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Abstract 

In the recent years, many treatments have been developed for the cure of a variety of diseases. 

Many of these treatments, like the one used for the herpes zoster, are supposed to act in a multilevel 

way, when administered to patients. They either prevent the virus completely from being expressed 

or, when this is not possible, since each patient’s body may react differently to the same treatment, 

they ease the pain caused by the disease. Such cases, most of the times, result in data that are 

consisted of many zeros belonging to those who eventually did not experience the disease. Thus, 

ways of treating properly this majority of zero scores are necessary, since if these scores are 

included in the analysis without some attention, they might dilute the real effect of the treatment 

and the results given might be inaccurate to trust. In this paper, some of the most known 

approaches, suggested for this issue, are analyzed and compared in terms of their power. 

Advantages and disadvantages of them are presented as well. Illustrations of some of these 

methods, with simulated data, are also available as a way of better understanding the concept 

under which they are working. 
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1. Introduction  

1.1  The Disease 

Herpes zoster (HZ), commonly known as shingles and also known as zona, is a viral disease 

characterized by a painful skin rash with blisters in a limited area on one side of the body, often 

in a stripe. The initial infection with Varicella zoster virus (VZV) causes the acute (short-lived) 

illness chickenpox, which generally occurs in children and young people. Once an episode of 

chickenpox has resolved, the virus may not be eliminated from the body, but can go on to cause 

shingles - an illness with much different symptoms - often many years after the initial infection.  

Varicella zoster virus can become latent in the nerve cell bodies and less frequently in non-

neuronal satellite cells of dorsal root, cranial nerve or autonomic ganglion, without causing any 

symptoms. Years or decades after a chickenpox infection, the virus may break out of nerve cell 

bodies and travel down to nerve axons to cause viral infection of the skin in the region of the 

nerve. The virus may spread from one or more ganglia along nerves of an affected segment and 

infect the corresponding dermatome (an area of skin supplied by one spinal nerve) causing a 

painful rash. Although the rash usually heals within two to four weeks, some sufferers 

experience residual nerve pain for months or years, a condition called postherpetic neuralgia.  

The earliest symptoms of herpes zoster, which include headache, fever, and malaise, are 

nonspecific, and may result in an incorrect diagnosis. These symptoms are commonly followed 

by sensations of burning pain, itching, hyperesthesia (oversensitivity), or paresthesia (tingling, 

pricking and/or numbness). The pain may be mild to extreme in the affected dermatome, with 

sensations that are often described as stinging, tingling, aching, numbing or throbbing, and can 

be interspersed with quick stabs of agonizing pain. Herpes zoster in children is often painless, 

but older people are more likely to get zoster as they get older, and then the disease tends to be 

more severe.  

A live vaccine for VZV exists, marketed as Zostavax. In a study of 38,000 older adults (2005), it 

prevented half of the cases of herpes zoster and reduced the number of cases of postherpetic 

neuralgia by two-thirds (Oxman, 2005). In October 2007 the vaccine was officially 

recommended in the U.S. for healthy adults aged 60 and over. Adults also receive an immune 

boost from contact with children infected with Varicella (chicken pox), a boosting method that 

prevents about a quarter of herpes zoster cases among unvaccinated adults, but that is becoming 

less common in the U.S. now that children are routinely vaccinated against Varicella. The 

shingles vaccination can cut the risk of the severe disease by 55%. 

http://en.wikipedia.org/wiki/Viral_disease
http://en.wikipedia.org/wiki/Pain
http://en.wikipedia.org/wiki/Blister
http://en.wikipedia.org/wiki/Varicella_zoster_virus
http://en.wikipedia.org/wiki/Chickenpox
http://en.wikipedia.org/wiki/Virus_latency
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Satellite_cells
http://en.wikipedia.org/wiki/Satellite_cells
http://en.wikipedia.org/wiki/Dorsal_root_ganglion
http://en.wikipedia.org/wiki/Cranial_nerves
http://en.wikipedia.org/wiki/Autonomic
http://en.wikipedia.org/wiki/Ganglion
http://en.wikipedia.org/wiki/Symptoms
http://en.wikipedia.org/wiki/Axon
http://en.wikipedia.org/wiki/Segmentation_%28biology%29
http://en.wikipedia.org/wiki/Dermatomic_area
http://en.wikipedia.org/wiki/Postherpetic_neuralgia
http://en.wikipedia.org/wiki/Headache
http://en.wikipedia.org/wiki/Fever
http://en.wikipedia.org/wiki/Malaise
http://en.wikipedia.org/wiki/Hyperesthesia
http://en.wikipedia.org/wiki/Paresthesia
http://en.wikipedia.org/wiki/Vaccine
http://en.wikipedia.org/wiki/Zostavax
http://en.wikipedia.org/wiki/Varicella
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1.2  ZBPI Questionnaire 

The intensity, character and duration of postherpetic neuralgia (PHN) vary widely among 

individuals. Because of the complexity of HZ pain, an accurate and reliable method of pain 

measurement that captures the magnitude and duration of pain and discomfort is necessary, as 

the impact of therapeutic or preventive interventions for zoster is needed to be evaluated. In 

addition to that, it is important to determine the level of pain that interferes with functional 

status and quality of life to formulate clinically relevant definitions of both acute HZ and PHN 

(Coplan et al., 2004).  

A wide variety of questionnaires have been proposed during the last years, but more or less they 

all had some limitations, which made it difficult for them to be widely and permanently used. 

Specifically for herpes zoster, an adaptation of a main pain measure, the Brief Pain Inventory 

(BPI), has been made in order to create a HZ-specific measure of pain severity that captures 

discomfort, while also comparing it with other measures of pain as well as functional status and 

quality of life. Moreover, through this adjusted questionnaire it would be possible for the 

duration of pain and its severity over time to be measured.  

The Zoster Brief Pain Inventory (ZBPI) Questionnaire is based on the BPI, which uses an 11-

point Likert scale (0-10) to rate pain in four ways (worst, least, average, now) and pain related 

interference in seven functional categories (general activity, mood, walking ability, work, 

relations with others, sleep, enjoyment of life). The reliability of the questions included in this 

questionnaire, as well as of the questionnaire as a whole, was proved in the end of a study 

carried out by Coplan et al. (2004).   

Examples of other questionnaires that are used for respective reasons are the McGill Pain 

Questionnaire, the SF-12 and EuroQoL. The McGill Pain Questionnaire is a well established 

measure for describing the diverse dimensions of pain (McDowell and Newell, 1996). The 

EuroQoL, or EQ5D, is a validated measure of health-related QoL (Brazier et al., 1993) and 

consists of five questions and a visual analogue scale. 
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2. Description of Problems  

Nowadays, in many cases it is not possible for a vaccine to prevent completely the case of a 

disease to occur in a person. For some diseases, attempts are being made in order for vaccines to 

be discovered, which will thwart their sudden appearance. But when this is not entirely possible, 

since each individual would react differently to the vaccine, it is of equal importance if an 

additional privilege of such vaccines were to decrease the patients’ pain caused by the disease. 

One such disease is Herpes Zoster. Relief of acute and chronic HZ pain and discomfort is the 

main goal of HZ interventions, because pain and other discomfort (e.g. allodynia and intense 

pruritus) can have a substantial adverse impact on the functional status and quality of life of 

affected individuals (Coplan et al., 2004). 

In randomized, placebo-controlled prevention trials of drugs or vaccines efficacy is typically 

measured by comparing the rate of occurrence of the disease in the treated group with that in 

the placebo group. Nevertheless, an intervention may affect both the incidence rate of the 

disease and its severity. Thus, to evaluate the effects of a preventive intervention in total, it is 

desirable to take into account both its effect on disease incidence and on the severity (Chang et 

al., 1994). A combined measure of efficacy, which takes into consideration both of the above 

mentioned objectives, can be formed by assigning a severity score to each confirmed case of 

zoster and summing-over all cases to create a burden-of-illness score. 

The HZ “Burden-of-Illness (BOI) score” represents the average severity of illness among all 

patients in the placebo and the vaccine group. It is calculated according to the “modified” scale 

described by Coplan et al. (2004) as the sum of the HZ “severity-of-illness” scores of all members 

of the treatment group (vaccine or placebo). If, in addition, it is divided by the total number of 

subjects in the group it yields the BOI per randomized subject. 

Chang et al. (2004) proposed a measure which accounts both for the change of the disease 

incident rate after vaccination and its severity on those subjects who eventually did experience 

the disease in a clinical study using the method previously described through the BOI score.  

This method of the combined comparison of incidence and severity among the treatment groups 

tends to yield higher power than if these two objectives were tested separately. However, the 

drawback of such studies is the fact that for a lot of subjects a zero score is expected to be 

recorded, since the incidence rate of the disease is expected to decrease substantially. 

To handle such limitations, Follmann et al. (2009) introduced a new measure of efficacy for the 

severity and incidence rate, relative in thinking with the one suggested by Chang et al. in the 

sense that it also makes use of the burden-of-illness score. Its additional privilege is that it tries 
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to handle properly the number of zero scores, since even if there was an important effect of the 

vaccine, the presence of a massive number of zeros in each group would tend to dilute it. 

The testing procedure of Follmann et al. is called “Choplump” test and it has already been 

implemented in the statistical package R (version 2.10). The main objective of this project is the 

implementation of this procedure in the statistical software SAS through algorithms and macros. 

Additional objective is the comparison of the “Choplump” test to the original analysis of the BOI 

proposed by Chang et al. (1994). 
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3. Data 

Unfortunately, for the analysis real data were not available, since an original clinical trial is still 

ongoing. Thus, a simulated dataset had to be created and used for the analysis. The simulated 

dataset was created under specific characteristics and conditions. To begin with, as in most 

clinical trials, it consists of two treatment groups, placebo and vaccine. The total number of 

subjects is 16,000 with each group consisting of half the total number, i.e. 8,000 patients. The 

number of incident cases in each group was calculated under specific assumptions. To be more 

particular, two main facts were taken into account. First, the fact that the incidence rate is 

expected to be equal to 0.7% each year throughout the three year study and secondly, the 

reduction rate of incidents was set to 70%. Hence the cases for each group were computed as 

follows: 

                                    

                                               

Under these assumptions, the numbers of incident cases for the placebo and the vaccine group 

were found to be 168 and 50 respectively. This means that in total there are only 218 values for 

the BOI score greater than zero. All the rest, non-incident cases, have a zero value for this score. 

