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Abstract

Ever since network technologies and applications have been developed, bandwidth has been
considered a scarce resource. Although an increase in absolute numbers can clearly be ob-
served (comparable but not exactly equal in trend to Moore’s law for processing speed), the
demands put on the network infrastructure by applications have also surged in recent years.
Several factors contribute to this fact, including the increased use of multimedia data (most
importantly audio and video) and highly interactive application types. The latter are the
subject of the thesis at hand, more precisely the class of applications known as ‘Networked
Virtual Environments’. Fluctuations in the amount of users and the data flows associated
with each individual entity present in these virtual worlds necessitate a means for limiting the
amount of data to be either sent or received by each participant. To be able to adjust these
requirements and resources at run-time would clearly be very beneficial for the scalability of
the entire system.

This thesis provides an overview of the network flows associated with and the bandwidth re-
quirements of various types of Networked Virtual Environments. Ever since NVEs have been
studied as a topic in (academic) research, ways in which to reduce the data flow have been
proposed. They can be classified into four high-level categories: compression, aggregation,
space partitioning and prediction. Each of these is discussed in this thesis, supported by
examples, details and a summary of possible drawbacks. By combining these elements and
comparison, the latter two techniques were found to be the most promising for further study.

NVE technology has widespread applications, but the most well-known examples can be
found in so-called massive multiplayer games. At their core, these games use engines for
network functionality. A number of these (commercial) software libraries and architectures
are discussed and investigated, revealing a wide variety of techniques and (sometimes ad-hoc)
solutions to known issues. Each of these engines has specific optimizations that are linked to
the genre of game they are developed for, indicating the fact that several solutions will have
to be combined in order to obtain a generic solution that works well under most conditions.

The implementation part of this thesis encompasses a generic and extensible Area-of-Interest
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system (the AOI-API), which includes the ability to discriminate several Levels-of-Detail in
information streams. By generalizing the software implementation, the range of applications
that can be supported grows substantially and extends even beyond typical applications
genres (i.e. MMORPG, MMOFPS, MMORTS,...). Furthermore and as a showcase example
for its flexibility, the AOI-API is integrated into an existing architecture which is intended
to support large-scale networked virtual environments - ALVIC-NG. By combining ideas and
elements from the NIProxy system, which is a platform for dynamic bandwidth partitioning
over various network streams, a very powerful system is obtained that can be applied under
many circumstances. This fact is supported by extensive tests, classified into seven main
experiments, each highlighting either the versatility, bandwidth shaping capabilities or large
scale features of the proposed solution. Although additional work is needed to investigate the
applicability in more extensive scenarios and to quantify the net gains in terms of bandwidth
for more large-scale setups, it is clear from the test results that the functionality of the AOI-
API, coupled with the NIProxy principles and the integration into the ALVIC-NG architecture
is a promising step towards a truly scalable solution for client/server based networked virtual
environments.



Abstract (Nederlands)

Al sinds de begindagen van computernetwerken en het internet wordt bandbreedte beschouwd
als zijnde slechts beperkt voorhanden. Hoewel er duidelijk een stijging in absolute cijfers is
opgetekend doorheen de jaren (gelijkaardig maar niet gelijk aan Moore’s wet voor processor
snelheid), geldt dit ook voor de eisen die applicaties stellen aan de netwerkinfrastructuur.
Verscheidene factoren dragen hiertoe bij, onder andere het verhoogde gebruik van multime-
diale data (voornamelijk audio en video) en applicaties met een hoge interactiegraad. Deze
laatsten zijn het onderwerp van deze thesis, meer specifiek de verzameling applicaties gekend
als ‘Genetwerkte Virtuele Omgevingen’. Fluctuaties in het aantal gebruikers en de datas-
tromen geassocieerd met elk individueel object in deze virtuele werelden zorgen voor de nood
om een techniek toe te passen voor het beperken van de data die wordt gestuurd door of naar
elke gebruiker. Het dynamisch kunnen aanpassen van deze datastromen zou duidelijk heel
heilzaam kunnen zijn voor het hele systeem.

Deze thesis geeft een overzicht van de verschillende netwerkstromen die geassocieerd zijn
met verschillende types van Genetwerkte Virtuele Omgevingen (GVOs) en hun bandbreedte
behoeften. Vanaf het moment dat GVOs bestudeerd zijn in (academisch) onderzoek, zijn
er manieren voorgesteld om de datastromen te verkleinen. Deze technieken kunnen geclas-
sificeerd worden in vier grote categorieën: compressie, aggregatie, ruimtelijke opdeling en
voorspelling. Elk van deze wordt behandeld in deze thesis, ondersteund door voorbeelden,
details en een overzicht van mogelijke nadelen. Door deze verschillende elementen te vergeli-
jken, werden de laatste twee technieken het meest beloftevol bevonden voor verder onderzoek
en bespreking.

GVO technologie heeft veel mogelijke toepassingsgebieden, maar de meest bekende voor-
beelden kunnen gevonden worden in de zogenaamde massive multiplayer games. Deze games
gebruiken specifieke softwarepakketten en structuren voor hun netwerk functionaliteit. Enkele
van deze (commerciële) software bibliotheken en architecturen worden onderzocht en bespro-
ken, waarbij we ontdekken dat er een grote verscheidenheid aan oplossingen voor bekende
problemen wordt toegepast. Elk van deze softwarepakketten heeft specifieke optimalisaties
die gericht zijn op het genre game waar ze voor gemaakt zijn, wat aangeeft dat verschillende
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technieken moeten worden gecombineerd om een meer algemene oplossing te bekomen die
werkt onder de meeste omstandigheden.

Het implementatie-deel van deze thesis omvat een algemeen en uitbreidbaar Area-of-Interest
systeem (de AOI-API), dewelke de mogelijkheid bevat om verschillende Levels-of-Detail te
introduceren in datastromen. Door de software implementatie te generaliseren groeit de
verscheidenheid aan applicaties die we kunnen ondersteunen gevoelig en zelfs tot buiten tra-
ditionele GVO genres zoals MMORPG, MMOFPS, MMORTS, ... Daarnaast, en als een
voorbeeld van zijn flexibiliteit, wordt de AOI-API gëıntegreerd in een bestaande architec-
tuur voor grootschalige GVOs - ALVIC-NG. Door het gebruik van ideeën en elementen van
het NIProxy systeem (een platform om dynamisch bandbreedte te beheren over verschillende
netwerkstromen heen), verkrijgen we een erg krachtig systeem dat onder veel omstandigheden
kan ingezet worden. Dit feit wordt onderbouwd met uitgebreide tests die zijn onderverdeeld
in zeven experimenten die elk ofwel de flexibiliteit, ofwel de mogelijkheden voor bandbreedte
schaalbaarheid ofwel de grootschalige eigenschappen van het voorgestelde systeem aantonen.
Hoewel er opvolgend onderzoek nodig is om de toepasbaarheid te bepalen in uitgebreidere
scenarios en applicaties op grotere schaal, maken de testresultaten duidelijk dat de function-
aliteit van de AOI-API, gekoppeld met de NIProxy concepten en de integratie in de ALVIC-
NG architectuur een goede stap is naar een schaalbare oplossing voor client/server-gebaseerde
genetwerkte virtuele omgevingen.
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Chapter 1

Introduction

1.1 What is a NVE?

The title of this thesis contains the concept of a “networked virtual environment” (NVE).
How can we define such a NVE? Taking a definition that will suit the coming chapters, we
quote Singhal & Zyda [86]:

A Networked Virtual Environment (NVE) is a software system in which multiple
users interact with each other in real-time, even though those users may be located
around the world.

There are a number of very important items in this definition. First of all, a NVE consists
of multiple users. A typical NVE will not stop at 100, 200 or even 1000 users, but will
have hundreds of thousands or even millions of (concurrent) users in the environment [46].
These users will usually have a graphical representation of themselves in the environment,
often called an avatar. These avatars are often human-like and perform human actions like
walking, running, jumping, shooting, etc. and are the user’s main way of interacting with the
environment.
Secondly, there is the real-time aspect. Users are going to interact with each other in a
plethora of ways, depending on the setting of the NVE. These interactions are preferably
executed without delay and with immediate feedback to the user. Users do not like to wait
for their actions to take effect and in some types of NVE, even the slightest of delay can
influence the experience [84]. Ideally, the NVE should appear to be running on the user’s
local system and all users should have the same consistent view on the environment at all
times.
Lastly, the NVE should be accessible to users across the world and they should be able to
interact with each other. Practically this means the NVE should work over the modern in-
ternet, as this is the main technology available to users today to connect to other computers
and users worldwide. As we will see in more detail later, this is not such a trivial requirement
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Chapter 1. Introduction 2

as it might seem at first.

In recent years there have been a number of (commercial) NVEs that are very popular and
have large numbers of active users. Most of these NVEs are multiplayer games, more specifi-
cally MMORPGs (Massive Multiplayer Online Role Playing Games), such as World of War-
craft [53], Everquest [15] and Guildwars [21]. These games allow players to team up with
their friends and undertake epic quests in a fantasy world.
Another type of NVE which is popular, is a Virtual Community. These environments are
not so much games as recreations of real or fictive worlds in which people engage in different
social interactions that are often mirrors of real-life activities. Examples include Second Life
[46] and the now discontinued There [48].
These kinds of worlds in which users can interact in so many different ways with a large
amount of other people are still increasing in popularity and are gaining a lot of attention
from game developers and community creators alike. It is the belief of some that large scale
NVEs will be the future of online interactions and gaming, making them an interesting sub-
ject for study in disciplines ranging from sociology to computer sciences [80, 67].

While the previously seen definition touches on three important characteristics of a NVE,
it barely gives an idea of the huge numbers of technical difficulties that come with actually
implementing and running a NVE with these characteristics. These problems can be divided
into a number of smaller ones, such as security, cheating prevention, persistence, virtual
economy, user generated content, ... , and two big ones : consistency and scalability.
This thesis will focus primarily on scalability and more precisely on bandwidth scalability.
What this encompasses exactly is discussed later, as we first describe the abstract problems
of consistency and scalability in more detail.

1.2 What are the problems with practical NVE design?

1.2.1 Effects of network drawbacks

Whilst the problems of consistency and scalability are quite different in concept, they have a
lot to do with two basic properties of the network the NVE uses to transmit messages. These
are especially present if we look at the internet as our network for deploying a NVE.
To understand this we must first understand the basic inner workings of a NVE and the
network. When we perform an action in a NVE, other users have to see this action in order
to be able to react to it. Using a network, we can send messages to the other users, notifying
them of our actions. The other user can then update his local view of the environment upon
receipt of the message and see the result of the action the same way we saw the result of the
action when we did it. This is sometimes called synchronizing world state.
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This way, NVEs are actually a kind of advanced distributed systems, a term which indicates
any application that uses a network to communicate data between different entities in network
packets. The problems we discuss here are thus inherent to any type of distributed system,
but as we will see, they are enlarged and even more difficult to overcome in NVEs because of
their huge scales and requirements.

The first problem is the network latency [65]. This means that any message you send will
be delayed by the network and it will take a while for it to arrive at the other users. To
complicate matters further, this network delay is not constant and can vary, not only between
users depending on their physical distance from each other, but also on one link between users,
called network jitter. This problem makes achieving real-time synchronization between users
a lot more difficult.
The second problem is the limited network bandwidth [65]. Computer systems work in bits
and bytes and every message a user wants to send to other users has a certain size in bytes.
The problem is that network links can only process a limited amount of bytes every second,
called the bandwidth. So if your messages are 100 bytes and your network link has a band-
width of 1000 bytes/second, then you will only be able to send 10 messages per second (or
even less, as most network protocols induce a certain amount of bandwidth overhead per
packet). If you would try to send more, the network would become overloaded, causing lost
messages and bigger delays between messages. This problem makes it difficult to support a
large number of players because every player requires more packets to be sent as every player
also introduces new interactions to the world.

A lot of academic and military NVEs are only used on local and proprietary LAN or specif-
ically designed WLAN networks (see chapter 5) and as such do not have to deal with these
problems the same way game and entertainment developers have to. This thesis will explicitly
try to deal with the problems the real internet brings and as such dismiss some of the academic
theories for practical usage and focus on viable techniques for usage in entertainment-based
NVEs over the internet.

1.2.2 Consistency and scalability

Whilst consistency and scalability are similar to the real-time and multi-user requirements of
a NVE they are broader in concept and problem:

Consistency means that all users have to have the same view of the environment at the same
time. As discussed before, networking delay and jitter makes this real-time aspect a lot more
difficult to achieve.
Consistency is not just limited by the network delay and jitter; the available bandwidth
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will also have a big influence on achievable consistency. As discussed previously, the users
communicate with each other through network messages. To achieve good consistency, all
users will have to send a very large number of messages every second, especially in a fast-paced
simulation where a lot of actions can happen in just one second. If we need to send all these
actions to all other users when they appear, there simply will not be enough bandwidth to
support this kind of traffic. Simply put: the higher the consistency requirements, the higher
the theoretical bandwidth usage will be. This concept was called the consistency-throughput
trade-off by Singhal & Zyda [86]. They state you can either have a highly dynamic world
which is not very consistent, or a very consistent world which is not so dynamic, but you
cannot have both high consistency and a dynamic world at the same time.
In conclusion, consistency is not only limited by the networking delay but also by the avail-
able bandwidth. This is a very important aspect which forms one of the motivations for this
research.

Scalability means that the NVE should be able to handle large numbers of users without large
problems. New users should be able to join and participate in the experience without other
users having any kind of negative effect on performance because of the other user’s arrival
and participation. As discussed before, with every new user the bandwidth usage will go up.
This is because the new user is now also transmitting his actions through messages over the
network which have to be received by other users. So there is a limited number of users the
NVE can support, dependent on the available network bandwidth.
Scalability is not just limited by bandwidth constraints; the hardware of the end-systems
and possibly intermediate systems also has a big influence on the number of users that can
be supported. The more users, the more interactions that will have to be processed, the
more models will have to be rendered, the more calculations that need to be done. Every
message that is sent through the network also has to be interpreted at the intermediate and
end-stations and with large numbers of players this is often not trivial, even on very modern
hardware. So even if we would have ample bandwidth in the network, the hardware and
performance could still be a bottleneck.
In conclusion, scalability is not just about dealing with limited bandwidth, it is also about
the performance of the hardware of the end-stations in the network.

1.3 Focus on bandwidth scalability

We can now shortly summarize the previous paragraphs.
For the users, the main requirement of a NVE is consistency. Without a sufficiently consistent
world, there can be little meaningful real-time interaction between users. This consistency is
dependent on network delay/jitter and network bandwidth and thus these factors should be
taken into account when designing a NVE.
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For the developers, a big problem is scalability. Users would not appreciate their experience
being hindered for something simple as other users joining the environment. Developers have
to keep everything up and running, even in the presence of large numbers of concurrent users.
Therefore they need to optimize the performance of their software and also the bandwidth
usage.
We can put these conclusions into a simple table:

Figure 1.1: Elements of consistency and scalability

As we can clearly see, bandwidth usage plays a large role in both consistency and scalability
of a NVE. Furthermore, they are intertwined in such a way that one will be affected if we
change something to the other. This can be used as a positive effect as well: if there is an
excess of bandwidth available, we can increase the measure of consistency. On the other
hand, we can use some logical concepts about consistency as observed by the user to control
bandwidth usage of the NVE.

Bandwidth is a very important resource for a NVE and an effective implementation for (dy-
namic) bandwidth scalability is important for a number of reasons. First of all, bandwidth
is costly [7], which can make it expensive to maintain a large NVE. With a bandwidth man-
agement system, the amount of bandwidth can be limited to lower the costs. For instance,
in some countries bandwidth costs less during nighttime than it does during daytime. The
bandwidth limit can be kept lower during daytime to ensure lower expenses.
Another argument is that there is a lot of heterogeneity in contemporary internet connections.
Users with high-speed, broadband connections should be able to interact with mobile players
using a slow, smallband mobile network. The NVE should be able to adjust its network usage
to the type of connection a user uses to connect to it.
A third aspect is that bandwidth limitations can fluctuate considerably during the usage of
the NVE. This is caused by other people using the same network and other outside factors,
such as a router going down in the internal network for example [62, 74]. The NVE should be
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able to compensate for these fluctuations and dynamically compensate it’s bandwidth usage
to stay within the changing limits.
A final reason is that there are a number of game and application concepts that have not yet
been very successful in a NVE setting. One of the reasons for this is that it is difficult to
sufficiently limit their bandwidth usage to make them possible on the modern internet. One
of the goals of this thesis is to see how we can bring these small-scale concepts to a NVE
setting and how this would affect bandwidth usage. This is especially true for at least three
kinds of applications that we will focus on in this thesis. Each of these examples will be
discussed in more detail later in this text:

• Applications with a high real-time consistency requirement (ex. First Person Shooter)
Most modern NVEs use an interaction model for which little and infrequent traffic is
needed to transmit the user’s actions. There are game types however that have a much
higher bandwidth requirement to enable full consistency. This is true for real-time action
games such as First Person Shooters, where players control their avatar directly and
actions are very fast paced. In order to support the same number of concurrent players
as is common for the other slower paced interaction models, bandwidth scalability is
needed.

• Applications with a huge number of objects (ex. Real Time Strategy, physics)
Large, strategic simulations will traditionally not be played by a lot of players at the
same time, but these players will be controlling a large number of objects each. Histor-
ically, other methods have been used to deal with this problem, but as we will discuss,
these methods are not easily transferrable to a large scale NVE. Another example are
applications in which physics calculations are used to determine how objects realisti-
cally react in the world. These physics calculations have to be done on a large number
of objects to appear realistic and all these objects have to be kept consistent for a
large amount of players. Bandwidth scalability can help bring these concepts to a NVE
setting.

• Applications which support user generated content and complex communications (ex.
Collaborative environments)
When we look at how people can best interact and collaborate across a network to
perform more serious or realistic tasks, these applications often have special types of
communication. Example are for instance audio and video communication between
different users, special input devices such as multitouch tables, realtime manipulation of
3D objects by multiple users, user generated content, etc. These types of communication
often require large amounts of bandwidth and thus bandwidth scalability is needed to
bring them to a NVE setting.

In conclusion, we can say that bandwidth scalability is needed for a number of different rea-
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sons and will help enable larger NVEs which are built around new concepts . This scalability
can be achieved mainly by manipulating some consistency parameters, as there is a large
overlap between the two concepts.

This thesis will research techniques that can be used to ensure bandwidth scalability for a
NVE while keeping consistency as good as possible. It will also be discussed how these tech-
niques can be used for dynamic scalability, i.e. how they can be used to adjust bandwidth
usage of the NVE at runtime to deal with changing bandwidth limitations on the network
connections. Some of these techniques will be chosen to be implemented in a larger NVE
framework and simulations will be run to see what effect the suggested solutions really have
on the bandwidth usage. In addition, the versatility and applicability of the system will be
shown by simulating a few situations in NVEs that are difficult to keep scalable without the
proposed techniques.

The hypothesis is that by lowering some consistency requirements, we can achieve good dy-
namic scalability without it having a dramatic impact on the user’s subjective experience.
It is expected that special situations will arise in certain interaction types that need special
consistency management. The objective is to enable the framework to handle these special
requirements, enabling a wide range of NVEs to be deployed using the suggested approach.

In chapter 2, the current state of affairs for network infrastructures and typical network
characteristics, game architectures, interaction models, network streams and network pro-
gramming idioms will be discussed. This will provide a solid basis to discuss methods for
bandwidth reduction and to place them in the correct context. Chapter 3 will deal with pro-
tocol optimization. The two main concepts of compression and aggregation will be discussed.
Chapter 4 discusses traffic filtering in the forms of zoning, Area-of-Interest specifications
and prediction techniques such as dead reckoning. Chapter 5 will then look at how the dis-
cussed techniques are employed in academic and commercial engines, networking middleware
solutions, games and environments. Chapter 6 described our versatile Area-of-Interest im-
plementation in ALVIC-NG [85] using the NIProxy [94]. Chapter 7 describes the performed
experiments and analyses the generated results. Finally, chapter 8 and 9 conclude this text
and discuss future work.



Chapter 2

Current state of affairs

Here we look at how common real-life networks and games are structured and implemented
and what influence this can have on bandwidth usage. We do not limit ourselves to NVEs or
large scale ideas because one of the goals of this thesis is to see how existing game concepts
and applications like FPS and RTS that have not yet known a large breakthrough on a larger
scale can be deployed in an NVE setting. Therefore we also look at how existing small-scale
multiplayers games and applications work and see if these implementations are still usable on
a larger scale.

2.1 Network Architectures

To make an NVE possible, users have to be connected through a network, and this can
be done in various ways. Generally there are two important possibilities: directly (Peer
to Peer, P2P) or through an intermediary (Client-Server, CS). Both have advantages and
disadvantages. Here we discuss the most common architectures for both P2P and CS. This
should not be considered an exhaustive list of all possibilities, which are possibly endless, but
a good introduction that touches on all aspects that are important for later use in this text.

2.1.1 Peer to Peer

This is the simplest concept to understand: players connect directly to each other. The
network expands with every new player and so the performance scalability is relatively easy:
every user adds new processing power to the network.
P2P is also very cheap as no extra infrastructure is needed to maintain the network.
The biggest issues for using P2P as network model are those of security and cheating. When
there is no central controlling entity, any peer can cheat or send hazardous information to
other peers and it is very difficult to protect against this. This can be very negative for the
user’s experience.

8
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Another big issue is that of persistence. It is difficult to decide where to store the world state.
We cannot choose just any peer as there is a very real possibility that he will not be online
all the time. When the user responsible for a certain part of the world would disconnect, this
part would become unavailable. Thus, P2P systems have to take extra care as to how and
where they store the information about the world that has to be maintained throughout users
sessions.
The two main issues mentioned in the introduction, namely performance and bandwidth
scalability, are discussed in more detail for P2P systems later.

Nearest Neighbour Problem

One of the main problems in P2P is how to know which users one has to connect to and
how these users can be reached. Logically, it is not possible to have every user in the world
connect to every other user if the user count is high.
P2P is used for a number of different purposes, mostly filesharing. Several technologies are
used there to obtain the information about other users. One is to use a single tracker entity,
known to every user, which lists all files and which user has them available. BitTorrent is
an example of a popular filesharing system that uses this approach [6]. Another system is
that of the Distributed Hash Table (DHT) [9]. With a DHT, there is no central place were
all information is kept but this information is stored in several places across the network.
Using so-called hash-functions and possibly a special routing overlay network, users are able
to find the wanted files. This approach is very scalable and fault-tolerant. An example of a
DHT system is PASTRY, which stores resources on nodes with similar hashes to the resources
themselves [36].

For filesharing, we are searching those users that have the files we are interested in. For
gaming or virtual worlds, we are mostly interested in the users who are geographically closest
to us in the virtual world. This concept is mostly referred to as Area of Interest or Zoning
and will be explained in further detail in chapter 4.
A first approach to do this is to use a DHT, as is done for filesharing. SimMud [73] is
an example of a system that uses this approach through a PASTRY implementation. In
SimMud, the world is divided into adjacent regions (see chapter 4 for more details) and every
region is assigned a hash. Each peer also has a unique hash. The peer with the hash that is
most similar to the region hash, becomes the coordinator/master of this specific region. This
assignment is not related to where the peer is in the world, and so it is unlikely that the peer
is coordinator of the region he himself is in at this time. This reduces the security risks as
the incentive for cheating will probably be less. Another advantage is that the coordinator of
a zone does not need to change if the peer transfers to a new zone. By replicating all data of
a coordinator on another peer as well, the system is made fault-tolerant.
A second approach is to use voronoi diagrams. Given a number of 2D points (sites), a voronoi
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diagram subdivides the other points in regions so that every point in a region is closest to the
site of that region. VAST [52] is a system that uses voronoi diagrams to determine interesting
neighbours. It sends updates to these neighbours and if a peer detects an important change
in the voronoi diagram (for instance, a user has moved closer to another user), the peer will
communicate this to his neighbours. This way, the set of closest neighbours will always be
up to date for all peers. However, this may lead to problems if there are many users together
in a small place, as many connections would still have to be made. For this, VAST uses a
dynamic AOI (see chapter 4 for more details) to determine how far a peer can be removed for
it to still be an interesting peer. If there are many peers nearby, this distance will be smaller
than when there are less peers in the direct vicinity.
Even other approaches are possible but their basic outcome stays the same: find the n nearest
neighbours for the current user to connect to and update this set of neighbours as the users
move through the world.

Practical connection problems

Once we know the nearest neighbours, we need to actually connect to them. On the internet,
this is not always trivial.
Many routers use a technique called Network Address Translation (NAT) [33]. This means
that the IP address of a client as seen from the outside world is not the real IP address, but
that of the user’s router. Consequently, we cannot connect directly to the user. A number
of techniques can be used to overcome this [69], like Universal Plug and Play (UPnP), UDP
hole punching or worst case: relaying. The latter approach uses an entity which is not behind
a NAT so the peers can connect to this entity and exchange data through the relay instead
of directly to each other. This technique is for instance used in the P2P VOIP application
Skype.
However in a true P2P system, it can be difficult to find a peer that is not behind a NAT
and that has sufficient bandwidth and processing power to act as a relay. Furthermore, even
if a direct connection from a peer to another peer would work, it is possible that the firewall
will block any incoming connections. This is a typical setting as firewalls usually only allow
outgoing connections.
In conclusion we can say that connecting users in a P2P fashion on the contemporary internet
is not free of practical issues, which mostly have to be solved using relay entities, which are
not always optimally available.

IP Multicast

IP Multicast is a technology that allows a peer to send one message to a multicast group,
upon which every member of that multicast group will receive that message. The network
itself is responsible for replicating the message for the other users and this is only done at



Chapter 2. Current state of affairs 11

nodes in the so called multicast-tree. This is the inverse of making the connections ourselves
and sending the packet to the other peers ourselves, which is also called unicast, see figure
2.1.
Using IP Multicast we can assign one multicast address to every region of the world. Every
user sends his updates to the multicast group of the region and every other user in this region
receives all the updates. It is simple, elegant and very logical. Another technique would be to
use a multicast group per entity/avatar. This way, users can choose which avatars they are
interested in by subscribing to their multicast groups. A plethora of multicast-based schemes
have been described in academic literature, as multicast is a very interesting technology in
research. A downside is that it can be challenging to provide enough fine-grained levels of
detail to enable users to determine exactly what information they want to receive [88]. Later
sections will explain this problem in further detail.

Figure 2.1: Multicast versus unicast.

Sadly, multicast is not very widespread or supported in every router on the internet, even
though the internet backbone has good multicast support. As such, we cannot assume that
every potential user of the NVE will have access to a fully multicast-enabled network when
using the internet. This renders basic multicast all but unusable for any practical application
on the contemporary internet. A possible solution is to simulate multicast using application-
layer protocols [95], but this requires extra work and it is not guaranteed to provide the
versatility of the basic multicast idea. So even though it is a very good technology for NVE
systems, it is not practical and only usable on LANs or controlled simulation setups. There are
hopes for improved multicast support with IPV6 [27], but the adoption of this new protocol
has been very slow.
It should be noted that even if IP Multicast would become available, there would still be
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a problem with reliable delivery of the messages. IP Multicast is UDP-only and it can be
shown that implementing a reliable protocol requires a lot of communication overhead (more
so than is the case with unicast connections) [65].

2.1.2 Client Server

As explained before, when we allow users to connect directly to each other, there is no way
to control what data they exchange and so it is possible for a malevolent user to cheat in a
game or pose a security risk in a system. This is one of the main reasons why the Client-
Server architecture is very popular for online gaming. We introduce an intermediate entity
in the network, the server, through which all messages have to pass. This server can check
for cheating, violations against gameplay logic or unauthorized operations. In addition, this
allows the server to be in control of consistency and decision making. For example, deciding
whether one player has successfully shot and killed the other player is a lot more difficult in
a P2P than it is in a Client-Server setup, where we only have one authority.
The Client-Server approach needs extra hardware however, often in the form of dedicated
server machines. Especially in the case of an NVE, a very large number of servers is needed
to be able to support a large number of users. Additionally, servers can induce extra latency
for the messages being sent, because they first need to pass through the server and they often
also incur some processing overhead at the server, creating even more delay.

The dedicated or host server

For games or applications with a small number of users (typically up to 32 users for a FPS
game), one server often suffices. All players connect directly to the server, which calculates
the world state at set intervals and sends the changes to every player.
This setup allows one of the players to act as server. A player chooses to ”host” the game,
after which all other players connect to the server. The host can either play on his server
or run a so called dedicated server, a separate process on his computer. This eliminates the
need for extra hardware as any player can start a new game on their local computer. In
practice however, players often rent a server from a company to act as a 24/7 game server
for their favourite game. This is because local players can also suffer from the same practical
problems as a P2P setup when they host a server themselves, such as the need for NAT
traversal techniques.

Server clusters

As the number of users grows, one server will no longer suffice to process all the data. The
approach here is to add extra servers and have all the servers interconnect so they can exchange
information about the world and users they have connected to them.
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Typically, each server in a cluster is responsible for one part of the world (a region or zone)
and processes information of the users currently present in that part. This technique is called
zoning and will be discussed in chapter 4.
A good example of a cluster-based NVE is Second Life [46].

Advanced systems

When the virtual world becomes too large, the cluster approach will not be sufficient. The
servers will have to maintain too many connections to the users (which is very resource
intensive) and process too much data.
A possible solution is to add an extra layer of proxy-servers on the outside of the network
[71]. These proxy servers have the task of managing the user connections so the normal (logic)
servers do not have to worry about the users, they just have to deal with the gameplay data.
One proxy server typically connects a large number of users to the internal network of logic
servers. These proxies can filter certain traffic to the logic servers or take certain decisions
themselves, reducing the load on the logic servers. This is an approach taken in for example
Eve-Online [13] and ALVIC-NG [85], who will both be discussed in more detail later.
Other more advanced setups will try and create a hybrid between P2P and Client-Server.
Non-critical data, like audio and video streams, can be exchanged between users directly
without having to pass through the server, removing a large processing load. One could
also use P2P as the basic networking architecture (possibly using multicast) but incorporate
servers for certain tasks, such as neighbour discovery, critical gameplay decisions or traffic
aggregation [86].
This kind of P2P-CS hybrid could be interesting for gaming consoles like the XBOX 360 or
PlayStation 3. These are mostly closed platforms with a lot less possibilities for users to
cheat (compared to online PC gaming), which makes P2P technologies a lot more interesting.
Combined with servers for persistence, it would be possible to make a very scalable and
affordable NVE.

2.1.3 Comparison

As the focus for this text is on scalability, let us compare P2P and CS setups in that respect.
As stated before, the difference in terms of processing scalability is quite straightforward. For
P2P, each user in the system automatically adds new processing power and some users with
a large number of resources can play a more important role in the network. This way, the
system automatically scales as the number of users changes. For client-server, there is often
a need for extra and expensive hardware to maintain a good processing scalability, especially
in large-scale setups.

The difference in bandwidth scalability is a bit less straightforward. When using P2P with
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unicast, there is a lot of traffic on every client as they have to send every packet n times,
where n is the number of currently connected peers.
P2P with multicast enables the user to only send one packet and the network will replicate it
where needed. As users can choose themselves to which multicast groups they subscribe, they
can also regulate their incoming traffic to a certain extent. Mostly however, multicast does
not allow a very fine-grained control of the traffic. The user often has to choose to receive all
or no traffic from a certain region or entity, with little or no possibility to receive a certain
Level of Detail.
The reader should also note that there can still be a large amount of traffic in the internal
network. Even though multicast will try to optimize the amount of packets that have to
be replicated, there is no guarantee or measurement about how effective this will be. As a
consequence, multicast is certainly better for bandwidth reduction when sending packets, but
not necessarily for bandwidth usage in the NVE itself.

From the user perspective, the Client-server approach has all the advantages of the multicast
approach and more. The user only needs to send his data to the server, and what is more, it
only receives data it needs from the server. The server can perform very fine-grained control
of what data is being sent to the user and this is a very important concept for the rest of this
text.
However, this optimal situation for the client comes at a huge cost for the server. The server
needs to process all incoming data from sometimes a very large number of clients, causing the
incoming traffic to be directly tied to the number of users connected to the server. The server
can perform a lot of operations on the data so that users only receive the data they need,
and thus severely reduce its own outgoing traffic. These operations require a lot of processing
power however, putting a higher load on the server.

As can be seen, both approaches have benefits and drawbacks for both aspects of scalability.
Client-server appears to be the less interesting technology, but practical issues with P2P as
well as the problems with cheating and persistence management cause that Client-server is
still the most dominant architecture in real-life applications over the internet.
As P2P is still a very active area in academic research and because support for multicast will
increase with IPV6 in the future, P2P will be kept in mind when describing techniques for
bandwidth scalability later, but the primary focus will be on Client-Server architectures.

2.2 Network Characteristics

There are many different kinds of networks with different characteristics. For this thesis,
we are especially interested in the internet, which uses a specific set of protocols and has a
certain hierarchical architecture. We are especially interested in two parameters: bandwidth
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and packet loss.
The maximum bandwidth of a connection depends on a large amount of factors, such as the
physical capability of the connection wires, the buffer sizes of the internal routers, and so
on. We will not discuss all these aspects here, only those that are most comprehensive in our
explanation of bandwidth usage and scalability in NVEs.

One aspect that is very important, is that the available bandwidth at the core of the internet
is typically very high, and so is the bandwidth in proprietary networks connecting most
commercial NVE servers. However, the available bandwidth from the internet core to the
user, the so-called ”last-mile” can be significantly smaller. This means this last connection to
the user acts as a bottleneck which will determine how much bandwidth the NVE can use.
The reasons why this last mile has less bandwidth can depend on a couple of reasons. For
instance, in a cable-based network, the last mile is often shared between several users and
if other users are creating a lot of traffic, the available bandwidth for the NVE user will go
down. Another reason can be that the user is connected through a wireless network, which
is already slower because of the wireless transmissions.
In a recent survey for an existing game [55], creators of a popular game measured the common
bandwidths of the players of the game. It was found that most users have around 176 kb/s
download bandwidth and 226 kb/s upload bandwidth. This is relatively low if you know a
typical CounterStrike server for 22 players will send around 886 kb/s [88].

Maybe this would not be a very big problem if this bandwidth was fixed in time. Sadly,
this is not the case on the internet. Many factors can influence the available bandwidth
[62], most notably how many users are using a particular network link and how much traffic
they generate. As we have said, if these users would generate more traffic than the available
bandwidth can handle, the intermediate routers in the network will start to drop packets and
the latency will go up as they cannot process all this traffic anymore. This situation is called
network congestion and is very dangerous as it can completely close off a big part of a network
if not dealt with.
Either way it happens, the available bandwidth will fluctuate (just as there is jitter on the
latency of a connection) and the NVE will have to take care not to exceed this bandwidth to
prevent congestion and even worse network problems for the user.

A final issue is that of packet loss. Once again, many factors can cause a packet to be
dropped in the network. This can be a problem for consistency of the NVE as some users
will not receive the dropped packets and will lose some (important) information. However,
for reliable streams, it can also be a problem for bandwidth usage. This is because reliable
protocols are reliable because they retransmit packets that are not confirmed as received by
the receiver. This means that when a packet is dropped, it will be sent over and over again
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until it reaches it’s destination and a confirmation packet successfully finds it’s way back to
the original sender. This can be a problem in a congestion situation when packets are being
dropped by routers because they cannot take the load. Naive reliable protocols will then try
to retransmit the dropped packets, creating an even larger congestion.
The main reliable protocol on the internet, TCP, has built-in safety mechanisms to prevent
this. Sadly, this also means that in the even of congestion, TCP will become very slow,
reducing it’s throughput to a mere fraction of the previous bandwidth, which can be a prob-
lem for a fast-paced NVE. UDP on the other hand, has no such safety mechanisms. As we
will discuss later, programmers will often define their own reliable protocol on top of UDP
to create a more flexible solution. This also means that the problem of congestion must be
dealt with in this reliable UDP implementation or the NVE may cause certain networks to be-
come congested, which is detrimental to the NVE an all other applications using that network.

So in conclusion, we can state that the available bandwidth on the internet for users is
generally limited, but the bandwidth available to servers for the NVE will typically be higher.
This bandwidth can also fluctuate considerably and we should take care not to exceed these
dynamic limits. Finally, packet loss can not only influence consistency in the NVE but also
increase bandwidth usage for reliable streams, and so we should be careful to use reliable
protocols when trying to limit bandwidth.

2.3 Game Types, Architectures and Protocols

In this section, we will discuss how modern day smaller-scale games and interactions are
usually implemented and try to determine how they could be implemented in an NVE setting.
We first discuss three specific types of game and then look at two common concepts in many
games and applications. Later in this thesis, in chapter 6, we will actually implement some
of the here discussed approaches in an NVE setting.

2.3.1 First Person Shooter game (FPS)

First person shooters are games in which every player directly controls an avatar from a first
person perspective (it seems as though the player is looking through the eyes of his character).
The player usually has a gun or another type of ranged weapon with which he can kill other
players in the game. The action in an FPS is typically very fast-paced and players change
position, orientation and behavior very rapidly and unpredictably. This type of interaction
requires a large amount of updates per second and a small latency, as even a moderate delay
can mean the difference between life and death.

