (6.81×10−5 points per

square metre).

(a) Satellite image of periodic vege-
tation pattern in Kenya.

(b) Point pattern.

Figure 3.1: Data

3.2 Exploratory data analysis

Distributional indices

As recommended by Pommerening & Stoyan (2006), the nearest neighbour edge correction was used

for the distributional indices. The nearest neighbour distribution is shown in Fig. 3.2. The minimum

22
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nearest neighbour distance was equal to 3.16 pixels (37.09 metre). The largest observed distance was

equal to 49.09 pixels (143.91 metre). The mean nearest neighbour distance was found to be 35.73 pix-

els (104.75 metre). Given the observed intensity, one would have expected a mean nearest neighbour

distance of 20.67 pixels (60.60 metre) in case of a Poisson process. Larger values are an indication of

more regular patterns. The maximum distance can only be obtained with a hexagonal structure and

equals 44.43 pixels (130.25 metre). The expected mean nearest neighbour distances for a triangular

or square structure are 36.28 pixels (106.36 metre) and 41.34 pixels (121.19 metre) respectively. For

a rhomboidal structure with for example θ = 50◦ or θ = 70◦ the expected mean nearest neighbour

distances are respectively 39.91 pixels (117.00 metre) and 42.64 pixels (124.48 metre). The observed

mean nearest neighbour distance shows a deviation from the Poisson process towards a more regu-

lar structure. If the observed point pattern represents a deviation from a perfect regular structure,

its mean nearest neighbour distance will not resemble the original nearest neighbour distance in the

perfect regular structure. Therefore, based on this summary measure, one cannot decide on the most

suitable nearly regular structure.

Figure 3.2: Observed nearest neighbour distribution.

The above findings are well summarized by the Clark-Evans index, which was equal to 1.729 for the

observed point pattern. This value is larger than 1, as expected under CSR. This confirms the regu-

larity seen in the point pattern. The observed value is also smaller than those expected under perfect

hexagonal (2.149), square (2), triangular (1.755) or rhomboidal patterns (1.931 for ϑ = 50◦, 2.063

for ϑ = 70◦). The observed mean direction indices calculated over 4 and 6 neighbours is equal to

0.938 and 0.825 respectively. Both values are smaller than their CSR counterparts of 1.799 and 2.193

respectively. Both lie in the range of regular patterns, although the values still seem considerably

larger than zero. The observed degree of hexagonality is equal to 0.439 which is slightly larger than

its CSR counterpart value of 0.366. Again, the value seems to be considerably smaller than 1, as

expected under hexagonality.

Lucarini (2008) reports on the behaviour of the mean and standard deviation of the Voronoi area,

perimeter and number of vertices/sides in case of nearly hexagonal, square or triangular patterns.

Their conclusions are compared with the observed results. Since this paper did not incorporate nearly

rhomboidal point processes, they cannot be used here for comparison. The topological indices were

based on those points for which their Voronoi tile does not touch the window boundary. The Voronoi

distribution of the number of sides/neighbours is shown in Fig. 3.3.
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Figure 3.3: Observed Voronoi distribution of the number of sides/neighbours.

The mean number of neighbours was equal to 5.97. Its corresponding spread was characterised by a

standard deviation of 0.81. Although a Poisson process also has a mean number of neighbours around

6, the observed standard deviation was less than the expected value of 1.33 under a Poisson process.

The mean number of neighbours for a triangular or square pattern equals 3, respectively 4, but already

upon the slightest deviation from these structures (as introduced in Section 2.4.2), the mean number

of neighbours turns also to 6 with a spread starting from 0.93 for square patterns or 1.17 for triangular

patterns which becomes larger for larger deviations. Deviations from hexagonality start off with a

spread of zero which becomes larger for larger deviations. From β > 0.5 onwards the behaviour of the

hexagonal, square and triangular patterns are indistinguishable. The observed value of 0.81 is unlikely

to occur for nearly-triangular or nearly-square structures.

Figure 3.4: Observed Voronoi distribution of the perimeter.

The Voronoi distribution of the perimeter is shown in Fig. 3.4. The mean perimeter of the Voronoi

tiles was equal to 3.83/
√
λ with a standard deviation of 0.30/

√
λ. Both values deviate from what

is expected under a Poisson process. Nearly hexagonal patterns can take mean perimeters between

3.72/
√
λ and 4.04/

√
λ, nearly square patterns between 3.9/

√
λ and 4.04/

√
λ and nearly triangular

patterns between 4/
√
λ and 4.56/

√
λ. From β > 0.6 onwards, the three regular patterns become

indistinguishable. Again the observed value is unlikely to occur for nearly-triangular or nearly-square

patterns. The standard deviation of the perimeter shows very similar trends for all three nearly-regular

patterns and is therefore not informative in this case.
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The Voronoi distribution of the area is shown in Fig. 3.5. The mean area of the Voronoi tiles does

not provide any information since it equals 1/λ for both a Poisson process as for the regular patterns.