Thus, it is clear that the dataset contains a large number of zeros and the need for ways to 

correctly handle this issue is obvious. 

Regarding the incident cases among the two groups, the simulated scores also have particular 

characteristics. Since, the new vaccine is expected not only to decrease the number of zoster 

incidents, but also to lower the Burden-of-Illness score in the incident cases, the scores were 

generated under a similar concept. More specifically, the BOI (i.e. severity) scores for the vaccine 

group ranged from 1 to 7, whereas the respective scores for the placebo, expected to be higher 

due to absence of vaccine delivery, ranged from 4 to 10.  

The BOI score for each patient experiencing herpes zoster represented the worst daily score 

based on the “Zoster Brief Pain Inventory Questionnaire”. As explained already, this 

questionnaire consists of a list of questions related to the pain that a patient feels during the day. 

This questionnaire has to be filled in every day throughout the whole period during which the 

patient is followed-up. The worst daily score for each case is recorded, so as to compute the total 

BOI score in the end of the study by simply adding all the daily scores together. Hence, a 

patient’s final score yields from the summation of 182 daily scores, since this is the period of 

follow-up that will be considered for the analysis.  
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4. Description of Methods 

4.1 Burden-of-Illness score (Chang et al., 1994) 

As it has already been explained in detail, it is important during the evaluation of a vaccine’s 

efficacy that not only the frequency of the incidents, but also the decrease (or not) of the pain 

due to the disease, to be accounted for. According to Chang’s method a severity score is assigned 

to each individual case experiencing a zoster incident. By adding all the individual scores 

together, the total score, indicating the magnitude of the burden-of-illness, is computed for each 

treatment. To test the efficacy of a new intervention, the total BOI scores between the placebo 

and the vaccine group are compared based on the difference of the BOI scores between the 

intervention groups. This difference is a measure of the net reduction in morbidity per subject. 

Nevertheless, due to the fact that the number of summands that contribute to the calculation of 

the burden-of-illness score for each group is a random variable, equal to the number of zoster 

cases in that group, the difference in BOI per treated subject among the treatment groups cannot 

be analyzed based on ordinary methods. 

Assuming a fixed time design, the following parameters are defined. Let    represent the 

number of subjects randomized to the placebo group, whereas     the number of subjects 

randomized to the active intervention group, i.e. the vaccine group. For the total number of the 

study participants,    it holds that        . In a similar way,    stands for the number of 

zoster cases in the placebo group while    stands for the number of cases in the vaccine group. 

Again,        . The severity scores for the cases, designated                
 for the 

placebo and                
 for the vaccine group, are assumed to be mutually independent 

random variables, identically distributed within each group, with respective means        and 

variances   
    

 . In the end of the study period, the number of cases in both groups can be 

assumed to follow independent binomial distributions          and          respectively, 

where    and    are the expected proportions of cases under placebo and active group. 

To simplify things, the number of participants is assumed to be equal in each treated group, such 

as      . The test statistic   is the difference in burden-of-illness scores per subject: 

  
    

  
   

  
 

    
  
   

  
 

It is shown that the test statistic   converges to the standard normal distribution, i.e.  
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with the two-sided rejection region of the null hypothesis being defined by:                 

Furthermore, in the original paper of Chang et al. it can be seen that the power of this test 

statistic is higher than the power of the statistics used to test either the incidence rate or the 

severity of the disease separately. To conclude, the sample size needed for such a test is usually 

smaller than the one that would be appropriate if the trial was designed to detect reduction in 

incidence, ignoring any differences in severity of pain per case. 

4.2 Chop-lump Test (Follmann et al., 2009) 

The proposal by Follmann et al. aims at developing a more powerful BOI based test and at 

obtaining a good power for trials where the vaccine should have little effect on acquisition. For a 

vaccine with no acquisition, the proportion of zeros should not be informative about the vaccine 

and it, thus, makes sense to focus only on the side of the distribution’s tail where the number 

reside. Under such a concept, they proposed the “Choplump” test.  

The procedure has as follows. A score, say W, equal to 0 is assigned to the non-infected subjects 

and some disease severity W>0 is assigned to those infected. To test the equality of the lumpy 

distribution of W between the treated groups, the data are sorted separately in each group and 

after that the group with the fewer zeros is defined. All the zeros from this group are tossed out 

and immediately an equal proportion of zeros are thrown out from the other group. In the end, 

there will be one group with no zeros at all and one group with some zero scores. The scores 

remained after the chopping are obviously on the right tail of the distribution. A null distribution 

can be obtained by permutation where the entire dataset is scrambled, a new chopping point is 

determined and the test statistic is reconstructed.  

At this point, it is worth making a small reference to the permutation tests as well as to their 

usefulness. Permutation tests belong to the variety of resampling methods along with 

bootstrapping and jackknifing. A permutation test is a type of statistical significance test in 

which the distribution of the test statistic under the null hypothesis is obtained by calculating all 

possible values of the test statistic under rearrangements of the labels on the observed data 

points. In other words, the method by which treatments are allocated to subjects in an 

experimental design is mirrored in the analysis of that design. If the labels are exchangeable 

under the null hypothesis, then the resulting tests yield exact significance levels. The advantage 

of permutation tests is that they exist for any test statistic, regardless of whether its distribution 

is known or not. Thus, one is always free to choose the statistic which best discriminates 

between hypothesis and alternative and which minimizes losses. On the other hand, an 
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important assumption behind a permutation test, but at the same time its main limitation, is that 

the observations are exchangeable under the null hypothesis.  

Coming back to the “choplump” procedure, similar to the BOI test of Chang et al., a standardized 

mean difference can be calculated based on the remaining burden-of-illness scores,  ’ , found 

to the right of the chopping point (for simplicity the notations are the same with those from the 

Chang et al. test statistic): 

                     

 
 

       
 
                

 
          

    
 

 

 

where   is the number of patients randomized to each group,       (  ,  ) and   
  is the 

pooled variance based on the   largest  ’  in each group. 

Some details related to the calculation of the p-values for chop-lump tests are worth mentioning, 

since there are some differences that have to be pointed out, which result from the different 

datasets that can be used. As mentioned earlier, the choplump test is mainly based on 

permutation tests. What is, specifically, related to the permutation tests is the calculation of the 

p-value, which is used for the conclusion regarding the rejection (or not) of the null hypothesis 

of no difference in the BOI scores among the two experimental groups. In cases, where there is a 

small number of subjects in the study, the computation of an exact p-value is feasible. This is 

done by accounting for all the possible permutations that can be performed in the dataset. The 

problem arises, when the number of the possible permutations is large. It, then, becomes 

computationally very intensive for an exact p-value to be computed. Thus, it is important to 

calculate it, based on a sample from all the permutations, which is randomly selected. 

Again, let          and         represent the total number of subjects in the study 

and the total number of zoster cases, respectively. As can be seen, both numbers can be 

partitioned into the relative numbers for the placebo and the vaccine group. Also, let 

          stand for the total number of cases where an incident of zoster was not recorded. 

In other words,   is the total number of zero scores in both groups. Consider that the data can be 

represented by the two vectors                and                , where   is the 

group membership indicator. The appropriate procedure is as follows. The indices           

are ordered first by    and then by    within tied    values, so that            
 are zeros and 

                 are ones. Let    and    be the last a values of  and  , respectively. Let    

and    be vectors of zero or one of length  , where     0 denotes no vector.  
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 Case 1: P-value based on all permutations 

In the usual permutation test, a test statistic   is defined, which is a function of   and  .  Let    

be the test statistic evaluated at the original data, and    be the test statistic evaluated at the     

permutation of the values of  . If lower values of the test statistic are more extreme, then: 

                     
           

   

  
                    

where          if   is true and 0 otherwise. A choplump test is simply a permutation test where 

the test statistic is of the form,                      . 

 Case 2: P-value based on a specific number of  permutations 

In cases, where it is impossible to consider the whole number of permutations, the calculation of 

the p-value can be based on a Permutational Central Limit Theorem (PCLT). Let    be the 

proportion of the permutation test statistics less than or equal to the observed test statistic 

among permutations with   zeros in the vaccine group, i.e.  

    
             

  
    

 
 

where    is the set of unique permutations of    that induce   zeros in the vaccine group. This 

means that    does not include two different permutations of   if they only differ within the first 

        elements, since those elements are all equal to zero (Follmann et al., 2009). The 

main idea is to represent    in a way such that a PCLT can be used to approximate the p-value 

(for an explanation of the PCLT we refer to Follmann et al. (2009)). The standard calculation 

groups the    permutations into   
  

     
 
   

    
 

          
                sets of unique permutations 

of  , and each set has the same number of members. The one-sided p-value is a weighted 

average of the    values: 

                                                             

         

             

 

      
  

 
   

    
 

  
  

 
 

          

              

                                 

          

              

 

where             is the probability mass function of the hypergeometric distribution. 
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4.3 Chop-lump Test - Algorithm in SAS 

The implementation of the “Choplump” test was based on two different approaches. The first 

one covers the case where the number of permutations, possible in a dataset, is relatively small, 

whereas the second one is more appropriate, when large datasets are present. The difference 

lies, basically, on the computation of the p-value that is needed for the conclusion of the 

hypothesis tested. In the first case, the complete number of permutations is taken into account 

to calculate the p-value, while in the latter one, only a specific number of permutations is 

considered.  

The main steps of the algorithm - for the first case - are the following: 

 STEP 1:  Define the main parameters, i.e.                        . 

 STEP 2:  Chop the dataset. 

 STEP 3: Apply the Wilcoxon function to the chopped dataset to compute the test statistic    of 

the original data. 

 STEP 4: Create the matrix whose rows represent all possible permutations of the group 

membership indicators   . 

 STEP 5: Compute all test statistics   . Each test statistic is based on the dataset consisted of 

the vector   of the scores and the vector   of the group indicators. For each   , vector   is 

replaced by the     row of the matrix from step 4.  

 STEP 6: Calculate the p-value based on equation (1). 

The main steps of the algorithm - for the second case - are the following: 

 STEP 1:  Create function Qh, which calculates the product of the Pr[a random permutation 

will have h zeros in the vaccine group] and the proportion    of the permutation test 

statistics less than or equal to the observed test statistic among permutations with h zeros in 

the vaccine group. 

 STEP 2:  Define the main parameters, i.e.                        . 

