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Summary

Due to the excessive and sometimes inappropriate usage of antimicrobials, there has been
a continuing development and spread of pathogens with acquired resistance mechanisms.
This antimicrobial resistance (AMR) has become one of the largest public health burdens
of the last decades and it is therefore extremely important to study and keep track of the
emerging of the resistance isolates.

In this thesis, interest was in exploring a new mixture model for AMR data such
as Minimum Inhibition Concentration (MIC) values. Mixture models were ought to be
ideally suited in this setting as they offer a natural framework for modeling the unobserved
population heterogeneity of wild-type and resistant isolates. Since MIC values are often
obtained using dilution type laboratory experiments, the proposed methods needed to
account for the additional data complexity of interval censoring.

Besides the existing method of Turnidge et al. (2006) for estimating the parameters
of the first component, three alternative methods were introduced. First, an adjustment
was made to the existing method to make the transition between the wild-type and re-
sistant component more graduate. Nevertheless, both the original and adjusted version
suffered from the same shortcoming of not providing a direct means to identify the most
suited distribution for the first component. Therefore, two approaches were developed
that are encompassed in the more general maximum likelihood framework, namely the
likelihood and multinomial based methods. Especially the latter, in combination with the
averaged AIC selection procedure, was found to perform very well.

In order to incorporate information on the resistant isolates into the mixture model,
the penalized mixture approach by Kauermann and Schellhase (2009) was presented. This
semi-parametric density estimation routine was slightly adjusted in two ways with the aim
of creating a full semi-parametric mixture model that is able to describe the MIC distri-
bution. First of all, the censored nature of the MIC data was taken into account by
using Gaussian distribution functions to construct the basis instead of the corresponding
densities. The second adjustment is related to the wild-type component, which can be
assumed to be of a well-known parametric form. More specifically, the first basis distribu-
tion is assumed to be equal to the wild-type component that was found via the methods
described above. The according weight is estimated without posing a related penalty to
the likelihood, while the remaining weights are estimated using the penalized approach.

In conclusion, the resulting semi-parametric mixture model does not only provide
an estimate for the prevalence of resistant isolates, but also gives a good indication of their
particular distribution. Hence, the developed model provides valuable information in the
field of antimicrobial resistance and is considered to be useful in the important task of
monitoring the emergence of resistance.
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Chapter 1

Introduction

Ever since the discovery of penicillin in the late 1920’s, antimicrobial agents have had a ma-
jor impact on human and animal mortality and morbidity caused by microbial infections.
Diseases that previously caused mortality and morbidity on a large scale were brought
under control, causing several generations to grow up without the fear for infectious dis-
eases that their forebears knew (Drusano, 2003). Unfortunately, due to an excessive and
sometimes inappropriate usage, there has been a continuing development and spread of
pathogens that have become resistant to antimicrobials. The emerging of resistance has
already been thoroughly described by many authors for distinct kinds of microorganisms
in both nosocomial and community settings. Tenover (2006) and references therein mainly
deal with the mechanisms of antimicrobial resistance in bacteria. Examples include resis-
tance of Escherichia coli against aminopenicillins and the well known methicillin-resistant
Staphylococcus aureus (MRSA). Perea et al. (2001) on the other hand paid attention to
resistance among fungi, in particular the Candida species, that has become evident since
the introduction and widespread use of azole antifungals. Finally, a discussion of drug
resistance in herpesvirusses and hepatitis B can be found in Strasfeld and Chou (2010).
It should be clear that antimicrobial resistance (AMR) has become a global public health
problem, posing a major threat to the successful use of antimicrobial agents in both human
and veterinary medicine.

Antimicrobial resistance does not only result into increased morbidity and mortal-
ity, but has also a large impact on the costs of health care. In order to reduce these
adverse effects, there is a need for prevention of the emergence and spread of resistant
microorganisms. There is evidence that wiser use of antimicrobials may diminish the rate
at which resistance emerges (Drusano, 2003). Keeping this in mind, medical care givers
should properly reflect on the selection, dosing and duration of the treatment they pre-
scribe. Nevertheless, prudent use of antimicrobials is not the only strategy for fighting
AMR. Other infection control practices include good hand hygiene as well as screening
and isolation of infected patients (ECDC, 2010).

Because of the major public health burden, it is very important to keep track of
how the organisms are distributed in the population and whether they are resistant to a
particular type of antimicrobial. In this perspective, the European Food Safety Authority
(EFSA) analyses data from distinct member states (MS) on antimicrobial resistance in
both zoonotic (e.g. Salmonella and Campylobacter) and non-zoonotic (e.g. Escherichia
coli) microorganisms. Aerts et al. (2011) illustrate the use of statistical models for the
analysis of temporal trends in the antimicrobial resistance data. To study the time trend,
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Introduction

a distinction is made between qualitative and quantitative data. Quantitative data are
referring to the minimum inhibition concentration (MIC) values, as they are available
for different MS. They can be treated in their original format or as binary outcomes,
after dichotomization based on harmonized threshold values called Epidemiological Cut-
Off values (ECOFFs). These binary outcomes, the wild-type and resistant isolates, are
representing the qualitative data. Temporal trends based on the latter kind of data can
be identified through the application of models for binary data, such as logistic regression.
However, one of the drawbacks of this approach is the use of the threshold value, which
might in some cases be disputable. In addition, trends in the MIC distribution above
the threshold will not be observed, as all data are collapsed into the single category of
resistant isolates. Whereas the MIC distribution to the left of the threshold is not expected
to change over time (the wild-type distribution), one does expect to observe changes over
time in the MIC distribution of the resistant isolates. To detect such changes over time one
needs to consider the full ordinal or quantitative scale of the MIC distribution. Possible
ways of analysis include the use of generalized logit models and mixture models. Both
the quantitative and qualitative methods have their strengths and weaknesses, which are
detailed upon in Aerts et al. (2011).

Interest in describing MIC distributions in a quantitative manner emerged during the
process of European harmonization of breakpoints, such as the aforementioned ECOFFs,
under the supervision of the European Committee on Antimicrobial Susceptibility Testing
(EUCAST), see for example Kahlmeter et al. (2003) and Kahlmeter and Brown (2004).
However, although attempts have been made, estimation of the wild-type distribution is
still not solved as it is complicated by the fact that it is part of a mixture. Therefore, a first
objective of this Master thesis is to study an existing method for estimation of this first
components distribution. In addition, several new methods are presented and discussed on
their performance. In a next stage, interest is in the development of a new semi-parametric
mixture model for AMR data, such as MIC values, that takes into account both the wild-
type and resistant component. With regard to the second component, Kauermann and
Schellhase (2009) recently proposed a semi-parametric method to estimate the unknown
density of a continuous variable, using a penalized mixture approach. Since MIC values
are typically left or interval censored, the method of Kauermann and Schellhase (2009)
will be extended to allow for this additional complexity. Based on this adjusted method,
the new semi-parametric model will be developed.

The remainder of the thesis is organised as follows. Chapter 2 will provide more
information on MIC values and how these fit into the mathematical framework of mixture
models. A current approach in determining the wild-type distribution will be discussed in
chapter 3, together with some own developed methods. In order to estimate the density
of the second component, chapter 4 pays attention to the method of Kauermann and
Schellhase (2009) and its extension toward censored data. The final semi-parametric
mixture model will also be presented in that chapter and the proposed methods are applied
to a real life dataset in chapter 5. Finally, a discussion will end the thesis in chapter 6.
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Chapter 2

Mathematical Framework

In order to familiarize the reader with the topic of AMR data, this chapter will provide
more information on the Minimum Inhibition Concentration (MIC) values. More specif-
ically, the focus is here on how these values are obtained and attention is paid to their
associated complexities. Secondly, it will be shown how the MIC values fit into the math-
ematical framework of mixture models, the further development of which will be the main
challenge of the remainder of the thesis.

2.1 Minimum Inhibition Concentration

The Minimum Inhibitory Concentration (MIC) is the lowest concentration of an antimi-
crobial agent that will inhibit the visible growth of a microorganism. When analysing
the antimicrobial susceptibility of certain populations of microbes, it is conventional to
tabulate the number of isolates at specific MIC values, determined by employing serial
twofold dilutions between selected maximum and minimum concentrations. The following
example, based on Wu et al. (2008), gives a notion of how such a dilution experiment is
carried out. In this example, E.coli and Salmonella bacterial cultures were tested against
an array of 17 antimicrobial agents at a variety of concentrations in a microtitre plate.
The output from testing one sample is a vector of MIC values for each antimicrobial agent,
as determined by the broth microdilution method. Other techniques in determining MIC
values exist (e.g. Jorgensen and Ferraro, 1998), but are not discussed here. Consider now
an array of a single antimicrobial agent at concentrations of 0.125, 0.25, 0.5, 1, 2, 4 and
8 mg/L. A particular bacterial isolate may show inhibition of growth at 4 and 8 mg/L
but growth at lower concentrations. The reported MIC value would then be 4 mg/L.
This value means that a concentration of 4 mg/L showed inhibition, whereas a concen-
tration of 2 mg/L did not. Consequently, the true inhibition is between 2 and 4 mg/L.
Similarly, if the reported MIC value is less than 0.125 mg/L (i.e the lowest reading on
the plate), all that is known is that the true inhibitory concentration is between 0 and
0.125 mg/L. Equally, a reported MIC value that is greater than 8 mg/L indicates that no
concentrations on the plate showed inhibition of growth. Hence, the actual concentration
that inhibited bacterial growth is greater than 8 mg/L. From this example it is clear that
the used method only provides censored readings. The MIC value is only known to be
either below the minimum concentration tested, between two concentrations or above the
maximum concentration tested in the array for that antimicrobial agent. A more detailed

3



Mathematical Framework

description of the preparation of plates in dilution experiments can be found in Schöne
et al. (2009). It is clear that the additional complexity of censored readings needs to
be taken into account when developing methods for the estimation of the MIC distribu-
tion. Methods developed throughout the paper are based on left- and interval censoring.
However, extensions toward right-censoring are straightforward.

2.2 Mixture Models

The approach that will be followed here in regard to estimating the MIC distribution is
based on mixture models, which have experienced increased interest in a variety of fields
over the last decades. As such they have become well-recognized and popular methods.
For example, Lindsay (1995) outlines several applications that indicate the wide scope of
mixture models. Also in the field of antimicrobial resistance, they seem to be ideally suited
since they offer a natural framework for modeling unobserved population heterogeneity.
The term heterogeneity refers to the situation where the population of interest consists of
various subpopulations. In the current setting, the interest is in a mixture model with the
following hierarchical structure: at the first level, the model consists of two components:

f(x) = f1(x|θ1)(1− p) + f2(x|θ2)p. (2.1)

The first component refers to the so-called wild-type distribution of MIC values, whereas
the second component coincides with the resistant isolates distribution. The probability
p is a parameter of major interest in the field of AMR since it refers to the prevalence
of resistant isolates. Subject-matter knowledge suggests that the first component is of
a well-known parametric form, such as the log-normal or gamma distribution (Lee and
Whitmore, 1999 ; Turnidge et al., 2006). The second component on the other hand is
often multimodal, as it is itself a mixture of different resistant strains. Therefore, this
second component will be modeled using a second mixture:

f2(x|θ2) =
m∑

l=1

fl(x|θ2l)pl. (2.2)

Depending on the interest and the typical application, the second component could be
modeled as a classical mixture, allowing one to clearly distinguish the contributing com-
ponents. Alternatively, it can be modeled as being a single density following the penalized
mixture approach of Kauermann and Schellhase (2009). The latter will be further detailed
upon in chapter 4. Since the method described here combines a parametric first compo-
nent with a semi-parametric second component, the resulting mixture model will be of a
semi-parametric nature.
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Chapter 3

Estimation of the First
Component

In the previous chapter, it was seen that the MIC data fit naturally into the mathematical
framework of mixture models. The current chapter will study the wild-type first com-
ponent in more detail. The main issue is to determine which distribution and according
parameters are most suited to describe this first component, valuable information that
is necessary to find the full mixture in a later stage. Initial attention will be paid to a
method introduced by Turnidge et al. (2006) and an adjusted version thereof. Finally, two
new methods, encompassed in a more general likelihood framework, are presented. Based
on a small simulation study, the performance of the proposed methods is compared.

3.1 Existing Method with new Adjustment

Turnidge and colleagues (2006) developed a method for characterizing the wild-type MIC
distribution from which one can derive the epidemiological cut-off values (ECOFFs). These
ECOFFs separate microorganisms without (wild-type isolates) and with acquired resis-
tance mechanisms (resistant isolates) to the agent in question. The proposed method is
based on the assumption that the wild-type component of the MIC distribution follows
a log-normal curve. Therefore, the logarithmic transformation was applied to the data,
rendering a normally distributed first component. The idea is now to perform a non-linear
least squares regression on the cumulative counts for a range of data subsets. Starting
with the subset that includes values that are one dilution higher than the first mode, the
cumulative counts are fitted to the cumulative normal curve. Three parameters will be
estimated, namely the mean (µ) and standard deviation (σ) of the normal distribution
function and the total number of observations (N) in the presumed subset. The used
model can be described as follows:

yi = f(xi) + εi = N ∗ pnorm(xi, µ, σ) + εi, (3.1)

where yi represents the cumulative counts upto group i, indicated by xi, and pnorm(.) the
Gaussian cdf. After having obtained model estimates for the first subset of the data, the
procedure is repeated with an augmented subset (i.e. MIC values that are 1 dilution higher
are added to the previous subset). Figure 3.1 was obtained from Turnidge et al. (2006)
and provides a visual representation of the proposed method. The authors argued that
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Estimation of the First Component

the optimum fit was obtained when the difference between the observed and estimated
number of isolates in the fitted subset was minimal.

Figure 3.1: Iterative procedure for analysing increasing subsets of the data as found in
Turnidge et al. (2006).

Since it is known that there is overlap between the wild-type and resistant component,
there will be contamination of the first component by the second component from a certain
point onwards. Therefore, the authors opted to estimate N, rather than taken it fixed.
Nevertheless, differences between estimated and observed N can still be quite large, espe-
cially when the region of overlap is considerable. A straightforward idea is to extent the
original method by adding pointwise new observations to the cumulative counts. Hence,
a more graduate transition is made in the region of overlap, reducing the influence of
contamination to the proposed method. The overall procedure and rule for selecting the
optimal fit remain the same as originally presented. However, more iterations are involved
since the cumulative counts are build up unit by unit. The latter implies that the adjusted
method is slightly more computationally intensive compared to the original method.