The usual implementation approach for this kind of game is through Frequent State Regener-
ation [86]: every user sends his keyboard and mouse input a number of times per second. This
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information is sent to a server which calculates the new world state and then sends updates
to all players. These updates also need to be very high in frequency to support the FPS’s
fast action and can range from 30 to 100 updates per second, depending on the game [89].
An example of an FPS is CounterStrike. In a study of this game [88], the researchers found
that there were on average 437 incoming packets and 360 outgoing packets per second for
a single server of 22 players. This is a very high amount of packets per second for that
small amount of players. Furthermore, all these packets were relatively small. As we will see
later, every packet introduces extra overhead and extra bandwidth usage, so this model is
not optimal where bandwidth is concerned.

Lag compensation

In this kind of fast-paced game where a fraction of a second can make a difference, large delays
on the network can be detrimental to the gameplay experience. Because of this, advanced lag
compensation algorithms are needed.

One possibility is to use an interpolation strategy [58]. In this method, an extra 100ms of
artificial lag is added to every incoming packet before it is processed and the results are shown
on screen. This ensures that there are always at least two updates between which the client
can interpolate the world state, which reduces the effects of jitter. However, this also means
that what every user sees on his screen is always a delayed game state. This would mean
if they shoot a player, they would never be able to hit them if they shot directly at them.
To remedy this, an approach called time-rollback is used to calculate if a bullet hits another
player or not.
A second possibility is to use extrapolation instead of interpolation [63]. Here we do not wait
until enough data has been received but predict how the state will evolve in the future (see
chapter 4 for more details). Here, the local world state will be much more accurate, but users
will have to lead their aim to be able to hit others because there is no time rollback. This
type of system is also more susceptible to lag and jitter.

Even with these advanced techniques and high update rates, there will still be artefacts in the
world state which can lead to illogical world states, such as players walking through obstacles
or dead players killing someone. The techniques aim at limiting these artefacts as much as
possible however, as they would be much more serious without these systems.

NVE approach

The typical bandwidth usage for FPS games is relatively modest for up to 32 players, but
larger numbers will increase the size of update messages as more players mean more changes
to the world. But even with 32 players, the bandwidth usage per player is still much higher
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than that of existing MMORPGs, a popular type of NVE. The counterstrike example sends
approximately 60 packets per second of about 130 bytes to each player. World of Warcraft
sends about 6 packets per second at 71 bytes per packet to each player [88]. This means that
even with a low amount of players, FPS games use more bandwidth than MMORPGs with
much larger numbers of players.
This can lead us to the conclusion that to bring FPS games into an NVE setting, bandwidth
scalability is a very important requirement to be able to support more players. Furthermore,
latency compensation stays very important and is difficult even with very high update rates,
as discussed before. Should we want to limit the bandwidth usage by reducing the frequency
of the updates, the consistency might suffer considerably, making it a good example of the
throughput/consistency tradeoff.

2.3.2 Real Time Strategy game (RTS)

In real time strategy games, users typically govern a large number of different units as a
general and then send these units into battle versus other large groups of units. As these
games were already being made at the beginning of the internet, with very slow connections,
extensive work has been done in the past to be able to make a simulation of this scale possible.
This is because it is impossible to send the position updates for every single unit, as this would
require a huge amount of bandwidth, which was and arguably is not available on the internet.
The solution developed for the early RTSs was that of deterministic simulations [59]. The
idea is that the engine will react exactly the same way if the same input is given at the exact
same time. This means that we only need to send the player’s commands (mostly just mouse
clicks) across the network. If these commands are then delayed a little bit at the sender’s end
until the other players can also execute them at the same time, the simulation will remain
consistent. This way, an RTS becomes very optimal for bandwidth usage. This is possible
for this kind of game because the interactions are not supposed to be real-time, as is the
case with the previously discussed FPS games. Thus the amount of commands the players
give are relatively low in frequency and delays up to 600ms are not noticed by the players [59].

However, this kind of system certainly has its drawbacks. First of all, all network traffic has
to be reliable because all actions need to be executed. Otherwhise, some player’s simulation
would start to differ from that of his fellow players which could accumulate into large errors.
This is because there is never any communication other than the commands the players give,
so even little roundoff errors can accumulate over time and never be restored.
The second problem is that it does not allow players to join when a game is in progress. This
is because the new player would first need to receive the current state of the world, which
can be enormous if there are a lot of units present in the world. Then, he would have to
synchronize with the game clock to be able to continue the simulation. In theory, it would
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be possible to implement late user joining, but in practice this is very difficult and would
require a lot of extra work and the starting state transfer would require extra methods and
large amounts of bandwidth [59].

NVE approach

The deterministic engine solution is typically only suited for a limited amount of users as
all users have to be synchronized perfectly with eachother, which can be difficult with a
large amount of users. Also, if one user out of 100 would have a very bad latency, the other
99 players would suffer from this as they need to wait for the slowest player to process all
commands. Furthermore, the small roundoff errors resulting in slightly different local states
might not be a problem in limited-time RTS matches, but they can be in a large persistent
world. These problems in combination with the fact that no users can join once a game is
in progress and that all traffic has to be reliable makes it less fit for an RTS in an NVE setting.

This would suggest that for a large scale RTS, we might need to look to the more traditional
approach of frequent state regeneration as is used for FPS games for instance. We said that
this was not possible when RTS games were first made because of the limited bandwidth,
but the bandwidth available to users has increased considerably since then. It is not so that
we can just synchronize every unit at a high update rate, but maybe it is possible trough
the usage of some smart optimizations to make an MMORTS without using a deterministic
engine. This kind of system would certainly use more bandwidth than the normal approach
for RTS games, but if the bandwidth usage can be controlled, the approach could be viable.
Findings in chapters 5 and 6 support this possibility.

2.3.3 MMORPG

One of our main points we are trying to make is that MMOFPSs and MMORTSs are not
yet omnipresent because, among other reasons, they have a high bandwidth usage. However,
there are other types of MMOs that are possible today and they are very popular, namely
MMO Role Playing Games like World of Warcraft [53], Guildwars [21] and Eve-Online [13].

This type of game generally does not require a large amount of traffic and also the real-
time requirements are not that high as is the case with for example an FPS. Six update-
messages per second can suffice for a normal MMORPG [88], which we can call Infrequent
State Regeneration. Fight-actions are often delayed somewhat and do not take place in real-
time on the screen like it is the case with FPSs, giving the servers some breathing room to
schedule all calculations.
Furthermore, the existing systems often use a heavy simplification of the one-large-world
ideal. World of Warcraft for instance uses sharding [53]: a number of independent, parallell
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worlds, each of which supports only a limited number of players. Eve-Online claims to offer
one large virtual world but instead uses separate solar systems between which the players
have to travel. Recently they also had to apply a player maximum per solar system as the
load was too high in the most popular regions [13].

The fact that MMORPGs are possible already shows us that the bandwidth usage depends
on the type of NVE we are trying to build. The kind of interaction model used in the NVE
will determine how frequent updates have to be sent and also how many objects have to be
synchronized. MMORPGs have relatively low amounts of objects (typically only 1 or 2 per
player) and have low real-time requirements. This allows them to keep their bandwidth usage
relatively low while still providing an interesting gameplay experience to the users.

2.3.4 Physics simulations

Now that we have discussed three different types of game, there are two more concepts that
can be present in multiple types of environments, namely physics, discussed in this section
and collaboration, which is explained in the next section.
When simulating a realistic world in a computer game or application, realistic looking physics
on object are often important to help the users immerse themselves in the world and make it
look more real and acceptable. For this we can use actual known physics formulas and effects
like gravity, acceleration and other forces. These systems exist but typically require a lot of
computations to deliver good results.

In networked games, physics is often used as eye-candy and does not have much influence on
gameplay because it is difficult to do truly distributed physics for a couple of reasons. Dis-
tributing physics basically comes down to keeping the positions of every object physics has
an influence on equal for all users. As has been discussed before and will be discussed later,
this consistency problem is not trivial, but mostly it is possible because we only need to keep
a limited number of objects consistent. With physics, we would suddenly need to synchronize
a lot more different objects, as most complex physics interactions will occur on small objects
and each will have a different behaviour. More objects also means a much higher bandwidth
usage. In this respect it looks a lot like the RTS games discussed before. Physics can be
implemented using a (semi-)deterministic engine (the game Burnout Paradise does this for
example [88]) so not all objects need to be sent. But if we look at physics in the context of
FPS or collaboration (see further) for instance, real-time consistency is extremely important
and this cannot be achieved using a deterministic engine.

Once again as with RTS, we might need to fall back to a send-all-objects/frequent-state-
regeneration approach and combine this with advanced prediction and grouping techniques.
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In chapter 6 we will discuss our own approach for distributing physics in a large-scale envi-
ronment. Distributed physics is a very active and important area of investigation.

2.3.5 Collaboration

In RTS, FPS and other games, players do not need to send a lot of info to the server themselves.
It is mostly just the position of mouse and keyboard strokes. For truly collaborative and
interactive environments, this data can be much larger and more elaborate. For instance, in
modern systems there can be different kinds of input devices like force-feedback machines,
multitouch tables, virtual reality, etc. This kind of input device will typically output a lot
more data than a normal mouse and keyboard setup and thus to send this output to other
users will require more bandwidth.
A second aspect is that collaborative environments will probably use audio and/or video com-
munication between users as this can help these users better accomplish their tasks together.
These tasks can often include the real-time manipulation of 3D objects or the sending of large
files between different users, both requiring large amounts of traffic.

Collaborative environments will typically have different goals then games that are meant for
leisure activities and thus they will also produced different kinds of network traffic. This
means that they might also require different bandwidth scalability techniques. In chapter
5 and 6, we will discuss these differences further and explain how a single technique for
bandwidth scalability can be used in both collaborative environments and games.

2.3.6 Conclusions

The bandwidth usage of an NVE greatly depends on the type of game or application and the
type of interaction it uses. Non real-time interactions generally require less bandwidth than
real-time applications and true interaction has its price. In order to bring existing small-scale
games and concepts to an NVE setting, bandwidth scalability is probably needed. It is even
possible that the large bandwidth requirement is one of the reasons why these games have
not yet seen large breakthroughs in the MMO market.

2.4 Network Streams

This section discusses the kinds of network streams that are typical for a networked game or
NVE. The goal is primarily to identify those streams that use the most bandwidth. This can
be easily described by two parameters: average packet size for a stream and the frequency by
which the packets are sent. A third parameter we will discuss is the real-time requirement of
every stream, as this is important in later sections.
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We should also note that every stream will have additional overhead depending on how many
packets it sends. There is a certain amount of network-induced overhead per packet that
should not be ignored. This aspect is discussed in more detail in the section on aggregation
in chapter 3.

2.4.1 User actions

This is the stream to communicate which actions the user is doing to control his avatar(s)
and manipulate the world. The way these actions are communicated depends heavily on the
type of NVE or game.
One possibilities is to send the position and orientation of the avatar(s) as they are changed
by the user (mostly XYZ-coordinates etc.). Another way is to send which keys the user is
currently holding on his keyboard and what he is doing with his mouse (FPS). A third way
is to only send info if specific actions occur (i.e. a user clicks on something) (RTS). The size
of these action packets can vary greatly, depending on the chosen representation.
The frequency of the packets can also differ greatly between interaction models. As discussed
in the previous section, RTSs only require a few clicks to be sent every few seconds, RPG’s
can perform well with around three updates per second [88], while FPSs often require high
update rates. These frequency requirements are tightly coupled to the real-time requirements
of the interaction model of the NVE in question.

2.4.2 World state

The state of the world is what should be consistent across users and this often requires more
than sending user actions to other users. Although in some cases they are very alike, in other
cases the separation between user actions and world state is very important, as we will see
later.

Object and avatar state

The actions of a user can have serious consequences on the state of the world and other objects
in this world. The position and other properties of objects and avatars (like animation state)
can change, and these changes have to be sent to the other interested users. The amount of
users in the world and the impact of the action determines how much has changed and thus
also how much data has to be sent. For instance, a world in which every object is simulated by
physics will have a lot more changing positions and orientations for objects than in a mostly
static world where only the avatars move and objects stay more or less stationary.
The frequency of the state updates once again depends on the type of NVE and the real-time
requirements, like with user actions. Generally speaking though, the update rate should be
high to retain maximum consistency.
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Full State Transfer

If a new users joins the world, he has to receive the current state. If there are a lot of objects
and users present, there can be a huge amount of data to be sent to enable the user to join
the world and see all the correct state.
Luckily, this full state transfer only happens very infrequently. Besides the case of a new
user joining the world, some NVEs use a subdivision of the world into separate regions (see
chapter 4). Then full state transfer is also needed if a user changes regions, but this is still
relatively infrequent. Another upside is that the per-region state that needs to be sent is
much smaller than the complete world state.
This kind of data is mostly not extremely real-time and often the user can join the world and
perform some actions while not all of the state has been transferred.

New content

A lot of modern NVEs give their users the possibility to add new content to the world
themselves. Other NVEs are expanded by their creators to add new objects and regions. All
this new content has to be downloaded by the other users so they can see it. This new content
can be a large variety of things, but most often they are textures and new 3D meshes. This
content can be very large in size and quantity.
This kind of new content only has to be sent if the user does not know of it yet and thus it is
often considered a part of a full state transfer upon entering the world or changing a region.
In any case, also this type of traffic can be considered to be infrequent.
The new content is often purely visual in nature and thus not very time sensitive.

2.4.3 Audio/Video

Some research has been done into the usage of audio and video communication in NVEs and
it is possible that these forms of interaction add to the immersive feeling of users and aid
them in communicating with others [83].
Audio and video are huge bandwidth consumers. The data is essentially captured multiple
times per second ( 10 - 30 for video, about 20000 samples per second for audio ) and especially
in the case of video this data is very large.
In addition, this data is very realtime sensitive. Several protocols such as RTP [70] have been
developed to ensure the transmission of audio/video across an IP network with a focus on
retaining these realtime properties.
These factors make audio/video streams the biggest and most fragile users of bandwidth in
the NVE setting.
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2.4.4 Low-bandwidth streams

The previously discussed streams often have medium to very high bandwidth requirements.
There are other streams in an NVE which are very infrequent or do not use a lot of bandwidth.

Control info

Often NVEs use extra control info besides the world state and user actions to govern the
virtual world. We can think about login procedures, network status info etc. . This control
information is often small and infrequent. Mostly the info is time sensitive though, as the
entities need the info to make their decisions about what to do next or how to do it.

Chat messages

Besides audio and video communication, users often communicate with each other through the
use of small chat messages. These message consist of plain text and are often quite infrequent.
Also, they are not extremely realtime and delays of a few seconds can be acceptable.

2.4.5 Case-study: Managing stream bandwidth with the NIProxy

As we have discussed here, there are many different types of network streams active at the
same time in a NVE. It is therefore needed to have a robust system for managing these
streams and, in our case, their bandwidth usage in particular. One existing framework for
doing this is the Network Intelligence Proxy (NIProxy) [94], an academic research project led
by dr. Maarten Wijnants. The main goal of the NIProxy is to provide network traffic shaping
possibilities and it offers a means to do this by using multimedia services like on-the-fly video
transcoding. The NIProxy takes the form of a non-transparent server in the network and
provides an API through which applications can indicate their specific needs. By doing so,
the proxy can adapt the network streams on a per-user/per-application basis, can make the
network more intelligent and can in the first place regulate bandwidth usage so networks do
not become overloaded.

Examples

A good example to explain the basic idea behind the NIProxy is to think of a central live
video streaming server that is streaming high-quality video to its subscribers. When a user
with a mobile phone wants to watch this video stream on a mobile network, it is very unlikely
that this will be possible if he subscribes directly to the high-quality video of the server. This
means that the server would have to send multiple streams, each with a different quality and
resolution, to enable mobile users to watch the video stream. However, this requires additional
processing and bandwidth overhead for the central server, which will probably already have
a considerable workload if it is serving popular content.
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This is where the NIProxy comes in. This extra proxy server is placed between the mobile
user and the video server. The video server can just continue to stream the one high-quality
stream, which is intercepted at the NIProxy. This way, the NIProxy can perform the transcod-
ing of the video to a lower quality for the mobile user before sending the video over the slow
mobile network. Now the central server has to perform less calculations and the workload is
distributed over a number of different proxy servers.

Whilst this example was for just one video stream, the NIProxy can shape all kinds of network
streams and possibly service many users and many applications at the same time with a single
machine. Experiments have been performed in which multiple audio and video streams were
sent to a single user at once, where the NIProxy had to dynamically determine which quality
the different streams should have to stay within the bandwidth limits [94]. Besides video
transcoding, the NIProxy has also provided other services, like one which adds Forward
Error Correction to a multimedia stream to improve stream reception quality in error-prone
networks and hence user Quality of Experience [92].
Other earlier experiments were aimed at NVEs that have to distribute a large amount of
geometry (like for instance Second Life, as discussed in chapter 5). The general idea was that
the geometry of nearby entities would have to be transmitted prior to that of more distant
entities, because the former are likely to be much more important for the user and because
this approach will yield the highest visual accuracy. In addition, it was determined that
these further away entities could use an alternative, image-based representation with a much
smaller transmission size instead of the full geometry. These choices were based on a simple
circular AOI model. This way, the NIProxy could determine which entities to send and at
which representational accuracy, while still making sure the bandwidth limits were respected
[91].

Bandwidth shaping trees

Internally, the NIProxy works with a tree-based architecture to structure bandwidth distri-
bution techniques in a so-called stream hierarchy [93]. Let us say we have a single tree for
a single user or network connection. The top node of the tree is given the total amount of
available bandwidth to distribute over its children. The leaf nodes, lowest in the tree, rep-
resent the actual network streams we want to manage, for instance a number of individual
audio and video streams. In between the root and leaf nodes, we have the internal nodes
which implement the actual bandwidth distribution strategies.
There are a number of different types of internal nodes implemented and many more are
possible. For instance, the mutex node chooses just one of its children and only this child
gets bandwidth. This can be interesting in cases where both a low-quality and high-quality
version of a single stream are provided, yet only one version should be delivered at a time. A
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priority node will grant the child with the highest priority all bandwidth it needs and only if
there is bandwidth left after this first node, the next child is given this residual amount. A
percentage node has a percentage for each child and each child gets that percentage of the
bandwidth allocated to the internal node to use.
Using these basic node types, complex trees can be built for bandwidth distribution where
multiple internal nodes are placed after one another, allowing the combination of different
strategies. An example of such a tree can be seen in figure 2.2.

Figure 2.2: Example of an NIProxy tree [93].

This stream hierarchy representation allows for a very dynamic system. If at a time the
network connection would have fluctuating bandwidth capacity, only the root node has to be
notified, after which the entire hierarchy makes sure that the new bandwidth constraints are
being respected. We can also adjust the percentages, weights and priorities for specific child
nodes of internal nodes to change the importance of a certain network stream at runtime.
Nodes can also be added or removed from the stream hierarchy at runtime.
One of the most important characteristics of the NIProxy is that the multimedia services it
provides are coupled to this traffic shaping mechanism. This means those services can change
the tree by adding or removing nodes and changing parameters. The stream hierarchy in
its turn is able to inform the service about how much bandwidth the stream it manages is
allowed to consume, so the service can for instance switch to a lower quality representation
when needed. This two-way communication between services and bandwidth constraint man-
agement means that the bandwidth is always kept within limits, but that the streams can be
kept at the highest possible quality for the user.
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2.4.6 Conclusion

Audio/video and world state are the most bandwidth consuming streams we need to deal
with. Luckily, world state is not very real-time sensitive, so the transfer can be spread out in
time, delaying parts of the update to ensure there is bandwidth available for other, real-time
traffic while the world state is being transmitted. In any case, the NVE should be able to
deal with these sudden peaks in bandwidth requirements for specific users as they join the
world or change region.

Many different streams are active at the same time in a NVE and a system for managing
them is necessary. In our implementation, we will use the NIProxy to provide this stream
management. This is discussed in more detail in chapter 6.

2.5 Programming Idioms

Downsizing bandwidth also has to do with how the programmer chooses to practically ap-
proach the synchronization of different objects across the different users. In the abstract, we
want to make an exact local replica of every object in the world on every user’s pc. This can
be done in a number of different ways.

2.5.1 RPC, Replicas and attribute synchronization

Arguably easiest way to make a distributed application is to think of the world as a single,
large distributed database. Every user has local copies of (a subset of) the objects in the world
and manipulates these objects locally. Whenever a function-call is made to a local object,
this function-call is automatically propagated to the other users holding a copy/replica of
the object, ensuring maximum consistency. This could be done using a Remote Procedure
Call (RPC) system. This type of system will serialize every function call made to the object
across the network. This can be done in two different ways: blocking and non-blocking. In
blocking mode, the original caller of the method will wait until the method has been called
on all other objects as well. This ensures complete consistency, but is not usable for real time
systems. Non-blocking RPCs will allow the application to continue as usual, but can lead to
inconsistency.
While this kind of system generally works very well for critical, non-realtime sensitive systems
like applications for banks or large corporations (where parameter type checking for instance
is very important), the method is not directly usable for games or realtime interactions. It is
very unpredictable when data will be sent and the system always requires every parameter of
the function call to be sent, often containing unnecessary information.

A variation of this technique is not to send a message whenever a function is called on an
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object, but rather only send a message when an attribute of the object changes. For instance,
when the position of an avatar changes, the system automatically detects this change and
wraps it in a packet to be sent to the other users. This type of state propagation is sometimes
called attribute synchronization and is a popular networking model for several small scale
systems, as we will discuss in chapter 5.
The main problem with this approach is once more that it can be unpredictable about when
packets have to be sent and how these packets are precisely composed, i.e. what data is being
sent when. This is especially the case when we would use an existing library or middleware
which tries to shield us as much from the networking aspects as possible to make it easier to
focus on the gameplay logic. Whilst this might be a good choice for smaller games, for NVE
development we will typically need full control about what is sent and when, and RPC and
attribute synchronization approaches are mostly not sufficient. Custom message passing on
the other hand, is more flexible.

2.5.2 Message passing

As we said in the previous section, it is important to determine what data is being sent at
what time to effectively manage bandwidth usage. And so, instead of sending an update
every time an object has changed, we can determine ourselves when to send updates and
more importantly: in which way to do so.
The message passing approach means that we will create our own set of messages to be sent
over the network. These will often contain some properties of objects, but not all, and will
be able to group different objects together into one packet. This approach also enables a
high-level separation of packets into streams of different kinds of data. As this method is so
versatile, it is probably the best choice for a large-scale NVE framework [71].

However, this method requires a lot more work than the other described approaches and is
also not generic: it needs to be created and fine-tuned for every application specific. To still
provide a good level of maintainability for the programmers, it is often coupled with code
generation facilities, which allow the programmer to describe the specific packet structures
and protocols in scripts or xml files. These scripts are then parsed into real program code.
In comparison with the previous discussed methods, message passing requires more work but
is also more versatile and offers more direct control over the data that is being sent, which is
often interesting when we are trying to limit the bandwidth usage.

2.5.3 Command synchronization

A method that is tightly coupled to a deterministic engine (see previous sections on RTS
games) is command synchronization. Because the engine is deterministic, there is no need to
send the state of the objects themselves, only to send the user’s actions, which will have the
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exact same effect on every local copy.
This approach is quite different from the aforementioned methods as it does not synchronize
the objects directly.



Chapter 3

Protocol Optimization

In order to reduce the bandwidth used by the NVE, we roughly have two possible approaches:
we can reduce the size of the data we send or we can send less packets. Figure 3.1 shows how
these different techniques relate to each other. This chapter deals with the first possibility
(compression and aggregation), whilst the next chapter is about the second (filtering).

Figure 3.1: Three different techniques for bandwidth reduction.

As has been discussed before, every user in the NVE has a local copy of (a part of) the world.
Any change to this world by a certain user has to be communicated to his fellow users and

30
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this communication occurs in the form of network packets. These packets have a certain size,
expressed in bits or bytes (where 1 byte is 8 bits). The number of bits needed to communicate
a certain change to the world can vary greatly, depending on the type of change but also on
the representation of the change chosen by the programmer.
This chapter discusses two techniques to reduce the bandwidth usage without actually reduc-
ing the packet frequency: compression and aggregation.

3.1 Compression

A lot of techniques are called compression and a lot of different subdivisions have been made.
We distinguish three different types, based on when and how they can be used.
In general, compression will try to reduce the amount of bits it takes to represent a given
dataset, like a network packet. There are a few different techniques that either try to reduce
the size by some knowledge about the high-level meaning of the data (for instance which
values a variable can take), by a generic idea that works on a certain low-level structure of
the data or by using previously known data. The next paragraphs will discuss these three
different types.

3.1.1 Logical compression

The first category of compression techniques is logical compression. This name has nothing
to do with logic as in mathematics. With logical we mean to say that most of the methods
and examples discussed in this section are obvious to most programmers of online games and
worlds. It is logical that they would build their communications this way and often these
ideas are even dearly needed to get a reasonable bandwidth usage in the first place. therefore
they are mostly the cornerstone of the way changes in the world are communicated and I will
discuss many examples of how logical or obvious compression is done.

Please remark that one might say some techniques that will be discussed in chapter 4 are also
obvious and logical and are used by almost all games. Whilst this is true, those techniques
often filter packets that are already “compressed” by using the methods discussed here and
thus actually drop packets with superfluous information.

Send only what has changed

This concept directly shows how obvious and logical compression can be. It is indeed simple
to see that an update should only be sent for an entity if it has changed since the last update.
A very simple implementation could be to send the full state of an object 30 times a second,
whether it has changed or not. This is indeed very easy for the programmer as he does not
have to check if anything has changed, but it can lead to a huge amount of unnecessary traffic
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for entities that remain stationary and for which it is not necessary to send any updates at
all. Furthermore, if we do detect a change and send an update, only the changed data should
be in the update, not all the data for the entity. For instance, if an object moves but does
not rotate, only the position and not the rotation should be sent.

The main problem with this approach is that in most modern engines, objects can be very
complicated, consisting of multiple components, variables and parameters. If we are to send
an update only if something has changed, we need to have a way to detect if something has
indeed changed and what that change was. With such a complex object, this can be quite
the challenge. This is further complicated by the fact that this tracking of changes has to be
done per receiving user. As discussed later, it is possible that not all currently receiving users
have received all previous updates, so we need to know per user what was their last received
update and what exactly has changed. This can cost memory and processing power.

The example of Object Views [75] shows how this approach can be practically implemented.
Here, every object has an extra view coupled to it for every user that has an interest in the
object. This view keeps track of the changes for the object and determines when to send an
update to an interested user and what data should be in this update. On the server, every
game object has several object views, one for every player, see figure 3.2. This way, the server
can track which was the last update of the object a specific player has received and thus also
what kind of new update should be sent at any time. This is even more interesting when we
consider more advanced approaches like level-of-detail or dead reckoning (both discussed in
chapter 4), where only select updates are sent to the users.

Know your bits and bytes

When describing things like position, orientation, speed, color etc. on a computer system,
this is done using so called primitive data-types like integers, floats, strings etc. Each of these
types has a certain size in bits. A typical integer is 32-bits to 64-bits, a large floating point
number (double) is mostly 64-bits and a string uses 7 or 8 bits per character. These sizes are
mostly fixed in the programming language as to enable a wide array of possible values for the
programmer. A 32-bit integer for instance can represent every value between -2147483648
and +2147483647. It is very hard to imagine a speed or orientation of an object spanning
that complete interval though. Mostly, that kind of data can be represented with far less bits.

When packing data into network packets, the programmer needs to choose the smallest pos-
sible number of bits to represent that value to limit the bandwidth usage. This means we
need to use binary packets as opposed to textual messages [5]. Some important protocols
that are used on the internet, like HTTP, use textual communication to transfer data from
and to users. This means that this data is generally in a human-readable form and accom-
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Figure 3.2: Object views can serve as a networking interface that tracks the changes for an object on
a per-player basis [75].

panied by extra data that indicates it’s structure, as is the case in the XML format [88].
However, this means that all data is encoded as strings, which will often increase the size
of the communication when compared to the absolute minimum binary size needed to send
the same information. Also, the added structure indicating data can be a large overhead
which is generally not important for non realtime protocols like HTTP, but which can be a
big problem for NVEs. This is why we have to try to encode the variables we send over the
network as efficiently as possible in bit notations.

A simple algorithm to determine the minimal size is to look in what interval the possible
values can lie, and only use just enough bits to represent that interval. For instance, a
boolean variable can have only 2 values: [0,1]. This means a single bit suffices to represent a
boolean in a network packet.
Another example is a rotation around the vertical axis. This rotation is in the interval
[0,360]. When we look at the binary system, the closest amount of bits needed to represent
360 different values is 9 bits (as 8 bits can hold 256 values and 9 can hold 512). So when
sending the rotation across the network we only really need 9 bits, even though 32 bits are
used in the program itself. So while large and fixed size primitive data types are interesting
from a programming and computing speed perspective, they are not always needed or fit for
transmission over a network.
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A special case are floating point values. When the rotation is not limited to integers but can
take values in between two discrete values (for instance a rotation of 30.678 degrees), 9 bits
will of course not suffice to send all possible rotations. When large accuracy is needed, we
have to use more bits to send the rotation. But when this level of accuracy is not necessary,
a round-off of the value to its nearest integer value is a very viable technique to reduce the
number of bits needed. As we will see later, a distant object in the world will not occupy a
large space on the screen, and a difference between 30.678 and 31 or even 35 degrees will not
be noticeable to the user. In those circumstances, the precision can be lowered to allow for
bandwidth reduction, even if the original values at the computer of the object’s owner are
very accurate.

A final problematic datatype is a string. The main problem with strings is that they mostly
do not have a fixed size. If we would want to send the nickname of the user with every update
for instance, so that the receivers would know who sent the packet, it would be unwise to
send the nickname in its string-form every time. Some players will have small nicknames,
but others may have very large ones, which would lead to a constant larger size of the latter
group’s packets. A better way to tackle this problem can be applied when the strings are
fixed throughout the rest of the game, like is the case with nicknames for instance. When
a user first joins the game, a unique user-ID is generated for this user (for instance a 32-bit
integer can be used for this). Then this id is distributed together with the nickname to all
interested users only once. From then on, every user knows the nickname for every user-id, so
the sender can just send his 32-bit user-ID instead of his potentially much larger nickname.
While this requires an extra packet to be sent (the user-ID/nickname mapping), in the long
run this method is far more efficient [61].
When you must send strings, for example when allowing textual in-game chat, there are still
different ways this can be done. Since a string can be of arbitrary length, we must have a
way to know how long it is. A possibility is to prepend the length of the string (for instance
as a 32-bit integer) so we know how many bits are actually used. Another possibility is to
use a special character at the end of the string so that when parsing we know that when we
reach that character, the string is at an end. The special character ‘\0’ is often used for these
purposes. Note that the latter method only uses 7 or 8 bits, whereas the former uses 32 or
sometimes 16 bits, but requires a larger processing overhead as the characters have to be read
one by one and evaluated to check for the special character.
In the next section about generic compression we will discuss other methods for compressing
strings that can reduce the 7-bit-per-character requirement.

It is sometimes said that modern programmers waste the computer’s resources. They no longer
think about the data types they are using or how much memory their program consumes when
programming for medium to high-end pc systems. For example, programming languages like
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Java store the length of each String-instance as a 32-bit integer, as opposed to the 7-bit
‘\0’ alternative of C and C++. So in a way, optimizing the network protocol is a bit like
optimizing a program for use in a mobile or console environment. Modern systems like the
iPhone, PSP or even the PS3 and XBOX360 do not just have huge amounts of memory
at their disposal, and programmers need to be smart about how they store their data to
prevent memory shortage. The same logic can be applied to network bandwidth, as this is
also in small supply, and programmers need to be aware of this fact and take every possible
action to find the smallest possible representation of the data. It is often the case that these
systems with lower memory possibilities also have lower bandwidth at their disposal (this is
especially true for devices like mobile phones using a wide-area wireless network). This gives
the programmer the possibility to tackle two problems at a time: when the memory usage
for all the variables is already fully optimized on the local device, one can simply take this
representation and send it over the network, without having to copy it to a lower number of
bits or perform precision cutoffs.

3.1.2 Generic compression

In the previous section we discussed obvious and logical ways of compressing data. These
methods often have to do with what kinds of data are being sent and in what context. The
amount of bits needed to represent a value depends on the possible interval that value can be
in, precision depends on the context the data is used in, etc.
The methods discussed in this section are more generic, i.e. they work on any kind of data
and do not require explicit context to be able to compress the data. If this can be done
without losing data in the process, it is called entropy encoding [88]. This makes them very
interesting for compressing data at a low-level. These methods can be applied to almost any
packet or data you mean to send through, without having to know what kind of data is being
sent or what values that data can represent.
Because they are so generic, they are often available in existing (open source) software libraries
and implementations, and thus the production costs of using such a method should be very
low.

Run-length encoding

Run-length encoding [43] is a very simple type of generic encoding in which runs of data (that
is, sequences in which the same data value occurs in many consecutive data elements) are
stored as a single data value and count, rather than as the original run. For instance, the
string WWWWWWWWWW contains the character W 10 times. If we store a character with
7 bits, this string takes up 70 bits. We can run-length encode this string as 10W, indicating
that the value W is repeated 10 times. This only takes up 32 + 7 = 41 bits.
Another example is when one wants to encode an image which has large areas of the same
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color. When there are a large number of black pixels next to each other, the image can be
stored efficiently by using run-length encoding.

It is obvious that this encoding only works well if there are large consecutive sequences of
the same data. If this is not the case, this method will actually yield larger data sizes. For
instance, the string ABCD would take up 7 x 4 = 28 bits normally, but encoded with RLE
it would be 1A1B1C1D, yielding 7 x 4 + 32 x 4 = 156 bits, which is more than 5 times the
original size.

Huffman encoding

Huffman encoding [23] is another relatively simple algorithm that uses frequency of appear-
ance of separate data values in the total data. Rather then relying on consecutive occurrences
of the same data like run-length encoding, huffman encoding tries to encode the data values
that appear most in the data with the least amount of bits.

In the example string ababacacacad, the letter ‘a’ is obviously the one that occurs the most. If
we can make it so that the letter ‘a’ is stored with as little bits as possible, we will have a large
profit in size. The way the huffman algorithm works is by making a so-called huffman tree
to deduce the binary codes for the different data values. The algorithm for building this tree
from a given dataset is given in algorithm 1. To determine the codes for the elements, we sim-
ply follow the path from the root of the tree to the element, appending the 0’s and 1’s during
the tree traversal. As we can see from the example in figure 3.3, the most frequent element, a,
is encoded with only 1 bit and the longest codes are for the rarest elements in the input string.

Algorithm 1 The huffman algorithm
1. Create a leaf node for each symbol with cost = frequency and add it to a list
while there is at least one element in the list do

2.1. Remove the two nodes with the least cost from the list
2.2. Create a new node with these nodes as children and cost = cost1 + cost2
2.3. Add the new node to the list

end while
3. The remaining node is the root of the tree
4. Follow the tree branches down to a symbol, choosing 0 for left branches and 1 for right
branches, to calculate the code for that symbol

Once this tree is built and the codes for all the elements are known, we can encode the data
by replacing all elements by their codes. The decoding is a little more difficult. First of all it
is important to notice that none of the smaller codes is a prefix of the larger codes. This is
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Figure 3.3: Using huffman encoding to encode a string

vital for the decoding to work because otherwise it would be impossible to determine whether
a code is complete without adding extra information at the end of each code. Secondly, the
decoder needs to know the code-table to know which code is to be translated into which
element. This means the code-table either has to be sent along with the data (meaning extra
data has to be sent, which can sometimes be quite large) or that we must work with a known
and predetermined code-table at both sides.
This last method is especially interesting for text messages in a particular language. One
could determine the statistical frequencies of the letters of the English alphabet by analyzing
a large number of English texts. Then a general code-table containing the letters could be
devised, which could then be re-used when encoding a text. This saves the processing time
of building the tree and code-table at run time, but it is possible that this method will not
yield the best results. This is the case when a text contains a larger quantity of an otherwise
assumed rare character, which is then encoded with more bits then if we would have created
the huffman tree for this specific text. Other more advanced methods incrementally update
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the code-table at both sides [78], increasing processing requirements whilst possibly providing
a better and more flexible compression.

Using huffman encoding, the 12-character example string can be encoded using only 21 bits
(see figure 3.3), in contrast to the original 12 x 7 = 84 bits. As the amount of data increases
and the elements become more frequent, the measure of compression will increase. Thus
this method is good for very large quantities of data with repeating, known elements. Small
amounts of data with highly variable data values will be encoded far from optimally, leading
to a larger packet size. In general, these algorithms are used primarily when encoding large
binary files, textures or images and other large chunks of data. They are generally less
interesting to use on single network packets at a time, as they will more often increase the
size than decrease it.