The observed standard deviation of the Voronoi area, 0.16/λ, is however considerably smaller than

its Poisson counterpart 0.53/λ, providing evidence against CSR. Since the behaviour of the standard

deviation for the nearly regular point processes behaves similarly, no further distinction between the

patterns can be made based on this value.

Figure 3.5: Observed Voronoi distribution of the area.

Functional summary characteristics

Figure 3.6 shows the functional summary characteristics for the observed pattern, together with the

theoretical functions under CSR, hexagonal, square and triangular pattern with the same intensity as

in the observed pattern. The rhomboidal functions are not shown here as not to overdue the figures.

For angles between 40◦ and 90◦ they behave in a similar fashion as the other curves. The F - and

G-function were corrected by the nearest neighbour edge correction, which is also most often used in

practical applications. The edge-corrected J-function combined the nearest neighbour edge-corrected

F - and G-function. Under the assumption of stationarity and isotropy, the isotropic edge-correction

was used for the K-function, the L-function and the pair correlation function. Unbiased estimators for

the morphological functions were obtained through minus sampling as stated by Illian et al. (2008).

Figures 3.6(a) and 3.6(b) show the F - and G-function. Deviations from CSR are in the direction of

a regular pattern. The G-function shows a steep increase in the range of 25 to 45 pixels (73 to 132

metre), corresponding to a small spread around the mean nearest neighbour distance.

In comparing Figures 3.6(a) and 3.6(b), it is clear that G(r) ≤ F (r), which again is similar to the

behaviour of a regular pattern. This conclusion is better visualised by the J-function in Fig. 3.6(c),

which shows an overall upward deviation from the value 1 (CSR), towards regularity.

The three morphological functions are shown in Figures 3.6(d), 3.6(e) and 3.6(f). Again, the extensive

period of close to 1 values represent the hard-core distance that is present in the observed data

pattern. Regular patterns start off above their CSR counterparts and afterwards exhibit a steep

decrease before they turn to zero. For moderate r both l(r) and n(r) take on values lower than their

Poisson counterparts, where n(r) typically takes on large negative values representing the number of

holes contributed for by one point. All the observed functions lie in between the triangular and square

functions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: Observed functional summary characteristics compared to the theoretical summary char-
acteristics under perfect regularity.

Figures 3.6(g) and 3.6(h) are able to show the long-range spatial interactions among the points in the

point pattern. The observed point pattern shows the typical behaviour of a regular pattern. Initially

the curve stays close to zero, corresponding to a hard-core distance, subsequently the curve will stay

below its CSR counterpart for as long as the range of correlation stretches. Here, interactions play a

role up to 150 pixels (440 metre), although the difference becomes rather small once past 80 pixels

(235 metre).

Figure 3.6(i) shows the pair correlation function. Initially the curve shows a confusing behaviour

concerning the hard-core distance. This behaviour is however due to a few single points that disturb

the overall behaviour of the pattern and have their impact on the summary characteristics. One can

conclude that there is a hard-core distance, but based on the pair correlation function it is difficult to

determine its exact value. The pair correlation function is based on a smoothed kernel that is highly

dependent on a smoothness parameter. Especially for small distances the pair correlation function
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can be inaccurate. The subsequent behaviour of the pair correlation function is typical for a highly

regular point pattern. The peaks correspond to the most frequent distances between the points and

its nearest neighbours. In the near vicinity of a random point, points are located at a distance around

41 pixels (120 metre). Further on, additional peaks occur at 77.5, 111, 146 and 180 pixels (227, 325,

428 and 528 metre). The peak sequence shows a remarkable consistent regularity, since the peaks’

interdistance are roughly consistent around 35 pixels (100 metre). The troughs correspond to the

empty space in between the bands of points located at nearly the same distance from the typical

point. The regular counterparts of the pair correlation function are shown by the crosses. Very high

narrow peaks are expected at the location of the crosses. Many more peaks are expected in the case

of a square or triangular lattice than that are observed.