 STEP 3:  Chop the dataset. 

 STEP 4: Apply the TDiM function – which is based on PCL theorem - to the chopped dataset to 

compute the test statistic    of the original data. 

 STEP 5: Create a vector consisting of all possible values for   (=number of zeros in the 

vaccine group). 

 STEP 6: Apply function Qh on the vector created in step 5. 

 STEP 7: Calculate the p-value based on equation (2). 

For an illustration of both algorithms, we refer to section 5.2. 
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4.4 Comparison of Choplump test and Chang’s BOI measure 

Comparison of the choplump test with the test statistic proposed by Chang et al. was thought to 

be of great interest, since both are methods used to handle a particular issue in clinical trials, i.e. 

the presence of many zeros. On the other hand, each one uses a different approach and this 

aspect of them might be considered important. 

Initially, both test statistics were applied on the dataset used throughout the whole study and 

the results are presented in terms of the p-values. As will be seen later, both tests reject the null 

hypothesis of the equality of means with very significant p-values. Nevertheless, this was 

deemed inadequate. Hence, a more thorough approach was adopted. The probabilities of type I 

and type II error were estimated for a number of scenarios of the sample size and the expected 

risk reduction. In particular, five scenarios were assumed for the sample size (N = 1,000 , 3,000 , 

5,000 , 10,000 and 20,000) and for each one of them, six different cases that were combinations 

of the risk reduction (RR = 30% , 50% and 70% ) and the severity reduction (SR = yes, no), 

meaning the reduction in the burden-of-illness scores (table 6). Also, values for the incidence 

rate based on a                               - by varying the values for    and keeping the 

integers- were considered, but the results did not differ much, thus this approach was not 

eventually adopted. 

The type I error probability (α% level of significance) is an indicator of  how many times will the 

test statistic reject the null hypothesis, when this hypothesis actually holds. On the contrary, 

type II error probability (β) can show how many times will the test fail to reject the null, when 

the alternative hypothesis is true. Both need to remain at low levels. The latter probability is 

usually better expressed in terms of the power, i.e. the quantity    . Decreasing sample size as 

well as decreasing risk reduction are supposed to lower the power of the test, while increasing 

values for both quantities are expected to attribute a higher power to it.  

For this attempt to be achieved, datasets were simulated under the null and under the 

alternative hypothesis. Under the null hypothesis, where no risk reduction is assumed, one 

thousand datasets were simulated for each case of the sample size. Under the alternative 

hypothesis the assumptions under investigation concern the reduction of the risk and the 

presence or absence of the severity reduction. Thus, one thousand datasets were simulated for 

each combination of the sample size, the risk reduction and the severity reduction. For each 

sample size there were six different alternative hypotheses compared to the same null. On each 

set of the thousand datasets the two test statistics were applied. Based on the resulting p-values 

of the datasets simulated under the null hypothesis, the probability of type I error was estimated 

for each setting. Similarly, the p-values from the alternative hypotheses’ datasets were used to 
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estimate the probability of type II error and the power of each test for the different 

combinations of the population size and the risk reduction. 

4.5 Other Studies 

A wide variety of studies from other scientific fields have carried out their analyses based on the 

same thinking of Follmann et al. What is implied by this is that in cases where there are a lot of 

zeros that should be treated in a specific way so as to make the analysis easier, a widely 

acceptable method is to exclude these zeros according, of course, to some principals. Some 

examples of such studies will be presented in the following sub-sections. 

4.5.1 Two - part permutation tests for DNA methylation and microarray data (Neuhäuser    

            et al., 2005) 

It is widely known that during the last decades, cancer has evolved to a striking disease 

attacking more and more people, and in most of the cases it has fatal consequences on the 

infecteds. For this reason, many studies keep taking place in order to discover ways to face 

cancer in its different forms. One of the latest discoveries is that DNA methylation analysis 

promises to become a powerful tool in cancer diagnosis.  

When the tested region is not or only partially methylated the result is negative (undetectable 

methylation) and it is then assigned a zero value. In contrast, samples that show methylation will 

have a value greater than zero. In microarray data studies a common method for small or 

negative expression levels is to clip them off so as to be equal to an arbitrarily cut-off value. Due 

to the truncation, there are two different types of data, truncated values and original 

observations. But, since the truncated values are not just another point on the continuum of 

possible values, it would be inappropriate to use a standard statistical method that would treat 

all values equally (Neuhäuser et al., 2005). For such cases, where such a data structure appears, 

Lachenbruch introduced the “two-part models” (Lachenbruch, 1976; 2001; 2002). This type of 

model is represented by a test statistic, which is the sum of two squared statistics. The first one 

compares the proportion of zeros, i.e. the proportion of truncated values in the data, whereas the 

second compares the positive values.  

Let    and    be the numbers of independent observations regarding one gene, for two groups 

to be compared. Furthermore, let    and     respectively, represent the observed numbers of 

truncated values (i.e. null values in the case of methylation data). To compare    and   , 

Lachenbruch (1976) used the following statistic: 
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Under the null hypothesis the proportions of zeros truncated are the same between the two 

groups and    is asymptotically   -distributed with 1 degree of freedom (d.f.). In the two 

extreme cases where the two groups contain only zero values or no zero values at all then the 

statistic    cannot be well defined and is set equal to zero (    ).  

Concerning the second factor, a Wilcoxon rank sum test can be used, since non-parametric tests 

are more suitable for microarray data, because they are usually non-normally distributed. Thus, 

the statistic based on the positive expression levels is formulated as: 

  
    (     )(       2   2   ) 2  

       2   2   2 (        2   2   )  2  
 

where    is the sum of the ranks in group 1. In the extreme case, where there are only zero 

values in at least one of the two groups, the above statistic is set equal to zero (   ). 

Finally, the test statistic for the “two-part model” is constructed as         . The null 

hypothesis, obviously, implies no difference between the two groups. Because    and   are 

independent and asymptotically normal, the sum of the squared statistics is asymptotically and 

  -distributed with 2 d.f. This test, called two-part permutation test here, is a permutation test 

based on the sum statistic   . It is carried out by permuting the group labels for the whole 

sample. When performing this two-part permutation test the exact permutation distribution of 

   is determined by generating all possible permutations. When the number of permutations is 

large the p-value can be approximated by using a random sample of all possible permutations. 

4.5.2 Hypothesis Tests for Point-Mass Mixture Data with Application to Omics Data with 

            Many Zero Values (Taylor & Pollard, 2009) 

Another method to handle data including many zero values was proposed by Taylor & Pollard 

(2009). According to this paper, biological studies often generate point-mass mixture data 

composed of a continuous component plus a point-mass – usually at zero. This point-mass can 

reflect true zeros, such as an absent compound, or truncated values. Truncation results from 

either a detection limit of the assay or a lower bound on meaningful signal set by the researcher.  

Point-mass mixture data are characterized by the proportion of zeros and the distribution of the 

continuous component, which is assumed to have its support on the non-negative real numbers. 

In studies, where interest lies in differences between two (or more) experimental groups, if the 

data in each experimental group is distributed as a point-mass mixture, a difference in means 
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between the experimental groups can result from a difference in the proportion of zeros, a 

difference in the mean of the continuous component, or both. Taylor and Pollard (2009) 

specifically point out that, standard statistical methods can be used to focus on one of these 

effects at a time. Tests with sufficiently loose assumptions about the data distribution may be 

appropriate, but still fail to distinguish the contributions of the two mixture components to 

differences between experimental groups. For these reasons it is of great importance to employ 

statistical tests that account for the separate contributions of each component of a point-mass 

mixture. 

 

For the notation, consider a two-sample problem with m samples from experimental group 1 

and n samples from experimental group 2. Let   ,  ,    and   ,  ,   be independent, 

identically-distributed bivariate observations of     ( , ) from group 1 and     ( , ) from 

group 2, respectively. Denote an observation of   by   ( , ) and an observation of   by 

      ,  ,  where   (respectively  ) is a non-negative real number and   (respectively  ) is an 

indicator variable with values   (respectively  ) =1 if   (respectively  ) > 0 and   (respectively 

 ) =0 if   (respectively  ) = 0. Then, the probability distribution of   is     ,      
    (  

  ) ( ,   ) 
   where  ( ,   ) is a parametric density with mean   . Similarly,     ,    

  2
    (   2) ( ,  2) 

  where  ( ,  2) is a parametric density with mean  2. 

Based on the usual LRT statistic: 

       
                                                  

   
  
   

    
                     

  
  
   

    
                         

   

 

 
they propose a modification of it by replacing the parametric distributions        with empirical 

distributions to avoid distributional assumptions. More particularly, their suggestion is to 

replace   
       

        
 

   
   

       

        
 

   
  in the above equation with           

  
        

  
   , 

where    and    are the number of   and   observations greater than zero and computation of 

   and    is based on Lagrange’s multiplier method. Since   2    ( ) is asymptotically 

distributed as   
  , the two-part empirical LRT is asymptotically   

 . 

 

4.6 Software 

For the exploratory analysis of the data and the plots, as well as for the programming of the 

macros, the statistical package SAS (version 9.2) was used, whereas the simulation of the 

datasets, used in the power analysis, was implemented in R (version 2.13.1). 
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5. Results 

5.1 Exploratory Data Analysis 

The frequencies of the incidents among the groups as well as the main descriptive statistics for 

the variable representing the burden-of-illness score were calculated. In the table that follows 

(table 1) the frequencies are presented by group. 

Table 1: Frequencies of incidents 

 
Frequency Cumulative Frequency Percent (%) 

Z=0 168 168 77.06 
Z=1 50 218 22.94 

 

Regarding the summary statistics of the BOI score, these are presented in table 2. The table is 

partitioned into two parts. The first one contains the descriptive statistics for BOI based on the 

whole population, while the second one is based only on those individuals for whom a zoster 

incident was officially confirmed. 

Table 2: Descriptive Statistics for BOI 

 N Mean Std. Deviation Median Minimum Maximum 

 All cases (W ≥ 0) 

Placebo (Z=0) 8,000 28.69 195.92 0 0 1431 
Vaccine (Z=1) 8,000 4.01 50.58 0 0 690 

 Zoster cases only (W > 0) 

Placebo (Z=0) 168 1366.20 21.60 1366 1320 1431 
Vaccine (Z=1) 50 641.54 21.02 641 597 690 

 

As can be seen in the upper table the mean and the median are far apart, something which does 

not hold for the lower table. This indicates that for the first case the data will most probably not 

follow a normal distribution, whereas the opposite will hold for the second case. Normality tests 

to confirm these assumptions were carried out and will be immediately presented. 