Advanced algorithms

The two discussed algorithms are only two examples of a large collection of compression algo-
rithms which have been invented over the years. More advanced algorithms use complicated
mathematical constructions or decoding structures to reduce the size even further. Popular
compression formats like .zip or .rar use a form of the Lempel-Ziv compression [28]. This type
of algorithm uses a library paradigm to replace large chunks of data with their library key.
Arithmetic encoding [3] uses a mathematical construct to encode an entire string into one big
number. As with the other algorithms, these more advanced algorithms work best on large
chunks of data and in many cases prior assumptions about data distribution or structure are
made to encode the data.

3.1.3 Delta compression

In literature, the term delta compression is sometimes used to denote a concept that has
been discussed in the section about logical compression: only send when something changes
and only send what has changed. This makes sense if you know that the word “delta” is
often used to indicate the amount of change of a certain variable. The main difference with
this previous concept and the current section is that the logically-compressed updates do not
necessarily need a previous update to be able to reconstruct the remote state locally. In con-
trast, the method we call delta compression uses previously received updates as the base for
reconstructing the state. The received updates do not contain enough data to be meaningful,
but combined with the previous updates the state can be reconstructed completely. This
method is sometimes called incremental or differential encoding.

This concept can easily be illustrated for position updates. Imagine an object at location
(100,100) in the world at time t. At time t + 1, it has moved to (105,105), so an update
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has to be sent. We can now send only the difference between the current and the previous
position, namely (5,5), in the update. If the receiver knew the object was at (100,100) before,
he can easily reconstruct the correct position of (105,105) from the update, even though it
was not completely sent. Now why is this important? As discussed in the section on logical
compression, small numbers can be sent using a much smaller amount of bits than large num-
bers. While we would need at least 7 bits to send the value 105, 3 bits suffice to send the value
5. This might not be a huge difference for these simple examples, but large virtual worlds
can be very big, needing 32 or even 64 bits to indicate a position in world-coordinates. The
difference between 3 or 32 bits is more than significant, especially for very frequent position
updates.

The reliability problem

The main problem with this approach is that the recipient of the differentially encoded in-
formation needs to have received the previous update to be able to correctly reconstruct the
current state from the packet. This is a problem in the current internet, as there are only
two main transport protocols: TCP and UDP [65]. TCP is reliable, meaning that the data
is guaranteed to arrive at the receiver’s end. UDP on the other end is not reliable, meaning
packets could get dropped by the network, which is called packet loss. This would make TCP
ideal to transmit the updates as then the receiver would be sure to have all the previous
updates.
However, TCP is mostly too slow because of retransmissions needed to guard the reliability
and it has other unwanted features like congestion control, in-order delivery and the sending
of ACK messages, which increases bandwidth usage. For this reason, the vast majority of
highly interactive games use the unreliable UDP to send their state updates. This works well
because when the frequency of the updates is high enough, a few dropped updates will not
be noticed. But with standard UDP we cannot use differential encoding since there is no way
of knowing which update was received by which user.

This is the reason why most programmers usually define a new reliability layer on top of UDP,
providing only exactly those features they need for their application [11]. This way, UDP can
be used for reliable transmission, but more work needs to be done by the programmers. The
way these protocols are usually defined is to use NACK’s (negative acknowledgements) to
indicate an update has not been received and to request a resend. The detection of a missed
update can be done by using sequence numbers for the packets so that when a packet with a
sequence number higher than the previous number + 1 is received, we know the other update
was lost. These sequence numbers are often needed by the application anyhow, so this incurs
no additional overhead. Other more advanced protocols are possible, depending on the ap-
plication that uses them. A good example of a reliable UDP protocol is Enet [11], providing
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most features of TCP with the ability to turn them on/off, making a fine-tuned protocol with
specific features possible.

But even a UDP-based reliable protocol often has too much overhead to be used constantly for
every packet. This is why mostly, for delta compression, the new updates are not computed on
the previously sent update, but on the previously sent reliable update. So assume (100,100)
was sent reliably, then (5,5) can be sent unreliably . When the object then moves to (107,107),
we don’t send (2,2), which would be an offset to (105,105), but we send (7,7), still offsetting
the updates to (100,100). This way the position (107,107) can still be reconstructed even if
(105,105) was not received. Using this method, the differences can become large again over
time, for instance when the object has moved to (200,200). Then we can use a simple heuristic
to decide when we need to send the next reliable update. For instance, when the differentially
encoded positions cost more than 10 bits, we should send a new reliable reference update to
be used from then on. This way most of the traffic can still use unreliable standard UDP
without overhead, with only an occasional reliable packet. This setup is robust, causes small
overhead and can lead to huge bandwidth savings. Figure 3.4 gives an overview of the three
possibilities.

Figure 3.4: Using delta updates to encode positions.
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Forward Error Correction

As reliable protocols induce different kinds of overhead like processing time, bandwidth, ir-
regular send rates etc. sometimes it is opted to not send anything reliable. This is the case
with for instance audio and video transmission, where in general there is no time to wait for
retransmits of dropped packets. However, this means that if some packets are dropped, the
quality of the rendered video (or for instance world state) will be of a lower quality. We can
better protect ourselves from packet loss by adding some redundancy to the data we send over
the network. This generally means we will send additional information with each packet (or
in separate extra packets) that enables us to (partially) reconstruct dropped packets or that
can help us recover from a dropped packet, if the packets containing the redundant data are
received. This method is called Forward Error Correction (FEC) [19]. This can for instance
be done by sending exact copies of other packets along with the current packet, but this will
essentially increase the used bandwidth by a factor two or more. The use of some smart
algorithms make that relatively small error codes can be generated so the redundant data
does not require that much bandwidth.
It might seen contradictory to talk about using FEC in the context of this thesis as it will
always require additional bandwidth. However, it can have a large impact on the quality of
the received data if packet loss is present [92]. This can be especially important if the update
frequency is low and a dropped packet means a large gap in the world state. Furthermore, it
can be used not as a complete replacement for a reliable protocol, but as a viable alternative
if the data has to be semi-reliable but the occasional dropped packet does not have that large
a influence. FEC will arguably cause more constant bandwidth overhead then the conditional
retransmissions, but this in turn allows us to better estimate this overhead so we can take it
into account in our bandwidth limitation approaches.
FEC can be used in many different ways. The most generic way is to have it work at the
packet bit-level, so any type of packet can be protected. However, this might lead to data
being protected that does not really needs to be protected. Another way would be to calcu-
late which redundant data we want to send on a much higher level in the application. This
means we can only send redundant data for certain fields in certain packet types, reducing
the bandwidth overhead. An example of this is to use FEC with delta updates.

FEC could be used in combination with delta updates to reduce the need for reliable updates.
If we send the position on which the current position is based along with it, we should still
be able to reconstruct the current position even if the previous packet was lost. An example
would be for the transition from (100,100) to (107,107) via (105,105). If the packet containing
(5,5) is dropped, but the packet (2,2) contains a copy of (5,5), the correct position of (107,107)
can still be reconstructed without using reliable updates if position (100,100) was received
correctly. This extra data requires extra bandwidth, but the total packet is still smaller than
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it would be when we would send full updates for every position.
The reader should note that the efficiency of FEC is of course dependent on the actual amount
of packet loss. If this loss is low and in very small bursts, FEC can produce good results.
When the packet loss is high however and multiple packets in a row are lost, FEC will not
perform optimally. More complicated methods of FEC can be used to counter some of these
problems (for instance interleaving of FEC packets, which in turn can lead to a higher delay),
but sometimes there will still be some reliable updates needed to restore the correct state
after a period of high packet loss.

FEC has been shown to produce good results for enhancing video and audio quality [92] and
has also been proposed for use in game state protocols [68]. To the knowledge of the author
however, the technique has not yet been implemented in a large scale NVE or networking
middleware. For the purpose of this thesis, it is doubtful that FEC would fit into an aggressive
bandwidth saving strategy. However, it can be interesting for use on networks with high
amounts of packet loss (mobile networks for instance) or when it is important that most
packets are received but the overhead of a reliable protocol is too large.

PICA

PICA stands for Protocol Independent Compression Algorithm and it revolves around the
idea of delta compression [90]. It was originally developed to reduce the amount of data sent
in the DIS or SIMNET NVEs. PICA is a little different from the given examples for position
updates as it does not use prior knowledge about the meaning of the data. In this way, it is
a generic algorithm like the algorithms discussed in section 3.1.2.
PICA does this generic compression by using a sequence of Difference Records (DR’s). These
DR’s each specify a count (number of bytes that were changed) and an offset (where does
the change begin) followed by a number of bytes. Notice we are speaking in terms of bytes
here, not bits as in the previous examples. These DR’s are sent with a sequence number to
the other users. When the differences become too large, a new reference state is sent reliably.
Thus we see that the PICA method is more or less the same as our last discussed method for
sending position updates.

The creators of PICA report a 76% reduction in bit rate for DIS Protocol Data Units (PDUs)
[8]. As we will see in section 3.1.4, these PDUs are packets that always have the exact same
fields in them, in exactly the same order and thus they are always exactly the same size. This
helps explain why PICA obtains such good results. The PDUs have a large overhead of their
own because data that has not changed is always sent along in every PDU. It is logical that
an algorithm like PICA would remove these fields and thus provide better results. When
thinking about using the PICA-method for packets that change size and contents however, it
is a lot more difficult to prove it will still yield such positive results. Since the algorithm also
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induces extra overhead by the use of the count and offset fields before every DR, it will only
overcome this extra overhead if a lot of the data does not change. But when we do not send
the non-changed data in the first place (as discussed in the section on logical compression),
PICA will perform much less well. This makes PICA an interesting alternative to logical
trimming of non-changed data. Instead of tracking the changes in every variable of an entity,
we can just send all data every time, relying on PICA to remove non-changed fields at a
packet-level. This reduces the complexity of the logical compression.

In conclusion I would say that PICA is good if packets are always the same size and com-
position (for instance packets of the same type, in the same stream, ...) but custom delta
compression that uses knowledge about the data could get better results if the protocol is
more dynamic and flexible.

3.1.4 Case-study: DIS PDUs

The Distributed Interactive Simulation (DIS) [81] is an open standard for interconnecting
different kinds of simulators and is mostly used for war and army simulations. DIS allows
the simulators to interact using a standard network packet format known as a Protocol Data
Unit (PDU) [8]. A PDU describes what data is contained in the packet and as long as all
simulators understand the PDUs, they don’t need to know anything else about each other.
There are a large number of PDU types but the most interesting one is the Entity State PDU.
This PDU is used to send the state of a particular entity to the other users. The structure of
this PDU can be found in figure 3.5. It is interesting to discuss DIS here because this PDU is
sent as a whole every time an entity update is sent. This means that fields that are unchanged
are also sent with each update and that bitwise logical compression is only performed at a
very high level. This makes DIS a good real-life example of how protocols can be optimized
by using logical compression.
I will not discuss all fields, only those with now obvious compression possibilities. Take the
Entity ID Record which indicates the world-wide unique ID of this entity. In a world with a
large number of entities, 48 bits may be needed to provide a unique ID and this ID has to be
sent every time to identify the entity to which this update belongs. The same is not true for
the Force ID, Entity Type Record, Alternative Type Record and Entity Markings [8]. These
fields will mostly be constant throughout the entity’s lifetime and should only be sent once.
This would result in a 8 + 64 + 64 + 96 = 232 bit profit for most sent packets. The reason
that these fields are always present is because when a new user joins DIS, he will only receive
updates from the entities to update his world, i.e. there is no full state transfer. Because of
this, all updates should contain all information for the new user to be able to know all the
data of the entities. However, a better method would be to have the new user request a full
state when he receives a partial state from an entity. This will reduce the bandwidth usage
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Figure 3.5: DIS entity state PDU[8].

considerably but will also make the protocol more complex.
In contrast to the previously mentioned fields, the fields for linear velocity, position, orienta-
tion and appearance will probably change in every update, but cannot they be represented in
a smaller fashion? As shown for a simple rotation previously, orientation and velocity could
be represented with far less bits most of the time if we restrict the interval in which these
values can lie. The use of three 32-bit floats for both values could be reduced to smaller values
if some precision is sacrificed.
The location of the entity consists of three 64 bit floats. This is needed to represent coordi-
nates in a large world. However, as we have seen for incremental updates, differential encoding
of these positions can lower these 64-bit requirements to 24-, 10- or even 5-bit entries, making
delta compression a good candidate for optimizing the DIS protocol.

If we jump ahead to the next section about aggregation and state that in some cases packets
will be grouped together into one large packet, huffman encoding can be used here as well.
Most of these simulations have a large number of entities, but many of them will be of the
same type (20 tanks, 10 choppers, 50 foot-soldiers etc.). This means that the Entity ID Record
and Entity Type Record will mostly be the same across different packets. Using huffmann
compression with a code-book tuned for these types and IDs, those fields can be represented a
lot smaller, especially when used in combination with aggregation of multiple packets into one.
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This DIS PDU is a good example of how state packets for entities in an NVE are usually
structured and what kinds of data are mostly present. Our discussion shows that there can be
a big difference between the basic version of a protocol (sending all data with every update)
and the optimized version which uses logical and more advanced methods of encoding the
data. therefore especially an NVE protocol for a large-scale world should be optimized to
reduce the bandwidth required because otherwise the NVE will not scale to many users on a
real network like the internet.

3.1.5 Case-study: Video compression

A very good case-study on the advantages and usages of compression can be found in the
representations of different kinds of media in modern computer systems. Here I will show
how video encoding uses the three discussed types of compression and how the JPEG and
MPEG [31] standards work.

Video and image compression is based on logical compression and assumptions about how we
perceive the world around us [31]. An image can be represented in the so-called frequency
domain by using the Fourier Transform. For the purpose of this text, it is not important to
understand the exact meaning of this representation. The most important thing is that the
Fourier Transform can be done for any image and that from the frequency domain the normal
image can be re-aquired.
The use of the frequency domain is logical as low frequencies represent areas with little de-
tails in the image, and high frequencies represent the image details. The human eye is -
perhaps counter-intuitively - most sensitive to variations in the areas of low detail. Thus if
the finer details are too detailed, we can safely remove them from the encoded image, as the
human eye will probably not even notice them if they would be there. This process is called
quantization and it is an example of lossy compression as certain values (those representing
finer details) will be removed to reduce the number of bits needed. The quantization also
reduces the amount of bits needed to represent the remaining data by dividing the numbers
by a certain threshold and rounding the result. The actual process is a lot more complicated,
but this is the basic idea behind it and shows how a notion of human perception can be used
to trim unnecessary data from the representation. Later we will see that similar notions of
perception can be used for other types of state updates. Further-away entities in the world
can be represented with a lot less detail for example, because they will be much smaller on
the user’s screen.

After quantization, we have matrices of coefficients for every frequency in the image. The
higher frequencies will usually have coefficients of zero. Using a method called zig-zagging
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the values of the matrix are placed one after the other. This way, the non-zero coefficients of
the low-detail frequencies are next to each other, and the zero’s of the high-detail frequencies
are also consecutive. Differential encoding is used on the non-zero coefficients and run-length
encoding is used on the zeros, leading to a more compact representation. Finally, huffmann
encoding is used on the differential and run-length encoded sequences. The process is shown
in figure 3.6. This shows how generic compression methods can be used in a smart way on
specific kinds of data.

Figure 3.6: After placing the coefficients after each other, the values are encoded with three different
algorithms.

Finally, also delta-compression is used in video encoding [31]. If we were to encode every
frame of video using the method above, this would still yield too much data to be practical for
storage or transmission. Therefor, only certain frames are encoded using the afore mentioned
method. These frames are usually called I-frames (intracoded). A number of frames following
an I-frame are encoded by referring to data present in the I-frame. These frames are called
P-frames (predictive). This is possible because the pixels of a video usually don’t change
very quickly in consecutive frames. Mostly the pixels of the I-frame are also present in the
P-frames following it, be it a little displaced. So if for the P-frames we simply indicate where
each pixel (or block of pixels) can be found in the previous I-frame using a so called motion
vector, we only need to really store pixels that are not present in the I-frame in this current
P-frame. Thus the P-frames use the reference I-frames to encode their information, much
the same way we used previous position updates to indicate the current position. Even more
complex setups are possible, for instance using B-frames which use information of past and
future frames to encode their data.
It should be noted that the problem of reliably sending the reference frames is also present
when sending video streams. If the packet(s) containing an I-frame would be lost, the fol-
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lowing P-frames would be near useless and the image would be of considerably lower quality.
Luckily, there is mostly only a limited time between I-frames and the degradation in quality
will not be noticeable for very long. This is why most video transmission protocols like RTP
[70] don’t resend lost packets but just wait for the next reference frame and in the mean time
use estimations of the non-received packet instead. Here, a Forward Error Correction method
can be of a great help to improve image quality in the event of packet loss, as discussed by
Wijnants [92].

We can make a final notion on the OnLive system [34]. This system allows players to play
videogames on remote computers without the need to purchase much hardware themselves.
The powerful remote computers render the game and send the output to the user as a (high-
quality) videostream, who only needs a way to play this video stream and give basic input to
be able to play the game. This system shows that advanced video compression can sometimes
be interesting for communicating application state. OnLive is tightly coupled to the idea of
remote rendering, which could also be a viable approach to provide mobile users with low-end
devices with a high-quality view of the world. These and other aspects of OnLive are further
discussed in chapter 5.

In conclusion, we see that all discussed types of compression are used in video encoding and
that this compression is very necessary to get an acceptable data size, both for storage and
transmission.

3.1.6 Conclusion

The three kinds of compression can yield enormous reductions in the size of the data and thus
on the bandwidth usage of an NVE. Many compression schemes exist for much-used kinds of
data like video, audio, textures (images), 3D meshes, etc. and for most of these applications
existing implementations are available.
When it comes to world and entity state however, there are no global solutions that are opti-
mal for every kind of NVE or simulation. Every game or settings requires different parameters
to be sent and other types of data to be synchronized. Because of this, programmers need to
optimize their protocol themselves.

For this, using logical compression is a must. Packets should be kept as small as possible and
one should only send those things that have changed. Especially this process depends on the
type of application and it can take many forms for different kinds of data.
Generic compression is typically more difficult to use on single network packets as the risk
exists that they will enlarge the size of the packet instead of decreasing it. However, when
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we know the structure of the data or when the packets are very large (for instance by using
aggregation, as will be discussed in the next section), generic compression can lead to added
data reduction.
Finally, delta compression is a very promising method for reducing the size of packets, but
it comes with the reliability-problem. The type of data one wants to send with delta com-
pression often determines what approach is needed for this problem. Video compression for
instance often just ignores dropped reference frames, whereas other state could use all-reliable
or only reference-state reliable approaches. As we will see in chapter 4, delta compression is
a popular method in existing networking middleware and can obtain very good results.

Compression can greatly reduce the size of network packets but it certainly comes with a cost.
When using compression, one will need extra processing power and memory as generic com-
pression algorithms mostly use complex computations. Delta compression and only sending
what has changed requires that we keep some amount of past state in the memory to serve
as reference material. As with most things in an NVE, the use of compression is a trade-off
between bandwidth usage, processing power and memory.

As for the usability in a particular network architecture, all compression methods are usable
in both P2P and CS settings, albeit not always very straightforwardly. Only delta compres-
sion really requires a special note: since reliable multicast can be very expensive in terms
of bandwidth [65], it would be very difficult to implement delta compression with reliable
reference states using multicast.

3.2 Aggregation

While compression is aimed at reducing the amount of data that needs to be sent and thus
in a way create smaller packets, aggregation will try to make as large packets as possible.
This may sound counter-intuitive at first, but by grouping a lot of smaller packets together
into a single large packet we will actually save bandwidth because the packet headers will be
reduced. This principle is further explained in the next few paragraphs.

3.2.1 Packet headers on the internet

Up until now we have acted under the impression that the bandwidth consumption of our
networked application was only caused by our own data. This is not entirely true. Every time
you send a packet over the internet, so-called packet headers are added for transmission. This
is because the internet is built as a layered model and every layer needs extra information
to work [65]. A low layer is the datalink layer. This layer adds 14 bytes as a header to the
packet if the ethernet protocol is used. The next layer is IP. Here 20 bytes are added for the
common IPv4 and 40 bytes for the new standard IPv6. Another layer is the transport layer.
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Here, 8 bytes are added if we use UDP, 20 bytes for TCP. When using TCP, this overhead
is even worse. This is because each packet has to be acknowledged by an extra ACK packet,
inducing even more packets and traffic. One example is for the RPG Lineage II [72], where
over 35% of the packets were TCP SYN, ACK and FIN packets.
So in total, this leads to at least 42, at worst 74 bytes of header information for every packet
sent. Other networks will add more or less headers, but the basic principle stays: packets use
more bandwidth than merely the data you put in them, the so-called packet payload. Since
this data is added by the network and lower layers, we cannot influence this data and cannot
use the previously discussed compression techniques to trim their sizes. This implies that we
are stuck with this overhead.

This means that we have to start thinking about payload/header ratios. If we send a lot
of small packets, it is possible that the largest part of our bandwidth is being used by the
packet headers, not by the actual payload they transport. The technique of aggregation this
section deals with, is aimed at keeping the payload/header ratio as high as possible and thus
minimizing the internet-induced overhead. The idea is to combine the payloads of different
packets into one big packet and to only send that one packet. The size of these big packets
is a maximum of 1500 bytes for the complete packet when using ethernet, also known as the
Maximum Transmit Unit (MTU) [65]. If the MTU is exceeded, the packet will be split into
separate ethernet frames.

Here we discuss a simple example of how aggregation can help lower bandwidth. Say that we
send about 60 relatively small packets per second, each of which contains about 40 bytes of
payload data, as is common in fast-paced FPS games like CounterStrike [88]. These games
typically use UDP, so the overhead per packet is about 42 bytes. This means the total size of
each packet is 82 bytes, of which more than half is network overhead. This comes down to a
bandwidth usage of about 4920 bytes per second. If these packets can be aggregated however,
we only have the overhead of 42 bytes once. This means the bandwidth usage is reduced to
2484 bytes (two separate packets because the MTU was exceeded), almost less than half the
original usage. As we will see later in this section, it will probably not be possible to aggregate
this many packets at once in a fast-paced game. But even if we can only group them into
packets of 10 messages, we still have a large profit for bandwidth, from 4920 to 2820 bytes
per second. It is clear that in this kind of situation, where there are a lot of small packets,
aggregation can have a significant impact on bandwidth usage.

Note that when we talk about aggregation here, we are actually aggregating things that would
normally be sent as separate packets. One could also do a kind of logical aggregation (just
like we used the term logical compression) by grouping information together to be sent in a
single update. For instance, an RTS player controlling multiple units at the same time would
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logically group the updates for all the units in one packet instead of sending a separate packet
for each unit. I consider this type of logical aggregation a part of logical compression. The
aggregation discussed here is more generic, usually combining packets with different contents
and types. This means aggregation can be done at the packet-level and requires much less
knowledge about the data than most discussed compression techniques.

Packet loss

Besides the added network packet headers, the internet has another annoying property: packet
loss. When we send less packets and pack all our payload data into less-frequent, large packets,
packet loss can become a big problem. It will have a much larger influence on the local state
than when only one smaller packet was dropped and care should be taken to prevent large gaps
in data received because of packet loss when using aggregation. It should also be mentioned
though that through the use of aggregation, the chance for packet loss might actually become
smaller as packet loss is often caused by network congestion and aggregation will lower the
bandwidth usage, also lowering the chances for congestion.
Possible solutions are to use a reliable protocol or techniques like Forward Error Correction,
however they also have their own drawbacks.

3.2.2 Quorum versus Timeout based

When performing aggregation of multiple packet payloads into one big packet, we roughly
have two options to decide when the new packet is ready to be sent [86].
The first option is to wait until the size of the packet is as close to a certain desired size (the
MTU for example) as possible. Once the packet is as large as it can be, it is sent. This is
called the quorum-based method. However, the reader might have noticed that this method
can induce a large delay. Indeed, it can take some time before we have gathered enough data
to create a large packet and all other data will be delayed until we have the final payload and
send the packet.
This gives way to the other option, which sends packets when a timeout has expired. All data
available by then will be packed into a packet and sent. This will lower the delay induced
by aggregation, but it will also cause non-optimal aggregations to be performed. There is no
guarantee that there will be a lot of packets in the send buffer by the time the timer expires,
which can cause the aggregation to be nearly negligible.
Another option would be to use a hybrid form, where we use a timeout to determine when
the packet should be sent. However, there is also a quorum in effect. When the quorum is
reached before the timeout expires, the packet will be sent directly. This option will work
best with a rather large timeout and when large amounts of data have to be sent.

So in conclusion, the quorum-based approach can cause large delays for data if there is not
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enough data available. On the other hand, the timeout-based approach reduces the delay, but
also the effectiveness of the aggregation. Once again, this drawback is largest when there is
not enough data available. On the positive side, a hybrid approach can be used with both a
timeout and quorum parameter, both of which can be tuned to fit the needs of the application
and separate values can be chose depending on the type of data stream under consideration.
In any implementation, the use of aggregation will require fine-tuning and testing to obtain
the most optimal results.

3.2.3 Where to perform aggregation?

Whether we use timeout or quorum based aggregation is one decision we have to make. The
other is where in the network architecture to do the aggregation. As can be deduced from
the previous section, aggregation will work best when there is enough data available at all
times. When there is a constant, large flow of data present, aggregation will be most effec-
tive. When the time between updates is large or the data to be sent is small, aggregation
will either induce extra delay or it will not have a large effect on the bandwidth usage. So
we are looking for moments or places in a network when large amounts of data come together.

As has been discussed before, users or players often send little amounts of data in most games
and applications. It is only when advanced avatar animations are used or when users create
new content for the world that the data sent by players is relatively high. This would lead
to the conclusion that aggregation on the user-side is only rarely interesting. This means
that clients in CS-systems and peers in P2P systems usually have little possibilities for using
aggregation. P2P will probably be able to make better use of it when the peers themselves
store and distribute some of the world state.
In contrast, places where all kinds of traffic arrive together to be distributed to their desti-
nations would be excellent locations for aggregation. A server in a CS-setup is indeed a very
logical place to perform aggregation. Since every player sends his updates directly to the
server and the server is usually responsible for other world state as well, it has all information
that is destined for one particular user at all times. This opens the possibility to wrap packets
destined for this single user together at the server. In fact, this idea of performing server-side
aggregation is so logical that there are P2P systems that actually use special aggregation
servers [86] to be able to incorporate this bandwidth saving technique. These special servers
are for instance deployed at the edges of large P2P LAN networks to facilitate transfer of
data over the internet to other connected LANs.

So we see that aggregation is very logical and natural if performed at a server in a CS-setup.
P2P systems are much less adept at making full use of this technique. In traditional or
multicast P2P, there is no single place where data meets unless it is already at the final
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destination. And as we have seen, aggregation at the local side will in general be non-optimal
as there are no large amounts of data a user will send directly to one and the same user. For
this, P2P systems have been proposed which use special aggregation servers to make good
use of the aggregation technique.

3.2.4 Conclusions

Aggregation is not as easily used as compression. It will only perform optimally in server-like
entities in a network and a balance has to be made between quorum and timeout based ap-
proaches. When using aggregation, fine-tuning is needed to maximize the individual packet
size and minimize the extra delay. Care should also be taken to prevent the effects of packet
loss. When well deployed, aggregation can mean a large profit for the bandwidth usage, espe-
cially when using large packet headers, such as the ones introduced by TCP and the new IPv6.



Chapter 4

Traffic Filtering

Protocol Optimization didn’t actually discard information or packets, it just made the infor-
mation smaller. This chapter looks at techniques that can be used to drop large amounts
of packets for specific players to reduce the total needed traffic. Their basic ideas mostly
come from the desire to limit the amount of information the user gets and thus focus his/her
interest or to improve consistency between users. This makes them very usable to control
bandwidth as well and this in a dynamic way. By tweaking how consistent the world is or
how many objects of high-interest a user can perceive at the same time, we can filter packets
and thus lower the bandwidth.

There are two main techniques that can be used to this end. The first kind is based upon
spatial coherence in a virtual world. When players interact in the world, they will most likely
do this interaction with objects close to them in this world, which is very much like how we
interact in the real world. Far-away objects are thus less likely to receive interaction and by
consequence less interesting to the user. This is the basic idea behind spatial subdivision and
area-of-interest filtering.
A second kind of technique is based upon predicting the world state in the future. Using (semi-
)deterministic models of physics for example, the behavior of certain objects can be predicted
with great certainty for a limited period of time. If this prediction can be performed at the
receiving user’s end, there is only need for information to be sent when the real behavior
diverges from the predicted behavior. This principle leads to the Dead Reckoning method
and other uses for prediction.

4.1 Spatial subdivision

A very interesting and popular approach to filtering comes in the form of spatial subdivision
of the world. This means that there won’t be a large, continuous world at all times where
all users have all the information about the complete world. There will rather be only parts
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of the world users will receive information for, the parts where the user’s avatar is. As we
will see, this way an NVE can be kept scalable in terms of both processing and bandwidth.
I would go as far as to state that without a form of spatial subdivision, a large-scale NVE is
simply impossible.

There are a couple of subdivision types possible, all operating at a different level of granularity.
Figure 4.1 shows how these different types interrelate.

Figure 4.1: Three types of spatial subdivision.

4.1.1 Sharding

This first type of subdivision is very high-level. The idea is to not have one big world where
every player plays in, but rather to have multiple parallel worlds with different players in each
world. This way not all players playing the same game are able to meet each other in the
world, only those players in the same parallel world as their own, called a shard. This sharding
model is applied in many modern day MMOG’s, including World of Warcraft [53] and Aion [1].

The main reason to do this subdivision is because the worlds can co-exist independently
from one another. If a Client-Server model is used for instance, separate servers can control
different shards so that when one server goes down, other shards are not influenced by it.
Another important reason is the division of the number of players. This way each shard only
has a limited number of players and thus less traffic and calculations to perform. Increasing
the maximum user count is then achieved by simply adding some new servers to create a new
shard.
This is very different from one big world in which every user can meet every other user. That
setup will give problems for scalability, as more players cannot simply be supported by adding
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some extra servers. For this, we need a complicated and extensive server-architecture that can
deal with a large amount of players in one large world, as will be discussed later. Additionally
one big world can also be problematic for bandwidth usage as more state is being exchanged
between servers in the world.

Another important reason is that the shards are smaller and thus also contain less content.
For applications like Second Life [46] where most content is user generated, large seamless
worlds are possible. But for games like World of Warcraft [53], where the developers have to
create all the world’s content, it would be an immense task to create huge worlds. Through
the use of sharding, the same content can be re-used in multiple versions of the smaller world,
reducing the amount of content the creators need to implement.

Sharding is a popular option for commercial NVE development as it makes the worlds and
users more manageable and possible problems are isolated to a single world, where they affect
only a limited number of people. One could also see it as developing a relatively small-
scale NVE and then copying it multiple times to allow more users to use the application.
Different shards can also sport different rule-sets to allow for certain niche gameplay or settings
within the same game or application. In practice the biggest drawback is that players on one
shard cannot interact with players on other shards directly in game, but this mostly doesn’t
outweigh the benefits in processing scalability and architecture simplicity for most commercial
applications.

4.1.2 Zoning

This second type of subdivision is perhaps the most intuitive, interesting and widespread. As
mentioned in the introduction of this section, a user will mostly interact only with those en-
tities close to his avatar in the world. This means he really only needs to receive information
from entities in his direct vicinity. Zoning is a relatively coarse-grained method of doing this
information management. The world is subdivided into large regions, called zones. A user in
a zone will then typically only receive information about the entities inside his own zone, and
possibly from neighboring zones but rarely anything past this.

It is clear that this is a very interesting concept for the purpose of this thesis. Instead of
receiving all packets from all players in the complete world, a user only receives packets from
players and objects in his own spatial neighborhood, removing a huge amount of network
traffic. As we will see in the next few paragraphs, the processing requirements are also
lowered by zoning. For these two reasons, zoning is an ideal method to be implemented in
almost any NVE as it easily enables both bandwidth and processing scalability.
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Coupling with network architecture

An interesting property about zoning is that it can be directly reflected by the used network
architecture.
When using a Client-Server setup, it is common to have every zone handled by one separate
server. This way, extending the world is easily done by adding more servers for the new areas
of the world. When using an interconnected P2P network, we can have certain peers act as
being responsible for a certain zone. Other peers then only need to connect to this responsible
peer to get basic information about the zone, after which he can connect to the other players
in his current zone. Furthermore, this also ensures a good processing scalability. The zone
servers or responsible peers only need to perform calculations for their own region and only
have to deal with the players currently inside this region.
Another possibility is the use of multicast together with zoning. The idea is to associate
one multicast group with every zone in the world. This way, users only need to send their
data to one multicast group at a time and they can decide themselves which zones they are
interested in by subscribing to the correct multicast groups. As discussed before this is in
contrast with entity-based multicast, where every entity in the world has its own multicast
group. Region-based multicast is a very elegant solution which requires almost no additional
processing to route traffic to the correct users.

Zone shapes

When we want to use zoning we need to make a decision about the shape of the zones
and which areas different zones will encompass. Traditionally, zoning was used in closed-
space maps in for instance FPS games. Here, mapmakers indicated zones themselves (mostly
rooms and corridors) and also zone-transition points (like doors or gates). In larger worlds,
zones could be made to contain a complete building or another logical entity. In EvE Online
for example, an MMOG which is set in space, every solar system is a single zone managed
by a single server [14]. However, this mostly requires mapmakers to define these zones for
most parts of the world, and this world can be very big for NVEs. In addition, players can
maybe add new parts of the world themselves and they will not be able to define optimal
zones themselves. The last problem is that most virtual worlds contain large open spaces. If
we were to use one region for every large open space, regions could become too large thus
reducing the optimizations we expect from zoning in the first place.
It is for these reasons that most large-scale NVEs use a conceptual regular grid for the
subdivision. Thus the subdivision is not bound to logical boundaries like buildings or the end
of a corridor, but they can run straight through a large open area. This is less optimal as a
subdivision, but it is a lot easier to implement and could be combined with limited mapmaker-
defined zones [60] in special areas that would benefit from it most. Many possibilities have
been proposed, for instance using a simple square grid or hexagonal tiles. More advanced
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zoning algorithms use things like octrees or kd-trees to create a more optimal and hierarchical
subdivision. Figure 4.2 gives an overview of some possibilities for the definition of zones.
We should note that dynamic subdivision is also possible when using mapmaker defined zones.
However, these subdivisions can possibly be more difficult to implement as they should keep
in mind the logical boundaries set by the mapmaker, whilst the more generic algorithms can
usually subdivide rectangles or hexagons, which is a lot easier.

Figure 4.2: Four types of zoning.

Drawbacks

Zoning might seem like the ideal solution for a lot of NVE problems, but there are also
downsides. The first problem occurs when there are many players in one particular zone at
the same time. Like we said, the reason why zoning works is because a lot of the information
about the world doesn’t need to be processed by all players anymore. But when a lot of players
are in the same area, all players in that area will have to know about all other players there.
This causes a larger bandwidth usage but more importantly a larger processing overhead. If
only one server or peer is responsible for a zone, this will only work well if there is a limited
number of concurrent players in that zone. Compare it to a traditional FPS setup of a 32-
player server. That same server cannot handle more than 32 players and the same goes for
servers that manage a single zone in a virtual world as well.
This is a large and difficult scalability problem for NVEs that use zoning. In fact it is quoted
as one of the most important reasons for the bad scalability of the Second Life simulation [47],
as their setup works with fixed-size regions which are assigned to maximum one simulation
server. There are roughly two possible solutions: either we limit the number of users that
can be in a single zone at the same time (EvE Online only allows 2000 concurrent players in
a single solar system [12]) or we can dynamically re-partition the overloaded zone into new,
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smaller zones. Through this re-partitioning, more servers will be allocated to handle the area
where a lot of users have converged, this way reducing the load on a single server. Dynamic
re-partitioning is not trivial however and requires architectural support to make it possible.
There is also the issue of state transfer from the already overloaded server to the new servers
that will alleviate its load. Active research is being done on this topic, for instance by Cleuren
[64].
The second big problem is the crossing of zone boundaries. Especially when working with
a regular grid, users are likely to cross a number of zone boundaries as they explore the
world. Suppose users only receive information about other users and objects in their current
zone. This means that when a new user enters the zone, you will see his avatar appear out
of nowhere at the zone boundary he just crossed. The inverse will happen when you exit
a zone: players that remain in that zone will see your avatar disappear. This is the main
visual problem for the users, but there is also a problem architecturally. If every zone is
managed by a server or peer, when users change zones, they also have to change servers or
peers. This means all state of the user has to be transmitted to the new responsible entity,
possible inducing some delay for the users. When using pure P2P systems, there is also the
problem of neighbour discovery to know which peer is managing the new zone, as discussed
in chapter 2.
Another consequence of this setup is that cross-zone events are difficult to implement. In an
FPS for example we want players to be able to shoot each other over rather long distances,
even if the players are not in the same zone. This kind of interaction is not possible when
we only receive information about our own zone. When a sniper in zone A shoots a bullet to
hit another player in zone B, there should be some kind of communication between the two
zones for both the firing of the bullet and the result.
A possible solution to these problems is to have players and zone servers receive all state of
any neighboring regions as well. The regions are typically large enough to ensure any visual
artifacts from boundary crossing go unnoticed by the players if they have the data of more
than their current region. Sadly this solution will require a lot more bandwidth and processing
power for both the users and zone servers or peers. Now they are not only receiving all data
from their own zone, but also from 3, 4, 8 or more zones surrounding them. This also means
users have to maintain connections to multiple zone servers or peers at a time and those
connections will change as the users change zones (a large problem in P2P environments as
discussed in chapter 2).
A common approach to this problem is to use soft-transitions at zone boundaries. This means
not all state from neighbor zones is sent to users in a zone, but only state from the parts close
to the boundaries. This will reduce the bandwidth and a lot of processing power related to
interpreting the extra state, but it requires extra processing to determine which state has to
be sent exactly, i.e. if it is close enough to the zone’s boundary. Areas of interest can help to
define where the soft boundaries should be, as we will discuss in the next section.
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A note should be made on the restrictions of region-based multicast in this matter. When
using a single multicast group for every region, it is not possible to filter traffic which is too
far from the boundaries. Users can only subscribe to the multicast group or not, there is no
middle road. A possibility is to further subdivide the zones into smaller regions with all their
own multicast group, but this greatly increases the complexity and reduces the practicality
of such a system.