3.2 Likelihood Based Method

Despite the fact that the method discussed in the previous section seems to perform well in
practice (Turnidge et al., 2006), there remain some strong remarks about the assumptions
that are made. First of all, the strongest assumption is about the distributional form of
the wild-type component. The authors suggested the use of the log-normal cumulative
distribution function, implying that the wild-type component belongs to a log-normal
distribution. This assumption was derived through fitting the non-linear regression model
using several bell-shaped distributions and applying a goodness-of-fit test. It could well
be that other distributions (such as the gamma) are more appropriate and hence should
be preferred. Therefore, it would be more desirable if a direct comparison could be made
between distinct distributional assumptions, for example using the Akaike Information
Criterion (Akaike, 1974). In addition, the non-linear least squares regression approach
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Estimation of the First Component

can be considered an ad hoc method, requiring appropriate starting values to ensure
convergence of the used algorithm. The selection of these starting values can often be
quite time consuming, rendering this method less attractive. For these reasons, another
approach is suggested that is encompassed in the more general framework of maximum
likelihood. Of course, since the area of application stays the same, there still remain the
complexities of having censored data and a region of overlap between the wild-type and
resistant components. The latter difficulty is addressed with an idea similar to that of
Turnidge et al. (2006), namely constructing the likelihood in a cumulative fashion.

A first important remark that needs to be made is about the nature of the used
data. While the method discussed in the previous subsection requires the cumulative
counts of the number of isolates in the distinct MIC categories, the likelihood based
method considered below is based on the individual data points. Therefore, in this section,
the notation xi will refer to the ith observed MIC value. In case there are no censored
values, the full likelihood can be expressed as L(θ) =

∏n
i=1 f(xi; θ), where θ represents

the parameters of the density function of interest. For instance, in case of the normal
density function, θ corresponds to the vector (µ, σ2), whereas the important parameters of
a gamma distribution are its shape and scale. However, since it is known that the observed
data are probably a sample from a mixture density, maximizing this full likelihood directly
will not result into the desired estimates for the first component. Therefore, it might be
useful to construct the likelihood stepwise, only using data points upto a certain MIC
subgroup (cfr. figure 3.1). Denoting by nk the number of observations smaller than or
equal to the highest MIC category (k) under consideration, the following likelihood results:

Lk(θ) =
nk∏
i=1

f(xi; θ)
1− P (X > k)

=
nk∏
i=1

f̃k(xi; θ),

where the observations are ordered in increasing order. Note that since only part of the
possible domain of data values is considered, the general density function cannot be used
anymore. Rather, a truncated version of the density function of interest is considered,
explaining the entrance of the denominator in the likelihood above. Indeed, adding that
term renders a density function that only allows values that are smaller than or equal to
k: ∫ k

−∞
f̃k(x; θ)dx =

∫ k

−∞

f(x; θ)
1− P (X > k)

dx =

∫ k
−∞ f(x; θ)dx∫ k
−∞ f(x; θ)dx

= 1

The final adjustment that is to be made to the likelihood specified above is to account
for the left- or interval censored nature of the data of interest. Therefore, the truncated
cumulative distribution function will be used instead of the truncated density function.
More specifically, it is specified that the observed MIC value is either contained within the
interval spanned by two consecutive categories or below the lowest observable category
(MICmin):

Lk(θ) =
nk∏
i=1

F̃k(xi; θ)I(xi ∈ MICmin) + (F̃k(xi; θ)− F̃k(xi − 1; θ))I(xi /∈ MICmin).

This way, all information that is available from the sample is used in the analysis. This
approach to deal with censoring has been applied with success before in, amongst others,
the related field of exposure assessment (Hewett and Ganser, 2007). In conclusion, the
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Estimation of the First Component

final loglikelihood that will be maximized to find the optimal parameters of interest is:

lk(θ) =
nk∑
i=1

{
log

[
F̃k(xi; θ)

]
I(xi ∈ MICmin) + log

[
F̃k(xi; θ)− F̃k(xi − 1; θ)

]
I(xi /∈ MICmin)

}
.

(3.2)
Maximization of the above loglikelihood will be performed for increasing subsets of the
data, starting with the first four MIC categories. For each of the consecutive model fits, a
Pearson chi-squared test statistic will be considered in order to determine the optimal fit
(Agresti, 2002). The test statistic employed here can be used for testing the hypothesis
H0 : F = F0 versus H1 : F 6= F0 and can formally be stated as

χ2 =
k∑

j=1

(Oj − Ej)2

Ej
.

For each j, the observed counts are the total number of observations in the respective
MIC category (e.g. corresponding to the frequencies indicated in figure 3.1). Summing up
these subtotals provides the observed total counts after k categories, denoted by Nk.
The expected counts are calculated based on the estimated parameters in the model
fit corresponding to the first k MIC groups under consideration, i.e. Ej = p̂j ∗ Nk =[
(F̃k(j; θ̂)− F̃k(j − 1; θ̂)

]
∗ Nk, j=1,. . . ,k. The resulting test statistic has a chi-squared

distribution with degrees of freedom equal to the number of MIC categories used in the
fit lowered by one and the number of estimated parameters. For each of the considered
subsets, the test statistic and corresponding p-value are calculated. Typically, the p-value
will be larger than the presumed significance level α = 0.05 for some initially fitted subsets.
However, after a certain point, contamination by the second component will lead to the
rejection of the nullhypothesis. The optimum fit and hence the most suited parameters
correspond to the last fit that did not reject H0.

Since the method presented here is based on optimizing a given likelihood function,
less accurate starting values are needed compared to the non-linear least squares fit that
is used in the method of Turnidge et al. (2006). In addition, no restriction is laid on the
parametric form of the used density function. Hence, several distributional assumptions
can be made and the resulting fits can be compared based on the well-known AIC criterion
(Akaike, 1974). Note however that this criterion requires the models to be fit on the same
data. For this reason, a drawback is that only comparisons can be made for model fits
that were based on the same subset of the data. Two solutions to this problem will be
presented in the next section and in chapter 4, making use of the multinomial distribution
and the full mixture model respectively.

3.3 Multinomial Based Method

The likelihood based approach presented in the previous section was developed with the
aim of creating a general framework for the comparison of several distributional assump-
tions about the first component. This goal was only partly reached as it was argued that
in order to apply the AIC criterion, the models need to be fit to the same data. Hence, the
desired comparison could only be made between models that were fit to the same subset
of the data. Therefore, this section presents a first alternative which allows for a direct
comparison between all model fits under consideration. A central role in this approach is
put aside for the multinomial distribution.

8
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3.3.1 Outline of the Proposed Method

As a consequence of the clustered nature of the data of interest, observations are grouped
into several categories corresponding to their respective MIC values. Instead of assuming
directly a continuous distribution for these outcomes, the groupings can initially be consid-
ered as being possible outcomes for a random variable following a multinomial distribution.
This way, a saturated model can be constructed using the multinomial distribution as the
core of the likelihood function. Consider for example an experiment with n independent
trials in which k possible outcomes can be attained. Each of these outcomes has an ac-
cording probability pi such that ∀i ∈ {1, . . . , k} : 0 ≤ pi ≤ 1 and

∑k
i=1 pi = 1. When the

experiment is carried out, an array of random variables is observed (X1, . . . , Xk), where Xi

represents the number of times outcome i was observed over the n trials. This array follows
a multinomial distribution with parameters n and (p1, . . . , pk), for which the probability
function is given by

P (X1 = x1, . . . , Xk = xk) = f(x1, . . . , xk;n, p1, . . . , pk)

=
n!

x1!x2! . . . xk!
px1
1 px2

2 . . . pxk
k .

The parameters of interest are the probabilities pi for observing the distinct outcomes.
Since the data xi and the total number of trials n are fixed, the first term of the probability
function above can be omitted when constructing the likelihood. Hence, the resulting
simplified loglikelihood is given by l(p1, . . . , pk) =

∑k
i=1 xi log pi, maximization of which

leads to the observed relative frequencies Xi
n as being the maximum likelihood estimators

for the probabilities pi.
Nevertheless, interest remains in finding the density and corresponding parameters

that best describe the wild-type component. This can be achieved by making use of
the fact that the observed groupings are actually the result of the censored readings of
the dilution experiment. Hence, the multinomial probabilities corresponding to a certain
outcome i can be rewritten as{

p̃i = F (ui; θ) . . . if i=1
p̃i = F (ui; θ)− F (li; θ) . . . if otherwise,

(3.3)

where ui and li are the respective upper and lower values of the ith MIC category and F (.)
represents the cumulative distribution function under consideration, with θ the according
parameters. The number of parameters that are contained in θ (e.g. two for a normal
distribution, two for a gamma distribution,. . . ) determines with how many MIC categories
the procedure starts. More specifically, compared to the number of parameters used in the
specified distribution, one additional category is needed in order to obtain an unsaturated
model. For example, in case of the normal distribution function, the first three MIC
categories form the starting point. The idea is now to tentatively replace some of the
multinomial probabilities with their parametric counterparts in (3.3). The probabilities of
the remaining outcomes are left unchanged and are thus to be estimated similar to those
of the saturated model. The resulting sequence of likelihoods is specified in (3.4), where
kj indicates how many of the original multinomial probabilities are replaced: kj = # of
parameters used in the assumed distribution + j. This sequence can be maximized to
obtain several proposal estimates for the parameters of interest. Note that as a result of
the parametric assumption, less parameters are used in the construction of the likelihood

9
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when j increases. Since all and hence the same data are used in every step, the AIC
criterion can be applied to select the most appropriate parameter estimates.

lj(p1, . . . , pk) =
kj∑

i=1

xi log p̃i +
k∑

i=kj

xi log pi, j = 1, ..., k − 2, (3.4)

However, the approach described above can only be used in case there is no contamination
by a second component, so when the data are not sampled from a mixture distribution.
Therefore, in order to render the method useful for the situations of interest to this paper,
some small changes are to be performed. Instead of using the probabilities as specified in
(3.3), an additional parameter representing the mixing proportion needs to be specified:{

p̃i = π ∗ F (ui; θ) . . . if i=1
p̃i = π ∗ [F (ui; θ)− F (li; θ)] . . . if otherwise.

(3.5)

Since an additional parameter is entered in the likelihood function, it is also necessary to
augment the number of starting categories to render an unsaturated model. Hence, the
sequence of likelihoods in (3.4) can still be applied, making use of the new parametric
counterparts of the probabilities as specified in (3.5) and augmenting the used categories
by one, representing the additional mixing parameter: kj = # of parameters used in the
assumed distribution +j +1. Again here, the AIC criterion can be used to select the most
optimal parameter estimates.

3.3.2 Determination of Most Suited Parameters

In the previous section, it was argued to make use of the AIC criterion to select the
most optimal model fit. Usually, when applying this criterion, the most suited parameter
estimates are selected according to the minimum AIC value. However, when some of these
values are relatively close together, one can also apply the model averaged approach as
found in Burnham and Anderson (2002). The idea is to combine the obtained estimates
into an averaged estimate as follows:

θ̂a =
K∑

i=1

wiθ̂i,

where the wi represent the so-called Akaike weights, which are defined as

wi =
exp(−1

2∆i)∑K
j=1 exp(−1

2∆j)
.

These Akaike weights make use of the difference between the AIC value corresponding
to a specific estimate θ̂i and the minimum observed AIC value: ∆i = AICi − AICmin .
When this difference is small, the Akaike weight is large and the corresponding estimate is
allowed to contribute more to the averaged estimate. On the other hand, large differences
are an indication of a less suited estimate and hence the small Akaike weight reduces the
influence of that estimate to the averaged one.

Still another alternative to the AIC criterion is to apply a Deviance goodness-of-fit
test, which compares the consecutive model fits to a saturated model:

D2(M) = −2 [log(L(M))− log(L(Sat))] ,

10
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which follows a chi-squared distribution with degrees of freedom equal to the difference in
the number of parameters between the saturated and reduced model. Large values for the
Deviance indicate a lack of fit, hence suggesting that too many of the original probabilities
are replaced by their alternatives in (3.5). Finally, the most parsimonious model that does
not reject the Deviance GOF test will be selected as being most optimal. It is however
possible that all of the considered models result into a test statistic that is too large and
that none of them is deemed suited. In the latter situation, the estimates from another
saturated model can be selected, i.e. the model where only the multinomial probabilities
in the first s categories are replaced by their counterparts in (3.5), where s represents the
number of parameters used in those adjusted probabilities.

3.4 Application to Artificial Datasets

In order to determine their respective behavior, the methods discussed in the previous
sections are applied to two artificially created datasets. More specifically, with the aim of
representing the study setting of interest, a random sample X = (X1, . . . , Xn) was taken
from two mixtures of three normal densities. The first dataset consists of 1000 sampled
values from a mixture with a relatively small region of overlap and equally contributing
components:

Xi ∼ (1− 0.5)N (−2, 1) + 0.5
{
0.5N (3, 1.52) + 0.5N (5, 1.52)

}
. (3.6)

The second dataset on the other hand was chosen in such a way that there is a considerable
overlapping region, with a first component that has a larger weight compared to the second
component:

Xi ∼ (1− 0.3)N (−2, 1) + 0.3 {0.6N (1, 1) + 0.4N (5, 1)} . (3.7)

Again here, 1000 sampled values were obtained. The notation of the mixtures presented
above represents the structure that is of basic interest in this paper (cfr. expressions
(2.1) and (2.2)). For both sampled sets of data, the separate component densities can
be found in figure 3.2, together with the resulting mixture density. Note that the first
component of both mixtures corresponds to a normal density with mean equal to -2 and
standard deviation equal to 1. These values are of primary interest in this chapter and will
initially be estimated using the original and adjusted method of Turnidge et al. (2006).
Consecutively, the obtained results are compared to the newly developed likelihood and
multinomial based methods. The analysis is performed using R version 2.10.0 (code in
appendix C). For simplicity, the sampled values will be referred to as being MIC values.

It has been argued that due to the nature of the laboratory experiments, MIC data
are often left- or interval censored. For this reason, the sampled datasets are modified
to account for this additional data complexity by rounding each value within a one-unit
interval to the upper bound of that interval, i.e. if c < xi ≤ c + 1, the true value xi

is replaced by the integer value c + 1. For the two mixtures above, it is assumed that
the lowest observable MIC value is equal to -4, hence the corresponding category will
be interpreted as being left-censored, meaning that in fact the true MIC value for every
observation in that category is smaller than or equal to -4. The resulting situation is
depicted in the histograms in figure 3.3, a frequently used representation to visually study
MIC data and breakpoints.
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Figure 3.2: Density function and distinct component densities of the artificial data set of
mixture (3.6) (top row) and mixture (3.7) (bottom row)

Figure 3.3: Histogram representing the distribution of censored sample from mixture (3.6)
(left) and (3.7) (right).