Under the null hypothesis, which assumes that normality of the data holds, again two alternative 

datasets were considered. The first was the dataset containing the incident as well as the non-

incident cases and the second, the one containing only the incident cases. As was expected, since 

the distribution of the data is zero inflated, the normality test of Kolmogorov-Smirnov yielded 

highly significant p-values. For both the placebo and the vaccine group, the p-value was less than 

0.001, indicating a strong violation of the data normality. On the other hand, concerning the 

dataset based only on the zoster cases, the respective p-values were equal to 0.128 (placebo) 

and 0.15 (vaccine), concluding that the normality assumption, indeed, holds.  
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The following figures show the histograms for each type of dataset for both treatment groups 

(figures 1-2). 

 

(1a) 

 

(1b) 

 
Figure 1: Histograms for placebo and vaccine group including all cases (zoster & non-zoster) 

 

(2a) 

 

(2b) 

 
Figure 2: Histograms for placebo and vaccine group including only zoster cases 

5.2 Illustration of the Algorithms  

The two different types of algorithms, consisted of SAS macros, were applied on two simulated 

datasets respectively. For the first algorithm, which calculates an exact p-value based on all 

permutations, a relatively small dataset was used. Specifically, ten patients were considered in 

total that were equally distributed among the two treated groups. For the placebo group, four 

patients were considered to experience a zoster incident whereas the respective number of 

patients in the vaccine group was one. The number of permutations based on ten patients and 

five incidents is 252. Although, the dataset may seem too small, even just a duplication of its size 
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and its number of cases would yield a number of permutations equal to 184,756 making it 

computationally prohibitive for an exact p-value to be calculated.  

In order for the structure of the dataset to be clearer, table 3 was created. 

Table 3: Structure of dataset 

Patient ID 1 2 3 4 5 6 7 8 9 10 

W=score 0 0 0 0 0 1326 1369 1387 1374 650 
Z=group 0 0 0 0 1 0 0 0 0 1 

 

As can be concluded from the above table the dataset consists of two rows (which are converted 

into columns when used in the statistical software); the first indicating the sum of the worst 

daily scores during the 182 days of the follow-up period for each patient and the second 

indicating the group membership (0 for placebo group and 1 for vaccine group). 

Under the null hypothesis of no difference in the BOI scores between the two groups, the SAS 

macro %choplumpExact was applied on this dataset (all macros are available in the Appendix). 

Considering a level of significance equal to 0.05, the resulting p-value was equal to 0.047, 

implying that, indeed, the groups differ in two ways. First, they differ in the number of incidents 

recorded, since the placebo group has recorded more zoster cases. Secondly, they also differ in 

the severity scores since the placebo group, clearly, has on average higher BOI scores that he 

vaccine group. 

The second dataset, as has already been explained, is based on a population size of 16,000 

individuals that are equally divided into two groups. From the patients belonging to the placebo 

group, 168 of them experienced a zoster incident, while the number of confirmed cases recorded 

for the active treatment group was equal to 50.  

The SAS macro %choplumpApprox was applied on this dataset. Based on the steps of the 

algorithm, not all of the possible permutations were considered. In particular, only 218 

permutations out of the total number were taken into account for the computation of the p-value 

of the hypothesis testing. It is easy to extract that this number is equal to the total number of 

cases in both groups. One can think of each permutation – out of the chosen ones – as the 

number of incident cases (or the number of non-incident cases) in the vaccine group. To be more 

specific, had all cases occurred in the vaccine group, there would be 218 scores greater than zero 

and no zero score in this group. On the other hand, in the second extreme case where all the 

cases would have been recorded for the placebo group, there would not be any non-zero score 

and 218 zero scores in the vaccine group. A better image of the distribution of the scores among 

the groups can be obtained by the following table (table 4). 
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Table 4: Distribution of (non-)incident cases in vaccine group 

 
Number of incident 

cases in vaccine group 

Number of non-incident 

cases in vaccine group 

All 218 cases in placebo group 0 218 

All 218 cases in vaccine group 218 0 
 

The cases described above represent the two extreme cases. All the other cases lie in between 

these two. 

The p-value obtained was equal to           , resolving to a very small number. As a 

consequence, it can be, certainly, implied that the null hypothesis is not valid and, thus, has to be 

rejected at a 5% of significance level. From this point of view, the two groups show a different 

behavior not only in terms of the incident rate, but also in terms of the severity scoring with the 

group receiving the new treatment, i.e. the vaccine, operating the better behavior of the two. 

5.3 Comparison of Choplump test and Chang’s BOI measure – A Simulation Study  

At this point, it would be of interest to compare the two basic methods that have been suggested, 

so far, for handling data with many zeros. These are the method based on the Choplump test of 

Follmann et al. (2009) and the method proposed by Chang et al. (1994) based on the burden-of-

illness scores. (From now on, reference to this method will be acknowledged by “Chang 

method”) 

For Chang’s method, table 5 was created. The first half of the table shows the basic quantities 

necessary for the implementation of the test. The second half of it indicates the resulting values 

of the test statistics for each hypothesis testing and the respective yielded p-values. 

Table 5: Tests between the two groups 

Treatment Group Placebo Vaccine 

Number of individuals 8,000 8,000 

Number of cases 168 50 

Sum of severity scores 229,522 32,077 

Mean score (per case) 1366.20 641.54 

Variance of scores 466.73 441.76 

Test Statistic p-value 

Incidence Rate 63.87 <0.0001 

Severity score per case 209.49 <0.0001 

Burden-of-illness score 11.22 0.00* 

                          (*): Not exactly zero, but a value very close to zero  
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The incidence rates of the groups were compared by a chi-square test. The proportion of 

incidents in the placebo group (77.06%) was compared with the relative proportion in the 

vaccine group (22.94%) under the null hypothesis of their equality. The hypothesis testing for 

the equality of the severity scores per case was carried out based on a t-test, which compared 

the mean severity score in each group. The null hypothesis stood, again, for the equality of the 

group means per case. Since the variances of the severity scores in the two groups were found to 

be equal (p-value=0.85), the statistic calculated based on the Pooled method was taken into 

consideration. Last but not least, the test statistic proposed for this method (Section 4.2) was 

implemented for the testing of the null hypothesis of equality of the BOI scores among the 

treated groups. All tests were performed using a 5% level of significance. Based on the p-values, 

shown in table 5, all null hypotheses are rejected. 

For the difference in the groups to become more obvious, the Area Under the Curve was 

constructed, based on the mean daily scores plotted against time. The mean BOI score for each 

day was calculated by the sum of all scores reported (in each group) for the “worst pain” 

question in the ZBPI questionnaire, divided by the total number of patients (in that group). 

Figure 3 shows a strong difference between the placebo and the vaccine group, with the latter 

one yielding mean daily scores much lower than those in the former and therefore presenting a 

smaller area under the curve. Thus, the efficacy of the active treatment is unquestionable. 

 

Figure 3: Area Under the Curve for BOI scores of the groups 

After the implementation of the test for the equality of the burden-of-illness scores in the two 

groups based on the two different methods presented in Section 4, the following conclusion can 
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be drawn. Both methods reject the null hypothesis, thus rejecting the equality of the BOI scores 

in the groups, but with the difference that the Chang method cannot compute values for the p-

value that are very small, thus it assigns a value equal to zero. 

For this reason, power analysis was carried out in order to investigate whether the Choplump 

test is more powerful or whether this assumption holds for the alternative method. For this 

procedure to be carried out, different settings for the sample size, the risk reduction and the 

severity reduction were adopted and are shown in table 6. The notation of the parameters is the 

same with the one used for the explanation of the test statistics. 

 
Table 6: Scenarios assumed for the power analysis  

Scenario N n0 n1 Risk 
Reduction 

Severity 
Reduction 

M m0 m1 

1st 

1,000 500 500 

30% Yes 19 

11 

8 
2nd No 

3rd 50% Yes 17 6 
4th No 

5th 70% Yes 14 3 
6th No 

7th 

3,000 1,500 1,500 

30% Yes 55 

32 

23 
8th No 

9th 50% Yes 48 16 
10th No 

11th 70% Yes 42 10 
12th No 

13th 

5,000 2,500 2,500 

30% Yes 89 

52 

37 
14th No 

15th 50% Yes 78 26 
16th No 

17th 70% Yes 68 16 
18th No 

19th 

10,000 5,000 5,000 

30% Yes 179 

105 

74 
20th No 

21st 50% Yes 158 53 
22nd No 

23rd 70% Yes 137 32 
24th No 

25th 

20,000 10,000 10,000 

30% Yes 357 

210 

147 
26th No 

27th 50% Yes 315 105 
28th No 

29th 70% Yes 273 63 
30th No 
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In figure 4, the boxplots of the scores belonging to the null and each alternative hypothesis, for 

both groups, are presented. As expected, the boxplots under H0 differ only slightly among the 

two treated groups, since no risk reduction is supposed to occur and also the range of scores 

used was the same for all patients, i.e. from 1 to 10. Concerning the boxplots, under the 

alternatives HA
(2), HA

(4) and HA
(6) no substantial differences can be spotted, since no reduction in 

the severity is assumed, thus, the score ranges used for both groups were again the same (1-10). 

In contrast, large differences can be detected for the alternatives considering severity reduction, 

i.e. HA(1), HA(3) and HA(5). For each of them, scores from 4 to 10 were used for the placebo group, 

while the ranges 3-9, 2-8 and 1-7, respectively for each alternative hypothesis, included the 

scores of the vaccine group. The most significant thing that can be extracted from the graph is 

that the score differences increase considerably with the increase in the risk reduction. 