In general, all functional summary characteristics lie in the region characterised by regular patterns. To

assess whether the CSR hypothesis can be rejected in favour of regularity, formal tests are conducted

in Section 3.3. For nearly regular patterns, almost all functions lie in between those corresponding

to their perfect regular structure and the CSR counterpart. As the deviation from perfect regularity

increases, the functions tend smoothly to the function corresponding to CSR. Therefore, it is very

unlikely that the observed point pattern behaves like a nearly triangular point process. However,

based on this exploratory data analysis no further conclusions can be drawn on the most suitable

near- regular symmetry. Formal tests are applied in Section 3.4 and Section 3.5.

3.3 Complete spatial randomness

Estimation

The CSR hypothesis is characterised by the homogeneous Poisson point process with one model

parameter, the intensity λ. As explained in Section 2.5 this intensity can be estimated directly from

the observed point pattern by (2.1). The estimate for λ̂ is equal to 5.85×10−4 points per square pixel.

The following hypothesis tests are based on 1000 Monte Carlo simulations of a homogeneous Poisson

point process with this estimate.

Tests based on distributional indices

The distributional indices provide a quick and easy way for CSR hypothesis testing. If the observed

value is larger than the one-sided 5% critical value, the CSR hypothesis is rejected in favour of the

regularity alternative at significance level 5%. The observed Clark-Evans index was equal to 1.729,

which is larger than the 5% critical value 1.051. The mean direction index with 4 and 6 neighbours

was also considered. Here, the observed value based on 4 neighbours was equal to 0.938, which is

smaller than the 5% critical value 1.891. Based on 6 neighbours the observed value was equal to 0.825,

which is again smaller than the 5% critical value 2.320. All tests reject the null hypothesis of CSR in

favour of regularity.

Envelope tests

Figure 3.7 shows the 5%-envelopes of the different summary characteristics for 1000 simulations. The

red curve shows the theoretical function in case of a Poisson process. None of the observed summary
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characteristics lies completely within the envelopes. The morphological summary characteristics were

not considered here due to computational difficulties in obtaining the area, boundary length or Euler

number functions for 1000 simulated patterns.

Figure 3.7: 5%-envelopes of the functional summary characteristics under Complete Spatial Random-
ness.

Deviation tests

The deviation test provides formal critical values for the CSR hypothesis. The maximal distance s in

(2.16) was taken equal to b0.25 ∗ lc = 215 pixels (630 metre) for all functions except the J-functions

since it is not defined for F (r) = 1. There s was set equal to 35 pixels (100 metre). The observed ∆̂

values together with the corresponding critical value ∆α and p-values are given in Table 3.1.

Table 3.1: Deviation test for Complete Spatial Randomness hypothesis.

Characteristic Observed ∆̂ Critical value ∆α P-value

F -function 0.3490 0.0060 ∗0.0010
G-function 53.0410 0.3250 ∗0.0010
J-function 501372.9000 0.8382 ∗0.0010
L-function 25 003.9700 1 181.0480 ∗0.0010

∗ ∆̂ > max(∆̂l) (l = 1, ..., 1000)

The observed ∆̂ is larger than the critical value ∆α for all summary characteristics. In general, it

can be concluded that the observed point pattern rejects the CSR hypothesis and therefore does not

originate from a homogeneous Poisson process.
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3.4 Near-hexagonal symmetry

Estimation

A hexagonal point process model is determined by two parameters, the intensity λ and the deviation

β. The intensity can be estimated directly from the observed pattern as before and is the same for all

nearly regular processes, λ̂ = 5.85×10−4 points per square pixel. The deviation β is estimated through

(2.16) with S(r) taken equal to the L-function. The maximum distance used in the optimisation

criterion (2.16) was again taken equal to b0.25lc = 215 pixels (630 metre). Based on a 0.01 grid

between 0 and 0.50 for β, 300 simulations seemed sufficient to safely assume that the pointwise

average of these simulations was a good approximation of the true theoretical function. The deviation

β̂ was estimated at 0.15 for the nearly hexagonal point process.