3.4.1 Method of Turnidge et al. (2006)

Recall that the method of Turnidge et al. (2006) assumes that the first component follows
a log-normal distribution. The samples in the two artificial examples are taken from a mix-
ture with a normal first component and hence no log-transformation is needed anymore.
Rather, model (3.1) can be applied directly to the data in table 3.1.

From the histograms in figure 3.3, it can be seen that the first mode is obtained
at the MIC value of -2 for both samples. This implies that all values that are smaller
than or equal to -1 are included in the first regression step of the procedure presented by
Turnidge et al. (2006). Since the optimal fit can be found where the difference between
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Table 3.1: Counts and cumulative counts per considered group, corresponding to the
histogram plots in figure 3.3.

Distribution mixture (3.6)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Counts 5 75 175 170 69 27 43 74 93 114 80 47 19
Cumulative 5 80 255 425 494 521 564 638 731 845 925 972 991

9 10
Counts 7 2
Cumulative 998 1000

Distribution mixture (3.7)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Counts 7 100 245 239 111 85 62 27 17 50 36 18 3
Cumulative 7 107 352 591 702 787 849 876 893 943 979 997 1000

the estimated and true number of observations in the fitted subset was minimal, table
3.2 presents the results from the non-linear least squares regression fit, together with an
additional column representing the aforementioned difference. For the first mixture, it

Table 3.2: Parameter estimates of the non-linear least squares regression approach.
Estimates mixture (3.6)

Number of observations Mean Standard deviation

Subset True Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.
-1 425 490.53 65.53 19.69 -2.05 0.07 0.95 0.06
0 494 503.16 9.16 5.84 -2.01 0.03 0.98 0.03
1 521 515.37 -5.63 6.26 -1.97 0.04 1.03 0.05
2 564 537.86 -26.14 13.22 -1.88 0.09 1.13 0.12
3 638 578.41 -59.59 25.02 -1.70 0.18 1.36 0.24
4 731 653.53 -77.47 43.01 -1.28 0.33 1.93 0.43

Number of observations Mean Standard deviation

Subset True Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.
-1 591 681.89 90.89 22.54 -2.04 0.05 0.94 0.05
0 702 717.70 15.70 10.73 -1.96 0.03 1.00 0.04
1 787 772.28 -14.72 23.07 -1.82 0.09 1.15 0.11
2 849 817.23 -31.77 26.12 -1.69 0.11 1.29 0.15
3 876 843.58 -32.42 23.41 -1.61 0.12 1.39 0.15
4 893 860.61 -32.39 20.63 -1.55 0.11 1.46 0.15

can be seen that the optimum fit corresponds to an estimated mean equal to -1.97 and
estimated standard deviation of 1.03. Since there is only a small overlapping region,
the estimated parameters are close to the true values. For the second mixture on the
other hand, the large overlapping region results into less accurate estimates. The mean is
estimated to be -1.82 and the corresponding estimated standard deviation is 1.15. Relative
to the first mixture, the difference between observed end estimated number of observations
in the optimal fitted subset was much larger for the second mixture (14.72 vs. 5.63). In
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addition, taking a closer look at the results for the second mixture, it can be noted that the
second most optimal fit (corresponding to a difference of 15.70) provides more accurate
estimates for the parameters of interest. This again implies that improvements can be
made with regard to the originally proposed method.

3.4.2 Adjustment to Method of Turnidge et al. (2006)

A first way to improve to previous method was to consider new cumulative counts in a
pointwise fashion, hence reducing the influence of contamination by the second component.
The exact procedure of how to perform this method becomes more clear through an
application to the created datasets. Therefore, consider again the values observed in table
3.1. For the sample from mixture (3.6), it is seen that there are 27 observations with a
value between 0 and 1. On the other hand, from figure 3.2, it is clear that it is unlikely
that all of these 27 values are sampled from the first component. Despite the fact that the
original method of Turnidge et al. (2006) takes this into account via the estimation of N
rather than fixing these observations, the estimates for the mean and standard deviation
are definitely influenced. The idea of the adjusted method is to add in each step one of
the 27 observations and perform the analysis with the adjusted cumulative counts (498,
499,. . . , 521). This can be done for each of the original groups and the minimum difference
per group can be compared. The results of this procedure can be found in table 3.3.

Table 3.3: Parameter estimates of the adjusted non-linear least squares regression ap-
proach.

Estimates mixture (3.6)

Number of observations Mean Standard deviation

Subset Added True Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.
-1 1 256 256.25 0.25 4.95 -2.84 0.09 0.33 0.18
0 42 467 473.68 6.68 6.04 -2.10 0.03 0.90 0.04
1 10 504 504.04 0.04 3.00 -2.01 0.02 0.99 0.02
2 1 522 518.22 -3.78 4.49 -1.96 0.03 1.04 0.04
3 1 565 547.44 -17.56 11.47 -1.84 0.09 1.17 0.12
4 1 639 601.33 -37.67 23.57 -1.59 0.19 1.52 0.26

Estimates mixture (3.7)

Number of observations Mean Standard deviation

Subset Added True Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.
-1 1 353 353.27 0.27 6.96 -2.84 0.12 0.32 0.22
0 59 650 659.00 9.00 7.56 -2.09 0.03 0.89 0.03
1 18 720 720.01 0.01 5.38 -1.95 0.02 1.01 0.03
2 1 788 780.71 -7.29 15.17 -1.80 0.07 1.17 0.09
3 1 850 831.44 -18.56 20.21 -1.65 0.10 1.34 0.13
4 1 877 854.93 -22.07 19.26 -1.57 0.11 1.43 0.14

Compared to table 3.2, an additional column is added to the table 3.3 represent-
ing how many observations are added pointwise to the previous cumulative count. For
instance, the optimal fit for the first mixture (boldface) was obtained when adding 10
observations from the category of MIC values equal to one to the previous subset. This
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way, the true number of observations in that optimal subset is equal to 494+10=504. The
adjusted method seems to provide a considerable improvement to the estimated mean and
standard deviation of the first component. Especially the estimates for the second mixture
are closer to reality compared to the results in table 3.2. This can be explained by the
simple fact that there was more contamination by the resistant component in case of the
second mixture and therefore a larger impact could be observed compared to the results
of the first mixture. Hence, in a situation similar to the second mixture, the adjusted
method provides a very useful and more appropriate alternative to the original approach.
Nevertheless, despite the near equality of observed and estimated number of observations,
estimates are not perfect. This is probably due to sampling variability and indicates that
one needs to be cautious about the obtained results and should not put blind thrust in
them.

3.4.3 Likelihood Based Method

Despite the improved estimates, the adjusted method still suffers from the shortcoming
of not being able to identify the most suited density to describe the first component.
Therefore, the results obtained above are compared to those from the new likelihood
based method, using a normal cumulative density function as proposed density. Table 3.4
presents the estimates that are obtained via maximizing the loglikelihood detailed in (3.2)
with the employed endpoint specified in the corresponding first column of the table.

Table 3.4: Parameter estimates of the likelihood based method.
Estimates mixture (3.6)

Mean Standard deviation

Endpoint Est. Std.Err. Est. Std.Err. Likelihood p-value
-1 -2.09 0.08 0.90 0.06 -464.80 0.0973
0 -2.00 0.05 0.96 0.04 -665.23 0.1444
1 -1.91 0.05 1.06 0.04 -777.08 0.0019
2 -1.64 0.06 1.38 0.05 -977.97 < 0.0001
3 -1.09 0.08 1.94 0.07 -1289.35 < 0.0001
4 -0.31 0.12 2.58 0.09 -1629.31 < 0.0001

Estimates mixture (3.7)

Mean Standard deviation

Endpoint Est. Std.Err. Est. Std.Err. Logikelihood p-value
-1 -2.07 0.07 0.89 0.05 -642.28 0.0917
0 -1.95 0.04 0.98 0.04 -950.47 0.0534
1 -1.69 0.05 1.21 0.04 -1244.70 < 0.0001
2 -1.47 0.05 1.44 0.04 -1496.44 < 0.0001
3 -1.36 0.05 1.56 0.04 -1629.54 < 0.0001
4 -1.28 0.06 1.67 0.04 -1729.74 < 0.0001

It is observed that the current likelihood method provides more realistic estimates
compared to the original method of Turnidge et al. (2006) and performs similar to the
adjusted method. Only a minor difference is observed for the optimal estimates compared
to those obtained in table 3.3, mainly with regard to the standard deviation parameter.
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Recall that the loglikelihood that is given in the sixth column may not be used to compare
between the fits corresponding to different endpoints since the respective model fits are
based on different data points. Rather, it can be used for comparing between different
proposal densities. Therefore, the procedure should be carried out in an equivalent way
using the other proposal density and a within-row comparison based on AIC can give an
indication of the most suited density.

3.4.4 Multinomial Based Method

Initial interest is in determining how the multinomial based method developed in this
chapter performs in estimating the parameters of the first component based on the two
mixture examples introduced before. Secondly, another mixture is considered in which the
first component follows a gamma distribution. Hence in the latter example, not only the
estimation of the parameters is important. Rather, the main task there is to select the
most appropriate distribution and of course the according parameters.

With the initial aim of determining the estimation performance of the multinomial
based method, the data in table 3.1 are again considered. Note that the current method
only makes use of the observed counts per MIC category, so the cumulative counts can be
disregarded. As can be seen, the sample resulting from mixture (3.6) consists of 15 MIC
categories. Therefore, next to fitting the saturated multinomial model, the procedure also
fits 12 additional models. The first of these additional models applies the adjusted prob-
abilities in (3.5) to the first four categories. The final model under consideration replaces
all multinomial probabilities with the respective alternatives in (3.5). The parameter es-
timates, together with the observed AIC value for all of these models are presented in
table 3.5. In addition, the p-values corresponding to the Deviance GOF test can also be
retrieved from the table. It can be seen that results are given for two saturated models
(Sat 1 and Sat 2). The former corresponds to the multinomial model, whereas the second
model results from replacing the probabilities only in the first three categories. Since
three parameters are used in the replacement, the corresponding model is still saturated.
Equivalently, the sample from mixture (3.7) consists of 13 MIC categories, leading to the
fit of ten additional models. The resulting parameter estimates and corresponding AIC
and p-values can again be found in table 3.5. For comparison purposes, recall that the
true parameters of interest were π=0.5, mean=-2 and sd=1 for mixture (3.6) and π=0.7,
mean=-2 and sd=1 for mixture (3.7).

After investigating the results for the first example mixture (3.6), several remarks can
be made. First of all, disregarding the saturated models, the smallest AIC value is observed
for the second additional model. The coinciding parameter estimates are 0.50, -2.00 and
0.96 for the mixing proportion π, the mean and standard deviation respectively. These
parameter estimates are also obtained when using the Deviance criterion for selecting the
most optimal model. However, since the AIC value of the first additional model does only
differ slightly from the minimum, the model-averaged estimate is also influenced by this less
appropriate estimate. The respective weights for additional models 1 and 2 are 0.41 and
0.58. The remaining models have a negligible impact on the final model-averaged estimate
as their AIC values are too distinct from the minimum. Regarding the second example
mixture (3.7), it can be seen that the AIC value increases with the considered additional
models. The minimum AIC value is hence obtained for the first of these additional models,
resulting into 0.67, -2.07 and 0.89 as estimates for the mixing proportion π, the mean
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Table 3.5: Parameter estimates for mixtures (3.6) and (3.7), applying the multinomial
based method. P-values refer to the Deviance test statistic.

Mixture (3.6) Mixture (3.7)

Model AIC π Mean Sd p-value AIC π Mean Sd p-value
Sat 1 4775.34 - - - - 4231.17 - - - -
Sat 2 4775.34 0.33 -2.53 0.68 - 4231.17 0.47 -2.48 0.70 -
Add 1 4776.23 0.48 -2.09 0.90 0.0893 4232.06 0.67 -2.07 0.89 0.0893
Add 2 4775.56 0.50 -2.00 0.96 0.1211 4233.55 0.72 -1.95 0.98 0.0411
Add 3 4784.86 0.52 -1.91 1.06 0.0014 4281.19 0.80 -1.69 1.21 < 0.0001
Add 4 4880.65 0.57 -1.64 1.38 < 0.0001 4338.82 0.86 -1.47 1.44 < 0.0001
Add 5 5043.52 0.65 -1.09 1.94 < 0.0001 4361.95 0.88 -1.36 1.56 < 0.0001
Add 6 5164.31 0.77 -0.31 2.58 < 0.0001 4392.00 0.89 -1.28 1.67 < 0.0001
Add 7 5254.35 0.94 0.73 3.29 < 0.0001 4594.78 0.95 -0.96 2.10 < 0.0001
Add 8 5270.69 1.00 1.10 3.50 < 0.0001 4696.77 0.98 -0.72 2.41 < 0.0001
Add 9 5279.55 1.00 1.07 3.44 < 0.0001 4733.14 1.00 -0.60 2.57 < 0.0001
Add 10 5281.87 1.00 1.06 3.41 < 0.0001 4735.98 1.00 -0.59 2.58 < 0.0001
Add 11 5282.33 1.00 1.05 3.40 < 0.0001
Add 12 5284.64 1.00 1.05 3.40 < 0.0001
Model averaged 0.49 -2.04 0.93 0.68 -2.03 0.92

and standard deviation respectively. Again, these values correspond to those obtained
through application of the Deviance criterion. Nevertheless, the p-value corresponding
to the second additional model fit is not highly significant. Rather, it could be termed
as borderline, which would result into 0.72, -1.95 and 0.98 as being the estimates for
the respective parameters of interest. It seems that in the current situation, the model-
averaged estimates are closest to reality as they are 0.68, -2.03 and 0.92 respectively.