 

Figure 4: Boxplots of the patients’ scores under the different hypotheses (N=10,000) 

In order to better understand the trend of the p-values for each case, the main descriptive 

statistics were calculated under each scenario and are presented in the table that follows (table 

7). What can be obtained from this table is that, regarding the H0 and no matter the sample size, 

the two test statistics do not differ much. Nevertheless, as the sample size increases, the 

Choplump test gives much smaller p-values. The same behavior holds for this test, when 

considering the same sample size, but different magnitudes of the reduction in the risk. This 

implies that, the more the risk declines the more substantial is the decrease of the p-values. For a 

graphical presentation of the trend of the p-values, the reader can refer to figure 5. 
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Table 7: Descriptive statistics for the resulted p-values 

Case for N Hypothesis Method Mean Variance Minimum Maximum 

1st  

H0* Chang 0.534 0.033 0.010 0.795 
Choplump 0.484 0.044 0.006 0.800 

HA
(1)* Chang 0.307 0.0001 0.278 0.337 

Choplump 0.0072 4*10-10 0.0071 0.0073 

HA
(2)* Chang 0.486 0.0005 0.422 0.568 

Choplump 0.546 0.058 0.0337 0.989 

HA
(3)* Chang 0.068 10-5 0.056 0.079 

Choplump 0.006 2*10-10 0.0059 0.0061 

HA
(4)* Chang 0.222 0.0002 0.185 0.268 

Choplump 0.334 0.038 0.007 0.946 

HA
(5)* Chang 0.006 10-7 0.004 0.007 

Choplump 0.0036 7*10-11 0.0035 0.0037 

HA(6)* Chang 0.03 6*10-6 0.025 0.040 
Choplump 0.071 0.003 0.0036 0.289 

2nd    

H0 Chang 0.502 0.038 0.013 0.768 
Choplump 0.491 0.042 0.050 0.800 

HA(1) Chang 0.076 10-5 0.064 0.088 
Choplump 3*10-6 10-18 2.8*10-6 2.83*10-6 

HA(2) Chang 0.222 0.0002 0.179 0.271 
Choplump 0.340 0.044 0.008 0.992 

HA(3) Chang 0.005 10-7 0.004 0.006 
Choplump 10-6 3*10-17 1.4*10-6 1.5*10-6 

HA(4) Chang 0.021 3*10-6 0.015 0.027 
Choplump 0.059 0.003 0.001 0.317 

HA(5) Chang 5*10-6 2*10-13 4*10-6 7*10-6 
Choplump 5.2*10-7 3*10-19 5*10-7 5.3*10-7 

HA(6) Chang 0.0006 6*10-9 0.0004 0.001 
Choplump 0.004 2*10-5 10-5 0.041 

3rd    

H0 Chang 0.496 0.042 0.015 0.772 
Choplump 0.510 0.039 0.004 0.800 

HA(1) Chang 0.021 10-6 0.016 0.026 
Choplump 2*10-9 7*10-24 1.9*10-9 2*10-9 

HA(2) Chang 0.109 7*10-5 0.087 0.142 
Choplump 0.210 0.028 0.003 0.965 

HA
(3) Chang 2*10-5 6*10-12 2*10-5 3*10-5 

Choplump 6.5*10-10 3*10-25 6.4*10-10 6.7*10-10 

HA
(4) Chang 0.003 10-7 0.002 0.004 

Choplump 0.016 0.0003 5*10-5 0.144 

HA(5) Chang 6*10-9 6*10-19 4*10-9 9*10-9 
Choplump 1.3*10-10 10-26 1.28*10-10 1.31*10-10 

HA(6) Chang 10-5 3*10-12 7*10-6 2*10-5 
Choplump 0.0002 8*10-8 2*10-7 0.003 

4th  

H0 Chang 0.520 0.044 0.022 0.802 
Choplump 0.496 0.043 0.002 0.799 

HA(1) Chang 0.001 5*10-9 0.0007 0.0013 
Choplump 1.09*10-17 5*10-40 1.07*10-17 1.1*10-17 

HA(2) Chang 0.019 3*10-6 0.013 0.026 
Choplump 0.063 0.003 0.0003 0.375 

HA
(3) Chang 2*10-9 10-19 2*10-9 4*10-9 

Choplump 1.41*10-18 5*10-43 1.4*10-18 1.43*10-18 

HA(4) Chang 3*10-5 2*10-11 2*10-5 5*10-5 
Choplump 0.001 10-6 3*10-7 0.0176 
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HA(5) Chang 3*10-16 10-30 3*10-16 4*10-16 
Choplump 4.7*10-20 7*10-46 4.69*10-20 4.74*10-20 

HA(6) Chang 3*10-10 6*10-21 10-10 6*10-10 
Choplump 7*10-8 4*10-14 3*10-12 2.7*10-6 

5th 

H0 Chang 0.499 0.038 0.019 0.786 
Choplump 0.491 0.042 0.001 0.799 

HA(1) Chang 2*10-6 4*10-14 10-6 2*10-6 
Choplump 6.3*10-34 8*10-73 6.2*10-34 6.5*10-34 

HA(2) Chang 0.001 10-8 0.0005 0.0012 
Choplump 0.008 0.0002 6*10-6 0.173 

HA(3) Chang 0** 0 0 0 
Choplump 1.08*10-35 2*10-77 1.07*10-35 1.1*10-35 

HA(4) Chang 2*10-9 3*10-19 10-9 5*10-9 
Choplump 8*10-7 7*10-12 9*10-12 4*10-5 

HA
(5) Chang 0 0 0 0 

Choplump 1.12*10-38 3*10-38 1.11*10-38 1.14*10-38 

HA
(6) Chang 0 0 0 0 

Choplump 9*10-15 10-27 8*10-21 5*10-13 
(*):H0

(1):no risk reduction and no severity reduction , HA
(1):reduction rate 30% with severity reduction, HA

(2):reduction rate 30% without 
severity reduction, HA

(3): reduction rate 50% with severity reduction, HA
(4):reduction rate 30% without severity reduction, HA

(5):reduction 
rate 70% with severity reduction and HA

(6):reduction rate 70% without severity reduction. 
(**): Not exactly zero, but a value very close to zero.       

 

  
(5a) (5b) 

Figure 5: 3-D Scatterplots for the mean p-values under each scenario 

 

The figure that follows describes the distribution of the p-values under each hypothesis and each 

test statistic, with restriction to the first case for the sample size, i.e. N=1,000. Once again, the 

difference not only between the two groups, but also between the alternative hypotheses 

themselves cannot be questioned. 
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Figure 6: Boxplots of the p-values under each test statistic for N=1,000 

 
The initial reason for carrying out all the above mentioned tests and comparisons was to 

estimate the two type error probabilities. After having obtained all the p-values, the type I error 

can be defined as the percentage of the cases for which the null hypothesis was rejected. 

Generally, this probability is preferred to be below 5%. Respectively, for the estimation of the 

type II error probability, the percentage of the cases for which the null hypothesis was not 

rejected should be considered.  

In table 8, these probabilities are available for each different scenario. For both methods, the 

type I error remains at low levels, lower than 0.05, with the Choplump test yielding somewhat 

higher estimates. Even though, the scores used for the null hypothesis were from the same 

range, small differences ascribed to the simulation procedure, are detected more often as 

significant from the Choplump statistic. Concerning the type II error – and by extension the 

power - , what can be concluded from the table is that for small sample sizes the statistic of the 

Chang method fails to detect the underlying differences among the treated groups. On the other 

hand, the Choplump test seems to be able to find these differences even if the population’s size is 

rather small.          
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Table 8: Type I error, Type II error & Power of the tests 

Scenario RR* SR** Type I error Type II error Power 

   Chang Choplump Chang Choplump Chang Choplump 

1st  30% Yes 

0.01 0.02 

1.00 0.00 0% 100% 
2nd  No 1.00 0.997 0% 0.3% 

3rd  50% Yes 1.00 0.00 0% 100% 

4th  No 1.00 0.82 0% 0.18% 

5th  70% Yes 0.00 0.00 100% 100% 

6th  

 

No 0.00 0.56 100% 44% 

7th 30% Yes 

0.011 0.027 

1.00 0.00 0% 100% 
8th No 1.00 0.965 0% 3.5% 

9th 50% Yes 0.00 0.00 100% 100% 

10th No 0.00 0.43 100% 57% 

11th 70% Yes 0.00 0.00 100% 100% 

12th No 0.00 0.00 100% 100% 

13th 30% Yes 

0.013 0.025 

0.00 0.00 100% 100% 
14th No 1.00 0.78 0% 12% 

15th 50% Yes 0.00 0.00 100% 100% 

16th No 0.00 0.06 100% 94% 

17th 70% Yes 0.00 0.00 100% 100% 

18th No 0.00 0.00 100% 100% 

19th 30% Yes 

0.02 0.025 

0.00 0.00 100% 100% 
20th No 0.00 0.46 100% 54% 

21st 50% Yes 0.00 0.00 100% 100% 

22nd No 0.00 0.00 100% 100% 

23rd 70% Yes 0.00 0.00 100% 100% 

24th No 0.00 0.00 100% 100% 

25th 30% Yes 

0.026 0.032 

0.00 0.00 100% 100% 
26th No 0.00 0.02 100% 98% 

27th 50% Yes 0.00 0.00 100% 100% 

28th No 0.00 0.00 100% 100% 

29th 70% Yes 0.00 0.00 100% 100% 

30th No 0.00 0.00 100% 100% 

(*): RR stands for Risk Reduction, (**): SR stands for Severity Reduction 

 

At this point, it is important to clarify the following. For the calculation of the tests, more 

important than the sample size (notated as N) is the number of cases in each group. But the 

number of cases in a group will always be much smaller compared to the number of individuals 

in that group (N/2) and this is due to the very small incidence rate (0.7%) that is taken into 

account. For this reason, the term N is used instead. 

Concerning the three alternative hypotheses assuming that risk reduction comes in pair with 

severity reduction (i.e. HA(1), HA(3), HA(5)), there is a clear superiority of the Choplump test over 

the alternative one. Nevertheless, this cannot be stated for the remaining three alternatives, for 

which reduction in the severity scores is not accounted (i.e. HA(2), HA(4), HA(6)). For this reason, 
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and since a graphical presentation is always more helpful, the scatterplots of the power of the 

two statistics under each case of risk reduction were plotted (figure 7). 

 

  
 

(7a): Risk reduction=30% 
 

(7b): Risk reduction=50% 
 

 
 

(7c): Risk reduction=70% 

 
Figure 7: Scatterplots of power of the two tests under alternatives HA(2), HA(4) and HA(6) where 

severity reduction is not considered to occur. 
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6. Discussion 

In this paper, methods for dealing with datasets consisted of many zeros were presented and 

two of them were extendedly analyzed. In many cases the findings based on the different 

analyses and methods leaded to the conclusion that the Choplump test proposed by Follmann et 

al. (2009) is preferable over the Burden-of-Illness measure suggested by Chang et al. (1994) in 

some particular cases. Nevertheless, there is space left for some remarks to be pointed out. 