4.1.3 Instancing

The last type of spatial subdivision will isolate a limited group of players in a small piece of
the world. This piece is copied/instanced for every group that wants to use it, so that the
different users don’t interfere with each other. A good example of this concept are dungeons
in a typical MMORPG. A group of players has to go inside a dungeon to defeat a boss
character and gather new items. These bosses should be available for all players and players
should be able to face the same boss multiple times. These dungeons can be implemented as
instanced regions of the world. When a group of players enters the dungeon, it is copied for
this specific group of players and any action in the instance will not directly affect the larger
NVE world. When the mission has finished, the instance can typically be terminated and the
players are returned to the larger world. Another example would be for a group of people
to come together for a collaboration, video conference or private meeting. They can seclude
themselves from the world in separate instances until their meeting is done.
A good real-life example is in the recent FPS game Read Dead Redemption [41]. While this
is not a MMOFPS per say, players will arrive in one large world when logging into the game.
Once enough players have gathered and have agreed to play a 24 or 32 man FPS match, they
are taken out of the world and placed in an instance of a specific map where they can play
the match. After completion they are returned to the world so they can search new matches
to compete in.

Instances are interesting for NVEs because they actually remove some players from the NVE
and place them in a separate place. For this, relatively little interaction should be done
between the world and the instance whilst the instance exists. So while the players are in
an instance, the larger NVE doesn’t have to worry about their constant state updates, zone
transitions etc.
In addition, instances can also be run completely separated from the larger world hardware-
and network-wise. Since the number of players is typically very low and the instances are
not very large, a single server or simple P2P connections will be more than enough to handle
the interactions between the players in the instance. This way we are not only conceptually
but also practically separating players from the NVE. It would also be possible for a flexible
zoning system to incorporate instances as special zones that are created on the fly when
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needed. As explained in the section on zoning, a single server can manage a zone. When the
instance is needed, a new zone is created and a free server is allocated to manage this zone.
This allows for elegant and simple implementations of instancing as extensions of an already
existing zoning implementation.
When using separate resources for instancing, we should be careful with our estimates of
how much resources will be needed. For instance, how many separate servers will we need to
accommodate the largest load? If we reserve too many servers, we will be wasting valuable
hardware. If we do not reserve enough servers, the users might notice. Even when we use the
same servers for zoning and instancing, we should still keep in mind that every server used for
one purpose can possibly no longer be used for the other. Thus when there is a high demand
for both instances and zones, it is difficult to decide which should get precedence over the
other. All in all, a dynamic system is recommended to prevent wasting hardware resources,
but care should be taken in how the resources are assigned to different tasks.
Finally there is another programming aspect to instancing. Simple, low-player count dis-
tributed systems are much easier to program and maintain then the larger NVE systems, so
instances can considerably reduce complexity for gameplay programming and player interac-
tions.

4.1.4 Case-studies: Second Life, Eve Online and World of Warcraft

Second Life

Second Life [46] is a single-world simulation that tries to mimic the real world as closely as
possible. This world is divided into square, fixed size zones of 256m x 256m. The Client-Server
network architecture uses one so-called simulator process per zone and one physical server
can run several simulator processes. These simulators are only connected to their four closest
neighbors. Users connect directly to the simulator servers to exchange state. The client
programs are so-called dumb clients: they only render data they receive from the servers
but perform no game logic of their own, not even local prediction (see the section on Dead
Reckoning).
Second Life uses a separate space server to maintain the regions. Every simulator process
registers with this space server and receives the data for its four nearest neighbors to which
it has to connect. The open-source variant of Second Life, OpenSim [35] uses a very similar
network architecture. For OpenSim there is a plugin available to split regions into smaller
regions and merge them to larger regions when needed. As stated before, the lack of such
a dynamic region management is one of the biggest problems in Second Life when a large
numbers of players congregate in one place.
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Eve Online

Eve Online [13] is another single-world simulation which is set in a universe. Here the world
is not just one continuous landscape like in Second Life, but it consists of clearly separated
solar systems. Every solar system can be seen as a zone and each of them is managed by a
so-called SOL-server. The main difference between the architecture of Eve Online and Second
Life is that Eve uses an extra type of server: the proxy server. Instead of directly connecting
to the zone-servers, users connect to an intermediate proxy server. These proxy servers are
then responsible for contacting the correct SOL-servers and to transmit all necessary state to
the users. This setup allows users to have just one connection, that to the proxy server, and
this connection does not change when the user changes zones (in that case, only connections
between the proxy servers and the SOL-servers are changed). This severely reduces the direct
connection load on the SOL-servers and the proxy servers can perform other actions like load
balancing and traffic filtering in the process. The Eve Online architecture can be seen in
figure 4.3.

Figure 4.3: The Eve Online network architecture with intermediate proxy servers.

This extra layer of proxy servers solves some of the other scalability problems of Second Life,
but there is still no built-in possibility to dynamically divide regions when a large number
of players congregates in the same solar system. Recently, this problem has become so large
that there is now a limit on the number of concurrent players in a solar system.
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The game’s setting allows for some interesting scalability improvements as well. First of all,
the users don’t control their spaceships directly, but by using only their mouse to give orders.
Thus only the mouse commands have to be sent in a way very similar to the deterministic
simulations for RTS games, discussed in chapter 2. Another fact is that because the universe
is so huge, there will rarely be moments where players actually meet during their routine
gameplay: most of the interactions are with computer-controlled NPC’s. This way, often
only little bits of information about other players has to be sent to a player, reducing the
bandwidth usage. A third optimization is possible because of the physics-based nature of
the game. The spaceships are bound by physical laws like acceleration speed and turning
capabilities and when flying towards a certain goal in the world, the user will always follow
a straight, predictable path. As we will see later in the section on Dead Reckoning, this
can also aid in reducing bandwidth. The last optimization is possible because zones are not
connected directly, only through the use of special warp-gates can a player travel to another
zone. This way, there are no problems at the zone boundaries or with server-tradeoffs when
players travel to another zone.
These improvements and simplifications are only possible because of the specific nature of the
Eve Online space-setting and are not as simple to transfer to other games or simulations. For
instance, Second Life can use almost nothing of these optimizations because of it’s different
concept. This once again shows that NVE design is strongly coupled to the specific type of
NVE we want to create and that no one solution will fit every purpose.

World of Warcraft

World of warcraft [53] is the most popular commercial NVE. It is set in a fantasy world with
large diverse areas like forests and cities. Unlike Second Life and Eve Online, WoW is not a
single world. The game has many different shards and worlds, with every shard containing
about 2500-3000 players. WoW also uses instancing for the different boss dungeons, which
can be battled by small groups of players at a time.

Sadly, little is really known about the network architecture behind World of Warcraft because
it is a commercial RPG and the developers have not yet disclosed much concrete information.
Luckily, because WoW is so popular, a lot of surveys have been done to research the network
traffic generated by the game [77]. From these researches we can deduce some information
about the architecture.
It is clear that WoW uses a large amount of servers to run the game on, otherwise this scale
would be impossible. From traffic analysis, it can be seen that there are very few (about
three) connections being maintained during the game and that most traffic (probably game
state) is sent over one connection. Even when we travel to another part of the world or enter
a dungeon, this one connection is maintained. This is a strong indication that WoW also uses
proxies to manage user connections, analogous to the Eve Online method.
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4.1.5 Case-study: ALVIC-NG

ALVIC-NG [85] stands for ”Architecture for Large-scale Virtual Interactive Communities -
Next Generation”, and is an academic architecture for highly scalable NVEs. The implemen-
tation part of this thesis will be an extension to ALVIC-NG, so it is a good idea to explain
the basic structure behind the architecture here.
This architecture is very much like that of Eve Online. ALVIC-NG too has proxy servers that
handle the connections to the clients and the internal logic servers are only connected to the
proxy servers, not to the clients directly.

There is one big difference however, and that is that zones in ALVIC-NG are not static, i.e.
they can change size, shape and even the server they are managed on. As discussed before,
static partitioning of an NVE world can be a large scalability issue when large amounts of
players gather at the same place and it is precisely this problem ALVIC-NG tries to tackle.
For this, ALVIC-NG uses a Region Management System (RMS) that controls which logic
server is responsible for which zone. When a logic server is overloaded, the zone it manages
is split into a couple of smaller zones and other logic servers are made responsible for the new
zones. When the load decreases once more, zones can be merged again to reduce the number
of different zones in the world.
The proxies play a vital role in this dynamic zoning system. They hide any topology change
from the users connected to the NVE. If we were to implement a dynamic system like this
in the Second Life architecture for instance, the users would have to establish a lot of new
connections every time something changed. With the proxies, the user’s connections stay the
same, only the proxies have to connect to the new servers. This means less connections and
less possibilities for problems during zone transitions. The system ensures very good load
balancing with as little trouble for the user as possible.
By using this system, we can draw a conceptual parallel between the ALVIC-NG approach
and the current trend towards virtualisation and cloud computing in other server systems.
With virtualisation it no longer matters on which computer a particular site or application
runs: all hardware is a large pool from which the virtualisation layer chooses the correct server
for the job. This way, applications and sites can change servers when their load increases or
decreases. When a server goes down, its applications can be spread out over other servers
and all of this happens transparently and automatically. ALVIC-NG has a very similar con-
cept, except this time not for applications or sites, but for zones in the NVE. Zones can
dynamically change servers and be split across different servers as the need arises. This all
happens without the user having any knowledge of it, internally in the network infrastructure.

Another difference from Eve Online is that the zones in the world of ALVIC-NG are intended
to be seamless like in the world of Second Life, instead of completely separate zones like the
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solar systems of Eve Online. This means that the problems of zone transitions and cross-zone
events have to be handled. The dynamic regions make the implementation of such a solution
a lot harder as regions can suddenly change neighbors, size and players. At the moment
of writing, ALVIC-NG does not yet provide a robust solution to this problem. One of the
purposes of this thesis is to see how these dynamic subdivisions can influence world state
communications and how this in turn will affect bandwidth usage.

4.2 Area Of Interest

Whilst spatial subdivision techniques like zoning are rather coarse for determining which
user should receive which information, Area of Interest (AOI) techniques provide much finer
grained possibilities for filtering. Zones are fixed and are generally influenced little by the
exact positions of individual players or objects. Areas of interest on the other hand are mostly
focussed around a single entity, indicating the interests of that entity alone. Therefore it works
on entity-level and not on world-level like spatial subdivision techniques. This way the area of
interest can change dynamically when the entity moves, moving with it, and provide constant
updates on the necessary filtering levels required.

4.2.1 Traditional aura/nimbus model

The simplest representation of AOI is as a circle with a certain radius around an entity.
Everything within the circle is interesting to the entity, everything outside the circle is not.
The traditional aura/nimbus model introduced by Benford and Fahlen [57] uses this simple
representation to describe a very general and fine grained model for AOI management.

The model is based on two main components. The nimbus of an object is the radius of the
circle in which an entity can see other entities. In other words, this is what we described
above as the area of interest. A small nimbus means we are only interested in entities that
are very nearby, a large nimbus means we want to see a lot of entities around us. The aura
is in a way the reverse of the nimbus: it indicates from how far other entities can see us.
When we have a small aura, we indicate we have little interest in interacting with others and
we only want to be seen by those entities close by us. A large aura means we are open to
interaction. This way, determining if an entity can see another entity is done by seeing if the
nimbus of the first entity intersects with the aura of the second.
The aura/nimbus model is sometimes extended by the use of a focus. This is typically not
just a circle around an entity but a triangular shape, usually indicating the view frustum
of the entity, although other variations exist. The focus is especially useful when expressing
interest in for instance audio. Like in the real world, we can hear audio from all around us
(the aura and nimbus) but mostly we will be focussed on the audio that’s coming from the
person or entity we are currently looking at. This is easy to see if you imagine yourself talking
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to a friend across your table in a crowded restaurant. For this kind of situation the focus
can help indicate an even more fine grained level of interest that can be easily coupled to the
viewing direction, which is another very powerful interest cue next to spatial closeness.

Figure 4.4: The aura/nimbus AOI model, various levels of complexity.

Many variations are possible for this model. The auras and nimbi can be ellipses instead of
circles, they can be centered around another point than the actual entity, they can be differ-
ent for other types of entities etc. Another very interesting quality of AOI’s is that they are
dynamic. The radii of the circles can change at runtime, indicating a changed interest for the
user. The shapes and directions of the auras and nimbi can vary depending on the situations
the user is in etc. This is interesting in combination with so-called adapter objects [88], which
are entities in the world that cause the AOI’s of the users to change. One example would
be a large music stage, where the musician’s aura would become very large so that everyone
around the stage could hear his music. Another example could be a user that wants to play
a mini-game inside the larger world and thus the game makes the nimbus of the player very
small to enable him to focus entirely on the mini-game.

The aura/nimbus model is even more versatile. There is no need to have the same aura and
nimbus for each type of network stream or world events. It is very well possible to have
different AOI’s for different kinds of information. For instance, we are usually only interested
in audio from very close by, but visually we wish to detect entities from further away. We
can define separate auras and nimbi for these streams and they can also evolve and change
independently. Another possibility is not to have different AOI’s per kind of network streams,
but per kind of entity in the stream. For instance, as a tank in a war simulation, we want
to detect the movements of enemy tanks from a farther distance than we want to detect
the movements of foot soldiers. Here the network stream stays the same (stream of entity



Chapter 4. Traffic Filtering 66

positions) but the AOI is different depending on the entity type.

4.2.2 Practical usage

Because the AOI models are so versatile, the possibilities for their usage are endless. Some
simple possibilities were already mentioned in the previous paragraphs, but even more ex-
tended applications are possible. Here I will focus on the main usages that can help with
reducing the bandwidth usage of the NVE.

Level of detail

When we want to use spatial coherence to filter messages, it is rarely wanted that this filtering
has a very hard edge. As we discussed in the section on zoning, if we would only receive data
inside our own zone, there would be visual artifacts at the edges of zones. The same problems
would become apparent if we would only have one level of AOI present. If the AOI would
only be on/off for a certain kind of stream, we would see and hear entities suddenly when
they entered our AOI, instead of gradually like in real life.
For this, we often desire some kind of level of detail (LOD). This is a concept well known
from graphics rendering and it generally means that we are going to degrade the quality of
the information gradually instead of instantly at the edge of the AOI. For this degradation
we can for example use the algorithms discussed in the section on compression or some kind
of variable prediction error as we will see in the next section on dead reckoning. This way
further away entities are already displayed on screen in a rather simple representation and
this representation will become more detailed as we approach the entity and our highest-LOD
AOI envelopes it. This concept is demonstrated in figure 4.5.

Figure 4.5: Using different AOI’s for different levels of detail.
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These different levels of detail can be continuous but often it is more practical to have some
discrete levels like in figure 4.5. Here we can still have the problem of sudden and large visual
artifacts when we change the discrete LOD level an entity is in so care has to be taken to
prevent this. Another problem is when an entity is right on the edge of an AOI and is crossing
the edge multiple times in quick succession. This would cause the entity to ”pop” in and out
of the higher LOD layer. To remedy this kind of artifacts, buffer zones or timeouts are often
used. When an entity has just crossed into a new AOI it has a minimum time it belongs to
this AOI (even if it crossed the edge again) or the edge is moved a little so the entity is no
longer extremely near it. This way the popping is less of a problem.

Once again, these LOD boundaries need not be fixed. It is perfectly possible to have them
adjust dynamically. One could for instance use certain amounts of entities we want to see
in every LOD-level. For example we could say that we want a maximum of 8 entities at full
resolution, maximum 32 entities in the medium LOD and 64 in the lowest LOD. This way
the distance between the user’s avatar an the 8th nearest entity would determine the edge of
the first LOD, the 40th nearest entity would determine the next edge etc. When the entities
move closer or further away, the edges will move with them, dynamically adjusting the AOI.

Zoning transitions

As we discussed in the section on zoning, a large problem is the transitions between zones
and the events that can happen across different zones. A solution is to send information on
not only your current zone, but also all the neighboring zones. However, this costs a lot of
extra bandwidth and processing. It would be better if there were some kind of soft-transition
at the edges, where only necessary information of the neighbor zones is transmitted. The real
difficulty then is to determine how large this soft-transition has to be.
This is where AOI comes in. With the AOI definitions for all players on the edges of a zone,
we can determine very fine-grained what data from the other zones is really needed. Thus if
we already use a certain AOI model in the NVE we can easily use it to improve our zoning
implementation. Only the really necessary information is being sent and it is clear how close
a user is to a zone boundary, allowing other servers to prepare for a possible zone crossing
when they come too close.

Dynamic bandwidth usage

In the interest of this thesis, AOI is probably one of the most versatile techniques to dynam-
ically change the bandwidth usage of the NVE. Even the simplest model with a single circle
and radius allows us to adjust this radius depending on the desired bandwidth usage. When
bandwidth is scarce, the radius will be small and vice versa.
When combined with more advanced AOI models, like different AOI’s for different streams
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and LOD’s, it is possible to very closely tune the different AOI’s depending on the bandwidth
requirements. This tuning is interesting because it can be done by tuning parameters that
have a logical meaning in the NVE world, like the radius or size of the AOI. Other techniques
like aggregation and compression also have parameters which one can alter for different results,
but it is not always directly clear how these parameters will affect the logical results. For
instance, increasing the timeout of an aggregation algorithm will probably delay the packets
more, but what influence will this have on the overall user experience? On the other side,
when we decide to reduce the AOI for video because bandwidth is scarce, we will immediately
know which entities will stop sending video to us and this selection can be done in a logical
manner with a real-world analogy. Note that here we can for instance choose to just stop
the video stream but to leave the position streams intact. This is different from a typical
zoning-only approach where we can usually only subscribe or unsubscribe from a complete
zone and all its data. This could be solved by the use of per datatype zones, which in turn
increases the complexity of the zoning and could lead to more calculations to check if an
object is in a specific zone or not.
This way AOI makes it easy to manipulate some consistency requirements of the NVE to
reduce bandwidth and this in a very understandable way. This is important when trying to
maximize the so-called Quality of Experience (QoE) of the users of the NVE, a subjective
measure of how well the users can interact in the NVE and if they are not feeling like something
is wrong with the program. This QoE is often lowered by lag on the network or when clear
artifacts (like popping players at zone/AOI edges) are present because this can ruin the feeling
of immersion in the NVEs world for the user. AOI management can help improve this QoE
by explicitly defining strategies for determining which streams and types of content in which
areas should be transmitted and which can be omitted in the case of a (sudden) bandwidth
shortage.

AOI calculations performance

So AOI must look like the ideal solution for bandwidth and interest management now. Sadly
all this versatility has its price. A simple and pure implementation of the circle AOI would
require n checks for a single AOI, where n is the number of entities in the world (or for
instance in the current and neighboring zones when we use AOI in combination with zoning).
This means that the complete algorithm is O( n2 ) when we compute a single circle AOI for
every entity. This can quickly become a serious bottleneck if the number of entities increases
and we are only talking about a single circle per entity. When the AOI’s are more complex
and several AOI’s are used per entity, the computation costs will be much larger.
Because of this, the traditional AOI models are rarely implemented in that exact way. Most
implementations will use some form of approximation to this model. In fact, the zoning model
described before is a very coarse representation of the AOI idea. Other implementations will
try to keep the AOI definition more fine-grained. The method suggested by Boulange et
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al. [60] subdivides the world into small triangles using a delauney triangulation which can
be done as a preprocessing step. In our implementation we will look at other methods for
representing AOI’s in a computationally attractive manner.
So we see that pure AOI models are probably not very computationally scalable but that
approximations that possibly use some form of precomputed data can be used to obtain
relatively fine-grained results similar to what a naive implementation might deliver.

4.2.3 Network architectures

While the other spatial methods like zoning possibly had a significant impact on the network
architecture of the NVE, for AOI filtering this is usually not the case. AOI’s can mostly be
used both client and serverside and in peer-to-peer systems, albeit in different forms.
Most commercial Client-Server systems will probably just perform some kind of distance-
based AOI with a LOD-scheme. The radii and shapes of the AOI’s depend on the currently
available resources of the servers and on the current state of the user. This means the server
will implicitely change the AOI’s depending on the user’s role or situation in the world,
without specific user interaction or guidance. When we revisit the example of the musician
on stage, the server can automatically detect the user is on stage and expend his aura to
accomodate for his new role as singer. Based on fixed gameplay rules and knowledge about
the virtual world, the server decides what the AOI should be for a particular user.
Other applications can allow the users to indicate some of their specific interests themselves.
This is mostly not the case for games as it would be possible for a user to indicate that he wants
to see all the enemies across the entire map, while mostly only the enemies that are near and
visible should be known to the user. But when we consider collaboration environments where
all users have mutual trust, the user-assisted interest management becomes more attractive.
Users can for instance indicate when they want to receive video or audio from a person, with
which other users they want to interact and in what kind of interaction they are specifically
interested, as this kind of data is mostly not just available from gameplay-rules in these
environments, in contrast to games. Here it is important to notice that the server is still
responsible for the actual filtering of the updates. The clients only indicate their specific
wishes, the server has to actively try to make sure these preferences are followed. For the
research in this thesis, it can mean that the server cannot comply to the desires of the clients
because there is for instance too little bandwidth available to send the video streams of the
five users the client has indicated. Then there should be some kind of feedback mechanism
to the user informing him that his interest specifications could not be met by the server.
Client-Server setups can also profit from a central bandwidth distribution strategy if other
techniques are used to shape the traffic as well. In that kind of setup, AOI filtering is just
one of several active methods to reduce bandwidth usage and a dynamic scheme can be used
to change the variables for the different techniques to regulate the bandwidth. As we will
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discuss in chapter 5 and 6, AOI filtering will be the central idea for our own implementation
of bandwidth reduction techniques in ALVIC-NG.

AOI filtering is different in an interconnected P2P setup. Whilst here we can also make
decisions on the AOI size and shape based on gameplay or use user-assisted filtering, the
peers themselves will be responsible for the filtering. This means peers will have to send their
preferences to each other peer close to their location so everybody knows what kind of data
the peer is expecting. When working with gameplay-based filtering, the AOI should be large
enough to accomodate for all possible gameplay events and this means the number of clients
the peers have to connect to can also increase. The peers themselves are always responsible
for checking if a certain update they want to send is interesting for a possible recipient, which
takes up extra processing requirements at every peer. This also allows for cheating, as peers
can refuse to send certain updates to certain players, causing them not to receive crucial
information whilst it is in their AOI.

A multicast architecture is not very fit for the use of AOI-based filtering and Singhal and
Zyda actually stated it is impossible in a standard setup [86]. As we have seen in the section
on zoning, multicast groups are mostly divided so that users in a single zone send all of their
updates to that multicast group. This allows for users to indicate their interest on a zone-level,
but nothing more fine-grained than that. When we consider using multiple multicast groups
to send information about the same area however, there are more possibilities. Imagine for
instance a zone stretching from (0,0) to (100,100) in 2D cartesian world coordinates and a
single multicast group for this zone. There could be extra multicast groups for the areas from
(0,0) to (20,20), (0,20) to (20,40), (20,0) to (40,20) etc. where the peers in that specific area
also send their updates to, in addition to the updates they send to the group for the complete
zone. This will allow a more fine-grained area of interest to be specificied based on closeness
as the peers only subscribe to the smaller groups they need. We can even use a level-of-detail
scheme this way by sending full updates only to the groups of smaller regions and sending
less frequent and smaller updates to the group of the entire region.
So it’s possible to indicate a finer-grained AOI if we use extra multicast groups for further
spatial subdivision. But what if we want to perform filtering on specific network streams?
Some users won’t be interested in the video streams of area (20,20) to (40,40) so we can’t
use the same group for position updates and video streaming. We can make a new group for
the video in this small area to remedy this and some more groups for other types of network
streams. Now we also want to filter on entity type: I only want the positions of tanks in area
(40,40) to (60,60), not those of foot soldiers. No problem, we just add extra multicast groups
for the position stream in that small area for every possible entity type. We could continue
like this for a while, extending the setup with extra multicast groups to try and provide a
very fine-grained AOI-filtering mechanism, but the truth is that this is not practical. The
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number of available multicast groups is very limited and network interface cards can only be
subscribed to a limited number of groups at the same time. There is also the problem of
subdividing the groups so all peers know which group provides which information and when
the world would be extended, more multicast groups would be needed. Multicast simply is
not suitable for this kind of filtering. Granted, we could use a different start setup, using
entity-based multicast instead of zone-based, but the eventual result will be the same: we
need too many multicast groups to use the kinds of filtering Client-Server and interconnected
P2P networks can perform with simple, local calculations.
One might say that we do not need this kind of fine-grained interest management. We could
opt to send the updates about tanks and footsoldiers in (40,40) to (60,60) in the same group.
The peer that is not interested in the foot soldiers can simple drop these packets upon receipt,
only really processing the tank updates. This way the endresult for the user is the same as
if the updates were never sent to him. This can work well if the main goal is that the user
can specify his interest very fine-grained and that this interest is followed. For the purpose of
this thesis however, we are specifically looking for bandwidth scalability and then the filter-
on-receipt method is actually producing incredible overhead as updates are being transported
by the network, consuming bandwidth, only to be dropped at the receiver, rendering them
useless. So when using multicast as your NVE architecture it is doubtfull an extended AOI
scheme will help you to increase bandwidth scalability.

4.3 Dead Reckoning

The technique of Dead Reckoning (DR) is the main technique for a filtering concept that uses
short-term future prediction. The technique of DR is in principle not focussed on reducing
bandwidth or even reducing computation power. The main problem DR deals with is the
smooth appearance of moving objects in a distributed application. This is because motion is
a continuous process but the positions we send over the network are just discrete samples of
this continuous movement. If the update rate of these positions is high enough, we will not
notice the discrete steps and the object will appear to be moving smoothly. When the update
frequency is lower however, entities would jump from position to position, introducing obvious
visual artifacts. Another use is the hiding of lag. When we receive position updates from
other players, these updates are in fact from the past, as the packet has needed some time to
travel over the network. The real position of the entity is already different so we can’t just
use the position update in the packets because the simulation would always be inconsistent.
This is where the technique of Dead Reckoning comes in. It is based on a very simple physical
principe that when we know the current position of an entity, its current speed and direction,
we can predict where this entity will be in the future if it maintains a constant speed and
direction. This was very important in the first NVEs. Systems like DIS were aimed primarily
at the simulation of military entities like tanks and airplanes. Those entities will usually have
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a certain goal in the world they need to navigate to and they do this in a predictable and
straightforward manner, usually following long straight roads or trajectories. What is more,
tanks and airplanes have limited possibilities for quick changes in their movement. A plane
cannot make a direct 90 degree turn for instance. This kind of maneuver takes time and there
are known physical bounds to the amount the plane can turn. Using this kind of information
we can make an accurate physical model for the entities with which we can predict very
accurately their movement. This means the update rate for these entities didn’t have to be
very high in most cases as most positions could be predicted, allowing these systems to scale
to several hundreds of entities.

4.3.1 Dead reckoning models

To do an accurate physical prediction of a position, we can use a couple of variables. The
current position is the starting point and we can augment the prediction by using direction,
speed, acceleration and jerk. These last three factors are all interrelated, as speed is the first
derivative of position, acceleration the second and jerk the third. One might think that the
accuracy of the prediction will increase if we know all of these parameters, but this is not
necessarily true. For the previously mentioned entities like tanks and airplanes, acceleration
and jerk are mostly constant or vary slowly and within known bounds. When we look at other
entities however, like the avatar of a player playing an FPS game, the acceleration and jerk
will vary quickly and with large amounts in very short timespans. This means that unless we
can measure these changes very accurately and quickly, the incorporation of these variables in
the prediction will lead to big errors and can actually reduce the accuracy of the prediction.
Also, because acceleration and jerk will change so frequently and quickly, we would have to
send a network update every time they changed, undoing most of the possible bandwidth
optimization of DR.

This is why there are several models for Dead Reckoning and the model to be used depends
on the type of entity. Highly indeterministic entities like player-controlled avatars mostly use
the first order model, which only uses position and current speed. Entities that are more
deterministic like tanks often use the second order model, which also uses acceleration. Jerk
is rarely used as it contributes little to the accuracy and increases computation and network
traffic [88]. We have to note that the simple model of only sending discrete positions (as we
have always assumed up until now) can be seen as the zero order model, which is simple to
incorporate into a DR implementation to be used in for instance a higher Level of Detail (see
the section on AOI above).
For the NVEs that were developed for real-life military simulations often more advanced DR
models were used, which not only use speed and acceleration but also the known physical
bounds of these variables and sometimes even data about the common ways to control a
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vehicle. These models are very entity-type specific however and only work well on these kinds
of entities. For most modern-day games and virtual worlds, the simpler forms of DR are very
appropriate and usable.

4.3.2 Convergence and consistency

As described in the previous sections we will use DR to predict where an entity will be and
this means we can also move the entity to those positions in our local view of the world.
When the entity does change its speed or direction however, these parameters will have to
be updated by sending a network packet. Through network lag, the local predicted (and
thus also rendered) position can be considerably different from the real position when the
network packet arrives. This is certainly the case with fast-moving entities like race-cars or
airplanes that can travel far in a very short timespan. For instance, a car traveling at 100
km/h will travel about 27 meters per second. This means a lag of even just 200 ms can cause
the position of the car to be more than 5m off. This problem is magnified by the fact that
the position we receive is actually a position already in the past. It was sent 200ms ago, so
the remote car isn’t there anymore, it is already 200ms from that position. This means the
real current position of the remote car is 400ms different from our predicted and rendered
position. Figure 4.6 shows this problem graphically.

Figure 4.6: The predicted position can change from the real position under influence of lag.

This means that when we do receive the update, we have to find a way to correct the pre-
dicted position and make it coincide with the real position. Note that this is not the real
position as received in the update (as this is already in the past) but the real position at
the time of receiving which can be extrapolated using the previous update and the currently
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received update. This process of adjusting the predicted position to the new path is called
convergence. There are several possibilities to do this.

Convergence models

The first method is called snap-convergence: we just change the position of the entity to the
newly predicted position at the time of receiving the update. This is a very easy scheme but
it can cause serious visual artifacts as the entities can jump around on the screen if the real
position is significantly different from the predicted position. In figure 4.6 this would mean
we immediately change the predicted position to the newly predicted position at t2 upon
receiving the update. Figure 4.8 also gives an example of snap convergence after receiving a
position update.
The second method is linear convergence. Here we will use a linear interpolation between the
current predicted position and a newly predicted position in the future. This will cause the
positions to gradually become correct but this takes some time (whereas the snap-convergence
will correct itself immediately). In addition, as the entity might have to travel a long way to
the new corrected position, it could be we need to increase its speed to make sure it arrives
there at the correct time. This can be seen in figure 4.6 where linear convergence is shown
in the image, as well as in figure 4.8. Upon receipt of the update at t2, a corrected position
will be predicted for t3 and the entity will converge to this position along a linear path. This
method is somewhat better than snap-convergence for visual appearances but it can still cause
sharp corners and unnatural direction switches.
The third method, cubic or quadratic convergence, tries to make the convergence as smooth
as possible. Just like linear convergence it will try to converge in the future, but instead of
using a linear path it uses a cubic spline which is fit through the known and predicted points
to create a smoothly varying path.

The decision of which method to use depends on the type of entity and of the situation. If
we are still sending relatively frequent updates, snap-convergence might be a good choice as
the position will not differ by that much. The same goes for entities far away (if used with
a LOD scheme for instance). Linear convergence is used when the positions differ too much
and cubic interpolation is for entities that should not have a rough change in direction or
speed (like airplanes, tanks, race-cars etc.).
Other parameters can be used to decide which convergence scheme to be used. Singhal et
al. [87] used a method called Position History Based Dead Reckoning. Here they look at
the recent position history of the entity. If these positions are smoothly changing, cubic
interpolation is used. If they are not smooth, linear interpolation is used. This is because
when the object is not moving smoothly, the linear interpolation will probably be a better
approximation to the correct path than a cubic interpolation.
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Another parameter can be the computation needs for every scheme. Cubic interpolation will
require a lot of resources whilst snap convergence is very cheap. The computational require-
ments for convergence are often one of the largest costs for using DR and they can be quite
significant when dealing with a large number of entities.

Consistency problems

The user should note that through the use of DR and the different convergence algorithms,
there is an inherent tradeoff between network traffic generated by position updates and the
consistency of these positions at the remote stations. The predicted positions can be signifi-
cantly different from the real positions and under the influence of network lag, these differences
are even enlarged. When using linear or cubic interpolation, there is even more time where
the positions differ as the convergence takes a certain amount of time to be performed. This
means that there can be large periods of time where the positions will not be the same, es-
pecially if the entities are moving at fast speeds or if their movement changes frequently.

This can be a significant problem in games like an FPS where the positions should be very
consistent to ensure the gameplay has a certain logic and fairness to it. This can be illustrated
with the following problem, illustrated in figure 4.7. Suppose a user A is walking in a straight
line. The predicted positions for user A seen by user B are on this straight line. However,
right before user A passes a wall, he changes his direction and makes a right turn. Since it
takes time for this direction change to be sent over the network, user B continues to render
user A on the straight predicted path, causing him to see user A passing the wall while user
A shouldn’t be visible for user B because he’s behind the wall. This situation is further
complicated in an FPS because user B could have shot user A before the update has arrived.
Then it is very difficult to return to a correct state. Either user A will die and it will seem
like user B has shot him through the wall, or user A will live and user B will be confused
as he thought he clearly saw and hit user A. Resolution of this kind of game-logic altering
anomalies is very difficult and is often just ignored by most implementations, causing possible
artifacts which are indeed seen in many games. Other problems are described by Mauve [79].
For the consistency to be at an optimum, the lag between sender and receiver should be
relatively well known when using convergence. This is because when we receive an update,
this was the position at some time ago, more precisely the lag time. So if we have a delay
of 200ms on the network, the received position will be 200ms in the past. For convergence
to work, we need to first predict where the entity is at this moment and then predict a new
position in the future to which we want to convert. An accurate estimate of the lag can help
with predicting where the entity is at the exact time we need to know its position. If we don’t
know the network delay, there is no way of knowing when exactly in the past the update was
sent and thus also no way of knowing where the entity is at this very moment.
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Figure 4.7: Consistency problem with Dead Reckoning.

Dead Reckoning is a so-called extrapolation approach. This means we try to extract new
information from known and previous information, in this case mostly positions in a 3D
world. The other approach is to use interpolation. This means that we are going to introduce
an artificial playout-delay [88] on the receiver side. So when an update is received, it is
delayed for about 100ms before it is used to update the local state. This ensures that there
is always at least one extra update received between the receipt of the first update and the
actual local state adjustments. Using these two received updates, one can calculate a so-called
interpolated state somewhere in between these two states. So instead of predicting what is
going to happen, we wait until it has happened and we have heard about it and only then
do we update our state. This will in general lead to more consistent and logical states but it
also introduces an extra delay and implementation difficulties. The local state will never be
the exact state of the world and some of the problems of Dead Reckoning can still occur, like
dead-man-shooting. However, for fast-paced action games like FPS’s where DR is in general a
less interesting method because of the fast changes in movement, interpolation can be a good
choice. In combination with a time-rollback mechanism hit-detection for bullets hitting other
players can still be done correctly, even though the players are shooting at slightly delayed
entitties on their screens. Valve uses an interpolation model in the source engine [89] whilst
Quake World uses a Dead Reckoning approach [63]. Both of these are FPS games or engines.
The simplest consequences of these methods is that with interpolation with time-rollback
you can shoot a player where you see them on your screen to hit them. When using Dead
Reckoning, you have to aim a little in front of the moving entity you are trying to hit, called
”leading” your aim. The amount of leading you need to do to hit the entity is directly coupled
to your latency to the game server.
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4.3.3 Dynamic bandwidth adjustment

In this section about Dead Reckoning we have put a large emphasis on problems with con-
sistency and the convergence algorithms needed to be able to use Dead Reckoning. This is
because the previous methods were often simple in their tradeoff between consistency and
bandwidth and about how they would influence world state. As we have discussed for Dead
Reckoning it is not this simple. Depending on the type of application the errors introduced by
Dead Reckoning can be very serious and they can have a huge impact on how the user experi-
ences the virtual world. Thus before discussing the practical applications of Dead Reckoning
for bandwidth scalability, a word of warning. Dead Reckoning allows you to trade consistency
for bandwidth in a very direct and logical manner, but the balance between the two is often
very difficult to find and it will always depend on the specific situations in the virtual world.
When used incorrectly it will produce negative visual and logical artifacts and even when
used correctly the gained bandwidth savings might not be consistently large for every kind of
entity and application.