Next to the fact that the multinomial based method seems to provide adequate es-
timates for the parameters regarding the first component, its full strength becomes clear
from the example to be discussed next. Interest in this example is namely to determine
which distribution is most suited for describing the wild-type component. With this pur-
pose, a new mixture is considered, with a first component corresponding to a gamma
density with shape and scale parameters equal to 4 and 0.5 respectively. Hence the cor-
responding mean and standard deviation of the first component are 2 and 1. The second
component is again assumed to be a mixture of two normal densities. Hence, the sample
under investigation can be represented as

Xi ∼ (1− 0.5)Gamma(4, 0.5) + 0.5 {0.5N (7, 1) + 0.5N (10, 1)} . (3.8)

The described procedure is now applied two times, using respectively the normal and
gamma cdf to obtain the probabilities in (3.5). The results are summarized in table 3.6
and the model fits for both procedures can be compared based on their AIC values.

Taking a first glance at the outcomes for the normal cumulative density function
reveals that the most optimal parameters for the mean and standard deviation of the first
component are equal to 1.87 and 0.84. The mixing proportion is estimated to be 0.48 and
the corresponding AIC value is equal to 4663.38. Regarding the outcomes from the gamma
cumulative density function, it is seen that the three mentioned selection criteria result
into three distinct parameter estimates. Based on the minimum of the AIC values, the
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Table 3.6: Parameter estimates for mixture (3.8) applying the multinomial based method
with a normal and gamma cdf. P-values refer to the Deviance test statistic.

Normal cdf Gamma cdf

Model AIC π Mean Sd p-value AIC π Shape Scale p-value
Sat 1 4662.22 - - - - 4662.22 - - - -
Sat 2 4662.22 0.46 1.79 0.75 - 4662.22 0.53 3.95 0.53 -
Add 1 4663.38 0.48 1.87 0.84 0.0755 4661.74 0.49 4.46 0.44 0.2183
Add 2 4688.43 0.50 1.97 0.99 < 0.0001 4662.71 0.51 4.07 0.50 0.1064
Add 3 4790.77 0.54 2.17 1.34 < 0.0001 4703.37 0.54 3.01 0.76 < 0.0001
Add 4 5018.19 0.65 2.93 2.23 < 0.0001 4853.62 0.70 1.71 2.06 < 0.0001
Add 5 5087.28 0.76 3.69 2.87 < 0.0001 4897.73 0.91 1.34 3.99 < 0.0001
Add 6 5107.01 0.83 4.19 3.25 < 0.0001 4905.23 1.00 1.28 4.80 < 0.0001
Add 7 5178.06 1.00 5.26 3.97 < 0.0001 5016.75 1.00 1.46 3.87 < 0.0001
Add 8 5212.59 1.00 5.19 3.81 < 0.0001 5116.40 1.00 1.58 3.40 < 0.0001
Add 9 5247.39 1.00 5.15 3.72 < 0.0001 5190.80 1.00 1.65 3.19 < 0.0001
Add 10 5253.45 1.00 5.15 3.71 < 0.0001 5202.27 1.00 1.65 3.17 < 0.0001
Model averaged 0.48 1.87 0.84 0.50 4.31 0.46

estimates are found to be 4.46 for the scale and 0.44 for the shape. The mixing weight is
estimated to be 0.49 and the corresponding AIC value is 4661.74. Applying the Deviance
selection criterion, the estimates are somewhat closer to reality, namely shape equal to
4.07, scale equal to 0.50 and a mixing weight of 0.50. The AIC value corresponding to
this model fit is 4662.71. Note that both of these AIC values are smaller than that of the
optimal fit for the normal cdf. Hence, as it should be, the gamma distribution is deemed
more suitable. Finally, the model averaged estimates for the gamma cdf are 0.50, 4.31
and 0.46 for the mixing weight, shape and scale parameters. In summary, the multinomial
based approach seems to result into adequate estimates, with the additional advantage of
providing a direct comparison between distinct distributional assumptions.

3.4.5 Comparison with Midpoint Approach

In order to take into account the censored nature of the data when using the likelihood
based approach, the truncated distribution function was employed rather than the corre-
sponding density function. It could be questioned whether this extension was worth the
effort. For comparison purposes, the midpoint approach could be applied, where the in-
terval censored observations are replaced by the midpoint of the according interval. Next,
one can act as if these values were the true observations and apply the likelihood proce-
dure with the truncated density. The outcomes for the two mixtures introduced at the
beginning of the section can be found in table 3.7. It is seen that the obtained estimates
are relatively close to those obtained in table 3.4. Regarding the second mixture, it is
noted that none of the p-values obtained for the midpoint approach were larger than 0.05.
Nevertheless, the first fitted subset yielded a borderline p-value and was selected as being
most optimal. Based on the current observations, it seems that the censored adjusted
version is somewhat more appropriate. However, since these results are only based on one
single scenario of the mixtures of interest, a better comparison can be made through a
simulation study, which is carried out in the next section.
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Table 3.7: Parameter estimates of the midpoint approach.
Estimates mixture (3.6)

Mean Standard deviation

Endpoint Est. Std.Err. Est. Std.Err. Likelihood p-value
-1 -2.07 0.08 0.96 0.05 -466.80 0.0581
0 -1.99 0.05 1.02 0.04 -670.02 0.0785
1 -1.91 0.05 1.11 0.04 -782.80 0.0052
2 -1.64 0.06 1.41 0.05 -982.40 < 0.0001
3 -1.09 0.08 1.96 0.07 -1293.06 < 0.0001
4 -0.31 0.12 2.59 0.09 -1633.18 < 0.0001

Estimates mixture (3.7)

Mean Standard deviation

Endpoint Est. Std.Err. Est. Std.Err. Logikelihood p-value
-1 -2.05 0.07 0.96 0.05 -645.12 0.0424
0 -1.93 0.05 1.05 0.04 -956.56 0.0207
1 -1.69 0.05 1.26 0.04 -1250.66 < 0.0001
2 -1.46 0.05 1.48 0.04 -1502.23 < 0.0001
3 -1.36 0.05 1.59 0.04 -1635.62 < 0.0001
4 -1.28 0.06 1.70 0.04 -1735.86 < 0.0001

3.5 Simulation Study for Methods First Component

In the previous sections, several methods were introduced for estimating the parameters
that characterize the wild-type component of the MIC distribution. Based on two artificial
examples, their respective performances were examined. Nevertheless, the outcomes of
the distinct methods discussed above are only based on one possible realization of the
respective example mixtures. As a results, it could well be that the obtained insights are
due to chance only. Therefore table 3.8 presents the results of a small simulation study,
in which for each of the two mixtures of interest 200 samples were drawn. Consecutively,
the mean and standard deviation of the first component were calculated for all of these
samples, using the procedures proposed in the previous sections, namely the original and
adjusted method of Turnidge et al. (2006) as well as the new likelihood and multinomial
based approach. In addition to the first component parameters, the multinomial based
method, that selects the most optimal parameters using AIC, Deviance and the Akaike
Weights, also provides an estimate for the mixing weight π. The comparison between the
applied methods is performed using the following quantities:

• Bias(θ̂)= E(θ̂)− θ

• Var(θ̂) = E[(θ̂ − E(θ̂))2]

• MSE(θ̂) = E[(θ̂ − θ)2]

The mean squared error (MSE) is of most interest since it combines information on bias and
variance into one measure: MSE(θ̂)= Bias2(θ̂) + Var(θ̂). In order for a direct comparison
between the distinct methods, also the relative quantities are presented, with the smallest
of the observed measures set equal to one.
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Table 3.8: Simulation study for checking the performance of the discussed methods when
estimating the parameters of interest for the first component in mixtures (3.6) and (3.7).

Mixture (3.6)

Method Parameter Bias Variance MSE Rel. Bias Rel. Var Rel. MSE
Turnidge mean 0.0595 0.0035 0.0071 3.1316 1.0000 1.0441

Sd 0.0569 0.0034 0.0066 5.1727 1.0000 1.6923
Adjusted mean 0.0223 0.0106 0.0111 1.1737 3.0286 1.6324

Sd 0.0191 0.0087 0.0090 1.7364 2.5588 2.3077
ML mean 0.0509 0.0063 0.0089 2.6789 1.8000 1.3088

Sd 0.0401 0.0054 0.0070 3.6455 1.5882 1.7949
Midpoint mean 0.0524 0.0075 0.0102 2.7579 2.1429 1.5000

Sd 0.1084 0.0049 0.0166 9.8545 1.4412 4.2564
AIC π 0.0058 0.0004 0.0004 1.0000 1.3333 1.3333

mean 0.0190 0.0075 0.0078 1.0000 2.1429 1.1471
Sd 0.0110 0.0042 0.0044 1.0000 1.2353 1.1282

Deviance π 0.0148 0.0031 0.0033 2.5517 10.3333 11.0000
mean 0.0513 0.0177 0.0204 2.7000 5.0571 3.0000
Sd 0.0398 0.0075 0.0090 3.6182 2.2059 2.3077

Averaged π 0.0066 0.0003 0.0003 1.1379 1.0000 1.0000
mean 0.0230 0.0063 0.0068 1.2105 1.8000 1.0000
Sd 0.0150 0.0037 0.0039 1.3636 1.0882 1.0000

Mixture (3.7)

Method Parameter Bias Variance MSE Rel. Bias Rel. Var Rel. MSE
Turnidge mean 0.1804 0.0037 0.0362 4.1281 1.0000 4.5823

Sd 0.1586 0.0042 0.0293 6.8957 1.4000 8.3714
Adjusted mean 0.0929 0.0078 0.0165 2.1259 2.1081 2.0886

Sd 0.0720 0.0066 0.0118 3.1304 2.2000 3.3714
ML mean 0.0682 0.0060 0.0107 1.5606 1.6216 1.3544

Sd 0.0391 0.0031 0.0047 1.7000 1.0333 1.3429
Midpoint mean 0.0871 0.0257 0.0332 1.9931 6.9459 4.2025

Sd 0.0981 0.0500 0.0596 4.2652 16.6667 17.0286
AIC π 0.0213 0.0010 0.0015 1.0047 1.6667 1.3636

mean 0.0437 0.0081 0.0100 1.0000 2.1892 1.2658
Sd 0.0230 0.0041 0.0047 1.0000 1.3667 1.3429

Deviance π 0.0273 0.0035 0.0043 1.2877 5.8333 3.9091
mean 0.0579 0.0186 0.0220 1.3249 5.0270 2.7848
Sd 0.0335 0.0063 0.0074 1.4565 2.1000 2.1143

Averaged π 0.0212 0.0006 0.0011 1.0000 1.0000 1.0000
mean 0.0437 0.0060 0.0079 1.0000 1.6216 1.0000
Sd 0.0231 0.0030 0.0035 1.0043 1.0000 1.0000

From table 3.8, some interesting observations can be made. Initially, the focus is
put on the results from the first mixture example. Based on the MSE values for the
procedures introduced in sections 3.1 and 3.2, the original method of Turnidge et al.
(2006) seems to outperform the adjusted and maximum likelihood based method for the
estimation of the mean as well as the standard deviation. This is mainly due to a reduced
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variance compared to those other methods. Nevertheless, in terms of bias, the adjusted and
maximum likelihood method seem to perform better. Comparing the selection procedures
for the multinomial based approach introduced in section 3.3, it is seen that the MSE is
lowest when an averaged estimate of the desired parameters is considered. The selection
based on minimum AIC performs similar to the averaged method, whereas the Deviance
criterion has much higher variance and MSE, especially for the mean parameter. The bias
corresponding to the AIC selection criterion is lowest, closely followed by the averaged
approach.

A slightly different observation can be made for the second mixture. Recall that
this mixture had a larger region of overlap and hence a larger improvement could be seen
between the estimates for the original and adjusted method of Turnidge et al. (2006)
in tables 3.2 and 3.3. This is again reflected in this simulation study, since the adjusted
method is found to be less biased and has a smaller MSE compared to the original method.
A similar remark can be made about the ML approach, which even performs better com-
pared to the adjusted method. Among the selection procedures for the multinomial based
method, again the averaged approach performs very promising, closely followed by the
AIC selection criterion. These two selection procedures outperform all of the considered
methods, with a small preference for the averaged approach, mainly when regarding the
mean parameter.

Previously, a comparison was made between the likelihood based method and the
midpoint approach. Recall that the idea of the latter was to replace the interval censored
values with the midpoints of the corresponding intervals and simply apply the truncated
densities rather than the according distributions. Again there, it was argued that a simula-
tion study would provide deeper insights in the performance of both methods. Therefore,
the results for the midpoint approach can also be found in table 3.8. Comparing the MSE
values, it is observed that the likelihood approach performs better when the censoring
was taken into account. Whereas the effects on the estimate of the mean parameter are
only minor, a relatively larger effect is seen for the estimate of the standard deviation.
Regarding the first mixture, the MSE for the estimate of the standard deviation is 2.4
times larger for the midpoint approach. An even more pronounced difference is observed
for the second mixture, where the MSE of the midpoint approach is 12.68 times larger
compared to the censored adjusted approach. This huge difference for the second mix-
ture is mainly due to an inflated variance for the midpoint approach when estimating the
standard deviation parameter.

Some final notes have to be made with respect to the results of this simulation study.
Similar to the remark made in section 3.7, 21 out of the 200 samples of the first mixture
did not have any p-value that was larger than 0.05 when the midpoint procedure was
employed. This number was even higher for the second mixture, namely 41 out of the 200
samples. Hence, for these samples, estimates were selected based on the highest observed
p-value. Although this issue did not occur with the censored version of the likelihood
based method in section 3.4.3, the simulation study revealed that 4 samples of the first
and 7 samples of the second mixture had comparable problems. A second remark concerns
the Deviance selection criterion. In the same 4 of the 200 samples from mixture (3.6) and
7 out of the 200 from mixture (3.7), none of the p-values were larger than 0.05. Hence,
in these cases, estimates from the saturated model were employed as discussed in section
3.3.2.
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3.6 Concluding Remarks

This chapter presented an overview of distinct methods to estimate the first component
of a mixture distribution. Next to the existing method of Turnidge et al. (2006) and an
adjustment to that approach, two new approaches were provided. Based on a simulation
study, their respective performances were discussed. The adjustment that was made to
the original method of Turnidge et al. (2006) was found to be a useful alternative when
there was a considerable region of overlap. However, since this method suffers from the
same shortcomings as the original method, interest was mainly in the maximum likelihood
and multinomial based procedures. Although the former procedure caused some problems,
this method is believed to perform well as its MSE is relatively close to the minimum.
Nevertheless, it was the multinomial based procedure, with an averaged or minimum
AIC selection criterion, that looks very promising since it performed best based on bias,
variance and MSE, especially when regarding the second mixture.