Concerning the scores between the two groups under the alternative hypotheses, these might 

differ less, had larger ranges been used. For example, instead of the ranges 1-7 and 4-10 that 

were used for the vaccine and the placebo group in the illustration of section 5.2, respectively, 

the ranges 1-8 and 3-10 could have been considered as another approach. Thus, the overlapping 

of the distributions of the groups from the two groups would increase.  

Judging from the statistics of the p-values (table 7), most interesting is the fact that the 

alternative hypotheses that also account for severity reduction, apart from risk reduction, 

present incredibly small distances between the minimum and the maximum values. This 

situation holds for both methods, but is seems to be more extreme in the case of the Choplump 

test. This finding can be graphically supported by figure 6, where for the Choplump test the 

boxplots can barely be visible. Conversely, the respective quantities are more far apart for the 

remaining three alternative hypotheses. On the outset, this phenomenon can be explained by the 

fact that in the first case the variability of the groups’ scores is reduced compared to the relative 

variability of the competing set of hypothesis, because use of smaller ranges has been made. 

What is more, for an HA(i) that accounts for severity reduction, the scores of the placebo and 

vaccine group will be far apart. On the other hand, for an HA
(i) not taking into account severity 

reduction, the scores will, on average, be close for the two groups. For a rough example to be 

given, from a randomly selected dataset – out of the simulated ones – and for HA(3) (50% risk 

reduction and severity reduction) the mean score for the placebo group was 1274 and for the 

vaccine group it was 911, whereas for HA(4) (50% risk reduction and no severity reduction) the 

relative means were 1003 and 998, respectively. Thus, differences are much more obvious, when 

severity reduction is assumed, and to this extension the p-values have a very small variability. 

Apart from that, as the sample size increases the decrease in the mean p-values is considerably 

higher and this phenomenon is especially noticeable with respect to the Choplump test. Last but 

not least, as the sample gets larger (N=20,000) and the risk reduction increases, Chang et al. 

method fails to calculate an exact value for the p-value and assigns the value zero. 

In terms of power, it was proven that the Choplump test has a higher power even for a few 

incidents compared to Chang et al.’s test. Nevertheless, after increase of the sample size the 
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second one manages to gain high power rather quickly. Also, the power of each test differs 

according to the type of the alternative hypothesis that is implied. Even the Choplump test, 

although it has a surprisingly high power, when severity reduction, additional to the risk 

reduction, is assumed, this fails to hold in the cases where this assumption is not considered. 

However, apart from that, a more interesting situation seems to hold when severity reduction is 

not assumed. To be more particular a higher power is observed for the Choplump test when the 

sample size is rather small (N=1,000) – although this is not always the case -, but as this 

increases (N=3,000-10,000) Chang’s method increases rapidly in terms of power. Finally for 

very large samples sizes (N=20,000) both tests reach highest power. This phenomenon can be 

seen for the 6th, 10th, 16th, 20th and 26th scenarios, although for the last one the difference is very 

small and could be attributed to the simulation procedure. It looks as if there is range of 

moderate sample sizes for which the test of Chang et al. yields much higher power than the other 

one (figure 7). For the type I error probability, this was expected to be under 5% for most of the 

cases. The Choplump test yielded a higher estimation for this probability, due to its higher 

sensitivity in the sense that it considers as significant even very small deviations from the 

equality of the two groups’ means.  

As an overall conclusion, what can be stated is that both tests represent adequate approaches to 

the issue of handling a lot of zeros present in a study. However, the Choplump test can be 

generally characterized as dominant over its competitor only in cases when the efficacy of the 

vaccine is reflected by both risk and severity reduction, since as was proven earlier, when there 

is no reduction in the scores coming from the severity of the disease, the power yielded is, in 

some cases substantially, higher for the method proposed by Chang et al. Thus, it might be 

interesting for an analysis, based on more simulations, to be carried out in order to investigate 

this phenomenon more thoroughly.  

Most interesting, of course, would be the application of the tests on real data when these are 

available. In that case the results would be much more reliable, since bias coming from the 

simulation procedure would not be present. Furthermore, the severity scores coming from a real 

trial might not follow the general philosophy that was adopted for the generation of the scores 

for the purposes of the analysis and different situations could arise.  
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Appendix  

SAS codes – SAS macros 

/*** HISTOGRAMS ***/ 

proc sort data=thesis.data; 

by Z; 

run; 

 

proc univariate data=thesis.data noprint; 

by Z; 

*where W>0; 

var W; 

histogram / normal; 

run; 

 

proc means data=thesis.data mean std median mode var min max; 

by Z; 

*where W>0; 

var W; 

run; 

/*** AREA UNDER THE CURVE ***/ 

proc gplot data=thesis.means; 

plot mean_daily_BOI*day=Z/overlay; 

symbol1 interpol=join color=black; 

symbol2 interpol=join l=3 color=black; 

run; 

 

/************************************************************************/ 

 

Program: choplumpExact.sas 

 

Author: Marie N. Kassapian 

 

Date: August 26, 2011 

 

  

This program calculates the exact 2-sided p-value of a choplump test for: 

Ho: equality of the BOI scores between placebo and vaccine group 

 

The main idea is based on the R code created by Michael P. Fay. 

 

 

Input: A dataset containing two columns.A column indicating the BOI scores 

of the patients and a column indicating the group membership of them. 

 

Output: A 2-sided p-value for testing the null hypothesis of the equality 

of the BOI scores among the treated groups.  

 

Temporary Datasets: Dout, Rank, Nties, Allperm, Output, Trans, New,  

 

This programs calls the following macros:  

 

  i. %wilcoxon(d,Z) 

 

 ii. %comb(t,n) 

 

iii. %chopgeneral(d,W,Z) 
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 iv. %choplumpExact(d,W,Z)  

/*******************************************************************/ 

/******** CALCULATE THE TEST STATISTIC OF THE OBSERVED DATA ********/ 

/*******************************************************************/ 

 

%macro wilcoxon(d,Z); 

 

  proc rank data=&d out=Ranks ; 

    var W; 

    ranks Ranks; 

  run; 

  proc sql noprint; 

    select count(*) into: N1 

 from &d 

 where &Z = 1; 

 select count(*) into: N0 

 from &d 

 where &Z = 0; 

  quit; 

 

  proc sql noprint; 

    select (sum(Ranks)- &N0 * (&N0 + 1)/2) into: Statistic 

 from Rank 

    where &Z=0; 

  run; 

 

  proc freq data=Rank noprint; 

    tables Ranks/out=Nties; 

  run; 

 

  proc sql noprint; 

   select (sqrt((&N0*&N1/12)*((&N0+&N1+1)-sum(COUNT*COUNT*COUNT -COUNT)/ 

          ((&N0+&N1)*(&N0+&N1-1))))) into: Sigma 

 from Nties; 

  quit; 

 

  %global Out; 

  data _NULL_; 

    out=(&Statistic - &N0 * &N1/2)/&Sigma; 

    call symput('Out',Out); 

  run; 

 

%mend wilcoxon; 

 

/*************************************************************************/ 

/**** CREATE A MATRIX WITH ALL POSSIBLE PERMUTATIONS BASED ON t TOTAL ****/   

/******************* PATIENTS & n TOTAL CONFIRMED CASES ******************/ 

/*************************************************************************/ 

 

 %macro comb(t,n); 

 

  %local i n; 

  data allperm; 

  %do i=1 %to &t.; 

  do i&i.=0 to 1; 

  %end; 

  if sum(of i1-i&t.)=&n. then output; 

  %do i=1 %to &t.; 

  end;  

  %end; 

  run; 
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  data Allperm; 

   set Allperm; 

 n=_N_; run; 

 

%mend comb; 

 

/***********************************************************************/ 

/********************** CREATE THE CHOPPED DATASET *********************/ 

/***********************************************************************/ 

 

%macro chopgeneral(d,W,Z); 

 

  proc sort data=&d; 

    by &W &Z; 

  run; 

  proc sql noprint; 

    select count(*) into: M 

 from &d 

 where &W ne 0; 

    select count(*) into: M0 

 from &d 

 where &W ne 0 

      and &Z = 0; 

    select count(*) into: M1 

 from &d 

 where &W ne 0 

      and &Z = 1; 

    select count(*) into: N1 

 from &d 

 where &Z = 1; 

    select count(*) into: N 

 from &d; 

 select count(*) into: N0 

 from &d 

 where &Z = 0; 

  quit; 

 

  data _NULL_; 

   k0 = %eval(&N0 - &M0); 

   k1 = %eval(&N1 - &M1); 

 call symput('k0',k0); 

 call symput('k1',k1); 

  run; 

 

  /* do the chopping */ 

  %if &k0 > &k1 %then %do; 

    data dout(drop=t); 

   set &d; 

   if &Z=1 and &W=0 then delete; 

   retain t 0; 

   if &Z=0 then do; 

     if &k1 ne t then do; 

          t+1; 

       delete; 

     end; 

   end; 

 run; 

  %end; 

  %else %if &k0 < &k1 %then %do; 

    data dout(drop=t); 
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   set &d; 

   if &Z=0 and &W=0 then delete; 

   retain t 0; 

   if &Z=1 then do; 

     if &k0 ne t then do; 

          t+1; 

       delete; 

     end; 

   end; 

 run; 

  %end; 

  %else %do; 

    data dout; 

   set &d(where=(&W ne 0)); 

 run; 

  %end; 

 

%mend chopgeneral; 

 

/***********************************************************************/ 

/********************** CALCULATE THE EXACT P-VALUE ********************/ 

/***********************************************************************/ 

 

%macro choplumpExact(d,W,Z); 

 

  proc sort data=&d; 

    by &W &Z; 

  run; 

 

  %chopgeneral(&d,W,Z);               /* output dataset is called dout */ 

  %wilcoxon(dout,Z);                  /* output variable is called out */ 

 

  data _NULL_; 

   T0= &out; 

 call symput('T0',T0); 

  run; 

 

  proc sql noprint; 

    select count(*) into: M 

 from &d 

 where &w ne 0; 

    select count(*) into: M0 

 from &d 

 where &w ne 0 

      and &z = 0; 

    select count(*) into: M1 

 from &d 

 where &w ne 0 

      and &z = 1; 

    select count(*) into: N1 

 from &d 

 where &z = 1; 

    select count(*) into: N 

 from &d; 

 select count(*) into: N0 

 from &d 

 where &z = 0; 

  quit; 