This fickle nature of Dead Reckoning will become even more apparant when you understand
the method for using it to dynamically change bandwidth usage. The basic idea is that Dead
Reckoning will retain a good consistency if the remotely predicted positions don’t diverge too
much from the real positions. Mostly those two paths can differ a little bit, as long as the
general movement remains the same and the eventual endpoint is correct. Remember that in
the beginning we said that DR would help if entities retained the same speed and direction
and that we only had to change updates if those changed? Now this isn’t even true anymore.
As long as the local changes in direction and speed are small enough to retain a relatively
good prediction, there really is no need to send those small changes, further increasing the
possible bandwidth profits. Now there is only the question: how large can these differences
become until we need to send an update?
The answer to that question is to use a certain error treshold around the real path that indi-
cates how much the real path can differ maximally from the predicted path. Only when the
predicted path exceeds this error treshold should we send an update to recover the predicted
path. There is a problem with this approach however, as the sender of the updates only knows
about the real path and not the remote predicted path. Luckily, this can be easily remedied
by having the sending user perform a local prediction based on the updates he has sent to the
others. As this is also the only information the remote users use to perform their prediction,
we can reconstruct their calculations perfectly on the sender’s side. This way, the local user
can perfectly know how the other users are viewing his avatar and thus also when the remote
predictions will be too different from the real path. This concept is demonstrated in figure
4.8 where the predicted path reaches the error treshold at time t1, at which an update is sent.
In this example we ignore network lag, so the update is received at the remote users at t1
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as well. The figure shows two different possibilities for convergence to the new path by the
remote users.

Figure 4.8: Dead reckoning with local prediction and error treshold, disregarding network lag for
convergence.

This approach becomes even more interesting when we use a dynamic error treshold. This
way we can dynamically change the consistency-throughput tradeoff generated by our use of
Dead Reckoning. Larger tresholds will allow the paths to diverge more widely from eachother,
sacrificing consistency for bandwidth. On the other hand, small tresholds will make sure the
consistency is quite high, but will lead to more updates being sent. The decision on which
treshold to use depends on the situation and expected results. If we want to use it as a direct
bandwidth limiter, we can simply adjust the treshold as bandwidth increases or decreases
so that we stay within the alloted limits. Another option would be to use it in conjunction
with a Level of Detail scheme as we dicsussed in the section on AOI before. Entities further
away could have a large error treshold as the accuracy of their positions will typically be less
important. Entities closer by will have a much smaller error treshold, resulting in a more
accurate position. This approach will ensure lower bandwidth usage in general but it isn’t as
tunable to the current bandwidth limit for the connection as the simpler method.
This way we see that dead reckoning, a method originally intended for lag compensation and
smooth movement, can be used as a dynamic bandwith regulator by changing the consistency
of the virtual world on a per-entity basis.

The reader might have noticed that we are sending more data than just the world position
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when using dead reckoning: we also send speed, direction and possibly acceleration. This
might seem like a paradox as we are trying to limit the amount of data we send, not increase
it. This is also directly oppositie to the method of logical compression discussed before.
However, even though we increase the payload size per sent packet, the actual amount of
packets we send is decreased severely. The larger payloads are only a problem if we would
work with a high frequency of updates but DR reduces this frequency and it will thus reduce
the bandwidth usage as a whole. Furthermore this will reduce the packet header overhead
as discussed in the secion on aggregation. A less interesting aspect of this approach is that
packet loss can be detrimental to the resulting consistency. This is why a reliable protocol
is mostly needed for dead reckoning, especially if the error treshold is large and the update
frequency is low.

One additional advantage of using prediction is that the predicted trajectories can be used for
other means as well. It enables us to pre-empt on the user’s actions and this in turn can help
us achieve better bandwidth usage. A good example is that it helps to determine if a user is
going to cross a zone boundary. If a user is walking in the same direction for a longer period
of time, the probability that he will continue on his path is quite large. We can then see if this
predicted path crosses zone boundaries. If this is the case, we can already start sending some
state information about the neighbouring zone before the user has crossed into it. This will
spread the state information transmission of the new zone over a longer time-period, reducing
the bandwidth load when the actual crossing occurs. This also ensures that the user will
already have some visual data like textures and geometry when he enters the new zone so he
can start interacting very quickly, something other environments like Second Life [46] often
lack. Without this form of preloading, the data is only coming in when it’s actually needed
and when it’s a lot of data, multiple things will be severely delayed, leading to large artifacts
and delays in the interactions. A form of entity-based priority can further help to determine
which entities should be preloaded as soon as possible.

4.3.4 Network architectures

Dead Reckoning is an interesting method because it can help reduce both upstream and
downstream bandwidth usage for a Client-Server system. Most of the previously discussed
methods are only performed on the server and will help in reducing the data the server sends
to the client. Techniques like zoning, AOI and aggregation have no possibility to reduce the
amount of data the client has to send to the server. Only compression and dead reckoning can
possibly help reduce the data the client has to send. This can be important when the client’s
upstream bandwidth is low, as is the case in mobile cellphone networks for example. When
using dead reckoning if the client is sending position updates to the server, these updates can
be cut down by using the dynamic error treshold model described before. This can be even
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more important if the client has to send updates for more than one object, as can be the case
for an RTS game.
We should note however that this approach is only to be used when it’s really necessary for
the bandwidth usage. Normally we want the server to have as much information as possible
because it is always possible to remove some accuracy but it is difficult or impossible to add
accuracy to the user’s actions if the user is only sending some of his actions. If we take two
players next to eachother for example, one of them on a mobile network and the other on a
cable network. The player on the cable network will want to receive the best quality from
the other player because they are so close, but the server is unable to comply as the mobile
player is only sending dead-reckoned positions to the server and the server cannot improve the
accuracy without risking some extra consistency loss. This is why in most cases it is best to
leave the client-to-server traffic untouched by filtering approaches and only use compression
to reduce the bandwidth usage.

When looking at P2P systems we once again have to differentiate between interconnected peers
and multicast. For interconnected peers dead reckoning is as usable as the other described
methods in this chapter. Every peer has to decide by itself how it sends its updates to the
other peers and it can choose to use dead reckoning for this to limit its own bandwidth usage.
Once again like with the client-server above however, this can be dangerous as the other peer
might want a higher level of accuracy. Here there is no central server that might provide this,
so peers are totally dependent on eachother.
Multicast is quite alike this setup when using normal dead reckoning. We can just send dead-
reckoned updates to the appropriate group depending on our bandwidth preserving needs.
Multicast becomes more interesting when using DR in order to obtain different levels of detail,
as discussed in the section on AOI’s. We can easily say that a larger error treshold means a
lower update rate and a lower level of detail. This can be interesting in multicast environ-
ments. For instance, a peer could send updates with a small treshold to its current group but
he can also send updates with a higher treshold to the neighbouring regions. This way, the
peers in the neighbouring regions will already receive some information about the movements
of the peer and the zone-transitions are less direct (which is an important problem in multi-
cast networks as discussed previously). Another complementary approach is to have different
multicast groups for the same zone, each representing a different level of detail. Peers in a
zone send accurate updates to the high LOD group and DR updates with a large treshold to
the low LOD group. The other peers can then decide to which LOD-group they subscribe for
this region. Note that these methods willl increase the upstream bandwidth usage of the peers
as they have to send multiple versions of the same packet, but the downstream bandwidth of
the other peers can be regulated much more closely by themselves.

A final usage of DR is to help in reducing server-to-server traffic. We have not yet talked about
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this topic in this text but it will be more important in the next chapters and this can serve as
a short introduction to the issue. When we have an advanced network architecture with a lot
of servers like for instance the proxy-logic server setup of ALVIC-NG discussed before, these
servers will usually have serious inter-server traffic. This traffic is needed to enable cross-zone
events, user zone crossing and server migration. For example, a proxy server has to receive
data from multiple logic servers to accomodate even a single connected user. As discussed in
the section on zoning, to ensure cross-zone events the proxy needs not only data of the current
zone, but also from the close areas of neighbouring zones. This means that the logic servers
responsible for these neighbouring zones also have to forward their information to this proxy,
increasing their outbound traffic. As there is mostly no guarantee that users in the same zone
are also connected to the same proxy, the problem can get worse because the logic servers
have to send their information to multiple proxy servers, in fact sending duplicate updates.
These large amounts of traffic are usually not a big problem as most of the commercial systems
are hosted by a professional company which ensures the servers have high-bandwidth links to
eachother [13]. There is recent research however that indicates that proxies could benefit from
being located closer to the users [66], for instance at a hub of an Internet Service Provider
(ISP). This severely reduces the distance to the user ensuring lower ping times. This would
mean that the proxies will probably no longer be connected to the logic servers with very
high-bandwidth links and the extra traffic can become a problem. This is where LOD and
DR techniques can also help moderate this traffic. When sending updates to proxy servers
that don’t directly have a user in the zone the logic server manages, the logic server can use
DR for example to reduce the traffic needed to keep the proxy up to date.
Other more advanced techniques are needed to reduce this traffic even futher and the exact
usage of zoning and the network setup can have a big influence. This issue will be further
explored in the next chapters and will be a part of a theoretical overview of the bandwidth
scalability of ALVIC-NG.



Chapter 5

Real-life examples and

implementation recommendations

In the previous chapters we have discussed different methods that can be used in the de-
velopment of scalable NVEs and that can provide (dynamic) bandwidth scalability. Now
it is time to see which of these methods are actually being used in real-life systems that
have been successfully deployed. This will hopefully give a good indication of which tech-
niques are important and should be implemented in a new NVE framework, as is the goal
of the implementation part of this thesis. We first look at some networking middleware for
both small-scale and large-scale setups and after that we describe how some contemporary
Massively Multiplayer Online Games (MMOG’s) and virtual environments work.
It should be noted that for commercial systems, often there are few details available about
how they work internally. We can however deduce some information from traffic analysis or
the scarce information provided by the developers on their Internet pages. Whilst most of
these sources are not scientific in nature, they can still provide valuable information on which
techniques are interesting for practical usage in real situations.

After we have discussed these real-life examples, we can draw the final conclusions of the first
part of this text before discussing the implementation in chapter 6.

5.1 Engines and middleware

In this chapter we will look at networking middleware and MMOG engines alike and we will try
to deduce for each of these platforms which choices they have made for bandwidth scalability
and overall setup of the implementation. There are many different engines available and so it
is difficult to only discuss a limited amount. The different frameworks discussed in this chapter
were chosen because they are popular and often used for real applications, because they made
an interesting and divergent choice for a specific technique, because they give practical tips for
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NVE development, because they describe themselves as complete NVE-development engines
or a combination of these factors. This should give us a good indication of which engines are
being used and of the functionality that they provide in terms of bandwidth scalability; it
will also illustrate what engines that market themselves as “perfect NVE solutions” choose
as techniques.
A large group of middleware discussed in this chapter offers a lot of functionality for game
development in general. For the interest of this thesis however, things like graphical world
design or an integrated all-in-one editor are not that interesting. This is why we will discuss
primarily those aspects of the middleware that have direct ties to possible bandwidth usage
and that give a good insight in the concrete possibilities and limitations of the system in this
respect.
We start by discussing the simpler, more low-level systems and continue with the larger, NVE-
and MMOG-centric frameworks.

5.1.1 RakNet

RakNet [40] is an open-source, “cross-platform C++ game networking engine” that is used by
many large commercial game studios. Its major features are: secure connections, autopatcher,
remote procedure calls, voice communication, NAT punchthrough, a robust communication
layer and object replication. The latter two points are of special interest to us here.

The robust communication layer 1 is a relatively low-level interface that wraps basic network-
ing classes like sockets and addresses. Next to this it provides a complete BitStream class to
make the serialization of objects easy. This allows for all kinds of variables to be written to a
compact bitstream where every variable is stored as efficiently as possible. Lastly it defines it’s
own UDP-based protocol to provide a series of different options to developers. Some of these
options are similar to features from TCP, like congestion control and configurable reliable and
ordered delivery. In addition, it provides sequence numbers and timestamps which are not
only used by the communications layer but can also be used by the application developers for
event ordering, synchronization or lag estimation.
RakNet sends its packets on set times, known as ticks. Messages that are ready between ticks
are buffered and are packed together into a single network packet. Thus we can say RakNet
performs a type of timeout-based local aggregation with a short, fixed timeout (the standard
value for this timeout is 10ms). The other possibility is also available: if a single message
exceeds the MTU size and can’t be transmitted in a single packet, RakNet will automatically
split it over multiple RakNet-packets as needed.

ReplicaManager3 2 is an optional plugin to RakNet that helps developers to create simple
1http://www.jenkinssoftware.com/raknet/manual/systemoverview.html, 12/08/2010
2http://www.jenkinssoftware.com/raknet/manual/replicamanager3.html, 12/08/2010
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networked games. Developers extend their own C++ classes from RakNet’s base classes and
object creation, sharing and deletion can be performed automatically by RakNet. RakNet
provides two possibilities for object serialization. The standard approach is to serialize the
complete object when anything changes. As discussed previously in the section on logical
compression this is very easy to program but it will waste a lot of bandwidth. The other ap-
proach is to only send the variables that have changed. RakNet allows developers to do this
by either setting “dirty flags” themselves or it can automatically keep track of the variables’
changes, requiring more processing and memory. All in all the ReplicaManager3 in RakNet
is an easy to use option for developers that need to synchronize a limited number of objects
across different users.

Thus RakNet is focussed on the low-level aspects of networking and protocol design and
provides options for easy logical compression, basic aggregation and a UDP-based reliable
protocol. However, it is certainly not a complete large-scale framework. RakNet does not
provide any high-level features like advanced network architectures, zoning or even dead
reckoning. The object replication plugin is good for small-scale straightforward games but
not a good fit for large numbers of distributed object that need to be created and destroyed
dynamically across many users.

5.1.2 ReplicaNet

ReplicaNet [42] is a commercial OO C++ library that completely revolves around the idea of
object replication for building distributed applications. So where RakNet was mainly a low-
level networking library with a possible ReplicaManager plugin, ReplicaNet focusses on these
replicas and tries to hide the networking aspect of multiplayer games from the developers so
they do not have to worry about it 3. This way developers can just create objects in C++
and change their variables without having to deal with how it will get transferred to the other
users.
ReplicaNet is very similar to the RakNet ReplicaManager3 discussed previously. The variables
are automatically tracked for changes and these changes are propagated over the network as
needed. There are also a number of differences however. ReplicaNet uses a version of the
LZMPi generic compression algorithm for example to reduce the packet sizes.
Another important concept is the use of the Replica Object Language (ROL). This special
purpose scripting language has a simple syntax and allows for developers to indicate in a
simple way which variables should be synchronized over the network and in which specific
way (reliable or unreliable). These ROL scripts are then automatically compiled to C++
code for use in the application. This allows for practical separation of gameplay and network
programming, a feature often wanted for smaller games.

3http://www.replicanet.com/about.html, 12/08/2010
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What is most interesting about ReplicaNet for this thesis is that they also provide some
bandwidth scalability and traffic filtering options. ROL gives the possibility to provide some
protocol optimization by indicating how every variable should be sent in bit-form. It is also
possible to indicate a certain variable has to be dead reckoned and to set the maximum local
error threshold at compile time.
The standard way of using ReplicaNet is that it will perform simple distance-based filtering
(the simplest form of AOI) with the standard distance being positive infinity (so all objects
are transmitted to all other objects). This means we can easily change the radius at runtime
to reduce the bandwidth usage. ReplicaNet also offers the possibility to turn off this distance
based filtering and define your own filtering method. This means the developer can specify
which users should receive updates for a specific object. This could be done using other high-
level mechanisms like zoning as discussed previously. However, ReplicaNet does not provide
an implementation to any of these other methods, only for the simple distance-based filtering.
It also means that the built-in distance filtering cannot be used in conjunction with other,
self-defined methods.

The last interesting aspect of ReplicaNet is that it provides a form of load-balancing. Every
object has a so-called master that is authoritive about the changes that can be performed on
the object. When the load for a particular object becomes too large and the current master
cannot handle this load, the system automatically assigns another entity in the network as
the new master. This also adds a good fault tolerance as other entities can take control over
objects when a master crashes or loses network connection. This way the NVE experience
can just continue even if servers or peers fail.

ReplicaNet focusses on usability for developers and thus sacrifices some configurability. Repli-
caNet also does not provide any advanced high-level possibilities like Level of Detail or ex-
tended networking architectures. Because ReplicaNet is closed source and the documentation
is scarce, we cannot be sure about all the details, but the overall concepts described here show
that it is an interesting option for smaller-scale applications and that it provides some inter-
esting options like basic distance-based filtering and dead-reckoning. This makes it a more
interesting and more usable framework for this type of application than RakNet, especially
from a bandwidth point-of-view.

5.1.3 Quazal Eterna

Quazal Eterna is a commercial OO C++ networking middleware framework aimed at sup-
porting MMOG’s. In many ways Eterna is similar to ReplicaNet. Eterna also uses an object-
duplication system that can automatically propagate changes to variables on networked ob-
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jects to other nodes in the network. This way, Eterna aims to make networking a high-level
function which is easy for developers to use without having to worry about the low-level
networking details. Eterna also uses an extra scripting language, called the Data Definition
Language (DDL) to easily specify which attributes should be synchronized and in which way.
This is similar to the ROL used by ReplicaNet.
It is important to note that while ReplicaNet is not developed with large-scale NVEs in mind,
Eterna is and this means there are some differences in their implementations.

The first big difference is the central notion of so-called duplication spaces in Eterna. A
duplication space is “a space where a duplicated object can discover or can be discovered by
another duplicated object. This allows the developer to control where and how many duplicas
of an object are published and when they are deleted”. These duplication spaces are thus
a very general concept that can be used to represent many of the filtering approaches we
discussed in chapter 4. Simply speaking, every object has a masternode in the network. This
master decides when the object is to be duplicated and thus seen by other users. The master
uses the definition of the duplication space to make this decision. Eterna does not provide the
implementations for the duplication strategies, so developers can fill these in themselves. An
example would to create an AOI-like system where the duplication space is centered around
a user’s avatar and the master decides which objects the user should see depending on the
AOI size and shape.
Eterna is also optimized for dividing the masters over a large number of different nodes or
servers. The duplication spaces are managed in different so-called cells, which can be seen as
a type of zoning, where each cell is managed by a different server. Cells can hold duplicates of
objects in other cells, making zone-transitions and cross-zone events easier. Eterna provides
automatic routing, even using simulated multicast schemes between servers, to distribute the
update messages across the servers to the duplicates that need them.
Eterna also uses a load-balancing mechanism, similar to that of ReplicaNet, that makes it
possible to change the master of an object. Note that this is different from a load-balancing
approach like the one ALVIC-NG [85] uses. There, zones are split up and the smaller zones
are managed by new servers. In the Eterna setup, individial objects can be moved to differ-
ent servers without the need to actually split up zones. This requires a more robust routing
system but also reduces the anomalies that can arise when moving the management of a zone
to a different server.

The second big difference with ReplicaNet is that Dead Reckoning and state extrapolation is
a very important part of the way Eterna works, much more important than it is for Repli-
caNet. This is their main approach to keep the NVEs bandwidth usage scalable. Next to
very extensive configuration options for the DR error thresholds, they also provide ample
implementations for convergence and error correction so the consistency is kept as high as
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possible. From the provided documentation it is not clear however if these DR configurations
are only possible at compile time through the DDL-scripts, or if they are also changeable at
runtime, i.e. if they are usable for dynamic bandwidth scalability. Next to this they also pro-
vide optional generic compression with a variety of different algorithms and also aggregation
possibilities.

Whilst Eterna is similar to ReplicaNet in setup, it is clearly more aimed at large-scale develop-
ment. The options for multiple-server support are much larger and the concept of duplication
spaces and cells make it easier for developers to implement their own algorithms, but they still
have to implement them themselves. The strong focus on Dead-Reckoning and the different
variable propagation options provide enough configuration to have a relatively high control
over the bandwidth usage of the NVE whilst not forgetting the consistency requirements.

Quazal Net-Z

Sadly, Eterna is no longer available or supported by Quazal. This is not because the system did
not work but simply because Quazal decided to focus their efforts on the 2-32 player market.
For this, they developed the commercial framework Net-Z, which is in essence a subset of
Eterna and which has been used in several other large game engines. Net-Z runs on the
same object-duplication engine as Eterna and is also focussed around DR and extrapolation.
The big changes from Eterna are that there are no longer duplication spaces or cells (as the
systems are supposed to run on a single server or via a P2P setup) and no load-balancing or
object migration. This clearly shows that these techniques are especially suited and needed
for large-scale worlds and not for simpler, smaller-scale applications. The use of DR as an
important base concept is still interesting for limiting bandwidth but it is now more important
for retaining consistency in fast-paced games like FPS.
Another change is that Net-Z supports a fully deterministic game engine for the development
of RTS-like games. This fact shows two important things. First, that an object replication
strategy can be used for the development of such a game. Second, that a deterministic engine
is less likely to be suited for large-scale worlds as it was not present in the Eterna middleware
but was added in the Net-Z middleware to support small 2-8 player matches.

5.1.4 XNA and XBOX Live

XNA [54] is a full game development suite offered by Microsoft which is free to use. It allows
for the creation of complete games for Microsoft platforms like XBOX and Windows. The
networking part of XNA is specifically focussed on match making between players of equal
skill levels, lobbying, voice chat and other player management, which is a large part of the
provided services of the XBOX Live network. This network is used by every multiplayer game
on the XBOX360 game console and some games on other platforms as well.
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This XBOX Live network has a lot in common with similar systems like Steam 4, Battle.Net
5 and Playstation Network 6.

XNA and XBOX Live are interesting to mention in this chapter because they actually provide
very little networking possibilities out-of-the-box whilst being a very big and important plat-
form for multiplayer gaming. This means that developers have to do large amounts of work
for even simple small-scale multiplayer games. There are only some very basic interfaces for
the usage of sockets and bit arrays. A basic reliable UDP-protocol is also available, as well as
standard bindings for simple client-server or P2P setups. But beyond that, there is nothing
to help developers. No protocol optimization, no filtering and even no simple replication
manager like RakNet provides.
Another peculiar fact is that all traffic from XBOX360 games has to use the underlying XBOX
Live network, a Microsoft-controlled network setup that connects all XBOX consoles. This
means that, in general, dedicated server machines are not allowed and thus network architec-
tures are limited to player-controlled servers or P2P networks. Furthermore, games that are
submitted to Microsoft for approval are checked to see if they don’t use too much bandwidth.
The recommended bandwidth usage is generally very low, about 9 kbps down and 13kbps
up for a single user that is not a server, if the built-in voice chat is used in a game with 16
players [55]. This ensures that most server consoles will be able to handle the traffic and that
the LIVE-network doesn’t get overloaded by greedy games and applications.

What XNA lacks in network implementations, it makes up for in network tools, documenta-
tion and debug configurability. It has built-in latency and packet-loss simulators as well as a
simple loopback possibility so one can test on a single pc or XBOX360. They also provide the
NetGrove tool suite which can capture and analyze network traffic in many different ways.
Finally, there are a lot of tutorials and documentation available online that show how to do
the more advanced implementations, even without actually providing them in the framework.

In conclusion, even though XNA and XBOX Live are very large and important frameworks,
they provide very little possibilities for actual multiplayer game development. It is interesting
however that such a limited networking implementation is supported by such a wide array of
optimized tools and documentation to help developers optimize their bandwidth usage and
network protocols. But even with these documentations it is clear that this platform is not
directly suited for large-scale development.

4http://www.steampowered.com, 29/08/2010
5http://eu.battle.net/en/, 29/08/2010
6http://be.playstation.com/psn/, 29/08/2010
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5.1.5 Unity

Unity [50] is a complete, free to use game building platform which provides tools for just about
every step of the development process, from graphical design to networking. Unity is not
aimed at developing large-scale environments but it is interesting to discuss here nonetheless
because it markets itself as supporting a number of different platforms, including contempo-
rary mobile phone systems like iPhone and Android and it also offers a web client to be used
in any web browser. As we have discussed before, mobile networks are likely to have limited
bandwidth and also high latency. Because of this, it is interesting to see how an engine like
Unity provides options to deal with these problems.

At its core, Unity uses RakNet which we discussed previously. However, this RakNet func-
tionality is shielded from the user. Instead, Unity provides so called NetworkViews which
can be coupled to different components and objects and act as the networking interface for
that object or component. Unity uses two mechanisms for network communication: RPC
and state synchronization 7 and both are provided by the NetworkViews. The latter is their
version of attribute propagation, a method we discussed previously. The interesting thing
here is that Unity lets the developers choose from two different options to perform this state
synchronization: reliable delta compressed or unreliable. When you choose unreliable, all
variables are sent over the network with full precision at set time intervals, whether their val-
ues have changed or not. The other option will do about the opposite: all messages are sent
reliably and thus the variables are delta compressed, based on their previous values. Variables
are also only sent when they have changed and only those variables that have changed are
sent (Unity uses a single bit and a fixed variable order to indicate if a variable is present in
the network update).
Whilst the second option is certainly interesting for bandwidth usage as we have discussed,
Unity takes the all or nothing approach here. There is no in-between setting or the possible
use of reliable reference states for the delta updates.

When we look at other possible techniques for bandwidth scalability, we see that Unity offers
very little. There is no basic DR, no AOI, no advanced network architectures and no spatial
subdivision like zoning. One could say that this is normal for an engine that aims to create
games for 2-32 players, but we should not forget this engine is supposed to run multiplayer
games across mobile networks on smartphones. As we have discussed previously, these net-
works often have low bandwidth, too low even for normal multiplayer games.

When we compare Unity to other middleware with similar networking goals like Quazal Net-Z,
we see that it has far less extensive options. The standard protocol is an all-or-nothing choice

7http://unity3d.com/support/documentation/Components/net-MinimizingBandwidth.html, 12/08/2010
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between two options and there are no other techniques implemented for more advanced setups
or games. This means that Unity might be able to run on a smartphone graphically but it
will still require considerable work from the developer to create a working multiplayer game
and a large-scale NVE is definitely not supported, even when we leave the mobile platforms
out of the picture. This is remarkable given the large attention Unity has received in the
recent past and the high number of developers that use the engine to create their games.
Extra techniques for bandwidth limitation and more flexible protocol options could certainly
help make Unity a more general-purpose game engine.

5.1.6 DoIT

The Distributed-organized Information Terra Platform (DoIT) [71] is an academic project
whose primary goal is to create a practical middleware for MMOG’s which addresses some
big issues. In their paper about the system, Tsun-Yu Hsiao et al. describe these issues and
explain some important characteristics a usable middleware should have.
Because they want to define a practical middleware system, they put their focus on subjects
like ease of development, deployment, maintenance and change. The middleware should make
it easy to program and change the networked gamecode. Whilst these concepts are important
in the larger picture, they are not for the purposes of this thesis. Two other points in their
system however are interesting.

First of all they state that any middleware for MMOG’s that wants to be prepared for the
future needs to provide the possibility of a seamless world and scalability solutions to make
this possible. A generic n-tier architecture with load-balancing is their most likely solution
to this problem. This means that a setup like that of ALVIC-NG [85] with proxies and dy-
namic re-allocation of zones to servers is a good base for a usable MMOG middleware. In
their research they found that the proxies can be a big performance bottleneck if care is not
taken to prevent this. Their test setups produced the best results with 15 proxies and only
3 world servers to accommodate 10.000 players. Where ALVIC-NG states that the prox-
ies should not perform too much processing on their own, DoIT uses the proxies to do cheat
detection and prevention, as security is also a big issue for MMOG’s according to the authors.

The second point they make is that a message-oriented communication structure is the best
choice for an MMOG and this in contrast to a RPC approach. Message are a better match
for the event-driven games, can process multiple events at the same time (in contrast to a
blocking RPC call) and handler implementations can change independently on client and
server, whereas with RPC a complete recompile of the complete system would be required if
an interface changes.
They use a simple code-generation tool to make it possible for developers to easily describe
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their content protocols. XML descriptions of the protocol are compiled into concrete protocol
definitions. They also support the dynamic re-ordering of fields in the protocols. These
updates in the protocol are done automatically after a certain period and help protect the
system against cheating and message faking.
This code-generation system can also generate the callbacks for every kind of message that
needs to be sent, making it simple for the developers to react to an incoming network packet.
These callback implementations can also be swapped at runtime. This is not just interesting
for quickly fixing bugs but also to change the behaviour of the callback. In our case this
could for instance mean a different callback implementation can be loaded when the available
bandwidth changes dramatically and the new implementation uses more or less bandwidth.

A discussion of this paper might seem out of place in this chapter and indeed it does focus
more on the practical aspects of NVE programming and deployment than on algorithms
for load-balancing or bandwidth scalability. This shows clearly that there is a lot more to
developing an NVE than the issues discussed in this thesis and gives us good guidelines for
the next chapters and the implementation of the bandwidth scalability techniques. It shows
that message-passing is a good method for a NVE, that we should be careful not to overload
the proxies, that code-generation tools should be used and that they should support the
implemented techniques and finally, that the ability to change the NVE behaviour at runtime
is a powerful feature.

5.1.7 NetDog

NetDog [32] is an OO C++ networking engine built with large-scale NVEs in mind. It aims
to be very performant in terms of processing required so a single server can support a large
number of concurrent users. NetDog provides all the basic provisions of a game networking
engine like socket wrappers, reliable UDP possibilities, time synchronization of events, event
callbacks and object synchronization.

NetDog is special in that it uses a very flexible network architecture where any node can act
as a server. This means that just about any network architecture is possible, from simple P2P
to multi-tier client-server setups. There is no clear subdivision of server roles so developers
are not bound to using a proxy-model like discussed previously. Instead, NetDog works with
so-called channels which determine to which server content is being sent. This way, some
content can be sent only to certain servers (for instance proxy-like servers) and other content
directly to other servers (for instance the logic servers that manage the world). This allows
for very specific and dynamic networking architectures while still making the standard setups
possible. Because of this flexible setup however, NetDog does not provide a simple mapping
of servers to for example zones, shards or instances. Neither does it provide a good load-
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balancing algorithm to assign new servers to overloaded areas. Developers that want to use
NetDog in combination with a seamless world divided into zones will have to program this
themselves, but the NetDog framework certainly allows it.

Next to the special architecture approach and focus on processing performance, NetDog also
claims to be very efficient in terms of bandwidth usage. As can be read on their site, even fast-
action, FPS-style games are possible. They make this statement because they feel that using
UDP instead of TCP already warrants a high per-client bandwidth. As we have discussed
before, it is doubtful that this fact alone will make for a possible MMOFPS. Nevertheless, in
their documents we can find evidence that they understand the bandwidth problem and that
they are willing to provide solutions to it. The newest version of NetDog supports automatic
aggregation of packets (though they don’t specify if it is quorum or timeout-based) and they
say they plan to include Dead Reckoning and Culling (simple distance-based AOI filtering)
in future releases.

So while NetDog is a networking engine with support for NVEs, it certainly lacks a large
number of implementations to make it usable out-of-the-box. The flexible architecture is
definitely an interesting tool to easily try some extra optimizations and setups but the lack
of support for load-balancing and spatial subdivision algorithms in this architecture is a big
drawback. For the purposes of this thesis they indicate a number of bandwidth scalability
approaches but they have actually implemented only a few of these methods. All in all NetDog
is an interesting concept to start from but it does not offer a lot of special features for NVE
developers.

5.1.8 Ryzom engine

The Ryzom engine [45] is a full-fledged, open-source engine aimed at MMOG development.
It was first developed for a commercial game called Ryzom and made open-source some time
thereafter. The makers also provide a detailed explanation of their choice for algorithms and
techniques in the engine [61], which makes the engine very interesting to discuss here.
Ryzom uses a service-based server architecture where different services regulate different as-
pects like collision checks, gameplay rules enforcing, player login, etc. These services are
run on a number of different servers. Separate front-end servers act as the interface for the
services for the client processes, much like the proxies in other systems we have discussed,
and route the messages to the correct services.

For the purposes of this thesis, the Ryzom engine is very interesting because it was made to
work on very low-bandwidth dial-up connections, with a maximum bandwidth usage of only
13 KB/s in mind. They also put great emphasis on lag compensation and reducing CPU
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usage.
The first interesting choice they made was not to use Dead Reckoning in favor of an interpo-
lation strategy. This was because they felt DR was not fit for rapid player movements and
the updates would still be frequent, reducing the bandwidth savings.
The second interesting choice is the use of a prioritization system based on entity-distance
from the player. Firstly they set a maximum to the number of entities (x) a player can
receive updates for at one time (for example 64 or 255) and find the x entities closest to the
player. Then the entities that are closest are assigned higher priorities then entities farther
away. These priority values determine the update rate with which updates for those entities
will be sent to the player. Closer entities will have a much higher update rate than far away
entities, effectively creating a LOD system. This is kept CPU scalable by splitting up the
computations to multiple game cycles and threads, making it possible for a single front-end
server to serve up to 1000 users.
The third aspect which requires attention is the usage of smart logical compression algorithms
to reduce the packet sizes. Positions of entities are differentially compressed on the viewer’s
position to reduce their sizes using a smart algorithm, changing the size from 32 to 10 bit,
without sacrificing a lot of accuracy. Next to this, any string communication uses a unique
integer identifier for the strings so they only have to be sent once.
A final optimization is that the entire engine’s update rate for sending updates is managed
by a central service that controls these update rates for all servers. When one server is under
heavy load and threatens to cause network congestion by sending too much data, the central
service can decide to lower the update rates for all services, this way preserving the bandwidth
limit and preventing congestion. This will cause extra lag and lower the consistency but it
can prevent some more serious issues that can result from using too much bandwidth.

The Ryzom engine is an excellent example of an advanced system for NVE development which
deals with both load-balancing and bandwidth scalability. The exhaustive description of their
algorithms is a good source of inspiration for any NVE developer and shows that using even
only some of the algorithms discussed previously in this text, bandwidth usage can be kept at
very low levels while still providing a good consistency to the users. It also shows a successful
NVE can be developed which uses only a very small amount of bandwidth, making it possible
for mobile users or other users on slow networks to connect to the NVE.

5.1.9 BigWorld Technology

BigWorld Technologies [4] provides a complete commercial MMOG development solution. All
tools are included in a single development pipeline, from the graphical engine to advanced
networking and many monitoring applications. BigWorld is quoted as being the most com-
plete solution available today [71]. For this thesis, BigWorld is interesting to discuss because



Chapter 5. Real-life examples and implementation recommendations 94

it provides one of the most extensive and complete networking solutions for large-scale NVEs.

The BigWorld network architecture is aimed at flexibility and has an important load-balancing
component. The architecture can handle any setup, from seamless worlds to multiple shards,
zoning and instances. All of this is dynamically load-balanced across the different available
servers when the need arises. This is all hidden from the clients by using the same 4-tier
architecture with proxies we discussed multiple times before. BigWorld goes even further,
allowing multiple shards and even multiple completely different NVEs to run on the same
server cluster. This is a very far driven form of load-balancing and it is even more similar to
modern generic virtualisation approaches taken by cloud computing setups then other pre-
viously discussed systems. Because BigWorld is a commercial product, it is sadly not clear
how the load-balancing algorithms work, but it is clear that they see that this is big problem
in practical NVE deployment and that they can solve it efficiently and economically.

Next to the performance load balancing, BigWorld also provides bandwidth management
techniques. They have possibilities for variable transmission rates per player connection but
their biggest power is an adaptive Level of Detail and data prioritization approach that is
used on all sent updates. Even though they do not provide a large amount of details for these
systems, they claim they use high-end algorithms that are very optimized through years of
use. The fact that they put forward LOD as their main bandwidth saving technology is a
strong indication that this is an interesting technology for implementation in this thesis and
in any NVE that seeks to reduce it’s bandwidth usage.
Like Unity, BigWorld also advertises it’s availability on the iPhone, but they are more real-
istic in this respect. They provide API’s to create a more simple mini-game on the mobile
platforms, not a semi-full fledged client like Unity. This reduces the possibilities but also
offers a more reachable goal of integrating mobile platforms with an NVE.

BigWorld is a game engine that aims to be a solution for large-scale MMOG development
and it succeeds in this aim where the network is concerned. Not only does it use a very
flexible server architecture with advanced load-balancing options, in line with this thesis it
also provides advanced traffic filtering options in the form of Level of Detail to reduce the
bandwidth usage of the NVE.