Taking all of the former into account, it is believed that the adjusted method, the
ML procedure and the multinomial based approach (using the AIC or averaged selection
criteria) provide appropriate alternatives to the method of Turnidge et al. (2006). In
addition to the performance outcomes found above, the multinomial based method has
the additional advantage that it is encompassed in the more general likelihood framework,
allowing for a straightforward comparison between distinct distributional assumptions
regarding the first component.
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Chapter 4

Semi-Parametric Mixture Model

The approaches discussed in the previous chapter provide different pathways for estimat-
ing the parameters for the first component of the MIC distribution. Nevertheless, main
interest remains in obtaining an estimate for the full mixture MIC distribution. However,
since little is known about the distribution of the resistant isolates, a more general form
of density estimation needs to be applied to obtain more insight in this second compo-
nent. After providing some background information on density estimation, the penalized
mixture procedure (Kauermann and Schellhase, 2009) will be discussed in more detail.
Consecutively, a censored-adjusted version of the method will be applied when estimating
the full mixture with a semi-parametric mixture model.

4.1 Estimation of the Second Component

As already addressed above, little is known about the distribution of the resistant compo-
nent of the MIC distribution. Most likely, this second component is itself a mixture as it
is composed of several resistant strains of the microorganisms under investigation. Several
approaches for estimating an unknown density exist and are presented in this section.
Primary focus is on the method by Kauermann and Schellhase (2009).

4.1.1 Background Information on Density Estimation

Different density estimation routines exist and can roughly be categorized into four partly
overlapping categories. One of the most prominent methods is nonparametric kernel den-
sity estimation, introduced by Rosenblatt (1956) and Parzen (1962). Formally this esti-
mator can be represented as:

fn(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, x ∈ R.

The window-width (or bandwidth) hn is the parameter that determines the amount of
smoothing. Different functions can be used as a kernel K(.), the choice of which does
not pose any problems. However, to make sure that the expression above is a density
function, the kernel function needs to integrate to one. Typically, it is assumed that
the kernel function is non-negative and symmetric around zero. On the other hand, the
determination of the optimal window-width is more important, but also more challenging.
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Different approaches to determine the amount of smoothing exist and are discussed in
for example Jones et al. (1996). A second technique for estimating an unknown density
results by writing this density as its logistic density transform (Leonard, 1978)

f̂(x) =
exp [η(x)]∫
exp [η(z)] dz

,

with η(.) an unknown but smooth function, estimated using spline technology. More infor-
mation on this method can be found in Gu and Wang (2003). A third approach is based on
extending and smoothing the classical histogram as originally suggested by Boneva et al.
(1971). Following this idea, Lindsey (1974a, 1974b) suggested to use a regression estima-
tion scenario with the number of observations per bin in the histogram as Poisson count.
Equivalently, Eilers and Marx (1996) make use of the same idea, but employ penalized
spline smoothing instead. The spline approach and Poisson approach are thereby closely
related which results by approximating the integral above with a rectangular method.

Next to the three approaches that are briefly discussed above, there also exists a
fourth line of density estimation: using a mixture approach. In this case, the unknown
density results by finite mixtures of component densities. These components can be either
unknown, such as in the classical mixture models (e.g. McLachlan and Peel, 2000), or
the components can be known. In the latter case, Ghidey et al. (2004) have proposed
to use a finite but penalized mixture of Gaussian densities to estimate a random effects
distribution in a linear mixed model. This idea has been adopted repeatedly and is further
described in, amongst others, Komarek and Lesaffre (2008). Kauermann and Schellhase
(2009) also follow the proposed method of penalized density estimation, focusing on both
Gaussian densities and standardized B-splines as corresponding component densities. The
latter approach will be further detailed upon in this section as it is believed to provide a
meaningful way to estimate the unknown resistant distribution.

4.1.2 Penalized Mixture Approach

In order to obtain a semi-parametric estimate for the unknown density of the resistant
isolates, the penalized mixture approach of Kauermann and Schellhase (2009) can be
applied. Let X denote the univariate random variable of interest (i.e. the MIC value),
with true density function f. The main idea is to approximate f as a mixture of densities:

fK(x) =
K∑

k=−K

ckφk(x), (4.1)

where the φk(x) are referred to as the basis densities and the ck will be called the weights.
In order for (4.1) to actually represent a density function, the weights need to be larger
than zero and sum up to one. With the aim of avoiding constrained maximization, the
weights are reparametrized:

ck(β) =
exp(βk)∑K

k=−K exp(βk)
,

with β0 ≡ 0 for identifiability and the β = (β−K , . . . , β−1, β1, . . . , βK) such that
∫

fK(x)dx
=1. The current approach hence assumes that the basis densities are known and fixed
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density functions with specified parameters. It is assumed that all the φk(x) are continu-
ous on their support and converge toward zero at their boundary. One possible choice for
the basis densities was already applied in for example Ghidey et al. (2004) and Komarek
and Lesaffre (2008), namely to make use of Gaussian densities with fixed mean (µk) and
variance (σ2

k). The mean values can be referred to as being the knots of the basis. Kauer-
mann and Schellhase (2009) also pay attention to the alternative B-spline densities, as
they are numerically more stable and theoretically more appealing. B-spline densities are
standard B-splines (de Boor, 1978) that are normed to be densities. A short introduction
to B-splines and how they are standardized can be found in appendix A.

For convenience, the knots at which the basis densities are located will be denoted
by µk, with k running from -K to K. The assumption is made that the knots cover the
range of the observed values of the random variable X and that their location is fixed. In
the typical setting, it is most easy to consider equidistant knots and hence this will also be
assumed subsequently. Several options exist for the value of the variance of the Gaussian
basis densities. Kauermann and Schellhase (2009) opted for a standard deviation that
equals half the interval spanned by two consecutive knots: τ1 = 1

2(µj − µj−1) . On the
other hand, the standard deviation employed by Ghidey et al. (2004) was slightly larger:
τ2 = 2

3(µj−µj−1). This was argumented by the fact that a Gaussian density which extends
over µ± τ2 can be approximated by a B-spline of degree 3 that extends over 4 equidistant
knots. In the remainder of the thesis, the choice of Ghidey et al. (2004) will be followed.

It appears that the number of knots plays an important role in terms of bias and
variance. When a fine grid for the knots of the basis densities is involved (large K), there
will be overfitting which results into a density estimate that is too wiggly. When the grid
is not chosen fine enough, meaning that there are only a limited number of component
densities (small K), the result will be a relatively smooth but biased density estimate. For
this reason, one needs to find a compromise between smoothness and unbiasedness. To
accomplish this, the approach of Eilers and Marx (1996) will be followed. This means
that a relatively large number of basis functions is considered, but the loglikelihood is
penalized for overfitting via introducing a penalty term based on the finite differences of
adjacent coefficients. Hence, the penalty is put on the basis coefficients βk by penalizing the
variation of ck over k. Assuming an independent sample xi, i = 1, . . . , n, the loglikelihood
can be written as

l(β) =
n∑

i=1

log
K∑

k=−K

ck(β)φk(xi).

As already mentioned, this loglikelihood is supplemented by adding a quadratic penalty
term, yielding the penalized likelihood

lp(β, λ) = l(β)− 1
2
λβT Dmβ,

where the penalty matrix Dm implies smoothness and λ is the penalty parameter. In order
to penalize the variation of the weights ck, it suffices to restrict the difference between
the coefficient βk and βk−1 or βk+1 respectively. Therefore, mth-order differences are
penalized. To obtain the final penalty matrix of interest, some intermediate results need
to be presented. Let L̃m denote a (K̃ − m) × K̃ dimensional matrix representing the
(m+1)th order differences, with K̃ = 2K + 1. For example, the second order difference
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matrix L̃1 is equal to

L̃1 =


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −1

 .

By definition, β0 ≡ 0, implying that the linear combination with this coefficient can be
omitted. Therefore, the (K̃−m)×2K dimensional matrix Lm is derived from the difference
matrix L̃m by omitting the redundant middle column corresponding to β0. Finally, the
penalty matrix Dm is obtained as LT

mLm.
In order to maximize the penalized likelihood, a Newton-Raphson approach will be

followed. Hence, the first and second derivative are needed. In this regard, denote with
C(β) the (2K + 1)× (2K) dimensional matrix with elements

∂ck(β)
∂βj

, k = −K, . . . , K, j = −K, . . . ,−1, 1, . . . ,K.

This matrix results as C(β) =
(
diag(c̃)− c̃c̃T

)
[, {−K, . . . ,−1, 1, . . . ,K}], where [, A] refers

to extracting the columns given by the index set A and c̃ = (c−K(β), . . . , c0(β), . . . , cK(β))T .
With these notations, the first derivative of the penalized loglikelihood with respect to β
now equals

sp(β, λ) =
∂l(β)
∂β

− λDmβ =
n∑

i=1

CT (β)φ̃i

f(xi)
− λDmβ,

with φ̃i = (φ−K(xi), . . . , φ0(xi), . . . , φK(xi))
T and f(x) as defined in (4.1). The negative

second order derivative of the penalized loglikelihood may be approximated by

Jp(β, λ) = −∂2l(β)
∂β∂β

+ λDm ≈
n∑

i=1

CT (β)φ̃iφ̃
T
i C(β)

f(xi)2
+ λDm.

In order to find the maximum likelihood estimate for β, Newton-Raphson scoring
will be performed using a fixed λ:

βt+1 = βt − 2−v{sp(βt, λ)(Jp(βt, λ))−1}.

At the start of the process, v is set equal to zero. When no new maximum is achieved for
a current v, this value is increased step by step and hence the step size is bisected. This
iterative procedure is repeated until the new loglikelihood value (corresponding to βt+1)
differs less than 0.1 loglikelihood points from the loglikelihood corresponding to the old
estimate.

While having kept the penalty parameter λ fixed when updating the estimate of β,
it is equally important to obtain a good estimate for this parameter as well since it steers
the amount of smoothing. Estimation of λ can be obtained in two ways. First of all,
the best penalty parameter can be seen as the one that minimizes the Akaike Information
Criterion (Akaike, 1974). For a given λ, AIC(λ) = −2lp(β, λ)+2dim(β|λ), where dim(β|λ)
represents the effective degrees of freedom depending on λ. Applying a method by Gray
(1992), these effective degrees of freedom can be determined using the observed Fisher
information matrices based on the penalized and unpenalized likelihoods: dim(β|λ) =
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trace(J−1
p (β, λ)Jp(β, λ = 0)). Note that when λ equals zero, no penalty is put on the

loglikelihood and hence dim(β|λ = 0) reduces to 2K, the number of used parameters.
However, selecting λ using this first method requires a grid search and fitting the density
for a set of λ values, which is usually quite time consuming. Therefore, Kauermann and
Schellhase (2009) proposed an alternative method making use of the link with mixed
models. Adopting a Bayesian viewpoint, they derived an estimating equation from which
one could derive the value of λ:

λ̂−1 =
β̂T Dmβ̂

dim(β̂|λ̂)− (m− 1)
.

The derivation of the formula above is rather technical and one is referred to Kauermann
and Schellhase (2009) for more information. Since both sides of the equation depend
on the parameter of interest, an iterative solution is possible by fixing λ on the right
hand side and update the parameter on the left hand side. Consecutive iterations can
be performed after updating again the right hand side. These iterations are terminated
when the denominator is smaller than some prespecified threshold (0.01) or when the new
λ is approximately converged (i.e. the new value differs by only 0.001 times the old value
from the old value of λ). In case none of those two criteria are met, the iteration for λ is
terminated after eleven steps.

The fitting of the presented procedure requires a number of practical settings which
are implemented int the R package pendensity (Schellhase, 2009). A uniform distribution
is assumed as starting values for the β parameters, i.e. the βk are set equal to zero in order
to start the Newton procedure. To avoid terminating the algorithm in a local instead of
global maximum, it is advisable to fit the density for a number of different starting values
and take the fit with the maximum value for the likelihood. Even more important in
avoiding the problem of a local maximum is the choice of the penalty parameter, which
should be large enough. It is therefore recommendable to start the Newton procedure with
a large λ (e.g. 50000). As a default, the number of knots is set equal to 41, mimicking the
rule of thumb suggested in Ruppert (2002). However, the number of knots does not seem
as influential on the fit as the amount of smoothing, which is determined by the selection
of the penalty parameter. Finally, the procedure repeatedly iterates between the Newton-
Raphson step and the estimating equation above for estimating respectively β and λ, until
the value for λ has converged. From the resulting estimates for β, the weights ck can be
calculated and substituted in (4.1) to obtain an estimate for the density of interest.

4.1.3 Extension to Censored Data

The penalized mixture approach was introduced with the aim of obtaining a suitable way to
estimate the density of the resistant component of the MIC density. However, as a result
of the dilution type laboratory experiments, MIC data are censored and the penalized
mixture approach of Kauermann and Schellhase (2009) cannot be applied directly. Rather,
a small adjustment needs to be made regarding the used basis functions. More specifically,
in total equivalence with the idea used when developing the likelihood based approach in
section 3.2, the original basis density functions are replaced with their corresponding
distribution functions when constructing the likelihood:

l(β) =
n∑

i=1

log
K∑

k=−K

ckΦk(x),
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where Φk(.) can be either the Gaussian or B-spline cdf (for the latter, see appendix A). The
penalization and optimization of the likelihood are done similar to the original procedure.
The resulting estimates can again be substituted in equation (4.1) to obtain an estimate
of the desired density.

4.2 Semi-Parametric Mixture Model

After having presented approaches to estimate the wild-type and resistant component, the
developed ideas will be combined here to create a full semi-parametric mixture model for
the estimation of the MIC density. Based on the resulting mixture density, one can derive
the prevalence of the resistant isolates and perform for instance model based classification
to determine whether the isolates under investigation belong to the wild-type or resistant
class.

Recall from chapter 2 that the general form of the mixture distribution of the min-
imum inhibition concentration values is given by

f(x) = f1(x|θ1)(1− p) + f2(x|θ2)p.

The first component can be assumed to be of a fixed parametric form, for which param-
eter estimates were found in chapter 3. However, major interest remains in finding an
estimate for the prevalence p of the resistant isolates. The multinomial based method
already provided an estimate for this proportion. However, the latter method assumed
a multinomial distribution for the outcomes of the resistant isolates, an assumption that
could be improved. The only available information about the second component is that it
is itself a mixture of several resistant strains. Therefore, an elegant way to incorporate this
information into the model is through the application of the penalized mixture approach
of Kauermann and Schellhase (2009).