 

  data _NULL_; 

   k0 = %eval(&N0 - &M0); 
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   k1 = %eval(&N1 - &M1); 

    call symput('K0',k0); 

    call symput('K1',k1); 

  run; 

 

 %comb(&N,&N1);                    /* output dataset is called Allperm */ 

 

  proc sql noprint; 

    select count(*) into: Nperm 

 from Allperm; 

  quit; 

  %put &Nperm; 

 

  %do i=1 %to &Nperm; 

  data Output; 

   set Allperm(where=(n=&i)); 

  run; 

 

  proc transpose data=output out=Trans; 

   var _all_; 

  run; 

 

  data Trans; 

   set Trans; 

    if _name_='n' then delete; 

  run; 

  data New; 

   merge &d Trans; 

  run; 

 

  %chopgeneral(New,W,COL1);          /* output dataset is called Dout */ 

  %wilcoxon(Dout,COL1);              /* output variable is called Out */ 

 

  data _NULL_; 

   T&i= &Out; 

    call symput("T&i",T&i); 

  run; 

  %end; 

 

  data _NULL_; 

   plower=0; 

   pupper=0; 

    %do i=1 %to &nperm; 

      if &&T&i LE &T0 then plower=plower+1; 

      if &&T&i GE &T0 then pupper=pupper+1; 

    %end; 

 call symput('plower',plower); 

 call symput('pupper',pupper); 

  run; 

  data _NULL_; 

   p_lower =&plower./&Nperm.; 

   p_upper =&pupper./&Nperm.; 

   p_2sided =min(1, 2 * min(&plower.,&pupper.)/&Nperm.); 

 call symput('p_lower',p_lower); 

 call symput('p_upper',p_upper); 

 call symput('p_2sided',p_2sided); 

  run; 

  %put p_lower=&p_lower; 

  %put p_upper=&p_upper; 

  %put p_2sided=&p_2sided; 
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%mend choplumpExact; 

/************************************************************************/ 

 

Program: choplumpApprox.sas 

 

Author: Marie N. Kassapian 

 

Date: August 26, 2011 

 

  

This program calculates the approximated 2-sided p-value of a choplump test 

for the null hypothesis: 

Ho: equality of the BOI scores between placebo and vaccine group 

 

  

The main idea is based on the R code created by Michael P. Fay. 

 

 

Input: A dataset containing two columns. A column indicating the BOI scores 

of the patients and a column indicating the group membership of them. 

 

Output: A 2-sided p-value for testing the null hypothesis of the equality 

of the BOI scores among the treated groups.  

 

Temporary Datasets: Repeat1, Reapeat2, A, Repeat3, Repeat4, B, Sort, D2, 

D3, Rename, R1, SM, D2, D3, Dout, Dchop, H, Ti_&hfirst : Ti_&hlast, Final 

 

 

This programs calls the following macros:  

 

  i. %chopgeneral(d,W,Z) 

 

 ii. %TDiM(d,W,Z) 

 

iii. %Qh(d,W,Z,h,N1,N0,M,SM,T0,use_ranks) 

 

 iv. %mergedata 

 

  v. %choplumpApprox(d,W,Z,use_ranks= )  

 

 

/*************************************************************************/ 

/*********************** CREATE THE CHOPPED DATASET **********************/ 

/*************************************************************************/ 

 

%macro chopgeneral(d,W,Z); 

  proc sort data=&d; 

    by &W &Z; 

  run; 

  proc sql noprint; 

    select count(*) into: M 

 from &d 

 where &W ne 0; 

    select count(*) into: M0 

 from &d 

 where &W ne 0 

      and &Z = 0; 

    select count(*) into: M1 

 from &d 

 where &W ne 0 

      and &Z = 1; 
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    select count(*) into: N1 

 from &d 

 where &Z = 1; 

    select count(*) into: N 

 from &d; 

 select count(*) into: N0 

 from &d 

 where &Z = 0; 

  quit; 

 

  data _NULL_; 

    k0 = %eval(&N0 - &M0); 

 k1 = %eval(&N1 - &M1); 

  call symput('K0',k0); 

  call symput('K1',k1); 

  run; 

 

  /* do the chopping */ 

  %if &k0 > &k1 %then %do; 

    data dout(drop=t); 

   set &d; 

   if &Z=1 and &W=0 then delete; 

   retain t 0; 

   if &Z=0 then do; 

     if &k1 ne t then do; 

          t+1; 

       delete; 

     end; 

   end; 

 run; 

  %end; 

  %else %if &k0 < &k1 %then %do; 

    data dout(drop=t); 

   set &d; 

   if &Z=0 and &W=0 then delete; 

   retain t 0; 

   if &Z=1 then do; 

     if &k0 ne t then do; 

          t+1; 

       delete; 

     end; 

   end; 

 run; 

  %end; 

  %else %do; 

    data dout; 

   set &d(where=(&W ne 0)); 

 run; 

  %end; 

%mend chopgeneral; 

 

/***********************************************************************/ 

/********** ILLUSTRATION OF PERMUTATIONAL CENTRAL LIMIT THEOREM ********/ 

/***********************************************************************/ 

 

%macro TDiM(d,W,Z); 

 

 proc sql noprint; 

    select count(*) into: L 

 from &d; 

 select sum(&W*&Z) into: sumWZ 
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 from &d; 

 select mean(&W) into: meanW 

 from &d; 

    select mean(&Z) into: meanZ 

 from &d; 

 select std(&W) into: stdW 

 from &d; 

 select std(&Z) into: stdZ 

 from &d; 

 quit; 

 

 data _NULL_; 

  T0=(1/sqrt(&L-1))*(&sumWZ - &L*&meanW*&meanZ)/(&stdW*&stdZ); 

   call symput("T0",T0); 

 run; 

 %put T0=&T0; 

 

%mend TDiM; 

 

/************************************************************************/ 

/************* CALCULATE THE Qh-HAT FOR A SPECIFIC VALUE OF H ***********/ 

/************************************************************************/ 

 

%macro Qh(d,W,Z,h,N1,N0,M,SM,T0,use_ranks); 

 

proc sql noprint; 

 select count(*) into: N 

 from &d; 

quit; 

 

    %let K = %eval(&N1+&N0-&M); 

   %let k1p = %eval(&h); 

 %let k0p = %eval(&K-&h); 

 %let M1p = %eval(&N1-&k1p); 

 %let M0p = %eval(&N0-&k0p); 

   

/* do the chopping */ 

  data _NULL_; 

   if &M0p/&N0 >= &M1p/&N1 then do; 

     k0c=0 ;  

     k1c=&k1p-floor(&N1*&k0p/&N0); 

  end; 

   else if &M0p/&N0 < &M1p/&N1 then do; 

     k0c=&k0p-floor(&N0*&k1p/&N1); 

     k1c=0; 

   end; 

    call symput('k0c',k0c); 

    call symput('k1c',k1c); 

   run; 

  

 

  %let Kstar = %eval(&k0c+&k1c); 

  %let M0c = %eval(&M0p); 

  %let M1star = %eval(&M1p); 

  %let hstar = %eval(&k1c); 

  %let M1star = %eval(&N1-&h); 

  %let N1star = %eval(&M1star+&hstar); 

  %let N0star = %eval(&M0c+&k0c); 

 

 %if &use_ranks=1 %then %let S0Kstar=%sysevalf(-(%sysevalf(&Kstar)-1)/2); 

  %else %if &use_ranks ne 1 %then %let S0Kstar=0; 
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 /* create dataset A consisting of variable ‘a’ with elements:  

    rep(1,n1star),rep(0,n0star) */ 

 data repeat1; 

  keep a; 

  do i=1 to &N1star; 

  a=1;output;  

 end; 

 data repeat2; 

  keep a; 

  do i=1 to &N0star; 

  a=0;output;  

 end; 

 

 data A; 

   set repeat1 repeat2; 

 run; 

 

/* create dataset B consisting of variable ‘b’ with elements:  

   rep(S0Kstar,Kstar),SM */ 

 data repeat3; 

  keep b; 

  do i=1 to &Kstar; 

  b=&S0Kstar;output;  

 end; 

 data repeat4; 

  set SM;     

  keep b; 

  b=SM;output;    

 run; 

 

 data B; 

   set repeat3 repeat4; 

 run; 

 

proc sql noprint; 

 select var(a) into: vara 

  from A; 

 select var(b) into: varb 

  from B; 

 select sum(SM) into: sumSM     

  from SM;                    

 select var(SM) into: varSM 

  from SM; 

 select mean(SM) into: meanSM 

  from SM; 

quit; 

 

%let Nstar = %eval(&M+&Kstar); 

%let SbarNstar = %sysevalf((&Kstar*&S0Kstar+&sumSM)/&Nstar);   

%let VM = %sysevalf((&M-1)*&varSM*&vara);   

%let VNstar = %sysevalf((&Nstar-1)*&varb*(&Nstar-

&N1star)*&N1star/(&Nstar*(&Nstar-1))); 

 

data _NULL_; 

 Zstat = ((&T0*sqrt(&VNstar)-&hstar*&S0Kstar+&N1star*&SbarNstar -(&N1star- 

           &hstar)*&meanSM)/sqrt(&VM)); 

 Qhhat = (probnorm(Zstat)); 

 Dhyper = (PDF('HYPER',&h,&N,&K,&N1)); 

  call symput('Zstat',Zstat); 

  call symput('Qhhat',Qhhat); 
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  call symput ('Dhyper',Dhyper); 

run; 

 

/* calculate the probability of a permutation having h zeros in the vaccine  

   group multiplied with the Qhhat (for a specific value of h) */ 

data Ti_&h; 

 Ti=&Qhhat*&Dhyper; 

 call symput('Ti',Ti); 

run; 

 

%mend Qh; 

 

/**************************** MERGE DATASETS **************************/ 

 

%macro mergedata; 

 %do i=&hfirst %to &hlast; 

  proc append base=Final data=Ti_&i; 

  run; 

 %end; 

 

%mend mergedata; 

 

/***********************************************************************/ 

/**************** CALCULATE THE APPROXIMATED P-VALUE *******************/ 

/***********************************************************************/ 

 