Envelope and deviation tests

In testing the hypothesis of near-hexagonal symmetry, simulations from the underlying point process

model need to account for the uncertainty around the obtained parameter estimates. The exact distri-

butions describing this uncertainty are not known. Therefore, they need to be derived by a parametric

bootstrap method. This method simulates independently m patterns from the point process model

with parameters as estimated from the observed point pattern. Then the parameters θ are estimated

again for each simulated point pattern (k = 1, ...,m), denoted by θ̂k. If m is large enough, the θ̂k

are a valid approximation of the distribution of θ̂. When simulating point patterns consistent with

the null hypothesis of near-hexagonal symmetry, one first draws a random set of parameters from

the distribution of θ̂ and uses these fixed parameters to derive a nearly hexagonal point pattern as

explained in Section 2.4.2. In addition, one could use the variance of the θ̂k as an approximation to

the variance of the estimator θ̂. Also, the α/2th and the 1 − α/2th quantiles can be used to derive

a (1 − α)% confidence interval. Due to heavy computation time, the method was conducted with

m = 50 bootstrap patterns to derive the distribution of θ̂. It should be noted that probably more

bootstrap patterns are needed to obtain a valid approximation of the distribution of the estimated

parameters. Therefore, the results should be interpreted with care. In the assumption that the 50

sets of bootstrap estimates are representative for their true distribution, 1000 simulations were used

to derive the results for the envelope and deviation test.

The envelope tests are shown in Fig. 3.8. It is clear that all observed summary characteristics lie

outside the 5%-envelopes expect for the F-function. This fact is also confirmed by the deviation test

in Table 3.2. There, all tests are rejected at a 5% significance level except for the F -function.

Table 3.2: Deviation test for the near-hexagonal symmetry hypothesis.

Characteristic Observed ∆̂ Critical value ∆α P-value

F -function 0.0013 0.0014 0.0689
G-function 1.7241 0.3770 ∗0.0010
L-function 1455.6290 285.4674 ∗0.0010

∗ ∆̂ > max(∆̂l) (l = 1, ..., 1000)
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Figure 3.8: 5%-envelopes of the functional summary characteristics under near-hexagonal symmetry.

3.5 Other near-regular symmetries

Estimation

The same procedure as applied in Section 3.4 is used for the square, triangular and rhomboidal

point process models. One has to account for the additional model parameter in the rhomboidal

point process model, the angle ϑ. For that model, the minimum contrast method was based on an

additional 1◦ grid between 40◦ and 90◦ for ϑ. The estimate for the intensity takes again the same

value of 5.85×10−4. The deviations β̂ were estimated at 0.12, 0.15 and 0.16 respectively for the nearly

rhomboidal (ϑ̂ = 52◦), square and triangular point processes.

Envelope and deviation tests

The envelope and deviation tests were conducted in the same manner as in Section 3.4. The envelope

tests are shown in Figures 3.9, 3.10 and 3.11. It is clear that almost none of the observed summary

characteristics lie completely within the 5%-envelopes. Only the F -function in case of the rhomboidal

point process model seems to fit within the envelope for all r. When comparing all point process

models, the point process model that resembles the data the closest, is the rhomboidal point process

model, followed by the hexagonal point process model. The deviations from the square and triangular

point process models are considerably larger.
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Figure 3.9: 5%-envelopes of the functional summary characteristics under near-square symmetry.

Figure 3.10: 5%-envelopes of the functional summary characteristics under near-triangular symmetry.
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Figure 3.11: 5%-envelopes of the functional summary characteristics under near-rhomboidal (52◦)
symmetry.

The deviation tests in Table 3.3 confirms the conclusions from the envelope tests. There, all tests

are rejected at a 5% significance level except for the rhomboidal F -function. Again, the rhomboidal

point process model shows the smallest deviations ∆̂ for all functions. When comparing the observed

G-function to the envelope in Fig. 3.11, the observed point pattern shows a slower increase for small

distances r, i.e. there are less small nearest neighbour distances. This could imply that a different type

of sampling mechanism that accounts explicitly for a hard-core distance between the points would fit

the observed point pattern better.

Table 3.3: Deviation test for the near-regular symmetry hypotheses.

Characteristic Observed ∆̂ Critical value ∆α P-value

Nearly square pattern F -function 0.0037 0.0011 ∗0.0010
G-function 4.4095 0.2761 ∗0.0010
L-function 2654.4870 237.9609 ∗0.0010

Nearly triangular pattern F -function 0.0026 0.0007 ∗0.0010
G-function 17.3016 0.3023 ∗0.0010
L-function 6395.2360 212.9558 ∗0.0010

Nearly rhomboidal pattern F -function 0.0007 0.0014 0.1768
G-function 0.8609 0.3616 0.0030
L-function 725.1517 250.4482 ∗0.0010

∗ ∆̂ > max(∆̂l) (l = 1, ..., 1000)
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Concluding Remarks

4.1 Conclusion

For the Kenyan vegetation pattern under study, the null hypothesis of Complete Spatial Random-

ness was rejected in favour of a regular alternative. This conclusion was obtained unanimously by

the distributional indices, the topological characteristics and the functional summary characteristics.