4.2.1 Outline of the Proposed Method

The idea is to assume that the parameters of the first component, θ1, are known and
equal to their estimates that were found via the corresponding developed methods. The
information on the second component will be introduced by the application of a method
that is similar to the method of Kauermann and Schellhase (2009). More specifically, the
estimator for the density of the MIC values is based on (4.1), to which one additional
component is added:

fK(x) = (1− p)f1(x; θ1) + p

K∑
k=−K

ckφk(x) =
K∑

k=−(K+1)

c̃kφ̃k(x). (4.2)

This component represents the wild-type component and will not be penalized for as it is
assumed to be of a fixed parametric form. This means that f1(x; θ1) is taken to be equal
to the estimated density found in chapter 3. Note that the density estimator above has
been rewritten in terms of (4.1), where the weights have been rescaled such that the first
weight corresponds to (1 − p). The according first basis density is assumed to be equal
to f1(x; θ1). The estimator in (4.2) is again used to construct the penalized likelihood.
Note however that, in contrast to the approach in the previous chapter, there is no need
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to attach a penalty to the parameter of the first basis function. Therefore, the penalty
matrix Dm, introduced earlier, is supplemented with an initial row and column of zeros.
Optimization occurs equivalently to the method in section 4.1.2.

Of course, one needs to account for the fact that the estimated parameters of the
first component are assumed to be fixed. In this regard, a bootstrap procedure (Efron
and Tibshirani, 1994) could be carried out that repeats both steps of the analysis, namely
the estimation of the wild-type component and the fitting of the corresponding semi-
parametric mixture model. This way, the variability related to the estimated prevalence
through the latter model is taken appropriately into account.

One of the main difficulties with the proposed approach is the placement of the
knots that are needed to find the penalized mixture estimate of the resistant component.
This is mainly due to the fact that these knots need to span the region of MIC values
that belong to resistant isolates, information that is unknown. Using a too wide region
might lead to fitting unexplained sampling variability that was not captured by the fixed
first component, resulting into random fluctuations in the neighborhood where in fact
no resistant MIC values were observed. On the other hand, a range that is too small
results into an inappropriate estimate in the region of overlap between first and second
component, a region of particular interest. One of the most plausible options to solve this
issue was to locate the base densities at equidistant knots ranging between the mean of the
first component and the maximum value in the observed dataset. As a result, observations
that are smaller than or equal to the estimated mean of the first component are contributed
solely to the wild-type component and do not influence the penalized mixture estimate of
the resistant component. Nevertheless, it is highly recommended to assume different knot
ranges and compare the corresponding model fits based on the AIC criterion.

4.2.2 Obtaining Estimates for First Component

The approach, as it is described above, largely depends on the estimate of the first com-
ponent parameters that were found using the procedures described earlier. Instead, the
semi-parametric mixture model can be used as an alternative approach to obtain suitable
estimates for the parameters of the wild-type component. The idea is very similar to the
multinomial based approach that was introduced in section 3.3, where the multinomial dis-
tribution was employed as a means to incorporate information on the resistant component.
A natural adjustment is to replace the multinomial distribution by the density estimate
that is found using the penalized mixture approach of Kauermann and Schellhase (2009).
Hence, to determine the value for θ1, a grid of possible values for this parameter vector
can be considered and the most suited among them can be selected based on the Akaike
Information Criterion. Note that the same criterion was also addressed as a possible way
to select the most optimal penalty parameter. However, since it was time consuming,
the faster estimating equation was preferred. A similar remark can be made here as the
grid search will be more time consuming compared to for example the multinomial based
methods in section 3.3.

4.2.3 Model Based Classification

Next to having obtained an estimate for the prevalence of the resistant isolates, the semi-
parametric mixture model has another nice feature. The resulting estimate for the full
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mixture density of the MIC data can be used to determine to which of the two classes a
specific isolate belongs: wild-type or resistant. This way, the mixture provides a useful
alternative to the epidemiological cut off values (ECOFFs) that are typically used to
determine resistance. Whereas the latter approach can be termed deterministic (the isolate
is either resistant or not), the mixture approach allows for a probabilistic interpretation.
More specific, the probability for a certain isolate to be in the wild-type class is equal to

P (wild-type|MIC = x) =
(1− p)f1(x; θ1)

(1− p)f1(x; θ1) + p
∑K

k=−K ckφk(x)
.

Classification can be made according to the majority vote, in which case the isolate is
classified to the wild-type strain if the probability specified above is larger than 50 %. For
more information, see e.g. Hastie et al. (2009).

4.3 Application to Artificial Datasets

The simulation study that was performed in the paper by Kauermann and Schellhase
(2009) revealed a promising result for the original approach compared to the alternatives
in section 4.1.1. In order to determine how the censored-adjusted version developed in this
chapter behaves, the procedure was applied to the two artificial examples from chapter 3.
While the method is actually introduced to capture the density of the resistant isolates, it
will be applied here to model the total mixture, hence representing the full MIC density of
interest. Instead of providing the exact estimates of the weights ck, a visual comparison is
preferred. In this regard, figure 4.1 presents the resulting density estimates for mixtures
(3.6) and (3.7).

Figure 4.1: Graphical representation of estimated density for mixtures (3.6) (top row) and
(3.7) (bottom row) using Gaussian and B-spline bases.

It is seen that the true density (black solid line) is approximated nearly perfect when
a Gaussian base is employed. The estimate is able to capture both peaks of mixture (3.6)
and the region of overlap in mixture (3.7) does not result into large problems. On the
other hand, when a B-spline basis is used, the resulting plot is slightly shifted to the right,
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probably because of the censored nature of the data. From these two examples, it seems
that a B-spline basis is not that well suited, in contrast to its magnificent performance in
the original method of Kauermann and Schellhase (2009).

In addition, the techniques developed in the previous section are also applied to the
two artificial examples. Estimates for the parameters of the first component were already
obtained through the application of the six procedures developed in chapter 3. The idea
is now to consider each of these estimates as being the fixed first component parameters
(θ1) and substitute the corresponding wild-type density (f1(x; θ1)) into expression (4.2).
Consecutively, the censored-adjusted version of the procedure by Kauermann and Schell-
hase (2009) is used to estimate the weights c̃k. Since the first of these weights represents
the proportion of wild-type isolates, one minus this proportion reflects the prevalence of
the resistant isolates. For each of the six possible scenarios, table 4.1 presents the estimate
for this prevalence together with the AIC value of the corresponding model fit. Gaussian
cumulative distribution functions were used to construct the base.

Table 4.1: Estimate for prevalence of resistant isolates using the full mixture approach with
estimates for the parameters of the first component as found by the methods discussed in
chapter 3.

Mixture (3.6) Mixture (3.7)

Method Estimates θ1 Prevalence AIC Estimates θ1 Prevalence AIC
Turnidge -1.97; 1.03 0.497 4765.13 -1.82; 1.15 0.258 4252.95
Adjusted -2.01; 0.99 0.502 4762.22 -1.95; 1.01 0.293 4235.87
ML -2.00; 0.96 0.504 4761.36 -1.95; 0.98 0.298 4234.63
AIC -2.00; 0.96 0.504 4761.36 -2.07; 0.89 0.342 4232.62
Deviance -2.00; 0.96 0.504 4761.36 -2.07; 0.89 0.342 4232.62
Averaged -2.04; 0.93 0.509 4761.00 -2.03; 0.92 0.325 4232.72

Regarding the first mixture, all parameter settings result into estimates for the
prevalence of resistant isolates that closely approximate the true value of 0.5. In addition,
the corresponding AIC values are fairly close to each other and all parameter estimates,
except those obtained from the original method of Turnidge et al. (2006), seem to be
equally plausible. Based on this criterion, the results from the multinomial based method
with averaged AIC selection criterion are most optimal. Similar observations can be made
for the second mixture, except that the prevalence estimates are somewhat more distinct.
The smallest AIC value can be found for the multinomial based approach with minimum
AIC and Deviance as selection criteria. However, the solution for the averaged selection
criterion has only a marginally larger AIC value and is preferred based on the simulation
study in chapter 3.

Next to having obtained an estimate for the prevalence of resistant isolates, the
procedure also provides an estimate for the density of the resistant component. Instead
of showing the exact estimates for the weights, a graphical representation is ought to be
more convenient. Therefore, figure 4.2 displays the resulting densities of the full mixture
and of the resistant isolates for both mixtures under consideration. Graphs are shown for
the results corresponding to the estimates who are indicated as being most suited based
on the AIC values in table 4.1.

For the first mixture, an excellent fit is observed for both the full mixture and
the corresponding second component density. On the contrary, a different observation
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Figure 4.2: Graphical representation of estimated density for the entire mixture (3.6) (top
row) and (3.7) (bottom row), with corresponding second component densities using the
parameters corresponding to the minimum of the AIC values in table 4.1, using Gaussian
basis densities.

is made for the second mixture. Whereas the fit for the full mixture is reasonably well,
the corresponding second component density estimate is less accurate. The procedure is
still able to identify two peaks for this resistant component, but the first peak is shifted
slightly to the left. This is probably due to the fact that the second component needed to
compensate for the less appropriate estimates for the first component (which were in fact
too small). In addition, there is also variability that is inherent to working with samples
and this definitely has an influence on the obtained results.

4.4 Concluding Remarks

In this chapter, next to providing a means to estimate the density of the resistant isolates,
a semi-parametric mixture model to capture the full MIC distribution was presented as
well. Gaussian basis densities were deemed most appropriate since the alternative B-spline
densities resulted into a shifted estimate. The resulting semi-parametric mixture model
provided an excellent fit for the artificial example with only a small region of overlap. Both
the density of the entire mixture and the corresponding second component were estimated
close to their true counterparts. When the region of overlap was larger, less accurate
results for the first component parameters resulted into a less appropriate resistant density
estimate, while the fit for the entire mixture was still satisfactory.

In order to take the sampling variability into account, the same curve-fitting proce-
dure was applied to the 200 samples from the simulation study in the previous chapter.
Although the output is not presented above, similar observations were made and the
aforementioned conclusions were confirmed.
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Chapter 5

Application to Real Data

The methodology developed in the previous chapters for estimating the MIC distribution
seemed to perform promising when applied to the artificial examples. However, although
it was aimed for, it is not sure that the created examples represent real AMR data.
Therefore, in order to determine how the developed methods behave in such a real life
situation, they will be applied to an original dataset in this chapter. Estimation of the
first component is performed using the original method of Turnidge et al. (2006), as well
as the newly developed multinomial based approach. These estimates are consecutively
used to construct the full mixture density of the MIC data.

5.1 Description of Data

The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is an orga-
nization that deals with breakpoints and technical aspects of phenotypic in vitro antimi-
crobial susceptibility testing. Most antimicrobial MIC breakpoints (e.g. epidemiological
cut-off values) in Europe have been harmonised by EUCAST. On their website, the com-
mittee provides MIC distributions for a wide range of organisms and antimicrobial agents.
These distributions are based on collated data from a total of close to 20000 MIC distri-
butions from worldwide sources. The distributions include MIC values from national and
international studies such as resistance surveillance programs, as well as MIC distributions
from published articles, the pharmaceutical industry, veterinary programs and individual
laboratories. The developed methods in chapter 3 are applied to one antibiotic-bacterium
combination, namely the resistance of Escherichia coli against ampicillin.

The resulting MIC distribution consists of 39220 isolates that were obtained from
48 distinct sources. All data were collected in the form of number of isolates with different
MIC values on the power of 2 scale. MIC values ranged from 0.125 mg/L to 512 mg/L,
with the first mode being located around the value of 2 mg/L. A graphical representation
of the data is given by the barplot in figure 5.1. Two large peaks are clearly visible at the
values of 2 and 4, probably representing the center of the wild-type component. Toward
the larger MIC values, two smaller peaks are located at the values of 64 and 256, which
could represent distinct strains of resistant isolates. The EUCAST has set the harmonized
epidemiological cut-off value equal to 8 mg/L, meaning that isolates with a larger MIC
value are referred to as being resistant.
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Figure 5.1: Dataset regarding the AMR data for ampicillin - E. coli example.

5.2 Application of Proposed Methods

In first instance, the data were subjected to the original method of Turnidge et al. (2006)
to obtain an estimate for the parameters of the first component. As outlined in section 3.1,
non-linear least squares regression was employed to fit the cumulative log2-transformed
MIC distribution to the normal cumulative function for increasing subsets of the data.
The most optimal parameters are those who minimize the difference between the observed
and estimated cumulative count in the fitted subset. Table 5.1 presents the outcomes
for the initial three fitted subsets. The first one of these subsets included the isolates
that had an MIC value (on the log2 scale) smaller than or equal to 2, corresponding to the
second observed mode of the distribution under investigation. It is seen that the difference
between estimated and true number of isolates is minimal for the second subset. Hence,
the estimates for the mean and standard deviation were selected from this subset. The
mean MIC is estimated to be 1.04 and the corresponding standard deviation is 0.71 (both
on the log2 scale). From the third fitted subset onwards, the absolute difference became
larger again.

Whereas the original method makes use of the normal cdf for modeling the sub-
sequent subsets, it could well be that another parametric distribution function is more
appropriate. Even though the approach of Turnidge et al. (2006) does not allow for a
direct comparison between two distributional assumptions, the procedure was carried out
a second time, using the gamma cdf instead. Since a gamma distributed random variable
is strictly positive, the original MIC scale is used here. The results of the second proce-
dure are also summarized in table 5.1. Selection of the most optimal parameters is done
in total similarity as above, leading to an estimate of 4.65 for the shape and 0.48 for the
scale parameter.

Although the difference between the estimated and true number of observations
in the optimal subset (266.87) is somewhat larger compared to when the normal cdf
was employed, this does not necessarily imply that the latter is most suited. Rather, a
direct comparison of the two assumptions should be carried out, using for instance the
multinomial based method in combination with the AIC criterion. The results of this
approach, assuming both a normal and gamma first component, can be found in table
5.2. On the log2 scale the AIC and model averaged selection procedures result into an

34



Application

Table 5.1: Parameter estimates according to the method of Turnidge et al. (2006), applied
to the ampicillin - E. coli data.