5.1.10 HeroEngine

HeroEngine [22] is another commercial engine that is specifically focussed on the development
or MMOG’s. It is very similar in concept to BigWorld, offering a complete solution for every
aspect of the development and deployment process. It generally provides the same high-level
networking options as BigWorld, but with some small differences.
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First of all HeroEngine also support almost all possible world setups, from sharding over zon-
ing to instanced parts. They also have their own load-balancing system to re-assign servers
to areas with high load. The main difference with BigWorld (besides probably the exact
algorithms used to actually perform the load-balancing) is that HeroEngine does not support
the running of multiple shards or different NVEs on the same server cluster. This extra high-
level load balancing which BigWorld offers can be very interesting to optimize the use of the
cluster’s hardware, especially when a single shard or application is underloaded and can lend
processing power to the applications that need more resources.

The other difference with BigWorld is that HeroEngine does not explicitly mentions a LOD
scheme or controllable transmission rates. Instead, it offers a spatial awareness system to
regulate which objects are aware of which other objects and this awareness can be adjusted
by a dynamic awareness range. It is clear that this incurs some form of a dynamic AOI
system. Next to this, they also use a Character Position Interpolator to “reduce or eliminate
overhead of distant characters” for which they also scale down or eliminate animation, con-
troller updates and collision checks. This can mean that they use some form of LOD based on
distance, where this LOD is accomplished by using a combination of DR, logical compression
and ignoring collisions to speed up calculations. From these two descriptions it seems they use
two separate systems, one distance based for determining which entities should be sent and
another one which is also distance based to determine the level of detail for the entities. In
the next chapter about the implementation of this thesis, we will see that these two systems
can be combined into one large AOI-based filtering setup.

While HeroEngine offers the same large concepts for MMOG development as BigWorld, the
actual implementations of the algorithms used to accomplish these concepts can still differ
largely between engines. This shows once more that NVE development and scalability is not a
simple issue and that there is not one straightforward solution that solves all problems. It also
shows that two of the most important MMOG engines employ techniques for both performance
and bandwidth scalability, empowering the statement of this thesis that the bandwidth usage
is also an important parameter of effective NVE design, next to performance scalability.

5.1.11 Other systems

In this chapter we have discussed only a few of many engines and networking middleware
available. In this section we will look at some other engines and middleware shortly and
quickly touch their main points, to show that there are even more possibilities.
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The first NVEs

First we should mention the first important NVEs that were developed: DIS, NPSNET,, PAR-
ADISE , DIVE and MASSIVE. Many of the technologies and techniques we have discussed
in the previous chapters were first introduced and used in these academic NVE systems. DIS
(Distributed Interactive Simulation) was a descendent of SIMNET, a system developed by
the military for enabling networked war simulations. As we have discussed before in chapter
3, DIS made heavy use of dead reckoning to predict the motion of the vehicles in these simu-
lations. However, we have also discussed that DIS was very bandwidth unfriendly, sending a
lot of duplicate information in it’s PDU’s.
PARADISE introduced the practical usage of AOI filters through specific AOI servers in
an otherwise entity-based multicast system. These AOI servers monitored the position of
entities and notified other entities when they should subscribe to a multicast group to receive
information about new entities in their AOI. PARADISE also supports multiple information
flows per object so others can choose which level of accuracy they want about the object.
DIVE (Distributed Interactive Virtual Environment) was aimed at collaboration and interac-
tion. It used a dynamic distributed database with reliable multicast algorithms, causing it to
use a large amount of bandwidth and so it was only scalable up to 32 players. The interesting
thing about DIVE (and later MASSIVE) is that they implemented the aura-nimubs model
for AOI management. MASSIVE also used extensive options for aggregation of information
into higher-level streams.
These systems were among the pioneers of NVE development and introduced a number of
important techniques that are still used today. They also all used multicast, which is one of
the reasons they were not covered in more detail in this thesis, as our focus is on a real-life
NVE for which multicast can not be used on the contemporary internet. The other reason is
that they are all discussed to great lengths in other books and papers, so the user is referred
there for extra information [86].

Quick looks

Here we will have a quick look at some other real-life contemporary engines and their char-
acteristics.
The Unreal Engine is another very well-known commercial engine for game development. The
developers have recently introduced Atlas [51], a MMOG system for use in conjunction with
the Unreal engine. Atlas uses a 4-tier server setup, divided into multiple clusters with load-
balancing and a master server per cluster that keeps track of the positions of all entities in the
world. Their site does not give any information on their use of bandwidth limiting techniques.

Icarus [25] is another commercial engine that is aimed at MMOG development in particular.
The interesting thing here is that they provide a cloud-based solution for developers who use
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their system to be able to develop and test the games on the cloud servers of Icarus studios.
This way, the Icarus engine is not only designed to run on multiple servers when deployed,
during development the entire pipeline can exist on the cloud-systems, taking virtual com-
puting and NVE development to a whole new level.

ICE (Internet Communications Engine) [26] is a commercial networking middleware and on
their site they make an interesting statement: “The design philosophy for the Ice encoding
is to optimize performance at the expense of bandwidth, that is, to use as few CPU cycles
as possible during marshaling and unmarshalling”. This to show that the tradeoff between
CPU usage and extensive bandwidth optimization is an important aspect to keep into account
when choosing a bandwidth scalability technique.

Finally we mention the commercial service of OnLive [34] again (see chapter 3). OnLive
replaces all server-client traffic with a video stream of the world, calculated on the server.
The client only sends his input state to the server, where the server gives this input to the
game, renders the new images, and sends the video stream to the client. It may seem weird,
but in some cases this video stream actually uses less bandwidth then when we would send the
updates ourselves. This can certainly be the case in environments with a lot of user-created
content that would otherwise have to be sent to all clients.
The video streams can also be downscaled to a lower resolution or frame rate to dynamically
limit the bandwidth usage, making mobile gaming more possible as the small phone-screens
can only handle a limited resolution natively anyway. This is an approach also taken in one
of the test setups for the NIProxy, which we will discuss in more detail in the next chapter.
Finally, this approach eliminates the need for the developers to write complicated networking
code for single-server games at the expense of needing more and more powerful servers to run
the game and render the different video streams at the same time, whilst most modern server
system do absolutely no rendering on the servers themselves. For more complex systems, like
NVEs, networking code is still needed for communication between the different servers.
Video streaming systems are certainly an interesting option for making network communica-
tion for graphical applications like games easier. This is all done in a simple, straightforward
way with only a few directly adjustable parameters such as resolution and bitrate, that have
direct influence on the bandwidth usage, consistency and arguably QoE of the game for the
player.
There is much debate about the lag OnLive will introduce between the user’s input and the
changes in what he sees, because local lag compensation algorithms are no longer possible
when using this system. The results of OnLive for these and other factors will help determine
if this kind of technology will be used for NVE development in the future.
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5.2 Games and Virtual Worlds

In the previous sections we have focussed on engines and middleware that enable developers to
build their own MMOG or NVE by using those systems as the basis. Now it is time to discuss
some real-life MMOGs and NVEs that have actually been deployed on the internet. The items
discussed here do not use any of the aforementioned middleware or engines but rather choose
to use their own proprietary technology. For the commercial systems, this means there are
not a lot of details available, as is the case for the engines discussed previously.

5.2.1 Second Life, There and World of Warcraft

Second Life [46] and There [48] are two commercial NVEs that attempt to simulate the real
world in their virtual environment. Both of them focus on the social aspect of an NVE and
allow players to create new content for the world themselves, like objects and avatar clothes.
World of Warcraft [53] on the other hand is the most successful MMORPG [30] and is set in
a fantasy world. Unlike Second Life and There, WoW does not allow its users to create new
content for the game themselves. WoW also uses shards, where Second Life and There are
large seamless worlds.
The network architectures behind Second Life and WoW were discussed in chapter 4. For
There, there is not much known about the underlying architecture. There uses a large number
of connections to content servers (and audio streaming services for voice chat). Most traffic
comes from a single server, which is most likely streaming the environment to the user, whilst
a number of smaller streams from other servers probably send information about dynamic
objects in the current zone (as the servers this traffic comes from depend on the part of the
world the player is in) [77].

What is most interesting for this thesis is the difference between a completely dynamic, user-
generated world and a world with fixed content. The latter option will remove the need
to send all but a small amount of world information, automatically reducing the potential
bandwidth usage, especially when crossing zone boundaries. User-generated content on the
other hand introduces an extra network stream with (very) high bandwidth requirements.
The management of this data becomes as important as the management of user movement
and event data and is crucial to bandwidth scalability for these systems.
Both Second Life and There use a continuous streaming system to deliver the world content
to the user. This way the world can be completely dynamic as all data is sent to the client
program only when it is needed. As a result, the client program is little more than a simple
viewer/renderer for Second Life and only contains basic geometry and texture information in
There. All the world data is cached locally on the user’s computer to prevent unnecessary
retransmits if the data does not change.
This streaming approach means that there is a constant (potentially high) usage of bandwidth
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when connected to these worlds and that visual artifacts can occur as it is possible that not all
data for a certain part has been sent when the user moves to this area. The user will then have
to wait for all data to arrive to be able to fully interact with and immerse himself in the world.

To make this streaming approach possible in terms of bandwidth usage, advanced techniques
are used, most notably compression and LOD [77]. For instance, There uses three LODs for
all geometry in the world and Second Life incrementally improves texture quality by first
sending a very coarse version to quickly provide the user with an initial view, after which
extra information is sent incrementally so that the quality of the texture becomes better over
time [77]. Second Life also uses a form of AOI where large and close-by objects are streamed
first to make sure that the user has that information as quickly as possible.
To give a full overview and discussion of these techniques is not necessary here as this kind of
user-generated content is not present in every NVE and because most of the common tech-
niques for reducing the bandwidth used by streaming the world data have been discussed in
this text. The exact implementation of the (incremental) compression and LOD management
of geometry and textures is more a subject for computer graphics experts, as they are also
interesting for graphical rendering systems.

But even with these optimizations, Second Life is only available for users with a broadband
connection and There also uses a considerable amount of bandwidth, which makes it difficult
to access these systems on slower network links. However, we can say that this behaviour
is expected. Seeing the amount of data that has to be sent over the network, it is already
impressive that these NVEs are possible without extremely high-bandwidth connections. This
is in contrast with World of Warcraft, which is playable using a low-bandwidth connection, due
to pre-made content and because content patches are distributed separately as big downloads,
not streamed to the client while playing.
A possible conclusion from this section is that, to achieve a low bandwidth usage, an NVE
should use as little user-generated content as possible. When user-generated content is re-
quired for the NVE concept, advanced techniques for compression, streaming and LOD man-
agement are needed to keep the bandwidth usage feasible on contemporary internet connec-
tions, but even with such techniques in place the NVE will use a large amount of bandwidth.

5.2.2 MMOFPS and MMORTS examples

As we have discussed in chapters 1 and 2, one of the goals of this thesis is to see if large-scale
MMOFPS and MMORTS games are really possible. As discussed, these games could possibly
need huge amounts of bandwidths if there are a large number of people in the same place in
the virtual world; they consequently require good bandwidth scalability implementations.
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MMOFPS

Lately there have indeed been some games that try to bring the FPS genre to an MMO set-
ting. One of the first real MMOFPSs is PlanetSide [37], a futuristic shooter set on a distant
planet. PlanetSide offers large battles with foot soldiers and many different vehicles. Sadly,
no real numbers are available on how many players could be in a single battle at the same
time and there is no information about the used network architecture or bandwidth regulating
techniques. It is known that PlanetSide had severe problems with lag however, often causing
player disconnects by timeouts [38].

Recently, Massive Action Game (MAG) [29] impressed gamers by allowing up to 256 players
to compete in an FPS game on the PlayStation 3 console. While MAG is not a persistent,
seamless world MMOFPS per se, it does offer large scale combat with a large amount of
players. Once again, little is known about the real inner workings of MAG, just that they
use a “new networking architecture” [18] and that lag is not a very big problem. It is also
true that there will rarely be more than 64 players in one area at the same time, so the game
setup allows for techniques like zoning to be used.
Another new MMOFPS is All Points Bulletin (APB) [2] which is set in a contemporary
city where policemen fight against criminals. APB has a strict subdivision of the game
environment in the form of different districts. Action districts allow for up to 100 players in
the same instance and this is where the FPS-style gameplay occurs. Social districts allow for
up to 250 players and are designed for player interaction and feature a lot less action-packed
gameplay. Finally, one world with several different districts in APB can contain up to 100.000
players and there are several worlds available.
Other MMOFPSs exist or have been announced. Global Agenda [20] couples instance based
matches at key locations with a persistent world system. Huxley [24] will feature 120 player
battles in separate instances. Lastly, Fallen Earth [16] offers specific Player-versus-Player
zones in a larger world where FPS-style combat can take place between players.

The games marketed as MMOFPSs are rarely built as a large seamless world but instead
make use of instancing and separate zones (sometimes with a maximum user count) to han-
dle scalability issues. But even in these restricted environments, bandwidth scalability can
be important when all players would join a small area in the zone/instance and bandwidth
limitations might very well be one of the reasons these restrictions are used in the first place.

We should make a sidenote here on the usability of a 4-tier networking architecture with
separate proxy or front-end servers and internal game servers for MMOFPS games. This is
because FPS games are very sensitive to lag [84]. Using an extra server in between the player
and the actual game server that performs the action calculations, can possibly increase this
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lag; the data namely has to first be processed by the intermediate server, is then sent over
another link to the game server for processing, after which the inverse process takes place.
This extra stop in the network is not present in the smaller-scale FPS setups and even there
lag problems are sometimes quite large.
On the other hand, we can also say that the 4-tier setup can help reduce lag. If the proxy
servers no longer just serve as neutral intermediaries and connection points for players, but
instead actually take gameplay decisions without waiting for answers from the internal game
servers, the results of the player actions can be sent to other players much more quickly.
Game servers can then still be responsible for the more important decisions in the game, but
things like player movement could be handled by the proxy servers directly [56]. When users
are connected to a proxy server that is deployed close to their geographic location, the lag
will be low. Note however that this will also increase the processing requirements on the
proxy servers, possibly decreasing the number of players they can handle at the same time.
This is a problem we will also encounter during our implementation of bandwidth scalability
techniques.

MMORTS

There are only a few true MMORTSs which are set in a large continuous world or that
support a large number of players that compete with each other directly at the same time.
Most MMORTSs do provide a persistent system where your achievements and items are being
tracked, but the real matches are mostly limited to 10 players or less, which comes down to
a small-scale RTS game which can be created by a synchronized simulation as discussed in
chapter 2.
If we would define MMORTS as a game set in a large world where a large number of players
can meet each other in battle at any moment, we will not find many true MMORTSs. It is
true that the same can be said for the MMOFPS games discussed previously, but they at
least offered larger amounts of players in a single match than do their normal multiplayer
counterparts, whereas a common MMORTS does not. Whether this is because of technical
problems or gameplay design choices is however unclear.

Recently, End of Nations [10] announced that they will have a possibility for up to 51 players
per instance, with the possibility for players to join a game that is already in progress (which,
as we have discussed, is difficult to achieve in a synchronized simulation). Because of this,
End of Nations is close to a large-scale MMORTS. Interestingly enough, in the FAQ of the
developer’s site, we can find that a high speed broadband connection is needed to be able to
play the game. Because a traditional synchronized simulation does not use that much traffic,
even with 50 players, and given that there will be no support for user-generated content,
we may assume that End of Nations will not use a synchronized simulation but a per-object
replication system in combination with bandwidth scalability techniques to make this amount
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of players possible.

5.2.3 Browser-based games

Finally, we will look at NVEs where there is a large, seamless world and a high number of
users, but where the interactions are not real-time or time critical. This is the case for many
browser-based games where users put their actions in so-called queues and those actions are
executed automatically by the system after a set time. Note that this is different from a
browser-based client to for example an FPS, like Quake Live [39]
A good example of this kind of game is Travian [49]. Every player has a village in a larger
world and can erect buildings and train units in his village. Players can send units to other
players’ villages to attack them, but this attack is not done in real time and neither is it
graphically visible to the player (besides from a small textual message in the graphical user
interface). It takes some time for the units to travel to the to-be-attacked village (typically
tens of minutes to several hours) and the battles are executed automatically after this time
has passed.
This kind of NVE is quite interesting because it offers a persistent world and interesting game-
play, so it also attracts a large number of users. Another example would be FarmVille [17],
a game where players manage a virtual farm on the social networking site Facebook. Here,
players can share virtual items and animals and can help each other out if they have neighbor-
ing farms. A last example is the very popular free MMORPG RuneScape [44]. RuneScape
uses a java-based client in the player’s browser and even does 3D rendering of the virtual
world. Players are confined to a checkerboard pattern for movement, which is probably one
of the reasons the game is scalable enough for access from a webbrowser.

From a technical point of view however, these NVEs are quite different from the ones we
have discussed before. There is a very small amount of network communication needed, all
of which is done through the use of HTTP, the standard protocol for the transmission web
pages. The lack of most graphical feedback means that no separate unit updates have to be
sent. As far as server architecture goes, the different actions of users are kept in a database
on what is mostly a typical webserver and so-called cronjobs run at set times to process all
these actions and generate the results for the users.
This means that this type of NVE is very scalable, both in terms of processing power and
certainly bandwidth usage and it shows once more that the characteristics of the NVE can
have a huge impact on the techniques that are needed for ensured scalability.

5.3 Choosing a technique for implementation

In this section, we will create a summary of all the conclusions that have been drawn in the
previous chapters and try to indicate the points that are important and that can influence
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the choice of techniques for bandwidth scalability of an NVE. These conclusions will guide
the implementation part of this thesis, where the goal is to implement a few bandwidth
scalability techniques for a NVE middleware engine. The initial ideas and the outline for the
implementation part will be treated in chapter 6.

5.3.1 Which techniques to use?

The techniques one can and should use are very dependent of the type of NVE we are trying to
build and other decisions we make with regard to gameplay elements, networking architecture,
user heterogeneity and practicality of implementation. There is no single technique which
performs best in all situations, all techniques have their benefits and drawbacks. The real
challenge is to carefully trade-off different aspects of these techniques to best suit the specific
purpose of the system you are trying to build.
The conclusions, advantages and disadvantages for the different techniques have already been
given in their own sections, so in the current section we will focus on how to choose the most
suitable alternatives and which parameters can affect our decision.

Dependent on NVE type

As we have discussed many times before in this text, every NVE is different and has different
needs. Second Life and There need to stream their world dynamically to the user, requiring
good compression and LOD management. MMOFPS games are very fast-paced and should
have as little latency on player movement as possible. MMORTS games and physics simula-
tions will need to synchronize a huge number of objects, which will be even larger than the
number of players in the game. Collaborative environments will benefit from audio and video
communication.

The type of NVE will also help determine some of the more logical optimizations we can use.
A good example is the partitioning into separate solar systems in EVE online, as discussed
in chapter 4. This is possible because the concept of the game allows it, while in a world
like Second Life such artificial partitioning would be illogical in a world that is meant to look
like our own. Another example is that Dead Reckoning methods will only really shine in an
NVE with a lot of vehicles or entities whose movement only alters slowly. Battling a boss
with a small group of people in an instanced dungeon is the right fit for a game like World
of Warcraft, but for a game like Global Agenda we want the outcome of the battle to be
persistent and since the winning group gains control over the area, multiple instances of the
same area are not possible.

Table 5.1 gives some suggestions which one could possibly follow when trying to determine the
optimal techniques for a specific type of NVE. This table is in no way exhaustive or perfect,
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but gives a good indication of how different techniques can benefit different NVE types in a
significant way.

NVE Type Recommended techniques Less suited techniques

MMOFPS - Aggregation (many small packets) - Dead Reckoning (non-
deterministic entities)

MMORTS - Dead Reckoning (predictable move-
ments)

- Aggregation (lower packet
frequency)

MMORPG - Instancing (gameplay encouraged) - Aggregation (lower packet
frequency)

Collaborative - Compression (reduce userdata size)
- Area-of-Interest (fine-grained inter-
est management)

- Sharding (users want to meet)

Physics - Dead Reckoning (predictable move-
ments)

- Area-of-Interest (many small
objects)

Browser based - Sharding (simple scalability) - Most other methods (not
needed)

Table 5.1: Recommended techniques for different kinds of NVEs

Dependent on network architecture

The choice of the underlying network architecture also limits or enables some techniques for
bandwidth scalability. As the network architecture is mostly chosen for reasons other than
bandwidth scalability (for example processing scalability, manageability, ease of use, etc.),
sometimes this choice is not optimal for the bandwidth requirements of that system and
trade-offs will have to be made.
A good example is that with region-based multicast, it is difficult to create an effective and
dynamic LOD scheme, whereas this is much simpler with a central entity like a server. On the
other hand, when a server-based architecture has to perform a lot of calculations to ensure
bandwidth scalability, there will be more problems with processing power requirements and
load-balancing will be needed, whereas in a P2P system every connected client automatically
provides new processing power to the system.



Chapter 5. Real-life examples and implementation recommendations 105

Dependent on the user

One of the points made in the introduction and in the second chapter is that there can be
a lot of heterogeneity between users of an NVE. This is especially reflected in the network
connection that they use to connect to the NVE. Fast, high-bandwidth connections with low
packet loss can appear side-by-side with slow, mobile networks with large amounts of packet
loss and possibly even dropping connections. What is more, bandwidth is not constant and
can fluctuate considerably, even for good wired network connections.
This means that we have to choose bandwidth scaling techniques that can deal with this
heterogeneity and that can possibly even adapt their behaviour dynamically at runtime to
adjust for bandwidth fluctuations. A technique for such an NVE should for instance be able
to lower bandwidth considerably for mobile connections and by only forwarding the most
necessary data, while it should at the same time be able to offer a lot of information to users
with better connections.
This implies that techniques like Dead Reckoning and AOI management are more interesting
and needed when supporting low bandwidth connections than for instance compression and
aggregation, as the latter are much less dynamically adjustable and generally do not offer the
possibility to improve the information quality by changing their parameters.

Dependent on practicality

Finally, the choice of which techniques to use or implement can also be practically motivated.
Many of the discussed techniques are quite advanced and need an extensive implementation to
work properly with the intended results. A good example is zoning for a seamless world. Here
care has to be taken to provide possibilities for zone crossing, cross-zone events, zone splitting
and merging etc. Another example can be found with Dead Reckoning, where developers
often just ignore any consistency problem that has occurred because they are tedious and
difficult to resolve in a correct way, as we have discussed in chapter 4.
We have also seen that there are a lot of techniques that require some kind of reliable algorithm
to function optimally. This can be a problem in multicast-based networks where reliable
delivery is not trivial. It can also be an issue on mobile networks where packet loss is large
and retransmits will use more bandwidth and can slow down the NVE.

5.3.2 Choice for implementation

Now that we have discussed a large amount of different techniques for bandwidth scalability
in an NVE, it is time to see how some of these techniques can be practically implemented in
a real-life setup. The goal is to extend the ALVIC-NG platform [85], developed at the Hasselt
University, Belgium, which has been introduced in chapter 4.
ALVIC-NG uses a 4-tier network architecture involving proxy servers. The most important
aspect however is its dynamic load-balancing system which will split up and merge zones
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when the individual internal zone servers are respectively over- and underloaded. While this
network architecture exists and the load-balancing algorithms are operational, there is not
yet an implementation for a bandwidth scalability technique. As the goal is to use this frame-
work in real-life NVE deployments, it is important that the framework is extended with one
or more techniques for bandwidth scalability.

Now we are posed with a problem however. As we have said in the previous section, it is
impossible to provide a single solution that works optimally for all types of NVEs. As the goal
of ALVIC-NG is to be a generic middleware for NVE development, this means we would have
to implement a large amount of different techniques. But as we have seen from the discussion
of real-life middleware with similar objectives, this is certainly not the approach taken by
many other implementations. Most of those systems choose one or two main techniques and
focus their implementations around those chosen techniques. In a way this is logical, as they
also only support a single network architecture. There is no commercial middleware that
supports the creation of server-based, P2P and multicast based architectures and likewise
there is also no middleware that provides all aspects of compression, aggregation, zoning,
AOI and dead reckoning. This focus on a limited number of techniques is also practically
motivated, as it is already difficult to implement and thoroughly test one technique, let alone
multiple. This means that some types of NVEs will run slightly better on some systems than
other types, depending on which bandwidth scalability technique is present in the framework.
We do see that nearly all commercial systems are based on a zoning subdivision of the world.
We also notice that all those systems use a client-server based architecture. ALVIC-NG fits
right in those contemporary systems, which already reduces our possible choices and helps
us to focus on a 4-tier architecture with a zoning approach. This way, we do not have to
worry about making the implementation work for other architectures like P2P or multicast.
It however also implies that we should take care not to overload the servers in the ALVIC-NG
framework and that our implementation has to work harmoniously with zoning.

It is impossible to implement every discussed method and thus, like the other platforms,
we have to choose which ones to implement. We have opted to implement a dynamic and
extensive Area-of-Interest technique with Level-of-Detail provisions (chapter 6 explains more
details). We believe this is the most interesting candidate for implementation because it
works well with other methods like DR, zoning and (logical) compression and because it has
a strong focus on dynamically adjusting the properties of the specific AOI, this way enabling
dynamic bandwidth management. AOI also allows such fine-grained interest management
that it is possible to indicate very precisely which data is important for which user, which is
ideal to help with aggressive bandwidth limitation.
The main issue with this technique is that it can be very processing intensive. As the plan
is to execute this filtering on the proxy servers of ALVIC-NG (chapter 6 provides detailed
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explanations for this choice), we will need to be careful that the AOI calculations are not
too complex. This would cause the proxy servers to overload quickly on a limited number of
users, while their purpose is exactly to support a large number of users at the same time.

We believe a generic AOI/LOD implementation can provide the basic possibilities that can be
benefitted from by most types of NVE and, more importantly, that it can be easily extended
with specific other techniques to fit the needs of any type of NVE. This will also be shown in
the following chapters, where we will demonstrate the power of the AOI/LOD implementation
for a number of different NVE concepts and explain how an AOI-centric approach can help
to make good use of DR and compression techniques, whereas an implementation focussed
around DR for instance would probably not be so easy to combine with a secondary AOI
system.



Chapter 6

Implementation

From this point on, we have a clear goal: implement a dynamic AOI/LOD technique focussed
on bandwidth scalability for the ALVIC-NG framework. In this chapter we will discuss how
we approach this implementation and the choices made in this approach. The next chapter
will then discuss how we used this implementation to obtain answers to our research questions
through several simulations that were designed specifically to test every implementation detail.

6.1 AOI-API

As we have discussed in chapter 4, the usage of an Area of Interest mechanism can take
many forms, from a simple circle-based representation to complex overlapping AOIs for dif-
ferent streams and different Levels of Detail. As the goal of ALVIC-NG (and most other
NVE middleware) is to support many different kinds of NVEs, we need to ensure that the
implementation is robust and extendable and that it can be used to represent many different
situations in different types of NVEs.

To this end we developed the AOI-API, a small and to-the-point library that allows for
advanced AOI creation, usage and manipulation. The AOI-API is built around the concept
of a hierarchy of entities that together define a fine-grained interest specification. At the
highest level we have the InterestManager. This entity maintains all AOI-related data for a
single user/player. Its most important method returns a LOD level for a given object. This
allows the calling code to easily check if an object is within the AOI specification for that
user and at which LOD. If the object is not in the AOI definitions, an LOD of -1 is returned.
The InterestManager contains multiple InterestDefinitions, which are primarily a way to group
certain AreaDefinitions. These AreaDefinitions are the atomic parts of the interest specifica-
tions and each of them has a specific LOD and other InterestFlags assigned to them. This
way, we can create InterestDefinitions with various AreaDefinitions that work concurrently.
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The InterestDefinition can also utilize a caching scheme so we can save on some checks to
see if an object is contained within a certain AreaDefinition. For example, we can keep a list
of objects and timestamps for when they were last checked. Only if it has been long enough
since the object has been checked, added calculations are needed to see if it is still in this
AOI.
The AOI-API structure is visible in figure 6.1.

Figure 6.1: The AOI-API structure.

This structure gives us a very flexible way to define interest. InterestDefinitions can be dis-
abled or enabled at will (as can AreaDefinitions for even finer-grained adjustments). We can
also have multiple InterestDefinitions per player, for example each pertaining to a specific
situation the player can be in and for which different filtering is needed. The LOD and In-
terestFlags assignment per AreaDefinition allows us to very meticulously filter certain traffic
in certain areas.

Through this structure, the AOI-API provides the following feature set:

• Dynamic AOIs with different shapes
Circle-, polygon- and wedge-shaped regions with methods that allow for easy manipu-
lation of the shapes at runtime.

• Different AOIs for different LODs
Every AreaDefinition also has an associated Level of Detail which can then be used by
the calling code to determine how to send a packet that has been assigned a particular
LOD.

• Different AOIs for different network stream and packet types and contents
For every AreaDefinition we can define which streams and packets it is interested in
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and only use it to filter that type of traffic.

• Multiple sets of AOIs per user
Every user can have multiple sets of InterestDefinitions, which can be dynamically
switched on or off. Multiple definitions can be active at the same time.

• API-centric design
Care was taken not to make the AOI-API dependent on ALVIC-NG but rather to leave
it as open-ended as possible to allow for usage in other frameworks as well.

• Extendability
The AOI-API was made with application-specific extensions in mind. Users can eas-
ily use traditional inheritance-based approaches to define new areas and functionality.
Most of the internal classes also offer generic data fields that can be used for adding
application-specific logic without having to create new classes.

6.1.1 Dynamic shape definitions

Shapes inherit from the abstract IAreaDefinition class. They provide a specific implementa-
tion of the containsObject(object):bool method, which can be used to check if an object is
inside this particular area. This way, users of the AOI-API can easily implement their own
AreaDefinitions and shapes.
The AOI-API comes with three different types of shapes: circle, wedge and polygon. Each
of these use highly optimized code to do containment checks and their parameters can be
adjusted at runtime. The circle has a radius, the wedge 2 angles and 2 radii between which
the wedge is defined and the polygon has a number of corner points.
In addition to specific parameters per shape, each area can be centered on an object in the
world (for instance a player object) so that it automatically moves along with this object,
around a group of objects (where it uses the point of gravity of the group to center itself) or
it can be fixed around a set point in the world to allow for AreaDefinitions that encompasses
a particular area, independent of player movement. Finally, each AreaDefinition can also use
a specific offset from the used center point, to allow for even more customization.
Besides these shapes, there is also one special AreaDefinition that allows us to specify interest
in a specific object or player. This AreaDefinition does not really perform a calculation but
rather checks if the player or object ID is of interest. This allows for very quick processing and
for specification of interest on a per-object instead of per-area basis. This can for instance
be used to set up video/voice-chat with a group of friends, no matter where they are in the
game world.
The AreaDefinitions are not directly tied to a specific InterestDefinition, which means they
can be used by many InterestDefinitions at the same time, saving memory and instantiation.
When we combine this with a caching system, we can dramatically reduce the amounts of
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checks that have to be performed for the same objects if an area can be shared by a number
of players. This is because if an object is in a given area for player 1, it will still be in that
area for player 2 if player 1 and player 2 share the AreaDefinition, and thus we can skip this
calculation for player 2.

6.1.2 LOD assignment

Every AreaDefinition has a specific Level of Detail assigned to it. This way, when we use the
containsObject():bool function and it returns true, the caller knows that the object should
be sent to that user using this optimal LOD. Internally, these LOD levels are of a very simple
representation (an integer), as the actual adjustment of the traffic depending on the LOD is
not done in the AOI-API itself. This also means new, application-specific LODs can easily
be introduced into the AOI-API.
The calling code will rarely call the methods of the AreaDefinition directly. Mostly, they
will call the methods of the InterestManager or InterestDefinition. The InterestDefinition
will loop over all its AreaDefinitions and find the highest possible LOD for an object, as
AreaDefinitions can overlap. The InterestManager does the same, but by looping over all its
InterestDefinitions.
By slightly changing these schemes, we might obtain serious profits in speed. For instance,
we can stop looking for a LOD as soon as we have found one (even though it might not be the
highest), possibly preventing a lot of checks if there are many Area- or InterestDefinitions.
This can be viable in certain situations or if CPU usage has to be kept very low and visual
consistency is of a somewhat lesser concern. This can be combined with a sorting scheme so
that the highest LODs are checked first.
Another approach is to sort the AreaDefinitions by shape. For some area types, it takes
longer to determine whether an object is inside them than others. By first checking the areas
with low computational cost, we might avoid more complicated calculations. This can be
important if we have a high traffic rate for many clients or many different areas.

6.1.3 Interest flags

Besides a LOD level, each AreaDefinition can also have specific InterestFlags associated with
it. These flags allow us to very flexibly disregard certain types of traffic for that particular
AreaDefinition. A good example would be an area that is only interested in a video or audio
stream and not in position updates. Without InterestFlags, the AreaDefinition would do a
calculation for each method call, even for the position updates. However, when we specify the
correct InterestFlags, it will first check whether they match with those of the current method
call and only then will it calculate the containment.

The InterestFlags are not limited to the stream type however. The AOI-API allows for user
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implementations. This means we can also filter on packet types within a given stream (only
specific position/state updates for example) and even on the packet contents (e.g. only if a
state update is playing a certain animation). This could also be used to pass some of the
larger program-state into the AOI-API, which would allow for fine-grained conditional checks
whether an Area should be used or not.

6.1.4 Multiple sets of AOIs per user

The InterestManager maintains a list of InterestDefinitions per user. This means that a user
can not only have multiple AreaDefinitions, but can also group them together in multiple
InterestDefinitions. This way, we can enable/disable/adjust groups of AreaDefinitions at
once. This setup can be used to have a different InterestDefinition for a particular in-game
situation and to dynamically enable one or more depending on the current situation. The
simulations described in the next chapter clearly exemplify this possibility.
This approach also allows for world-types where users have multiple objects that they control
and follow at the same time, for example Real Time Strategy games. This way, each unit (or
group of units) can have its own InterestDefinition with specific AreaDefinitions.

6.1.5 API-centric design

The API-centric design allows for the AOI-API to be used in frameworks other than ALVIC-
NG. It provides a set of ready-to-use classes, especially for commonly used AreaDefinitions,
and at the same time allows for extensive customization through inheritance and also param-
eter passing (InterestFlags and LOD for instance).
The API depends on the concept of an Object/Entity in the world that has a specific 3D-
location (x,y,z). The abstract class IObject provides the interface that is used throughout the
AOI-API. Adopters of the AOI-API should implement the IObject interface, either by inheri-
tance or by encapsulation (so-called proxy object). In our implementation, we decided to use
the encapsulation option because we did not want the ALVIC-NG specific WorldObject class
to have to inherit IObject directly. The AOIObjectProxy implements the IObject interface
and has a WorldObject member and acts as the glue/translation between the two.
The main functionality has also been kept as simple as possible. After setup, a single method-
call ( InterestManager.getObjectLOD(object, InterestFlags):LOD ) suffices to use the AOI-
API and to obtain the interest calculation results in the form of a LOD level. This LOD
information can then be responded to in an application-specific manner.

Listing 6.1: AOI-API simple example

// 1 InterestManager per p laye r ( use p laye r ID)
ao i : : InterestManager ∗ manager = new ao i : : InterestManager ( 1 ) ;
ao i : : I n t e r e s t D e f i n i t i o n ∗ id = new ao i : : I n t e r e s t D e f i n i t i o n ( 1 ) ;
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St reamInte re s tF lags f l a g s (STREAMTYPE VIDEO) ;

ao i : : C i r c l e A r e a D e f i n i t i o n ∗ area = new ao i : : C i r c l e A r e a D e f i n i t i o n ( ) ;
area−>s e tRe f e r enceObjec t ( gameObject ) ;
area−>setRadius ( 5 0 ) ;
area−>setLOD(LOD 3 ) ;
area−>s e t I n t e r e s t F l a g s ( f l a g s ) ;
id−>addAreaDef in i t ion ( area ) ;
manager−>a d d I n t e r e s t D e f i n i t i o n ( id ) ;

. . .

S t r eamInte re s tF lags p o s i t i o n F l a g s (STREAMTYPE POSITION) ;
St r eamInte re s tF lags v ideoFlags (STREAMTYPE VIDEO) ;

// w i l l always re turn −1 because the stream types do not match
i n t lod = manager−>getObjectLOD ( object , p o s i t i o n F l a g s ) ;

// w i l l r e turn the c o r r e c t LOD
i n t lod = manager−>getObjectLOD ( object , v ideoFlags ) ;

6.1.6 Extendability

The AOI-API provides a number of so-called interface definitions to enable programmers to
create their own specific implementations of their functionality. This is most important for
the IAreaDefinition, which allows for the creation of entirely new area types by implementing
the containsObject() abstract method. These interface classes usually provide certain built-in
and re-usable functionality (such as object caching) to prevent double work.
Next to this, most of the base classes contain generic variables, for example an integer field
named type. This field is not used within the AOI-API, but instead enables programmers
to use the field for their application-specific logic. For most simple cases, having a couple of
these generic fields is enough, and it alleviates the need to create a custom inherited class
just to add this kind of simple functionality.