The average intensity of the 2530 × 2530 square metre area was 1 point per 14680 square metre.

The observed hard-core distance was equal to approximately 37 metres, whereas the average nearest

neighbour distance was equal to 105 metre. Nearly regular point processes were developed by adding

noise to the perfect regular grids. This noise was randomly drawn from a bivariate normal distribution

with mean zero and some standard deviation. The exploratory data analysis showed that among the

considered nearly regular point processes, the square and triangular point processes were very un-

likely for the observed point pattern, whereas the rhomboidal and hexagonal point processes seemed

more adequate. Estimation of the corresponding parameters by the minimum contrast method for the

L-function yielded an intensity of 6.81 10−5 points per square metre and relative standard deviation

parameters equal to 0.15, 0.12, 0.15 and 0.16 for respectively the nearly hexagonal, rhomboidal (52◦),

square and triangular point processes. These deviations corresponded to an absolute standard devi-

ation of 18.2, 14.5, 18.2 and 19.4 metre. A formal acceptance of one of the near-regular symmetries

was not established. However, since the observed summary characteristics differ only slightly from

what would be expected for a near-rhomboidal point pattern, it can be concluded that this regular

symmetry is the most likely for the observed data among the considered regular structures.

4.2 Discussion

There were several ways in which the conducted analysis was limited. A first practical issue was that

the spatial point pattern analysis was a very computational intensive procedure. In order to obtain

results within a feasible time frame, one had to pay off with precision. More specifically, in using 300

simulations to extract the theoretical summary characteristics for the nearly regular point processes,

one could only obtain a relative standard deviation parameter β up to a precision of 0.01. For larger

precisions, the L-function has to be known more accurately in order to obtain estimates that are

not influenced by slight deviations in the L-function. In searching a grid of 5 possible β-values for

estimation, already 1500 simulations were needed for which the L-function had to be estimated. This

33
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drawback becomes even more pronounced when allowing for the uncertainty of the parameters in the

hypotheses tests. For this reason, only 50 bootstrap patterns were considered in the derivation of the

parameter distribution. These results need to be interpreted carefully, since probably more simulations

are needed to obtain an adequate approximation of this distribution.

Throughout the analysis, many choices were made that were kept fixed. For instance, the maximum

interaction range considered in the integral statistic was taken equal to 630 metre. Also the chosen

summary characteristic for estimation was set to the L-function. One could perform a sensitivity

analysis as to see whether different choices have a large influence on the results. This was however

not conducted in this thesis for practical reasons. A full analysis lasted already 20 hours, making it

very time consuming to consider multiple choices.

4.3 Recommendations

In general, a full sensitivity analysis should be conducted in order to see how sensitive the conclusions

are to different choices. It is expected that the maximum interaction range or the choice of the sum-

mary characteristic for estimation will not show a major influence on the end conclusions. Increasing

the number of simulations, both with respect to the bootstrap patterns as with respect to the approx-

imations of the theoretical summary characteristic (here the L-function) could have a minor effect

on the width of the envelopes. This would also make it possible to increase the precision of the grid

search. Since the observed point pattern is already very close to the envelopes for near-rhomboidal

symmetry, this could have an impact on the end conclusions.

However, it is expected that the very specific way in which the sampling mechanism for near-regular

symmetry was developed (by means of the bivariate normal distribution) will have the largest influence

on the end results. Based on the observed deviations from the envelopes, other sampling mechanisms

that allow for a hard-core distance seem a good choice. Related to this remark, one could investigate

a kind of hard-core point process where the neighbourhood of each point is completely random ex-

cept for a hard-core distance. It is reasonable to explore such a model since recently self-organisation

models have been developed that predict such a structure.

It is also recommended to analyse still other periodic vegetation patterns that exhibit gaps of bare

ground, but also to consider vegetation patterns that consists of spots of vegetation. This way, one

would be able to categorise all observed periodic vegetation patterns and even investigate whether the

relative deviation from perfect regularity and the rhomboidal angle depend on other, maybe environ-

mental, factors. Related to the initial research question, one could investigate under which conditions

this angle is indeed equal to 60◦, i.e. the near-hexagonal symmetry.

Although for this observed point pattern, it was very reasonable to assume stationarity and isotropy, it

could be that some form of heterogeneity disturbs the underlying near-regular symmetry and therefore

the analysis is unable to verify this hypothesis. If the observed region is large enough, one could divide

it into subregions that are expected to be homogeneous and to link the locally fitted point process

models to variables that reflect this heterogeneity.
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