%macro choplumpApprox(d,W,Z,use_ranks=1);    /***  parameter 'use_ranks' 

takes value 1 if ranking is used or 0 if ranking is not used  ***/ 

 

  proc sort data=&d out=Sort; 

    by &W &Z; 

  run; 

  proc sql noprint; 

    select count(*) into: M 

 from &d 

 where &W ne 0; 

    select count(*) into: M0 

 from &d 

 where &W ne 0 

      and &Z = 0; 

    select count(*) into: M1 

 from &d 

 where &W ne 0 

      and &Z = 1; 

    select count(*) into: N 

 from &d; 

    select count(*) into: N1 

 from &d 

 where &Z = 1; 

    select count(*) into: N0 

 from &d 

 where &Z = 0; 

  quit; 

 

   %let K = %eval(&N-&M); 

   %let K0 = %eval(&N0-&M0); 

   %let K1 = %eval(&N1-&M1); 

   

 data D2; 

  set &d; 

  obs=_n_; 
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 run; 

proc sql noprint; 

 create table D3 as 

 select * 

 from D2 

 where (&N-&M+1)<=obs<=(&N);   /*select elements in positions N+M-1 to N */ 

 run; 

 

data Rename; 

set D3; 

rename W=WM Z=ZM; 

run; 

  

proc rank data=Rename out=R1 ; 

    var WM; 

    ranks RankWM; 

  run; 

 

data SM; 

 set R1; 

 keep SM; 

 if &use_ranks=1 then SM = RankWM; 

 else if &use_ranks ne 1 then SM = WM; 

 call symput('SM',SM); 

run; 

  

%chopgeneral(&d,W,Z);                  /* output dataset is called dout */ 

 

 proc rank data=Dout out=Dchop ; 

  var W; 

  ranks RankW; run; 

 

/* calculate the test statistic for the observed data */ 

%global T0; 

%if &use_ranks=1 %then %TDiM(Dchop,RankW,Z); 

%else %if &use_ranks ne 1 %then %TDiM(Dchop,W,Z); 

%put &T0; 

 

/* create a variable with all possible values for h (h=number of zeros in  

   the vaccine group) */ 

data _NULL_; 

 hfirst = max(0,&N1-&M);  

 hlast = min(&N1,&K); 

  call symput('hfirst',hfirst); 

  call symput('hlast',hlast); 

run; 

 

data H; 

  keep h; 

  do i=&hfirst to &hlast; 

  h=i;output;  

 end; 

run; 

 

/*** apply macro %Qh on all possible values of h ***/ 

filename TMP_FIL TEMP; 

data _NULL_; 

set H; 

file TMP_FIL; 

put '%Qh(&d,W,Z,' h ',&N1,&N0,&M,SM,&T0,&use_ranks);' ; 

run; 
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%include TMP_FIL; 

%mergedata; 

 

proc sql noprint; 

 select sum(Ti) into:sum 

  from Final; 

quit; 

 

data _NULL_;    

 p_lower = (1-&sum);                                           

 p_upper = (&sum);                                            

 min=min(p_lower,p_upper);                 

  call symput('p_lower',p_lower);                                  

  call symput('p_upper',p_upper);                               

  call symput('min',min);                                 

run;   

data _NULL_; 

 p_2sided=min(1,2*&min) ; 

  call symput('p_2sided',p_2sided); 

run; 

  %put p_lower=&p_lower;                                                 

  %put p_upper=&p_upper;                                                  

  %put p_2sided=&p_2sided; 

 

%mend choplumpApprox; 

 

 

/*************************************************************************/ 

 

Program: chang.sas 

 

Author: Marie N. Kassapian 

 

Date: August 26, 2011 

 

  

This program calculates the 2-sided p-value of the test suggested by Chang 

et al. for the null hypothesis: 

Ho: equality of the BOI scores between placebo and vaccine group 

 

Input: A dataset containing two columns. A column indicating the BOI scores 

of the patients and a column indicating the group membership of them. 

 

Output: A 2-sided p-value for testing the null hypothesis of the equality 

of the BOI scores among the treated groups.  

 

Temporary Datasets: W0, W1, Score0, Score1   

 

/*************************************************************************/ 

 

%macro Chang(d,W,Z); 

 proc sql noprint; 

    select count(*) into: M 

 from &d 

 where &w ne 0; 

    select count(*) into: M0 

 from &d 

 where &w ne 0 

      and &z = 0; 

    select count(*) into: M1 

 from &d 
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 where &w ne 0 

      and &z = 1; 

    select count(*) into: N 

 from &d; 

    select count(*) into: N1 

 from &d 

 where &z = 1; 

    select count(*) into: N0 

 from &d 

 where &z = 0; 

    select sum(&W) into: sumW0 

    from &d 

    where &W ne 0 

     and &Z = 0; 

    select sum(&W) into: sumW1 

    from &d 

    where &W ne 0 

     and &Z = 1; 

    select mean(&W) into: meanW0 

    from &d 

    where &W ne 0 

     and &Z = 0; 

    select mean(&W) into: meanW1 

    from &d 

    where &W ne 0 

     and &Z = 1; 

  quit; 

 

  %let Tstat = %sysevalf((1/&N0)*&sumW0-(1/&N1)*&sumW1); 

  

 data W0; 

  set &d; 

  keep W; 

  where W ne 0 & Z=0; 

  rename W=W0; 

   call symput('W0',W0); 

 run; 

 

 data W1; 

  set &d; 

  keep W; 

  where W ne 0 & Z=1; 

  rename W=W1; 

   call symput('W1',W1); 

 run; 

 

  %let p = %sysevalf(&M/&N); 

  %let xbar = %sysevalf((&sumW0+&sumW0)/&M); 

   

  data score0 ; 

   set W0; 

    score0 =(W0-&meanW0)**2 ; 

     call symput('score0',score0); 

  run; 

     

  data score1 ; 

   set W1; 

    score1 =(W1-&meanW1)**2 ; 

  call symput('score1',score1); 

  run; 
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  proc sql noprint; 

   select sum(score0) into: sumscore0 

   from score0; 

   select sum(score1) into: sumscore1 

   from score1; 

  quit; 

 

  %let s0est=%sysevalf(&sumscore0/%eval(&M0-1)); 

  %let s1est=%sysevalf(&sumscore1/%eval(&M1-1)); 

  %let varThat = %sysevalf((&xbar**2)*&p*(1-&p)*(1/&N0+1/&N1) 

                                              +&p*(&s0est/&N0+&s1est/&N1)); 

 

 data _NULL_; 

  finStat = abs(&Tstat/sqrt(&varThat)); 

   call symput('finStat',finStat); 

 run; 

   

 data _NULL_; 

  p2sided = 2*(1-probnorm(&finstat)); 

   call symput('p2sided',p2sided); 

 run; 

 

%mend Chang; 

 

/************************************************************************/ 

/***************** IMPLEMENTATION OF CHI-SQUARE TEST FOR ****************/ 

/*********** Ho: EQUALITY OF INCIDENT RATES BETWEEN THE GROUPS **********/ 

/************************************************************************/ 

 

proc sql ; 

create table Table1 as 

 select * 

 from thesis.datanew 

 where W ne 0 

  and Z=0; 

quit; 

 

proc sql ; 

create table Table2 as 

 select * 

 from thesis.datanew 

 where W ne 0 

  and Z=1; 

quit; 

 

data Table3; 

 set Table1 Table2; 

run; 

 

proc freq data=Table3; 

tables Z / chisq; run; 

 

/************************************************************************/ 

/********************** IMPLEMENTATION OF T-TEST FOR ********************/ 

/************* Ho: EQUALITY OF SEVERITY SCORES BETWEEN THE GROUPS *******/ 

/************************************************************************/ 

 

proc ttest data=Table3; 

 class Z; 

 var W;run; 
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/************************************************************************/ 

/*** R CODE FOR THE IMPLEMENTATION OF CHANG ET AL. TEST STATISTIC FOR ***/  

/************ Ho:EQUALITY OF B.O.I.SCORES BETWEEN THE GROUPS ************/ 

/************************************************************************/ 

 

chang<-function(W,Z){ 

 

N0<-length(Z[Z==0]) 

N1<-length(Z[Z==1]) 

N<-N0+N1 

 

M<-length(W[W!=0]) 

M0<-length(W[W!=0 & Z==0]) 

M1<-length(W[W!=0 & Z==1]) 

 

p<-M/N 

W0<-W[W!=0 & Z==0] 

W1<-W[W!=0 & Z==1] 

 

sumW0<-sum(W0) 

sumW1<-sum(W1) 

 

xbar<-((sumW0+sumW1)/M) 

 

s02<-(sum((W0-mean(W0))^2))/(M0-1) 

s12<-(sum((W1-mean(W1))^2))/(M1-1) 

 

T<-(1/N0)*sumW0-(1/N1)*sumW1 

VT<-((xbar^2)*p*(1-p)*(1/N0+1/N1)+p*(s02/N0+s12/N1)) 

test<-abs((T/sqrt(VT))) 

 

p2sided<- 2*(1-pnorm(test)) 

p2sided 

} 

 

 

/************************************************************************/ 

/************** R CODE FOR THE SIMULATION OF THE DATASETS ***************/ 

/************************************************************************/ 

 

N<- 

a<- 

b<- 

 

Z<-c(rep(0,N-a),rep(1,N-b),rep(0,a),rep(1,b))    #fix membership indicator 

data1<-matrix(numeric(0),a,182) 

for (i in 1:182) { 

data1[,i]<-sample(c(1:10),a,replace=T) #sample the scores for placebo group 

} 

data2<-matrix(numeric(0),b,182)                                               

for (i in 1:182) { 

data2[,i]<-sample(c(1:7),b,replace=T)  #sample the scores for vaccine group 

} 

data3<-matrix(rep(0,(2*N-a-b)*182),2*N-a-b,182) 

score<-rbind(data3,data1,data2)                           #merge all scores 

W<-apply(score,1,sum)                 #compute total score for each patient 

finaldata<-cbind(W,Z)                                        #final dataset 

 



Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Analysis of Methods Used in Trials Containing Many Zeros

Richting: Master of Statistics-Biostatistics

Jaar: 2011

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de 

Universiteit Hasselt. 

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt 

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, 

vrij te reproduceren, (her)publiceren of  distribueren zonder de toelating te moeten 

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de 

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat 

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt 

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de 

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de 

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen 

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze 

overeenkomst.

Voor akkoord,

Kassapian, Mari  

Datum: 15/09/2011