6.2 NIProxy

In the previous chapters, a lot of attention was paid to the concept of a dynamically ad-
justable bandwidth usage for an NVE. While the AOI-API provides the tools to determine
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if objects and entities are within a player’s interest and at which LOD, this is not entirely
sufficient to be directly used in a bandwidth shaping system. To provide more fine-grained
dynamic control of the bandwidth usage, we opted to re-use concepts of the original Network
Intelligence Proxy (NIProxy) [94] project, which was discussed previously in section 2.4.5.

The integration of the NIProxy provides interesting options for all three of the different sys-
tems we are trying to combine (AOI-API, NIProxy and ALVIC-NG). The NIProxy itself
will be extended and tested on new kinds of data, as we are focussing primarily on position
updates, a type of traffic that has not yet been heavily explored in NIProxy research. Fur-
thermore, the NIProxy will be tested in a multi-user large-scale setup, which is one of the
large open research questions for this framework [93]. ALVIC-NG on the other hand will gain
most of the already existing functionalities of the NIProxy; the NIProxy will serve as a good
starting point for the integration of various bandwidth shaping techniques into the ALVIC-
NG architecture. Finally, the AOI-API can be coupled to ALVIC-NG in a very transparent
way and the NIProxy can be used to tweak its parameters as needed. It will be possible to
objectively measure the impact the AOI-API has on bandwidth usage when certain param-
eters are used, which will certainly help to determine its usefulness in a NVE for providing
dynamic bandwidth scalability options.

In this section we will first discuss the opportunities and difficulties the NIProxy brings for
its integration into ALVIC-NG. We then explain how we try to minimize these issues in our
implementation and motivate our choices for the integration.

6.2.1 NIProxy limitations and issues

As discussed, the NIProxy architecture provides a very flexible and powerful way to represent
different traffic streams and their interdependencies and manipulate them at runtime to obtain
optimal bandwidth usage. However, there are many implementation details that hinder the
direct usage of the NIProxy in our implementation.

Implementational limitations

Firstly, the NIProxy codebase was not designed to be used as a library in a different project. It
consists of many different heavily interdependent projects and smaller libraries that make its
integration into a different build system difficult. In addition, many of the higher-level classes
assume a very direct knowledge of the connection to the user, the networking architecture and
require the use of the NIProxy service subsystem. This means they would need to manage
their own sockets, protocols and traffic adjustment implementations and it is difficult to
ensure interoperability with the ALVIC-NG implementations for these aspects. A suggested
approach was that we could run the NIProxy as a separate entity next to the ALVIC-NG
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servers in the network (as opposed to integrating the codebase as a library into the ALVIC-NG
server processes), but this would induce yet another layer of abstraction and possible point
of failure. A further discussion of why this is not optimal will be given in a coming section.
Secondly, the method used for the building and maintenance of the bandwidth shaping trees
is based on the assumption that the tree is first constructed client-side and then transmitted
to the server, which replicates the clients’ commands. This is a good approach for video
streaming, but not for game-like environments where we want full control on the server (to
prevent cheating or to allow for a dumb client for example). The direct impact of the client-
side approach is that all tree operations are performed using extensive string parsing instead
of via direct invocation of appropriate methods or class constructors. This makes the code
more difficult to understand and adjust to our specific needs.
Thirdly, the NIProxy’s class structure is heavily dependent on inheritance and templates.
Some of the node classes for the bandwidth shaping trees have an inheritance depth of 6, of
which 4 intermediate classes are template-based. In theory, this allows for a very extensible
and re-usable architecture. In reality however, it becomes very difficult to locate specific func-
tionality and determine how it can be adjusted. A component-based approach (as opposed to
inheritance-based) would have been more interesting in this case, as new nodes would have
been easier created by the assembly of simple components rather than adding extra inheri-
tance layers to obtain more complex behaviour.

Conceptual limitations

Next to these implementational issues, there were also some conceptual problems. In the orig-
inal NIProxy test cases, all the leaf nodes of the bandwidth shaping trees represent separate
network streams (i.e., one leaf node represents a single video or audio stream). In addition,
many of the experiments have a leaf node per user for these network streams, which means
there are a lot of leaf nodes when dealing with a large amount of users.
This presents a few problems. First of all, it would be more practical for game creators to
specify bandwidth usage based on the InterestDefinitions as a whole, instead of separately
per network stream. For example, in a simple video scenario, the NIProxy would be able
to transcode a video stream to a lower quality to reduce its bandwidth consumption. With
the AOI-API however, it makes more sense to be able to, for instance, shrink the radius
of a circle-shaped area to reduce the bandwidth in this way. Other interesting operations
could be lowering the LOD for a specific area or disabling a complete InterestDefinition
or single AreaDefinition. This means it makes more sense for the leaf nodes to represent
a single InterestDefinition instead of a single network stream (as an InterestDefinition can
contain multiple different network streams). This makes the bandwidth shaping trees more
comprehensible and logical to create and manipulate in our scenarios. However, the NIProxy
did not directly allow for this special usage and we had to create our own leaf node classes to
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provide this new type of behaviour.
Besides this, having a leaf node per stream type per user is not very scalable. For example,
if there are 50 players in our AOI, each with a position stream, there would be 50 leaf nodes
in our tree. In addition, every time a user enters or leaves the AOI, the tree would have to
be updated, which requires additional processing power and memory. In the original NVE
example [91], this approach is taken, but for a very low number of users and it was not tested
for performance. It makes more sense to just have a single leaf node for the entire AOI where
the different streams attribute to an aggregated bandwidth usage for the entire AOI, instead
of operating on a per-player and per-stream basis. This gives us less fine-grained control
possibilities in exchange for a much simpler representation and serious performance and tree
maintenance gains. In addition, it is unlikely that the adaptation of a single position stream
of the 50 users would lead to much bandwidth usage difference in this larger-scale setup. It is
better to, for instance, change the LOD for the entire AOI to get a larger and more directly
measurable bandwidth adjustment.
Lastly, the NIProxy’s bandwidth distribution scheme makes heavy use of predicting how
much bandwidth a particular situation will use. For instance, we can very accurately predict
how much bandwidth a transcoded video with a certain codec and resolution will use. The
NIProxy can then use this knowledge to decide to which quality level it should switch to when
the available bandwidth suddenly changes. For the AOI-based approach, this is a lot more
difficult. Firstly, in a fast-paced game, it is likely that many objects will enter and leave the
AOI in short intervals. Therefore it is difficult to predict what the bandwidth usage of a given
configuration will be, even if we have the measurement for the current frame. In addition to
this, it is difficult to predict how a certain configuration change will actually influence band-
width usage. For instance, we can shrink the radius of a circle shaped AOI to half its size.
However, this will not necessarily mean the bandwidth usage will also be reduced by half. If
most of the players are close to the circle’s center, the actual bandwidth change might even
be 10% or less. This means we have to constantly re-evaluate our actual bandwidth usage
and take further actions to try and get the desired bandwidth usage. This also means that it
can possibly take much more time to arrive at a steady bandwidth distribution than with the
original NIProxy experiments. It furthermore implies that serious spikes in the bandwidth
usage are possible, which might lead to exceeding the available bandwidth, with bad side ef-
fects as a consequence (e.g., packet loss and increased delay due to overloaded network links).
One possible solution would be to be very conservative and for instance set the distributable
bandwidth budget to just 60% of the actually available bandwidth. This will prevent spikes
having detrimental effects (as they are absorbed by the unexploited bandwidth), but also
makes for non-optimal, non-complete bandwidth usage.

Another conceptual issue was that, in the original experiments, every NIProxy user had his
own bandwidth shaping tree that worked separately from the other users. The available band-
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width for that user was set at the root node of his tree and the calculations affected the nodes
to obtain the traffic shaping. For ALVIC-NG however, it would be interesting to be able to
give certain users more bandwidth than others. This could be achieved by just defining 1 huge
bandwidth shaping tree where the single root node represents the total bandwidth available
to the server. This root node’s children would then be the nodes that represent a player
(the separate player trees are thus subtrees of the main tree). Thus, by using for example
a priority node for the main root node, we could make sure that some players receive more
bandwidth than others. This approach can be interesting in non-entertainment applications
where certain important meetings/interactions need absolute priority or for quality of service
provisioning.
The main problem here is that the root node would represent the server’s total available band-
width, while we also need to account for the bandwidth of the clients. For example, assume
the server has a capacity of 5000 Kb/s. Say we have 5 clients; each would be allotted 1000
Kb/s from the server if everyone had the same priority. However, one of those clients could be
connected through a slow mobile link, with a maximum downstream bandwidth of 500 Kb/s.
This means we would waste 500 Kb/s that could possibly be used for other clients. Thus, we
need to not only be able to account for changes in the available server-side bandwidth, but
also the client-side bandwidth, and make sure excess bandwidth is redistributed. There was
originally no direct provisioning in the NIProxy framework to deal with these two separate
types of bandwidth constraints, so we had to find a way around this limitation.

These practical and conceptual factors indicate that the NIProxy is much more difficult to
use in the ALVIC-NG setup and use cases than it is in the original NIProxy experiments. It
was interesting to see if it could be used at all for these purposes and which of these factors
would have the biggest impact. In the next section, we discuss the choices made in our
implementation to address the discussed problems and try to use the NIProxy as dynamic
bandwidth shaping framework for ALVIC-NG.

6.2.2 Practical use of the NIProxy

As we are using the NIProxy in a completely new context, it is normal that some parts will be
unusable, while others will require adjustments. Our difficulties should not be seen as direct
criticism on the NIProxy project but rather stem from this entirely new context. This section
aims to explain some of our encountered challenges in this regard.

Code approach

The interest to use the NIProxy as a part of the ALVIC-NG processes instead of as a separate
entity led to the necessity to separate out large parts of the more high-level classes and
implementations. This includes most of the NIProxy packet processing chain, Bandwidth- and
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StreamManager and the multimedia service subsystem. In essence, only the classes used for
creation and maintenance of the bandwidth shaping trees was used as-is, in addition to some
of the smaller utility libraries. Even though this allows us to use the most important parts of
what we need for our experiments as a library in ALVIC-NG, it still does not circumvent the
heavily inheritance based architecture and string-parsing based tree manipulation. We briefly
considered implementing a new system to provide the same functionality but via a simpler
API and with higher usability. However, due to time constraints and the sheer amount
of complexity in the system, we decided to keep the existing codebase and rather provide
wrapper classes with convenience functions to more easily invoke the functionality.
In addition to this, we made our own implementations for the Bandwidth- and StreamManager
entities, re-using some code of the original versions but adjusting it to our specific needs and
making up for the lack of a stand-alone NIProxy entity.
An important consequence is that we sadly were not able to retain the extensive service
subsystem in its current form. One of our original motivations for the use of the NIProxy was
that we would get options for video transcoding and FEC protection “for free” through the
existing implementations, which could be interesting for more serious NVEs. We do think
that these implementations could be re-used within ALVIC-NG and our adaptation of the
NIProxy quite simply by writing some intermediate code and taking care to properly translate
the concepts from the NIProxy main use case to the ALVIC-NG scenarios. This is however
left as future work and is not part of our implementation.

Conceptual approach

Our decision to re-use the bandwidth shaping tree implementations instead of making our
own version meant that we would need to find a way to make a leaf node represent an
InterestDefinition rather than a single network stream. This makes it easier and more logical
to construct trees and in addition removes the need to have a leaf node per-player and per-
stream. In practice, this was not as difficult as we first imagined. For this, we made smart use
of the concept of a discrete leaf node. This type of node represents a stream with a number of
discrete quality levels. The simplest instantiation is a node representing a stream with 2 levels:
zero and one, to turn the stream on or off respectively. In this most straightforward approach,
there is hence no notion of multiple quality versions. Another possible representation is a video
stream with 4 levels: 1080P, 720P, PAL, off. At any time, only one of the levels is active and
the tree chooses the level with the most appropriate bandwidth usage with respect to the
current bandwidth constraints.
We can then represent the different adjustments to a given InterestDefinition as a list of
discrete levels in a leaf node. For instance, level 1 corresponds to the original InterestDefini-
tion, level 2 has a lower LOD for a specific AreaDefinition, level 3 has a smaller radius for a
circle area, level 4 disables the video transmission, etcetera. When the available bandwidth
changes, one of the levels can be chosen as a possible solution. However, as we have discussed,
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we cannot be sure of the concrete bandwidth influence of our decision (as opposed to the video
quality levels, where we were very sure).

There are multiple approaches to try and alleviate this problem. Firstly, we could calculate
the bandwidth usage for all the levels by actually checking the traffic for all the different
InterestDefinitions, even if they are not actually active at that moment. This would give us
an idea of the bandwidth usage for that specific option, especially when we would use an
historical average of for instance the five most recent measurements. This does not help for
a lot of entities suddenly entering/leaving the AOI, but does make it much more probable to
select an appropriate option for a given bandwidth change. The downside is that it uses more
processing power as all the options have to be calculated, even though they are not used.
Some smart optimizations here help reduce this overhead however. For instance, adjustments
to LOD or InterestFlags do not require a recalculation of shape containment (arguably the
biggest performance factor) as they only influence the packet size. Only shape changes would
have to be recalculated. If we take care not to include these in high numbers or for example
only calculate them for larger intervals (i.e., once every 3s instead of every 500ms), this
overhead can be kept low too.
A second approach would be to iteratively adjust the current option based on measurements.
When the bandwidth changes, we choose the option we think is most appropriate (for instance
shrink the radius by half) and we wait until the next bandwidth measurement to see if it indeed
had the desired effect. If not, we can decide to try a different option or even to combine options
to get a more complex behaviour. This approach reduces the need for extra computations as
only the bandwidth consumption of the current configuration has to be calculated (which we
have to do anyway to perform the filtering). However, it induces a possibly big delay to find
the most optimal option for a given situation. If the measurement interval is too big, it can
take multiple seconds for the correct option to be found, during which the bandwidth can be
severely under- or overused. This method could be optimized by doing lots of simulations
during development to determine the optimal configurations and a heuristic of how much
they will typically change the bandwidth. This heuristic can then be used to come to the
best option much more quickly, but it requires added development time and effort.
In a more extensive implementation, we would opt for a hybrid approach that combines
both methods. Depending on the performance parameters of the server, we could switch the
calculation of all options to the iterative approach when the performance begins to suffer.
We could then use any calculations made in the first approach to serve as a heuristic for
the second. This allows us to trade performance for bandwidth fidelity when needed, while
possibly reducing the need for development time based heuristic construction (however a
combination could of course be made and would be advisable for extra fidelity).
In our implementation, we opted to use only the iterative approach without advanced heuris-
tic calculations. This is mainly because we had severe time constraints and this approach
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was a lot easier to implement than the first method. Because we mainly used very controlled
simulations and game logic (see the next chapter) for our experiments, we could provide a
good heuristic and option balancing through design. This helps prevent severe bandwidth
anomalies in the experiments, making it easier to evaluate this method when used with a
fitting heuristic.

Figure 6.2: Bandwidth shaping tree that spans the entire proxy server. Individual player trees are
coupled to a central server root node.

The other main conceptual issue was that we wanted to connect the different bandwidth
shaping trees for the players into one larger tree to provide high-level bandwidth distribution.
This also turned out to be easier than originally estimated. The proposed solution is to
create a new type of intermediate node that can take two different bandwidth constraints
as input and uses the smallest one as the actual budet (i.e., min(server allotted bandwidth,
client available bandwidth)). This can be seen in figure 6.2. If the client bandwidth is smaller
than the portion given by the server, the excess bandwidth can be re-used by other clients
through the built-in feedback and redistribution implementations of several of the internal
node types. Thus, if we just use this new type of node as the root for each player subtree,
we get the required behaviour. The only drawback of this approach is that we would have
to provide this functionality separately for each type of intermediate node (i.e., percentage,
priority, weight, ...) because of the inheritance-based architecture.
In our implementation we decided not to implement this option as it would be simple enough
to add later and did not offer a lot of extra functionality for our envisioned experiments.
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Conclusion

In hindsight, the bandwidth shaping part of the NIProxy framework was a lot easier to adapt
to our needs than we had originally anticipated. Most of the conceptual issues were solved by
introducing a new type of node for the tree, where we could often base the implementation
on existing source code.
The main problems were the implementation details, that made creating these new types of
nodes more of a hack or “smart use” of concepts earlier used for something entirely different.
In addition, they made it difficult to retain many of the other aspects of the NIProxy besides
the bandwidth shaping tree part.
This all shows that the ideas and concepts behind the NIProxy can be used for all kinds of
traffic shaping approaches and thus that the framework is flexible and robust and forms a
valuable inclusion into ALVIC-NG. A new, more general implementation can help alleviate
most issues we have seen here.

6.3 Integration into ALVIC-NG

Now it is time to discuss how we can properly integrate the AOI-API and NIProxy into
the existing ALVIC-NG framework. First, we discuss where in the network we can possibly
integrate the filtering and motivate our choices. After this, we discuss how our implemen-
tation helps provide low-coupling between the existing ALVIC-NG systems and our filtering
implementation.

6.3.1 Where to perform the filtering?

There are roughly four places we could incorporate the NIProxy: inside the internal logic
servers, inside the proxy servers, inside the client program or as an extra server somewhere in
between these three entities. All of these positions have their advantages and disadvantages.
To determine the optimal location, we should first elaborate on the common traffic flow in
a 4-tier system like ALVIC-NG. It is so that the users generally only send a relatively small
amount of data to the servers, containing their commands. The traffic from the servers to
the users on the other hand is typically much larger. Not only does the server have to send a
(limited) copy of the world state to each user, it is also responsible for sending full state when
a user enters a new zone, and possibly also user generated content. Most of this traffic will be
generated on the logic servers and is then sent to the proxy servers, who in turn deliver it to
the users. Figure 6.3 gives an overview of the traffic patterns and how the different possible
placements in the network can influence these patterns.

Each of these possible deployment locations has its advantages and drawbacks. The best
place would be in the logic servers, as these will have to send and receive most of the traffic.
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Figure 6.3: Four possible locations of filtering in the ALVIC-NG network.

This placement can be seen in figure 6.3, point a. If the filtering can be performed at this
point, most of the unnecessary traffic to the proxy servers will be eliminated and by conse-
quence also the unnecessary traffic to the users. The biggest drawback is that the filtering
will require a considerable amount of processing power. Since the logic servers are meant
to calculate the updates to the game state and perform things like physics simulations and
gameplay checks, they will already have high processing workloads. Adding the filtering here
would mean that every server could only manage a relatively small zone, increasing the num-
ber of zone-crossings and by consequence all the traffic that is needed for those zone-crossings.

Another possible location is at the user side. This placement can be seen in figure 6.3, point
b. This will effectively help manage the user’s upload traffic, which can be interesting for
networks with low upload speed. However, this would be the only thing the filtering would
provide: the downstream bandwidth consumption behaviour would remain unchanged. There
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is also the problem that there are only a few methods that can be effectively used for limiting
the data a client has to send, as we have discussed before in chapter 4. For instance, zoning is
not possible and neither is an extensive form of AOI. Only Dead Reckoning will be usable and
this will limit the options of the server to provide other players with more detailed information
about the player. On the other hand, as most clients will only run a limited simulation on
their local computers, there will be typically excess processing power available to perform the
filtering. This would bring the system closer in abstract concept to a P2P setup, where every
new player adds extra resources to the NVE, in this case to perform the filtering.

Another option would be to perform the filtering in between the logic and proxy servers,
or in between the proxy and the user, as part of a separate entity. This placement can be
seen in figure 6.3, point c. This adheres more to the original concept of the NIProxy: to be
a network intermediary. A deployment in between the logic and proxy servers would help
to limit the traffic bidirectionally, both relieving the logic server of some of its pressure and
limiting the updates the proxies receive and thus have to send to the users. This would seem
like a good solution, but it would require a new type of server in an already complicated
networking architecture. It would be difficult to manage and deploy these extra servers, to
make sure that all connections are properly set up between the different tiers and to provide
failsafe mechanisms in case one of the servers goes down. Furthermore it would require extra
hardware, increasing the cost of NVE deployment, and it would require much game-related
into to be present on the NIProxies as well, increasing implementation complexity.

The final option is to integrate the filtering into the ALVIC-NG proxies. This placement can
be seen in figure 6.3, point d. This way, we still have the basic purpose of the NIProxy as
intermediary, but this time between the logic servers and the user. As this is already the
basic function of the ALVIC-NG proxy as well, it makes a lot of sense to incorporate the
NIProxy at this place. The ALVIC-NG proxy primarily serves as a connection point for the
users so that the logic servers do not have to manage a lot of connections and so that any
topology change in the internal network is hidden from the users. Because of these limited
responsibilities of the proxy servers, they have lower processing requirements and can serve a
large number of users at the same time. This means that there is the option to trade some of
this processing power (and also users per proxy) for filtering possibilities in the proxy servers.
Furthermore, this still allows the possibility to limit traffic to both the logic servers and the
users, which was one of the main advantages for the previously discussed approach. Because
this placement is so logical, we have chosen to integrate the filtering into the ALVIC-NG
proxy servers.

This approach also has some disadvantages however. As we have said, there will be a trade-off
between the number of simultaneously supportable users and the complexity of the provided
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bandwidth management. If the number of users which a single proxy can support becomes
too low, the primary advantages of the proxies in the network are lost and we will still need
extra hardware to support the filtering. This means that the filtering implementation has to
be maximally efficient to be able to serve as many users per proxy as possible.
Secondly, there is the problem that we are focussing primarily on the bandwidth stream from
the proxy to the user. As we have said, the traffic from the users to the logic servers (and
thus also from the proxies to the logic servers) is relatively small and difficult to filter. It is
the traffic from the logic servers to the proxies and from the proxies to the users that will be
large, especially if the world is very dynamic. When we perform the filtering in the ALVIC-
NG proxy, we can effectively manage how much of this traffic actually reaches the user, but
there will still be a large amount of (potentially unnecessary) traffic from the logic to the
proxy servers, which cannot be filtered. To add to this traffic, proxies might serve multiple
users who are not necessarily close to each other in the virtual world. This means a proxy
will potentially receive updates from a number of different logic servers (which each manage
a different zone) and will hence effectively receive many data streams; a lot of logic-to-proxy-
server data will be filtered and will hence not reach the user, which implies that this data is
actually being sent unnecessarily.
This traffic is generally not a big problem when the logic servers and proxy servers are located
close to each other and connected via very high-speed links, as is usually the case in commer-
cial systems. It only really becomes a problem if the proxies would be placed far from the
base of the network and are connected to the logic servers through slower links. If we would
need to filter this internal traffic, we would possibly need other methods than we would likely
use to limit the traffic on the sometimes called “last mile” between the proxy and the user.
Furthermore, it would also require filtering implementations and computations on the logic
servers.

For these reasons, we have decided to focus on reducing the traffic between the proxy servers
and the users and not between the logic and proxy servers. Our filtering implementation could
possibly be used for reducing this latter type of traffic as well, but for the rest of this text we
will assume the proxy and logic servers are connected through a high-speed network with suf-
ficient bandwidth to support the logic-to-proxy traffic. This means we can also always be sure
that the proxies will have all information about the zones its users are in, which will make the
filtering implementation easier as we just have to filter a complete set of data, instead of an al-
ready incomplete set, which would be the case if the logic servers would also perform filtering.

Finally we should mention that even though we have opted for a single filtering position in
the network, it is equally possible to perform the filtering on multiple places at the same time.
For instance, we could do filtering on the client side for Dead Reckoning calculations, on the
proxy servers for limiting the traffic that goes to the user and another, possibly lightweight
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implementation on the logic servers to filter the largest chunks of unnecessary data. Given the
very loosely-coupled nature of our implementation (see the next section), these extra filtering
locations can easily be added later with small effort.

6.3.2 Separation via plugin-like system

Regarding the actual integration into the ALVIC-NG proxy, we decided to completely separate
the filtering behaviour from the core systems by using a plugin-like system. This allowed us
to work independently on the filtering implementations while the other system of ALVIC-NG
could evolve without being hindered. This also makes it possible to completely enable or
disable the filtering at runtime, by just setting the plugin to (non-)active.
The concrete implementation is through the FilterManager. Every network packet is sent
through a list of different filters, which can decide to block, pass or adjust the contents of the
packet before passing it on to the next filter. Only when the entire list of filters passes the
packet, it is sent to either the logic server or client. The AOIFilter maintains an NIProxy
bandwidth shaping tree per user, checks whether a packet is in the user’s AOI and can change
the packet contents, for instance to adjust for different LOD levels.

The main drawback of this highly separated integration is that it is more difficult to use the
AOI-API’s area definitions in the zoning system directly. If a user is close to the border of
his current zone, the ALVIC-NG proxy will automatically connect to the logic servers of the
neighboring zones in order to obtain their info. This is currently done using a very simple
circle-based AOI: when this circle intersects a certain zone, its data is requested. The eventual
goal is to use the InterestDefinitions we use for filtering to also check which zones we should
get data from.
This also stems from the fact that we have added the possibility to have multiple InterestDef-
initions per user, where ALVIC-NG was built to only deal with one object/location/AOI per
user. Changing this would have far exceeded the scope of this thesis and was left as future
work.

Finally, we would like to make a small remark on the current implementation of how ALVIC-
NG communicates world state. Normally, the logic servers would receive the user input,
update the world state, and send this world state to the proxy servers for distribution. These
world state packets would contain information on a number of objects in the scene. In the
current implementation however, the logic servers act just as an echo server: every packet
they receive is sent as-is to the interested proxy servers. This mimics a server that authorizes
every user movement and does not check game logic or performs physics calculations. This
for instance means we do not deal with aggregated world state packets but with smaller
PositionPackets. This makes it easy to perform the filtering on a per-update basis, but this
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situation is not very realistic for real game systems. It also means we are sending a lot more
smaller packets from the logic to the proxy servers than would normally be the case with the
larger, more aggregated world state packets.
When the logic server changes its behaviour, the implementation of the filtering will also have
to be adjusted. World state packets can contain information on multiple objects, including
some which might not be in the considered user’s AOI. The filtering would then need to be
able to re-assemble world state packets based on the user’s interest, as the packets coming
from the logic server have to be applied to the proxy’s world state, after which a new packet
has to be constructed for the client. This can increase the complexity considerably. For our
tests however, this world state setup does not directly influence the evaluation of the AOI-API
or even NIProxy usage. It does have some impact on CPU consumption and the actual sizes
of the packets will probably be quite different in a more realistic implementation, but the
relative bandwidth gains should be obvious nonetheless.

6.4 Simulating client behaviour

In this section we first discuss how we automatically simulate client behaviour for thousands
of clients. Afterwards, we look at some implementation details that make the deployment of
a large number of clients possible.

6.4.1 Behaviours

The simplest way of testing a game would be to set up a server process on a server machine
and run a client application on your local computer and perform the necessary interactions
yourself using mouse and keyboard. When testing a multiplayer game, multiple developers
might run their own client applications on different computers. However, this approach
requires the developers to invest time for tests and it is impossible to make tests that are
exactly the same every time they are run, which might be interesting for objectively checking
code change impact.
In addition, ALVIC-NG is a system for large-scale networking environments. This means
we need to simulate thousands of individual clients, so it is impossible to rely on developers
testing everything “live”.

A better approach to testing is to devise an automatic system that can run any number of
instances (clients) and that can simulate independent behaviours for each of them. A way of
simulating these behaviours would be to record real player movement and then later play back
that movement from a file. This way, we would only need developers or playtesters to play
the testing scenario once, after which we can automatically replay it. However, this method
is not very flexible, as a client will probably not perform the exact same actions as another
client in a real-life situation. This means that we need a separate recording for every client
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as we cannot simply use the same recorded movement for more than 1 client. For a 32 player
FPS this is quite possible after a large playtest with the entire team. But for thousands of
players, this is a lot more cumbersome.
A more interesting way is to use Artificial Intelligence (AI) techniques to try and obtain real-
istic movement. Here, no recorded movement is used to simulate a client. Instead, algorithms
figure out what the most likely behaviour would be, based on a number of clues, such as world
geometry or other players’ positions. This means that, with one algorithm, we can simulate as
many clients as we want, as the algorithm will adapt itself to different situations and starting
parameters automatically. These algorithms often work with random numbers and as such a
pseudo random number generator with a certain seed can make sure these behaviours are also
exactly the same across different runs, as was the case with the previous method. The biggest
drawback here is that to obtain realistic player movement, we would need a very advanced
AI algorithm.
Of course, a hybrid of the two methods can be used where we start with recorded movement
and introduce random deviations with AI to make recordings more re-usable across different
clients. However, this would also require a lot of effort to get a realistic system.

For our experiments, we decided to use various simple AI algorithms to simulate player
movement, as they are adjustable, easy to use and require little up-front work. As discussed,
it can be argued that these algorithms do not produce realistic player movement. This is
further discussed in the next chapter where we look at the results. For now, we limit ourselves
to the discussion of the various implemented behaviours.
The simplest behaviour makes a client move in a circle around a given center point at a
certain speed. This has very few ties with normal player movement but is very tweakable
and requires few CPU resources for calculations. This is normally only used for quick tests
that are not tied to a specific experiment. It does have the interesting property that the
behaviour repeats itself. The clients keep moving in the same circles, so after they complete
their 360 degrees, the same cycle starts over. Over long enough periods of time, this leads to
a periodicity in the events in the world, which can be useful for seeing how a system holds
up during recurring events and stress testing.
The second type of behaviour is flocking. The original boids research paper [?] describes a
simple yet elegant AI algorithm to simulate flocks of birds. Each individual animal evades ob-
stacles, stays within an optimal range of other birds and aligns itself to the general movement
of the flock. These simple rules make for a good simulation of group-based player movement
and they have been used in previous ALVIC-NG research papers [?, ?]. This behaviour was
used for most large-scale experiments.
The third type of behaviour started out as a straightforward purely random movement, where
the client would change direction every couple of seconds. This did a good job of being purely
random and is thus theoretically a semi-usable approximation of player movement, but it was
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not very tweakable or controllable. This behaviour was reworked to a waypoint behaviour,
where the client moves in the direction of a given waypoint. By randomly moving the next
waypoint, the same random behaviour can be obtained. However, we could also use lists of
waypoints that are not random but controlled by a use case designer. This way the behaviour
can be used to meticulously direct client movement. This in turn can help to simulate player
movement between important landmarks in the game, for example a player moving from one
quest area to another in an MMORPG. The waypoint behaviour can easily be combined with
the flocking behaviour to make sure the clients follow a given path or a random target, but
still exhibit the flocking rules.
These behaviours all control the position of the player in the world, but not necessarily the
rotation. For this, we have also included some smaller options. For instance, a client can
be made to change his rotation to look in the direction of another client or the rotation can
fluctuate to simulate a player looking around.

Using these behaviours, we can design a wide array of different experiments and test cases.
The exact contents will be discussed in the next chapter, but most test cases are similar in
setup. Every client is given a certain start location and a behaviour is attached to it. Different
clients in the same test case can have different simulations affecting them.
For the larger scale simulations, we use the random versions of the behaviours, where most
parameters are chosen at will from for example a range of options. For the more specific
experiments, very fine-grained behaviour can be defined to create very specific environments.
We also included a way of changing parameters and even behaviours during the runtime of
the system, so that we can simulate events in the world at given times.

6.4.2 Many clients in one process

In the implementation of the client simulations we used a clever trick to make everything
more manageable. The behaviours enabled us to automatically simulate thousands of clients,
but this would not matter much if we would still need a separate computer for each client.
It would be possible to run multiple client processes on a single computer, but this has a lot
of overhead and makes it a lot more difficult to control cross-client behaviour. It would also
take a long time to start and later stop all the independent client processes.
Thus we decided to simulate multiple clients through a single process. Every client still has a
separate socket connection to the server, but many aspects of the process are shared between
them, for example the GUI, the currently running simulation and world state.
Without this setup, development and testing would have been more cumbersome and much
more difficult to debug. It also makes it a lot easier to run experiments on a single local com-
puter (where this computer runs all servers + the client process). Where we would normally
have problems running 100+ processes on a limited virtual machine setup on a medium-
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performance home computer, our approach makes local testing possible, saving deployment
time to the server cluster and thus speeding up iterations.

6.5 Graphical user interface

The servers and client processes of our implementation can be run perfectly as console ap-
plications. In fact, this is the method used for deploying and testing our experiments on a
larger server cluster, see the next section.
However, especially for debugging purposes, console applications are often difficult to work
with, as you only have textual output to go on. A graphical user interface (GUI) can offer a lot
more options and is a lot more powerful in this regard. We chose to implement an extensive
GUI system that provides many graphical debug options and runtime parameter tweaking.
This GUI system is completely separated from the main implementation and primarily uses
polling and object inspection methods to be able to represent the application state. A simple
C++ #define directive can be used to compile the systems with or without GUI support.

Historically, the GUI was exactly the same for both the Proxy server (where our filtering
integration into ALVIC-NG took place) and the client process. Its main function was to
show a top-down overview of the game world with images representing the individual clients
and their position/orientation in the world. Next to this, the GUI also rendered all the
AreaDefinitions. This makes it a very powerful tool for testing and debugging new shapes
and checking if the calculations to see if an object was inside a specific shape were correct.
However, after some time in the project, the GUIs started to diverge, as both proxy server
and client required different functionality and debug data to be shown. The most important
adjustment was to no longer show any AOI data on the client side. In the earlier imple-
mentations, we kept the clients in sync with what the proxy server was doing with the AOI
definitions, but when we started integrating the NIProxy and dynamic AOI adjustments, this
became too cumbersome. From then on, the client GUI shows the viewpoint on the world-
state for a single client, where the client can be switched at runtime. The proxy server GUI
shows the complete world state and we can choose for which user(s) we want to show the
AOI definitions. This difference can be seen in figure 6.4. On the client side, we only see the
world state for a single selected client. Red entities indicate other users that have been out
of the current client’s AOI for less than 2 seconds.
The full GUI for the proxy server side can be seen in figure 6.5.

Next to this main function of graphically showing world state, both GUIs offer some interesting
extra functionalities. Through the proxy server GUI, we can enable/disable filtering, see the
current bandwidth usage for each client (textually and plotted in a graph) and see a complete
tree of AOI definitions with relevant parameters. An interesting addition would be a visual
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Figure 6.4: Comparison of the different GUI views on the world.

representation of the bandwidth shaping trees of the NIProxy, which did not make it in due
to time concerns.
The client GUI offers the option to pause the current simulation so we can check world state
at a given time. It also gives us statistics on average round-trip-times to the server for each
client and allows us to directly control a single client (or group of clients) through the use of
keyboard and mouse (as if it were a normal GUI for a RTS game for instance).
Some of these extra functions and how they are visualized can be seen in figure 6.6.
Through these options, the GUIs allowed us to visually debug and test various elements of
the implementation and thus catch and repair actions very quickly. However, they also came
with the drawback that a lot of extra effort had to be put in their development. For example,
the rendering of a wedge shape using the Qt graphics library [?] proved quite challenging and
in need of serious debugging of its own. This is one of the main drawbacks of using a more
graphical way of debugging: if there are bugs in the graphical representation, you might draw
the wrong conclusions about the underlying data it is supposed to convey.
All in all, we can see the added development cost of a GUI as a good investment, as it will
usually pay itself off in later stages of the project, as was also true in our case when using it
to create and test our experiments before deploying them to the server cluster.

A last advantage of the GUI is that it makes the experiments a lot more understandable and
tangible to outsiders. It is easier to explain what a given algorithm or experiment does if you
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Figure 6.5: The GUI for the proxy server viewpoint.

can show it to the interested people graphically. In addition, if they have a good conceptual
overview of the situation, it is often easier to understand or automatically deduce the more
intricate implications of a given system. This is why we took our GUI a step further and also
tried to make it visually attractive and place it into a recognizable context, as this is an area
were we often find other research projects lacking.
IT students or researchers are rarely graphically talented and most research projects will
feature unattractive ad-hoc graphics that are just enough to make the point, if even that.
While fellow IT aficionados might have an easier time understanding the meaning of 100 green
and red moving circles on a screen, people outside our area of expertise will have a harder
time imagining that those are supposed to represent separate players in a World of Warcraft
type environment, viewed from the top down. While one can argue that most research is not
intended for outsiders, we believe more efforts should be made to make research accessible to
a broader public, and better graphical representations can go a long way in aiding this. In
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Figure 6.6: Extra functionality in the proxy server and client GUIs.

addition, a more contextual representation of the world can also benefit insiders, as seeing
groups of tanks flocking together or watching a sniper following a distant target is still a lot
faster to grasp than simpler visuals.

6.6 Deployment and result analysis

6.6.1 Deployment to a server cluster

As mentioned in the previous sections, we had two main ways of testing and running our
implementation during this project. One was to run everything local on one machine with
GUIs. This is mainly for debugging purposes and to enable quick iterations. Once the imple-
mentation was found working locally, we would move to deployment, testing and eventually
result extraction on a larger cluster of servers. Depending on the experiment, from 3 to 9
servers were used, where each server hosted a single process, i.e. either a region management
server, a logic server, a proxy server or a client process (that in turn simulated many clients).
This setup is close to what the setup would be in an actual deployment situation for a com-
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mercial system, except for the client processes, and allows for a good basis for our experiments.