Normal cdf

Number of observations Mean Standard deviation

Subset True Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.
1 23846 26267.86 2421.86 67.25 1.04 0.00 0.72 0.00
2 26027 26123.42 96.42 33.74 1.04 0.00 0.71 0.00
3 26450 26289.19 -160.81 76.55 1.04 0.01 0.72 0.01

Gamma cdf

Number of observations Shape Scale

Subset True Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.
1 23846 24699.58 853.58 22.46 5.54 0.03 0.38 0.00
2 26027 25760.13 -266.87 290.51 4.65 0.42 0.48 0.05
3 26450 26089.21 -360.79 246.59 4.42 0.41 0.51 0.05

estimated mean of 1.51 and 1.50 respectively, and a standard deviation equal to 0.91 for the
Gaussian wild-type component. Note however that the mixing weight π is estimated to be
1, implying that all isolates belong to a single normal density. Since this is very unlikely, a
better selection criterion would be to compare the AIC values for the model fits where the
corresponding estimate of π is smaller than 1, leading to an estimated mean of 1.06 and sd
equal to 0.74. In case of a gamma first component, the AIC selection procedure results into
estimates of 5.56 and 0.86 for the shape and scale parameter respectively, corresponding
to a mean of 2.11 and a standard deviation of 0.80 (on the original scale). The results of
the averaged approach are only marginally different since the shape is estimated to be 5.54
and the scale 0.40. Based on the AIC values in the table, it is observed that the gamma
distribution performs slightly better compared to the Gaussian.

Table 5.2: Parameter estimates of the multinomial based method with a normal and
gamma cdf, applied to the ampicillin - E. coli data.

Normal cdf Gamma cdf

Model AIC π Mean Sd p-value AIC π Shape Scale p-value
Sat 1 143007.6 - - - - 143007.6 - - - -
Sat 2 143007.6 0.03 0.57 1.14 - 143007.6 0.01 4.92 0.13 -
Add1 143044.9 1.00 1.51 0.91 < 0.0001 143026.3 1.00 5.41 0.45 < 0.0001
Add2 143050.1 1.00 1.40 0.86 < 0.0001 143027.0 0.61 5.66 0.37 < 0.0001
Add3 143086.7 0.68 1.06 0.74 < 0.0001 143025.1 0.63 5.56 0.38 < 0.0001
Add4 143098.2 0.67 1.03 0.72 < 0.0001 143321.7 0.66 4.51 0.51 < 0.0001
Add5 143572.8 0.67 1.06 0.77 < 0.0001 145284.7 0.67 3.67 0.66 < 0.0001
Model averaged 1.00 1.50 0.91 0.73 5.54 0.40

Whereas the multinomial approach already provides a first comparison between the
distinct distributional assumptions, it does not take into account the full distribution of
the second component. Therefore, a second way to compare between the assumptions
for the first component is to make use of the semi-parametric mixture model. This way,
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information on the distribution of the resistant isolates is incorporated as well via the
semi-parametric density estimate of Kauermann and Schellhase (2009). A comparison is
made between all pairs of parameter estimates for the first component that were obtained
above. Each of these pairs are substituted in expression (4.2) and assumed to represent the
true parameters of the wild-type component. Consecutively, optimisation of the resistant
component is performed using the penalized mixture approach. Figure 5.2 gives a visual
comparison of the fitted models, overlaid on the barplot of the original data. Note that
all graphs are made on the log2 scale.

Figure 5.2: Fitted semi-parametric models for AMR data regarding the ampicillin - E.
coli example.

The smallest AIC value (143028) is observed for the estimates of the multinomial
based method with a gamma first component (bottom, right). The second most optimal
estimates were obtained via the method of Turnidge et al. (2006) with a normal cdf
(143116). Using the updated selection criterion above, the multinomial based approach
with a normal first component resulted into similar estimates as those from the method
of Turnidge et al. (2006). Nevertheless, the AIC value for the former is considerably
higher, namely 143141. This difference in fit is also observed in figure 5.2. It is seen there
that for the multinomial approach, the normal first component is not able to explain all
observations in the MIC category of 2 mg/L. The semi-parametric density estimate for
the resistant isolates therefore shows a first peak at the respective category, explaining
the departure from normality there. Finally, the least suited estimates were obtained via
the application of Turnidge et al. (2006) with a gamma first component. For comparison
purposes, the AIC value when the full MIC density was estimated using the penalized
mixture approach is equal to 143017, hence relatively close to the most optimal solution.

Recall that the placement of the knots for the penalized mixture approach was one
of its major issues. In the fits above, the knot range was determined by the mean of
the first component and the maximum MIC value in the dataset. Other knot ranges
were considered and compared to the fits above. In case of a gamma first component,
one could use the mode rather than the mean. In terms of AIC, this resulted into an
improved model fit when applied to the estimates of the method of Turnidge et al. (2006),
namely 143065. Nevertheless, assuming different knot ranges for the other procedures as
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well, the solution regarding the multinomial approach in combination with a gamma first
component remained most optimal.

The resulting semi-parametric mixture found above can now be employed to deter-
mine some properties of interest. First of all, the initial weight of the mixture corresponds
to the prevalence of wild-type isolates. For the ampicillin - E.coli combination, 63%
(bootstrap se: 0.041) of the isolates is estimated to belong to the wild-type component
and hence the remaining 37% are resistant. In order to determine to which class a specific
isolate belongs, model based classification can be performed as described in section 4.2.3.
Applying the majority rule, isolates with an AIC value less than or equal to 4 would be
classified as being wild-type organisms. This cut-off value for classification is however not
in accordance with the harmonized ECOFF as stated by the EUCAST, which is equal to 8
mg/L. According to the model based classification, the probability to belong to the wild-
type class when the MIC value is equal to 8 mg/L is only 0.4%. In the current example,
this means that only 9 out of the 2181 obserations in the latter category are wild-type.
On the contrary, classification based on the second most optimal fit (assuming a normal
first component) coincided with the harmonized cut-off value.

5.3 Concluding Remarks

In this chapter, the method of Turnidge et al. (2006) and the new multinomial based
approach were applied to an AMR dataset regarding the resistance of E.coli against ampi-
cillin. For both approaches, two distributional assumptions for the first component were
compared based on the AIC values resulting from the full semi-parametric mixture model.
Via the multinomial approach, the gamma distribution with shape and scale parameter
equal to 5.56 and 0.38 turned out to be most suited. Based on the resulting mixture, the
prevalence of resistant isolates was estimated to be 37%. This value needs to be interpreted
with caution since data from distinct time periods and countries have been aggregated.

Due to convergence problems, results for the likelihood based approach were not
included. Different starting values for the parameters of interest were assumed, but did
not provide a solution to the problem. In addition, strict application of the minimum
difference rule for selecting the most optimal subset for the adjusted method of Turnidge
et al. (2006) lead to irrelevant results and hence these were also discarded in the previous
section. However, as can be seen from the related output in appendix B, the second most
optimal fit resulted in results similar to the original method. As a final note, a new issue
was encountered in the current application, namely a mixing weight estimated to be 1.
Since it is known that the MIC distribution is in fact a mixture, the selection criterion
was adapted in such a way that these implausible estimates are discarded.

In conclusion, it can be stated that the newly developed multinomial method pro-
vides an adequate alternative to the method of Turnidge et al. (2006); not only performing
promising in artificially created examples, but in real life situations as well. Whereas the
likelihood and adjusted method also seemed to work well when applied to the artificial
mixtures, some problems occurred in this chapter. Nevertheless, it is believed that all
the developed methods can provide valuable information in distinct situations, with the
multinomial based approach having the most broad range of application.
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Chapter 6

Discussion and Further Research

In this thesis, interest was in exploring a new mixture model for antimicrobial resistance
data such as Minimum Inhibition Concentration (MIC) values. Mixture models were ought
to be ideally suited in this setting as they offer a natural framework for modeling the unob-
served population heterogeneity of wild-type and resistant isolates. Since MIC values are
often obtained using dilution type laboratory experiments, the proposed methods needed
to account for the additional data complexity of interval censoring. In first instance, the
focus was put on estimating the wild-type component of the mixture, which is assumed
to be of a well-known parametric form. The existing method of Turnidge et al. (2006)
makes use of the log-normal distribution and aims at determining the most optimal pa-
rameters through the application of non-linear least squares regression to a range of data
subsets. An adjustment to this method was presented to make the transition between
the wild-type and resistant component more graduate. Nevertheless, both the original
and adjusted version suffered from the same shortcoming of not providing a direct means
to identify the most suited distribution for the first component. Therefore, the likeli-
hood and multinomial based methods were developed, approaches that are encompassed
in the more general maximum likelihood framework. The former method is related to the
method of Turnidge et al. (2006) in the sense that it uses increasing subsets of the data
to obtain optimal parameter estimates. Hence, different distributional assumptions can
only be compared within a particular subset since the AIC criterion requires the models
to be fit on the same data. On the other hand, the multinomial based approach uses all
data at hand and therefore does not suffer from this restriction. In addition to being most
suited to compare between distinct distributional assumptions, a simulation study also
revealed that the multinomial procedure (in combination with the minimum or averaged
AIC selection criteria) outperformed the other proposed methods in terms of MSE.

Whereas the wild-type component could be assumed to be of a parametric form,
less is known about the resistant component of the mixture distribution. Since it is
believed that the latter component consists of several resistant strains, it was modeled
using a second mixture. Instead of estimating the resistant component as a classical
mixture, a censored-adjusted version of the penalized mixture approach of Kauermann
and Schellhase (2009) was preferred. This density estimation routine was considered to
be an elegant way of incorporating information on the resistant isolates. Hence, the final
semi-parametric mixture model was created via extending the penalized mixture approach
in such a way that it was able to account for a fixed first component. Due to the fact
that this first component was actually estimated, a bootstrap procedure was proposed to
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take into account the additional variability when estimating the prevalence of the resistant
isolates. However, other alternatives exist and should be further explored.

Application of the proposed methods to a real life dataset provided some additional
interesting insights into their respective behavior. One of the most important observa-
tions was related to the selection criteria for the multinomial approach. Compared to
the artificial examples, the mixing weight was estimated to be 1 for the initial model fits.
A situation that is not realistic since the data are believed to arise from a mixture dis-
tribution. Therefore, the new selection criterion only included model fits that provided
estimates for the mixing weight smaller than 1. Other remarks concerned the convergence
problems for the likelihood approach and the inadequate estimates as a result of the too
strict application of the minimum difference rule for the adjustment to the method of
Turnidge et al. (2006). However, because of their promising performance in the artificial
examples, it is believed that also these latter methods can provide useful alternatives to
the original method of Turnidge et al. (2006). Regarding the full semi-parametric mixture
model approach for selecting the most optimal parameters of the first component, it was
noted that the AIC values for some of the fitted models were very close together (difference
of 0.1). In such situations, it is very important not to rely solely on this selection crite-
rion, but also to keep in mind the results of the simulation study that was carried out in
chapter 3. More specifically, when a choice needs to be made between several close model
fits, a slight preference is given to the multinomial based procedure with the averaged AIC
selection criterion.

Both Gaussian densities and standardized B-splines were used as corresponding basis
densities for the penalized mixture approach. Nevertheless, in contrast to its magnificent
performance in the original method, the B-spline basis did not provide adequate estimates
when used in the adjusted version. Especially in the initial range of observations, the
resulting density estimate was shifted. The discrepancy between the Gaussian and B-
spline basis became dramatic when the latter was employed in the full semi-parametric
mixture model, as it failed to produce appropriate estimates for the first, and hence also
for the second, component. For this reason, the Gaussian base was considered to be
most suited for subsequent modeling. However, because of their excellent performance in
the original setting, it is worthwhile to further explore the behavior of these B-splines in
combination with censored data. Initial efforts have already been undertaken but were not
conclusive in determining the particular cause of the shifted estimate. Therefore, future
research in this interesting field is highly recommended.
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Appendix A

B-spline Basis Functions

Kauermann and Schellhase (2009) pay attention to two types of basis density functions.
The first one are the well-known Gaussian densities, which do not require further expla-
nation. The second type, the so-called B-splines, are possibly less understood in general.
Therefore, this appendix provides some more information on how how these B-spline
functions look like, how they are constructed and in what way they can be transformed
to represent densities and distributions.

In this regard, Eilers and Marx (1996) give a very brief but gentle and general description
of B-splines. In short, a B-spline consists of polynomial pieces that are connected in a
special way. For example, a B-spline of degree 1 is depicted in figure A.1 (top row on the
left). As can be seen, this spline consists of two linear pieces (x1−x2 and x2−x3) that are
joined at the middle knot. To the left of x1 and to the right of x3, this B-spline is zero. By
introducing more knots, a larger set of B-splines can be constructed as is shown in figure
A.1 (top row on the right). Similarly, the bottom row of figure A.1 (on the left) shows a
B-spline of degree two, consisting of three quadratic pieces that are joined at two inner
knots. In total, the B-spline is based on four adjacent knots. Next to the fact that the
values of the two polynomial pieces match at the joining point, also their first derivatives
are equal there. Again here, considering more knots provides a larger set of B-splines.
Note that these B-splines overlap each other. More specifically, first-degree B-splines have
overlap with two neighbors, whereas second-degree B-splines overlap with four neighbors.

Based on the two examples above, more general properties can be derived that characterize
a B-spline of degree q:

• it consists of q+1 polynomial pieces, each of degree q;

• the polynomial pieces join at q inner knots;

• at the joining points, derivatives upto order q-1 are continuous;

• the B-spline is positive on a domain spanned by q+2 knots; everywhere else it is
zero;

• except at the boundaries, it overlaps with 2q polynomial pieces of its neighbors;

• at a given x, q+1 B-splines are nonzero.
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Figure A.1: Graphical representation of B-splines of degree 1 (top row) and degree 2
(bottom row).

Kauermann and Schellhase (2009) prefer to work with the order of the B-spline, following
the original definition of de Boor (1977), the order corresponds to the degree+1.

In order to give a formal definition of the B-spline basis functions, let τ = {τi}M
i=1 de-

note the sequence of knots that are used in the construction of the spline functions. Let
accordingly Bi,m(x) denote the ith B-spline basis function of order m for the knot-sequence
τ , where τi is the left most knot of the B-spline function. These B-spline functions are
defined recursively in terms of divided differences as follows:

Bi,1(x) =

{
1 . . . if τi ≤ x < τi+1,

0 . . . if otherwise,

for i = 1,. . . ,M-1. These are also known as Haar basis functions and can be used to define
the B-spline basis functions of higher order m ≤ M:

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x

τi+m − τi+1
Bi+1,m−1(x),

for i = 1,. . . ,M-m. The functions specified above do not represent densities yet, since they
do not integrate to one. The normalizing constant is equal to m

τi+m−τi
, which is constant

in case of equidistant knots. Hence, the B-spline density functions (of order m) that make
up the base used in the penalized mixture approach are given by

fk,bspline(x) =
m

τk+m − τk
Bk,m(x).

However, when the sample under investigation is known to be censored, these density
functions need to be replaced by their corresponding distribution functions. These are
defined by making use of B-spline functions that have one additional order:

Fk,bspline(x) =
∑
j≥k

Bj,m+1(x).
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Application to Real Data

In chapter 5, two of the discussed methods for estimating the parameters of the first
component were applied to real AMR data. This appendix presents the output for the
remaining two methods, namely the adjusted approach to the method of Turnidge et al.
(2006) and the likelihood based approach. With the adjusted version of the method of
Turnidge et al. (2006), it is aimed for to get a closer approximation of the true number of
isolates. With this purpose, new cumulative counts are considered via pointwise addition
of new observations to the original cumulative counts. The results of this procedure are
presented in table B.1, where the second column indicates how many observations are
added to the previous cumulative counts.

Table B.1: Parameter estimates of the adjusted non-linear least squares regression ap-
proach, applied to the ampicillin - E. coli data.

Number of observations Mean Standard deviation

Subset Added True Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.
1 1 12516 12516.01 0.01 57.16 0.21 0.88 0.21 0.87
2 2819 26665 26739.65 74.65 87.45 1.07 0.01 0.75 0.01
3 97 26124 26123.92 -0.08 21.29 1.04 0.00 0.71 0.00

The minimum difference (0.01) is observed for the first fitted subset (MICs ≤ 2
on log2 scale), resulting into estimates of the mean and standard deviation equal to 0.21
and 0.21 respectively. These values seem to be less plausible when regarding the barplot
in figure 5.1. Exploring the output further, it is observed that the second most optimal
fit occurs in the third subset. The difference in this subset is only -0.08 and hence also
negligibly small. Estimates corresponding to this fit are 1.04 for the mean and 0.71 for
the standard deviation, i.e. the same as those from the original method.

Problems occurred with the likelihood based approach, as it failed to converge when
more than three MIC categories were included in the fit. The procedure was fit using both
the normal as well as gamma truncated distribution functions. Because of the failure of
this procedure, the resulting estimates (see table B.2) are not appropriate.
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Table B.2: Parameter estimates of the likelihood based method with truncated normal
and gamma distribution, applied to the ampicillin - E. coli data.

Estimates using truncated normal

Mean Standard deviation

Endpoint Est. Std.Err. Est. Std.Err. Likelihood p-value
0 477.90 1106.18 12.85 14.85 -437.67 < 0.0001
1 1.90 0.20 1.00 0.05 -5852.77 < 0.0001

Estimates using truncated gamma

Shape Scale

Endpoint Est. Std.Err. Est. Std.Err. Logikelihood p-value
1.0 4.18 0.13 898806.07 209114692.99 -437.61 < 0.0001
2.0 5.66 0.29 0.37 0.04 -5846.64 < 0.0001
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R Code for Proposed Methods

In this appendix, the R code can be found for the methods that were introduced in chapter
3. The same code was applied in the simulation study that was carried out at the end
of that same chapter, with seeds equal to 1,. . . ,200. The example mixtures were created
using the following function:

Mixture<-function(n=1000,p1=0.5,p2=0.5,mu1=-2,mu2=3,mu3=5,sd1=1,sd2=1.5,
sd3=1.5)
{
set.seed(1988)
y1<-rnorm(n*p1,mu1,sd1)
y2<-rnorm(n*(1-p1)*p2,mu2,sd2)
y3<-rnorm(n*(1-p1)*(1-p2),mu3,sd3)
y4<-c(y1,y2,y3)
data<-as.data.frame(cbind(y4,c(rep(1,length(y1)),rep(2,length(y2)),
rep(3,length(y3)))))
names(data)<-c("yvalue","class")
x2<-vector()
x1<-sort(data$yvalue)
y.min<-min(data$yvalue)
y.max<-max(data$yvalue)
groups<-seq(-4,ceiling(y.max),1)
for(i in 1:length(x1)){
j<-1
calc<-TRUE
while(calc){
if(x1[i]<=groups[j] ) {
x2<-c(x2,groups[j])
calc<-FALSE
}
else j<-j+1
}
}
# How many observations per group
counts<-vector()
for(i in 1:length(groups)){
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counts<-c(counts,length(x2[x2==groups[i]]))
}
cum.counts<-vector()
for(i in 1:length(counts)){
cum.counts<-c(cum.counts,sum(counts[1:i]))
}
data.cumul<-as.data.frame(cbind(groups,cum.counts,counts))
names(data.cumul)<-c("Group","Counts.Cumul","Counts")
return(list("data"=data.cumul,"sample"=x1,"censored.sample"=x2))
}

set1<-Mixture(1000,0.5,0.5,-2,3,5,1,1.5,1.5)

Original method of Turnidge et al. (2006)

estimates.original<-matrix(0,1,ncol=9)
for(i in 5:length(set1$data$Group)){
help.matrix<-matrix(nrow=1,ncol=9)
fit<-nls(Counts.Cumul~N*pnorm(Group,mu,sigma^2),data=set1$data[1:i,],
start=list(N=1000,mu=-3,sigma=1))
help.matrix[1,1]=i
help.matrix[1,2]=round(set1$data$Counts.Cumul[i],2)
help.matrix[1,3]=round(coef(fit)[1],2)
help.matrix[1,4]=round(-set1$data$Counts.Cumul[i]+coef(fit)[1],2)
help.matrix[1,5]=round(summary(fit)$parameters[1,2],2)
help.matrix[1,6]=round(coef(fit)[2],2)
help.matrix[1,7]=round(summary(fit)$parameters[2,2],2)
help.matrix[1,8]=round(coef(fit)[3]^2,2)
help.matrix[1,9]=round(2*coef(fit)[3]*summary(fit)$parameters[3,2],2)
estimates.original<-rbind(estimates.original,help.matrix)
}
solution.original<-estimates.original[abs(estimates.original[,4])==
min(abs(estimates.original[,4])),]

Adjustment to method of Turnidge et al. (2006)

estimates.help1<-matrix(0,1,9)
estimates.minimum.per.group1<-matrix(0,1,9)
for(i in 5:length(set1$data$Group)){
estimates.improved1<-matrix(nrow=set1$data$Counts[i],ncol=9)
for (j in 1:set1$data$Counts[i]){
use.set<-set1
Cumul<-use.set$data$Counts.Cumul[i-1]+j
use.set$data$Counts.Cumul[i]<-Cumul
fit<-nls(Counts.Cumul~N*pnorm(Group,mu,sigma^2),data=use.set$data[1:i,],
start=list(N=1000,mu=-3,sigma=1),control = list(maxiter = 10000))
estimates.improved1[j,1]=j
estimates.improved1[j,2]=round(use.set$data$Counts.Cumul[i],2)
estimates.improved1[j,3]=round(coef(fit)[1],2)
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estimates.improved1[j,4]=round(-use.set$data$Counts.Cumul[i]+coef(fit)[1],2)
estimates.improved1[j,5]=round(summary(fit)$parameters[1,2],2)
estimates.improved1[j,6]=round(coef(fit)[2],2)
estimates.improved1[j,7]=round(summary(fit)$parameters[2,2],2)
estimates.improved1[j,8]=round(coef(fit)[3]^2,2)
estimates.improved1[j,9]=round(2*coef(fit)[3]*summary(fit)$parameters[3,2],2)
}
estimates.help1<-rbind(estimates.help1,estimates.improved1)
estimates.minimum.per.group1<-rbind(estimates.minimum.per.group1,
estimates.improved1[abs(estimates.improved1[,4])==
min(abs(estimates.improved1[,4])),])
}
estimates.new1<-estimates.help1[-1,]
per.group.minimum1<-estimates.minimum.per.group1[-1,]
solution.new1<-estimates.new1[abs(estimates.new1[,4])==
min(abs(estimates.new1[,4])),]

Likelihood Based Approach

Minusloglik<-function(parms=c(-1.95,1.01),endpoint=0,
data=full.data$censored.sample){
y=data
nn <- matrix(1:length(which(y<=endpoint)))
z<-seq(min(y),max(y),1)
component1<- apply(nn, 1, function(i,y){
if(y[i]==min(y))pnorm(y[i],parms[1],parms[2]^2)
else pnorm(y[i],parms[1],parms[2]^2)-pnorm(z[y[i]==z+1],
parms[1],parms[2]^2)}, y)
component1<-component1/pnorm(endpoint,parms[1],parms[2]^2)
loglik<-sum(log(component1))
minusloglik<- -loglik
}
full.data<-set1
endpoints<-c(-2,-1,0,1,2,3,4,5,6,7)
estimates.final<-matrix(0,1,7)
for(i in 1:length(endpoints)){
estimates<-matrix(0,1,7)
test.vector<-vector()
fit<-nlm(Minusloglik,c(-3,2),hessian=TRUE,endpoint=endpoints[i],
data=full.data$censored.sample)
estimates[1,1]<-endpoints[i]
estimates[1,2]<-round(fit$estimate[1],2)
estimates[1,3]<-round(sqrt(diag(solve(fit$hessian)))[1],2)
estimates[1,4]<-round(fit$estimate[2]^2,2)
estimates[1,5]<-round(sqrt(4*estimates[1,4]*diag(solve(fit$hessian)))[2],2)
estimates[1,6]<- round(-fit$minimum,2)
use.groups<-full.data$data$Group[full.data$data$Group<=endpoints[i]]
for(j in 1:length(use.groups)){
if(j==1){
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observed<-full.data$data$Counts[full.data$data$Group==use.groups[j]]
expected<-pnorm(use.groups[j],estimates[1,2], estimates[1,4])/
pnorm(use.groups[length(use.groups)],estimates[1,2],
estimates[1,4])*full.data$data$Counts.Cumul[full.data$data$Group
==use.groups[length(use.groups)]]
test.vector<-c(test.vector,(observed-expected)^2/expected)
}
else{
observed<-full.data$data$Counts[full.data$data$Group==use.groups[j]]
expected<-((pnorm(use.groups[j],estimates[1,2], estimates[1,4])-
pnorm(use.groups[j-1],estimates[1,2], estimates[1,4]))/
pnorm(use.groups[length(use.groups)],estimates[1,2],
estimates[1,4]))*full.data$data$Counts.Cumul[full.data$data$Group
==use.groups[length(use.groups)]]
test.vector<-c(test.vector,(observed-expected)^2/expected)
}
}
estimates[1,7]<-round(1-pchisq(sum(test.vector),length(use.groups)-3),4)
estimates.final<-rbind(estimates.final,estimates)
}

Multinomial Based Approach

Loglik.multi<-function(parms,y=data){
loglikelihood=0
parms.new<-c(parms,0)
probs<-exp(parms.new)/sum(exp(parms.new))
for(i in 1:length(y)) loglikelihood<-loglikelihood+y[i]*log(probs[i])
return(-loglikelihood)
}

Loglik<-function(parms,y=data,nr.groups=3){
loglikelihood=0
z<-unique(y[,1])
p<-vector()
for(i in 1:nr.groups){
if (i==1) p<-c(p,pnorm(min(z),parms[2],parms[3]^2))
else p<-c(p,pnorm(y[i,1],parms[2],parms[3]^2)-pnorm(z[y[i,1]==(z+1)],
parms[2],parms[3]^2))
}
p<-parms[1]*p
parms.new<-c(p,parms[-c(1,2,3)],0)
probs<-c(parms.new[1:length(p)],(1-sum(p))*exp(parms.new[(length(p)+1):
length(parms.new)])/sum(exp(parms.new[(length(p)+1):length(parms.new)])))
for(i in 1:nrow(y)) loglikelihood<-loglikelihood+y[i,2]*log(probs[i])
return(-loglikelihood)
}

data<-set1$data
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output<-matrix(0,1,5)
for(i in 1:(nrow(data))){
if (i<3) test<-nlm(Loglik.multi,rep(1/(nrow(data)-1),nrow(data)-1),y=data[,2])
else{
if (i<nrow(data)) test<-nlminb(c(0.5,0,1,rep(1/(nrow(data)-i-1),
(nrow(data)-i-1))),Loglik,y=data,nr.groups=i,lower=c(0,-Inf,0,
rep(-Inf,nrow(data)-i-1)),upper=c(1,Inf,Inf,rep(Inf,nrow(data)-i-1)),
control=list(iter.max=10000))
else test<-nlminb(c(0.5,1,1),Loglik,y=data,nr.groups=i,lower=c(0,-Inf,0),
upper=c(1,Inf,Inf),control=list(iter.max=10000))
}
if(i<3) AIC<-2*test$minimum+2*length(test$estimate)
else AIC<-2*test$objective+2*length(test$par)
if(i<3){
parms.new<-c(test$estimate,0)
probs<-exp(parms.new)/sum(exp(parms.new))
}
else{
z<-unique(y[,1]);nr.groups=i;p<-vector()
for(i in 1:nr.groups){
if (i==1) p<-c(p,test$par[1]*pnorm(min(z),test$par[2],test$par[3]^2))
else p<-c(p,test$par[1]*(pnorm(y[i,1],test$par[2],test$par[3]^2)-
pnorm(z[y[i,1]==(z+1)],test$par[2],test$par[3]^2)))
}
parms.new<-c(p,test$par[-c(1,2,3)],0)
probs<-c(parms.new[1:length(p)],(1-sum(p))*exp(parms.new[(length(p)+1):
length(parms.new)])/sum(exp(parms.new[(length(p)+1):length(parms.new)])))
}
if(i<3) output<-rbind(output,c(AIC,999,999,999,test$minimum))}
else{
if(i<nrow(data)) output<-rbind(output,c(AIC,test$par[1],test$par[2],
test$par[3]^2,test$objective))
else output<-rbind(output,c(AIC,test$par[1],test$par[2],
test$par[3]^2,test$objective))
}
}
pvalues<-vector()
for(i in 4:nrow(output[-1,])){
pvalues<-c(pvalues,1-pchisq(2*(output[-1,][i,5]-output[-1,][1,5]),i-3))
}
min<-min(output[c(5:nrow(output)),1])
diff<-output[c(5:nrow(output)),1]-min
weights<-exp(-1/2*diff)/sum(exp(-1/2*diff))
sum(weights*output[c(5:nrow(output)),2])
sum(weights*output[c(5:nrow(output)),3])
sum(weights*output[c(5:nrow(output)),4])
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