As we also discussed, all the processes could run perfectly without a GUI, so that was not
a problem when running the setup on the cluster. The first challenge here was to transfer
the latest files and dependencies to the server machines. Both locally and on the servers, we
used the same Virtual Machine image of an Ubuntu linux distribution to remove the need to
recompile the code remotely on the servers and enabling us to just copy the files. For this
we created a script that uses the rsync command to recursively sync all needed libraries and
binary files to the servers.
The second challenge was then to quickly run the experiments on the servers. We could use
ssh to connect to each of the servers individually and start the correct processes by hand, but
this would be cumbersome, especially seeing as we were planning to run a lot of experiments.
We decided to make use of the PHP scripting language to create a script that, through making
ssh connections automatically, starts the necessary processes on the different servers in the
correct order. It also pipes the runtime output of all the processes back to the local machine
for easy monitoring. This process can be seen in figure 6.7. At the end of the simulations,
the script copies all the outputted log files from the servers to the local computer for further
processing (see the next subsection).

Figure 6.7: The various steps involved in automatically running a simulation on the servercluster.

The use of these scripts allowed us to very quickly deploy and test the implementation on the
server cluster, where the biggest time overhead was actually using the syncing script. Once
the servers had the latest versions, running a simulation was just as easy as starting a local
test case. Good tools like this really help shorten development time in the long run, but as
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was the case with the GUI, they require some up-front investment of time and effort to create
them. For this, we would like to thank Jimmy Cleuren, who developed the basic versions of
these scripts for his own research project on ALVIC-NG [64], to share his experiences and
allow us to build upon and expand the functionality.

6.6.2 Result data gathering

As discussed, we had an extensive tool suite to deploy the experiments to the server cluster.
However, those experiments would be useless without output data from which we can extract
objective results with which we can answer our research questions. Once more, we leave an
in-depth discussion of the contents for the next chapter, but here we discuss the ways we
might obtain the needed data and how we chose to do it.
As we will see, the main things we wanted to research were bandwidth and CPU usage. The
thesis focusses on bandwidth scalability, so that speaks for itself. The CPU data is important
because we can hypothesize that the AOI implementation has a severe impact on CPU usage
and thus also on the amount of concurrent clients a single proxy server can support, which
is an important parameter in the viability of the ALVIC-NG system for real-world deployment.

Bandwidth

There are plenty of options for measuring bandwidth. One of the most versatile and com-
monplace options is to use the linux utility tcpdump, which allows you to make a filecapture
of all packets sent over the network. This gives a very thorough set of results. However,
tcpdump works at the lowest level, only dealing with raw packets. For our experiments, we
are only interested in the positiondata ALVIC-NG uses, not all the other data that is being
sent (for example control data or communications for zoning). Using tcpdump, it would be
more difficult to eliminate these extra packets. In addition, it would also be more difficult and
cumbersome to determine how much bandwidth had been used by every client individually.
There are also other properties of tcpdump that make it less suited for our purposes. In
general, it is too low-level and it provides too little context for the more high-level analysis
we want to perform.
This is why we decided to go with our own implementation, embedded into the ALVIC-
NG proxy server. We already had to do bandwidth measurement to be able to provide the
bandwidth shaping techniques, so it was a small step to write those measurements to an
output file. This allows us to capture only the data we are manipulating (removing any
noise) and this per user. It also allows us to easily write extra metadata, such as the moment
when a certain change in the game logic happens, so that analysis of the files becomes easier
afterwards. Our implementation is a lot less fine-grained than tcpdump, only writing the
average bandwidth consumption per second. However, as our bandwidth shaping also only
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works every second, this loss of detail does not cause us to loose significant data points and
actually makes the data easier to interpret afterwards by focussing on the overall fluctuations
instead of the tiny details.
The proxy server writes a single log file per user, outputting a tuple of (timestamp, number
of objects in AOIs, packets sent, bandwidth used) every second.

Listing 6.2: Part of a bandwidth log file

time , timems , ob j ec t s , packets ,bw
. . .
0 : 42 :48 ,42048 ,5 ,100 ,35100
0 :43 :63 ,43063 ,5 ,100 ,35100
0 :44 :3 , 44003 ,5 , 95 ,33145
0 :45 :5 , 45005 ,5 , 98 ,34398
0 :46 :19 ,46019 ,5 ,97 ,34247
0 :47 :18 ,47018 ,3 ,100 ,24276
0 :48 :25 ,48025 ,1 ,100 ,7232
0 :49 :31 ,49031 ,1 ,100 ,3020
0 :50 :35 ,50035 ,1 ,100 ,3020
. . .

CPU usage

To obtain a measurement of the CPU usage there are many options as well. Here we could
also use a standard linux command, “top” for example. This gives us an overview of all
kinds of statistics for each running process. This output would require extra parsing however.
Another approach would be to measure the CPU usage in the process itself through a C++
API. However, it is difficult to find a good cross-platform solution to this.
A more versatile option would be to use the Simple Network Management Protocol (SNMP)
protocol. SNMP is an extensive toolsuite to obtain runtime information on a huge number of
parameters of machines running in a network. SNMP can for example also be used to capture
bandwidth usage. For our experiments, SNMP was already installed on the virtual machines
(through previous work performed by Jimmy Cleuren [64]) so we tried to re-use this option.
The SNMP data that is sent out by the servers can be received on a local computer by the
program Cacti (http://www.cacti.net/). This is a very extensive browser-based tool to parse
and more importantly, visualize various SNMP data streams. However, because of the way
SNMP and cacti work, the smallest time interval for data capture is 1 minute, in which the
measurements are averaged. As most of our experiments only last for a couple of minutes,
this is not fine grained enough to extract our needed performance information from.
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We finally chose a less direct way of observing server performance. This can be understood if
we ask ourselves what the direct impact on a client is when the server CPU usage exceeds its
capabilities. Certain operations will be postponed to the next ticks and eventually to the next
second(s), which means packet processing times go up as packets stay in buffers for longer
periods of time. This in turn means that the so-called round-trip time for packets will rise if
the CPU usage rises (i.e. the user experiences lag). A simple approach to get an indication
of CPU usage and the impact it has on a client’s experience is then to capture the round-trip
times for all packets a client sends. This allows us to test the maximum number of clients a
proxy server can handle in a very contextual and high level manner: put an upper limit on the
round-trip time and slowly increase the number of connected clients until we hit that limit. If
we then perform an experiment with filtering and after that without, it is easy to check how
the filtering impacts the round-trip times and the “practical” CPU usage and how it impacts
the maximum number of clients connected. Note that this approach is only possible because
the logic server just acts as an echo server instead of creating new packets (as discussed in
more detail in a previous section). This way, we can just check on the sequence numbers,
which is quite easy. Should the logic server be changed, it might be more difficult to measure
exact round-trip times per packet.
The client process writes a log file per user, outputting a tuple of (timestamp, packet sequence
number, round trip time) for every packet received.

Listing 6.3: Part of a round trip time log file

time , timems , seqnr , roundtr ip
. . .
00 : 00 : 10 . 302 , 10302 ,198 ,25
00 : 00 : 11 . 314 , 11314 ,219 ,18
00 : 00 : 12 . 316 , 12316 ,238 ,27
00 : 00 : 13 . 325 , 13325 ,258 ,20
00 : 00 : 14 . 356 , 14356 ,278 ,30
00 : 00 : 15 . 362 , 15362 ,299 ,19
00 : 00 : 16 . 457 , 16457 ,320 ,23
00 : 00 : 17 . 475 , 17475 ,341 ,16
. . .

6.6.3 Result visualization and analysis

In the previous paragraphs we discussed how and why we obtain certain data output from our
experiments. But it is difficult to draw good conclusions from raw, textual data. As was the
case with the GUI that helps to better understand the world state, we also need a graphical
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representation for our results analysis.
The standard way of doing this is to generate graphs using Microsoft Excel or a similar
spreadsheet application that allows for importation of logfiles and can make various kinds
of visualizations from it (barcharts, piecharts, linecharts, etc.). This works well if all the
data is contained within the same file and if the graph is not too complicated. For our
data however, we had a single file per client, which often meant having over 100 files per
simulation. It would be possible to write a spreadsheet macro to automatically import these
files and format them in the tables, but this has been proven quite difficult and not very
powerful or flexible. In addition, we would like the ability to generate quite complicated
graphs, for example overlaying multiple datasets to see how they differ, and this in a dynamic
manner.
Because we had a lot more experience with PHP and other web technologies such as JavaScript
and HTML5, we decided to move away from the spreadsheet idea and implement our own visu-
alization suite. We use a couple of simple PHP scripts combined with the RGraph JavaScript
library (http://www.rgraph.net) to automatically read a complete directory of files, convert
the data from .csv to json format, and generate various types of graphs with it, as can be seen
in chapter 7. A simple HTML interface, as seen in figure 6.8, allows us to filter on specific
clients or to aggregate the results to an average. It also allows us to overlay different kinds
of data: for example we can plot the average bandwidth usage together with the number of
packets sent, to clearly see the correlations between those parameters.
These tools were easy and quick to implement and offer options that are completely tuned
to the data that we are trying to analyze. Trying to obtain the same output images with
a spreadsheet would have been possible, but much more difficult and time-consuming. As
demonstrated before in this chapter, sometimes it is good to invest some time and effort in
the creation of specific tools to further benefit the project down the road.
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Figure 6.8: The visualization tool allows us to overlay two different datasets and give them their own
vertical axis, limit their range and show their averages.



Chapter 7

Results

In this chapter we discuss our results of the implementation and the various experiments we
used to assess how well it aids us in limiting bandwidth consumption in networked virtual
environments.
The experiments and simulations were designed specifically to help answer a set of research
questions that adhere to common problems or pitfalls when using bandwidth limiting tech-
niques such as Area of Interest. These research questions are such:

• How versatile is the technique?
As discussed in section 5.3, not every bandwidth shaping technique is appropriate for
every game type or virtual environment. We chose Area of Interest because we theorized
it was still very usable in many situations. It is important to see how the technique
reacts in situations where it is traditionally less used and if it is still usable in these
situations and to which degree.

We also have to demonstrate the flexibility of the implementation through the experi-
ments. This holds for instance for the AOI-API in situations where we have multiple
objects per player or multiple Areas of Interest per player. For the NIProxy, this means
we need to discuss how the bandwidth shaping trees can be built to accommodate a
particular situation that was not originally considered in the NIProxy design.

• How effective is the technique in limiting bandwidth?
There are two sides to this question. Firstly, we can ask how big the bandwidth gains are
in a particular situation, i.e. how much difference does it make for the bandwidth usage
if we enable or disable bandwidth shaping. This can be quite easily tested by performing
the exact same simulation twice, once with and once without filtering enabled.

The second side is more complicated, as we can also ask how well the technique can be
used to enforce a particular bandwidth limit. In many cases, the maximum bandwidth
usage is determined by an external factor, for example the speed of the connection
between server and client. If the bandwidth shaping technique fails to stay under this

139
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bandwidth limit, it is in fact little better than if we would use no filtering at all. This
means the implementation needs to not only be able to make sure the limit is respected,
but also that it needs to be able to deal with situations where this limit suddenly
changes.

• How well does the technique retain consistency?
When using a technique like Area of Interest, it is not very difficult to adjust bandwidth
usage, for instance by shrinking a circle-shaped AOI so less objects are in it. However,
the real question is then: how does this affect the overall consistency of the world state
as seen by the user? For example, if we shrink the circle too much, certain objects that
we would expect to see will disappear, which can lead to deteriorating gameplay or loss
of interaction possibilities. This means we should not just look if the technique can
adhere to a bandwidth limit, but also how this affects the user’s view on the world and
if this view is at all times sufficient to allow expected interactions with the world.

Testing this consistency is a lot less straightforward, as it depends on the type of game
or environment. As such, we will approach this question in a less empirical manner, but
instead try to logically assess the impacts on player interaction and consistency.

• How does the technique affect the performance of the proxy servers?
One of the most important aspects of the ALVIC-NG architecture is the usage of inter-
mediate proxy servers to lower the load in the logic servers. However, this only works
well if the proxy servers are able to serve a lot of clients simultaneously. As the amount
of clients a proxy can serve is strongly tied to its CPU usage, it is important to look at
the impact of the bandwidth shaping techniques on this performance and how much it
limits the number of players a proxy can handle.

In addition, the NIProxy had not before been used on a large scale and its techniques
had not yet been tested for computational performance. It is interesting to research
how the bandwidth shaping trees hold up in a fast-paced, large-scale environment and
how they affect performance.

Many of the experiments and simulations test multiple aspects of these research questions.
As such, when we discuss the experiments, we will indicate which research aspects were in-
volved and the conclusions we can draw based on that experiment. In the final section of this
chapter, we will re-visit the questions and summarize the individual results to derive a global
conclusion for every question.

The following sections describe seven different experiments. Experiments one through three
focus specifically on the versatility of the AOI-API and show how it can be used in diverse
situations and how the technique can be coupled to logical parameters of the virtual environ-
ment. Experiments four and five deal specifically with the integration of the NIProxy, how we



Chapter 7. Results 141

can build effective bandwidth shaping trees and how we can use heuristics to predict band-
width usage for a given configuration. Finally, experiments six and seven are experiments
on a larger scale than the others, looking at performance and bandwidth usage in a more
fast-paced environment.

In many of the experiments we will simulate a drop or rise in the available bandwidth for
the NVE, causing our traffic shaping algorithms to perform the necessary adjustments to for
instance the AOI shapes. In real scenarios, these fluctuations typically arise when switching
to a different type of network (from cable to wifi or from wifi to a mobile internet connection
etc.) They can also occur when a router or link in the network goes down, causing the
traffic to follow a different, possibly faster or slower link. For some internet technologies, the
available bandwidth is also influenced by what other users on the network are doing. If a
fellow user suddenly starts streaming a high-definition video stream, this can possibly lower
the available bandwidth for the user connected to the NVE.
In our experiments, the available bandwidth is artificially controlled and not directly tied to
actual network conditions at the time of the simulation. This allows us to always run the
experiments in the same setup and also to look at best and worst cases.

Please note that in all the graphs there are sometimes tiny bumps or valleys in what should be
a constant horizontal line. This is due to the fact that we use our own bandwidth measuring
mechanism and sometimes it measures one packet too much or too little during a given
measuring interval. As such, these very small fluctuations can and should be disregarded and
treated as if there is a constant bandwidth usage.
Secondly, also note that many of the bandwidth values might seem quite low or unrealistic
for an entire NVE. We keep the number of players and the packet sizes artificially small to
prevent large fluctuations in the bandwidth due to many users entering/exciting the AOIs at
the same time, which allows us to better evaluate our implemented techniques.
Finally, please note that, unless otherwise specified, all graphs have bandwidth in bytes/sec
on their left y-axis and time in milliseconds on the x-axis. Bandwidth graphs always show the
outgoing bandwidth, from the proxy server viewpoint, so in the direction of the connected
client(s). In other words, it shows how much bytes/sec were sent to a user.

7.1 Experiment 1 : First Person Shooter

This experiment was designed to showcase most of the different options of the AOI-API
and especially how different shapes and InterestDefinitions can be used in the same game
or environment for different purposes. In addition, the First Person Shooter game genre is
traditionally hard to bring to a large-scale setting because of the fast-paced action and high
update rates (see chapter 2). As we hypothesize that a good bandwidth limiting scheme
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can help bring this type of game closer to being do-able in a large scale environment, it is
important to test the AOI-API in an FPS scenario and see how it can relate to the FPS
concepts.
The most important concept here is that we can tie the radius of circle- or wedge-shaped areas
to the effective range of the gun the player is using. If the gun is only accurate to about 50
meters, it is not necessary to receive high-quality information from outside those 50 meters.
Similarly, if the accuracy drops with distance (which is a realistic scenario), the more distant
entities can be sent at a slightly lower Level of Detail. This logic is the rationale behind the
AOI-API exploitation in this experiment and is used to shape the different areas for different
player types and guns.

7.1.1 Description and setup

Figure 7.1: The start of the FPS scenario. The red line shows player 1’s movement in the world.

The scenario consists of five independent game entities, each having their own game rules and



Chapter 7. Results 143

movement. Entity 1 (a soldier) will move across the map, passing in order entity 2, 3 (also
soldiers) and 5 (a tank) before finishing next to entity 4 (a sniper). Entity 2 will move to
the south of the map, while entity 5 moves in a northern direction. These entities and their
starting AOIs can be seen in figure 7.1.
Entity 1 and 2 are normal FPS players that run around the game with their guns ready. These
guns are very accurate close by, but a little less accurate further away. This is represented
through two circle-shaped areas, centered around the user, where the smaller circle has a
higher Level of Detail. As the two soldiers come closer and become visible to each other, they
will switch to a so-called “iron sight” mode of the gun. This means they look down the gun,
which increases their range and accuracy. This is modeled by changing the radii of the circles
to make them larger when the players enable iron sight aiming. Player 1 shoots and kills
player 2, and remains in iron-sight mode as he progresses because he thinks other enemies
might be near. This AOI change (and the changes we will discuss next) can be seen in figure
7.2.

Figure 7.2: The various AOIs for the different stages in the simulation.

Player 3 is a soldier sitting in a small building behind a mounted machine gun. This is a very
powerful gun with a limited range of movement and limited shooting range. At first, player
3 is on the lookout using his binoculars (high range but medium LOD). As soon as he sees
player 1 coming close, he switches to his machine gun, causing him to change his AOI. Instead
of a circle, he now has a rectangular shape on the road before his building (indicating the
limited range of movement of the gun) but with a high LOD (note that we could have also
used a wedge-shaped AOI for this purpose). When player 1 enters the rectangle, he notices
player 3 and they start shooting at each other. Player 1 wins and decides it is safe, so he
switches back to his normal state, leaving the iron sight mode.
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At the same time, player 5 (the tank) is moving in northern direction, seen from a distance
by stationary player 4, the sniper. A tank has a big cannon on top, which has a good range
and medium accuracy. A tank is also very slow to turn. This means we can use a wedge
shape (with a far away outer radius) to represent his AOI, as he cannot instantly turn to see
whatever is behind him (as is possible for the soldiers). The sniper on the other hand has a
long-range weapon that can be zoomed in. This means we want him to receive information
from his full zoom-range, which is quite a lot larger than the range of the other players. This
might lead to a sniper consuming substantially more bandwidth. In order to tackle this, we
use a big circle with medium LOD for when he is not zoomed in. Outside this circle, we also
have a wedge shape that indicates his optimal range when zoomed in. This wedge is of a low
LOD. This allows the sniper to roughly pick up on possible targets, even when not zoomed
in.
When player 1 enters this wedge, the sniper notices him and zooms in. This causes his circular
AOI to become of a lower LOD and the wedge will become of high LOD, but shrink to cover
only 45 degrees, centered on player 1’s position. This should make sure the sniper continues
to use approximately the same amount of bandwidth as he did when not zoomed in, while
still getting enough information on entities that might be between his zoomed in range and
his current position. The sniper shoots and kills player 1 and thus ends the experiment.

In this scenario, there is also a link between player 1 and player 5. Player 1 has an Ob-
jectAreaDefinition for audio on player 5. As discussed in chapter 6, this means that he will
receive all audio from player 5, even if the latter is currently not in one of player 1’s other
interest areas. This allows us to simulate that these two players are on the same team in
the game, and that player 5 is the commander who gives orders to his troops through audio
communication (in other games, it could also be used for normal voice chat between friends).
As an extra, we disable this link between the players when Player 1 goes into iron sight mode.
This will ensure he is not distracted by the audio while fighting and is also because the iron
sight might use more bandwidth than the normal mode, so we prevent sudden big spikes in
the bandwidth by disabling the audio link temporarily.

7.1.2 Results

With this scenario, we ran two different simulations. The difference between them is that in
the second simulation, we disabled the audio link from player 1 to player 5 completely for
the entire simulation, not just during the iron sight part. This helps us show that, depending
on the exact setup, the bandwidth usage will be very different and will require different
approaches to bandwidth shaping.
Please note that these simulations did not use the NIProxy to perform the AOI adaptations.
Most of the simulation is scripted so that we force a certain AOI to be chosen. Also note that
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the simulated audio packets are of the same size as the normal high LOD position packets.
Every entity sends about 10 updates per second.

Simulation 1 : Remote audio enabled

Figure 7.3: FPS experiment: Bandwidth usage of player 1

In figure 7.3, we can clearly see that player 1 sees player 2 around 8 seconds into the simulation.
At this point, the audio connection to player 5 stops. At first, player 2 is in the outer circle
AOI, and the total bandwidth usage drops slightly. Then we have a spike when player 2 enters
the high LOD inner circle. After this, around 15 seconds, player 1 moves past player 2, causing
the bandwidth to drop considerably as there are no other entities in the AOI, but player 1
is still in iron sight mode, which means the high BW usage of the audio communication is
absent.
Around 16 seconds, player 1 and player 3 see each other, causing player 1’s bandwidth usage
to rise slightly (as player 3 is only in the outer, lower LOD). Player 1 moves past player 3 and
disables his iron sight at 21 seconds. At this point, the audio communication sets in, and the
bandwidth usage goes back to the same level as at the beginning of the simulation.

Figure 7.4 shows the bandwidth usage of player 4 (top line) and player 3 (bottom line). For
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Figure 7.4: FPS experiment: Bandwidth usage of players 3 and 4

player 3, we can clearly see that he watches player 2 walk by at the beginning of the simulation
(the big spike). After this, he is the only one in his AOI for a while, leading to a constant
bandwidth usage as he only receives his own position info. At the 16 second mark, player
1 becomes visible and player 3 switches to the rectangular AOI with high LOD. Note that
player 3 himself is not in this high LOD area. This causes his bandwidth usage to increase
significantly. When he dies, the bandwidth usage drops to zero for the remainder of the
simulation.
For player 4, we see the same spike at the beginning, but for a different reason. For player
4, this means he sees player 5 (the tank) driving by. The tank is in his wedge-shaped AOI
with medium LOD because the sniper is not zoomed in. The bandwidth usage then becomes
more stable as he is the only one in his AOI for a while. Notice that his idle bandwidth usage
is a lot higher than that of player 3. This is because his inner circle AOI is of the highest
LOD, where player 3 only has medium LOD close to himself. Near the end of the simulation,
player 1 enters the AOI of player 4, who immediately zooms in. This causes his wedge AOI
to switch to the highest LOD. We can see that this uses a lot more bandwidth than in the
beginning, where the tank was in the same wedge, but the sniper was not zoomed in.
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Simulation 2 : Remote audio disabled

Figure 7.5: FPS experiment: Comparison of bandwidth usage for player 1 with audio enabled or
disabled.

Figure 7.5 shows the results from both experiments in one graph. The top line is the same as
in figure 7.3, the bottom line is the bandwidth usage when we have no remote audio coupling
to player 5 at all. We see that, through this single adjustment, we get a radically different
bandwidth usage pattern. Only the parts where player 1 is aiming down the iron sight
are clearly the same. However, in the top graph, this constitutes a period of below-normal
bandwidth usage (overall speaking), whereas in the bottom graph they represent (big) spikes
in the bandwidth consumption. This is a big conceptual difference between the two situations.

7.1.3 Discussion

The simulation and results clearly show the versatility of the AOI-API. Many of the typical
FPS situations (iron sight, sniper zoom, machine gun ambush) and player styles (soldier,
sniper, tank) can be accurately represented by the appropriate use of areas of interest.
However, we can also that see these representations are maybe not entirely sufficient to rep-
resent an FPS scenario. For instance, player 1 only sees player 2 when he is in his AOI.
However, they are both on a single street without obstructions. Logically, they should be
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able to see each other all the time, instead of suddenly popping into each others view halfway
on the street. This could be solved by making a rectangular AOI with low LOD on the street
or by using a long-range wedge shape that follows the player’s viewing direction. The first
option is very dependent on the world/level and would be difficult to generalize. The second
option can make for some sudden bandwidth spikes if the user would do a rapid movement
(for instance if he suddenly looks behind him). This means both options are not ideal and
that, even though the AOI-API can be used to represent many real-life situations for an FPS,
in this experiment it is not entirely sufficient to provide the full play experience we would get
with filtering disabled.

The experiment also shows that by dynamically adjusting these AOI definitions, we can have
a measure of control over the bandwidth usage by using very logical and real-world applicable
parameters. For instance, using the more intense iron sight AOI while disabling remote audio,
allows us to make sure the bandwidth usage does not increase too suddenly and is also strongly
tied to game mechanics and meaning. The same goes for the small high LOD wedge for the
zoomed-in sniper who loses some LOD in his more immediate surroundings.
However, it is difficult to perfectly control the amount of bandwidth used here. While we
can be relatively certain that a specific configuration will use more (or less) bandwidth than
another one, this is not true in 100% of the cases (depending on world state, for example a
lot of entities suddenly come very close) and there is also no clear way of knowing how much
less or more bandwidth will be consumed after the switch. This can be solved by using a
heuristic in combination with the NIProxy, which we discuss in section 7.4.

Lastly, our second run of the simulation (with the audio disabled) makes it clear that the
actual bandwidth consumption patterns depend heavily on exact situations in the game world,
even though both simulations are for an FPS game. This will affect the way algorithms for
bandwidth shaping and bandwidth limiting work and how they should be configured. With
audio enabled, the algorithm might need to redistribute the newly available bandwidth to
other players. With audio disabled however, the algorithm needs to account for the sudden
spike. This means the algorithm needs to be very robust and capable of dealing with these
various situations. In section 7.4 and 7.5 we discuss our algorithm and see how robust it is.

7.2 Experiment 2 : Collaborative Environment

This experiment also shows the versatility of the AOI-API by using it in a more serious,
collaborative environment. Here, we focus more on user-location independent AOIs and the
effects of moving to a completely different situation or location in the game world and how it
reflects on the behaviour of AOIs. A collaborative environment is notable for its requirement
of highly detailed interactivity (and thus bandwidth usage), but typically all this activity is
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within smaller groups.
The scenario is inspired by earlier experiments by PhD student Anastasiia Beznosyk. In her
simulation, users would work together in different smaller groups and would be confined to a
single building in the world. Users in the same building could interact directly through audio
and video, while interaction with users in other buildings was limited to text chat. If one
group had finished their task early, they could move to the other building to help the second
team.

The scenario is built to reflect this type of environment, where one can intensely cooperate
with local users, but still interact in some way with more remote users. Thus, the AOI
definitions allow for a more fine-grained definition of interest, where it would even be possible
to let the users themselves decide which types of data they are interested in from which
sources.

7.2.1 Description and setup

In this scenario, we have 9 different users, each in a single building or room in the world.
Users receive video from all users in their building or room, while they receive text messages
from other buildings if they have an interest in them. In figure 7.6, the AOIs for player 1 and
player 8 are superimposed. Player one only has interest in the two top buildings, while player
8 only has shapes defined in the bottom building. The green areas indicate a high LOD and
also the receiving of video, while orange areas indicate text and medium LOD.

Where in the previous experiment 7.1 the AOI transitions were completely scripted and not
based on game logic, in this simulation the AOI adjustments were enforced dynamically and
automatically depending on which room the player was in. This means we can also directly
take control of one of the users should we want to and move him around any way without
having to worry about the AOIs changing in the correct way, which was not the case in the
previous experiment.

7.2.2 Results

In figure 7.7 we can clearly see the different steps in the simulation. After 10 seconds in the
top left room, user 1 starts moving out of his building, which he exits a couple of seconds later.
At this point, he transfers to a completely new circle-shaped AOI and disables his previous
AOIs. This circle shape is of high LOD and allows the player to receive text messages from
players it overlaps. This allows him to see where people might need his help or where activity
is going on. As he is no longer receiving video, the bandwidth usage goes down considerably.
Then, user 1 goes into the top right building at approximately 27 seconds. He starts receiving
video from the other users there and receives text from the top left building from which he
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Figure 7.6: The start of the collaboration scenario. The red line shows player 1’s movement in the
world.

came. As both buildings contain the same number of users, the bandwidth consumption is
equal to what it was at the beginning.

35 seconds into the simulation, user 1 starts moving to head for the bottom building. He once
again transfers to the circle-shaped AOI on the outside. When he enters the bottom building,
he adopts the AOI scheme for this building, which is: video for your current room and text
for a neighboring room if there is a door. He stays in the top right room for a while with
player 8 (spike in the bandwidth) before proceeding to the empty bottom right room. After
being there for a while, at around 52 seconds he finally moves to the bottom left room, where
he starts getting video from player 9, causing his bandwidth to go up again. Note that his
bandwidth usage is slightly less than when he was in the top right room. This is because then
he had text from players 6 and 7, which he does not have now as there is no door between
the bottom left and top left room.
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Figure 7.7: Collaborative experiment: Bandwidth usage player 1

7.2.3 Discussion

The simulation shows how the AOI-API can be used for situations that are quite different
from the normal usage forms, i.e. centered on the player. It also shows once again that
the AOI definitions can be tied to logical elements in the virtual environment, in this case
indicating which group we are most interested in working together with.
Next to this, it also shows how AOIs can change radically and suddenly when the situation
changes. When the user leaves a building, the AOI shape changes and the type of data we
receive is different. This is effectively an example of how the world state can change very
quickly and that the AOI-API can handle such changes.

In contrast to the previous experiment 7.1, this simulation does have optimal consistency and
good world state to allow the player to perform all necessary operations and interactions.
This primarily follows from the fact that most interactions are contained within well defined
borders (the buildings/rooms). However, we can say that this is a realistic setting for a
collaborative environment, and as such our implementation can be used for collaborative
environments while retaining maximum consistency, which was not always the case for the
FPS use case.
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What is similar to the previous experiment however, is the fact that we can know certain
AOIs will use more/less bandwidth than others, but not exactly how much this difference will
be. Experiment 7.5 adds considerably to this scenario by incorporating actual traffic shaping
and considering changing bandwidth limits, helping to resolve this problem.

7.3 Experiment 3 : Real Time Strategy

This third experiment is the last one that was designed specifically to show the versatility of
the AOI-API in different situations. The Real Time Strategy genre is special in the way it
does multiplayer across networks. Instead of sending position updates for every entity, the
game sends only the user input. This is combined with a fully deterministic simulation where
it is made sure that the user inputs are processed at the exact same game time across the
distributed players. This guarantees full consistency while drastically reducing the bandwidth
usage. However, this method also brings some limitations. For example, it is very difficult
to allow users to join after the game has started and if the deterministic simulation diverges
even a little bit, the consistency can be broken without a way to repair it. This al is discussed
in more detail in chapter 2.

It would be interesting to try a different approach to MMORTS games by dropping this
method and trying to use the same method we used for the FPS and Collaborative exper-
iments: sending position updates for every entity, several times per second. Traditionally,
this has been very difficult because of the enormous amount of individual units in an RTS
game. If we would just send the position updates without any filtering, even a good zoning
technique would not be able to sufficiently limit the bandwidth consumption.
This means the RTS scenario is a good research subject for the AOI-API to see if our imple-
mentation could help make this alternative method for online RTS games viable. Sadly, due
to time constraints in the project, this scenario was never fully finished and not tested, even
though the implementation contains most of the necessary building blocks. Since it is such
an interesting use case, we discuss our views on it here, even though it was not tested.

7.3.1 Description and setup

Our setup for the simulation featured 2 players, each controlling around 20 individual units
on the battlefield. Each of these units would be part of a specific group (i.e. each player
would have 2 groups of units, 1 of 15 units, 1 of 5 units). These groups would have a single
circular AOI around them, using the group-based AOI feature of the AOI-API (see section
6.1). This allows us to reduce the computation times by only having to check a shape once
for an entire group of units. This setup resonates with the common concept of “fog of war”
for RTS games. This fog of war means that most of the game map is invisible to the player.
Only in the direct environment of his units can he see other players’ units moving. This
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allows for tactical maneuvers in the game and encourages exploration. By tying the AOI
definition to this fog of war concept, we once again get a very logical resonance with the game
mechanics for the AOI, which will in turn result in good consistency and for the preservation
of interaction possibilities.
These unit groups would engage each other in the scenario, where instead of checking if a
unit is in a particular AOI, we can check if two of the group AOIs intersect. This once again
cuts down on computation and makes sure that if we see one unit of a group, we immediately
see all the units. Depending on the game, this can be wanted or unwanted behaviour, but for
our scenario this was the best route.
A side-effect of working with groups of units would be that we can use a form of delta com-
pression to cut down on the size of the position updates (for more information on delta com-
pression, see section 3.1.3). Instead of sending every position update in full world-coordinates,
we can send them relative to the group’s center point or to another unit in the group. This
can help cut down the packet sizes and incurs a form of aggregation (section 3.2) if we send
all the position updates for a single group in a single packet, instead of a packet per object.

To see how we could dynamically adjust bandwidth usage in the case of changing bandwidth
capacity, we made use of the current user viewing position. An RTS game takes place on a big
map and the user can only focus on one section of the map at a time. Normally, all data for
all our units would be sent, even if the player is not observing them on his screen. Should the
throughput go down however, we can make smart use of this viewing position and first change
the AOIs for the units he is not observing (primarily by switching to a lower LOD). This will
help retain high consistency for his current viewing area. As the logic server still receives all
the updates from all players, the global game state is consistent at all times, even though
the user does not receive full updates of everything. When the user would suddenly shift his
viewing position, the proxies are notified and can immediately switch the AOI definitions to
accommodate for the change.

Next to this, it would be interesting to have the unit groups form and disband automatically
based on the distance between units. As soon as two units are close enough to one another,
they would be automatically grouped and their AOIs would merge into a larger one. This
is interesting for the traditional way in which RTS games are played, namely that the user
does not control each unit individually but rather issues orders to entire groups of units at
once. In the same way the user sees the units as a group, the AOI-API sees them as a group,
further connecting the AOI to the real game concepts.

Finally, we could use rectangular AOIs to be put around stationary buildings which users can
build in their bases. This way, we can simulate the line of sight of these buildings without
needing to have units next to them.
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7.3.2 Discussion

Even though we did not execute the experiment, we can still hypothesize about its usability
in a real-life RTS game setup.

Firstly, we can argue that the consistency is well kept if we tie the AOI definitions to the fog
of war / line of sight concept. Any actions happening outside this line of sight are invisible
because of the game logic anyway, so not receiving updates about them does not affect the
local consistency for the player.
It is more complicated when we have to start dealing with bandwidth limits however. If even
the bandwidth savings of the AOIs are not enough, we are going to need to use the viewing
position method to bring less relevant AOIs to a lower LOD. This should not have a big
impact on the global consistency, as the logic servers still receive all updates. If the user still
receives enough important information (for instance: a team in the other corner of the map
is under attack), local consistency should also be fine.

The problem comes when the user changes his viewing position. Even though the proxy server
can pick up on this relatively quickly, there will probably still be a delay in receiving the more
up-to-date information. However, as an RTS is generally not an extremely fast-pace game,
this can be dealt with by using appropriate interpolation techniques for the visuals on the
user’s computer to hide most of this delay. The game state will not be 100% consistent this
way, but still enough to provide a normal RTS experience to the player.
In a more extreme approach, we could even use an algorithm to predict user camera movement
and build a probability distribution function to try and guess where the player will look next
(for instance based on his previous patterns or thinking that he will soon focus on a group
under attack etc.). This would allow us to preemptively put some AOIs in a higher LOD in
the expectation that the player will focus his attention on them in the near future.
Another important factor could be that the movement of the units in an RTS game are usu-
ally quite predictable. Units in a group will oftentimes move in the same direction (if the
user has set a waypoint etc.) and we can use additional Dead Reckoning techniques effec-
tively to help reduce bandwidth usage, but also to try and predict which enemy units will soon
be in the line of sight and preemptively start preparing for encounters with LOD adjustments.

It is important to notice that this setup will work well in the beginning of the game, where
large parts of the world are still covered in fog and we do not have large amounts of units
with line of sight. As the game progresses however, larger areas of the map start to become
visible at all times (more units, higher line of sight etc.). Thus, we could doubt the scalability
of our approach for the later stages of a game match. In this case, the LOD management for
the AOIs will have to be even more flexible and keeping good local consistency will become
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more difficult. The exact problems that arise can probably only be assessed when running the
necessary experiments, but we can hypothesize that our method will need to be supplemented
by other algorithms or it will need to be very flexible to be able to handle the later game
situations.

Our final remark is that this RTS scenario has a lot of overlap with the problems associated
with networked physics simulations. If we would like a physics simulation of many objects to
have a real impact on the game state, this means we also need to transmit the positions of
all these objects to all players involved. For this reason, most physics simulations in games
are just for the visual aspects or quite limited in how many objects can be affected and how.
Yet, this is quite similar to an RTS game. They both have large numbers of objects they need
to transmit, objects can be grouped together based on physical closeness and most of the
movement is quite predictable. While it is a lot more difficult to tie the physics simulations
to concepts such as fog of war or viewing position, many of the conclusions drawn from an
RTS experiment could be applicable to distributed physics setups as well, which is still an
area in full development for which much research is being conducted.

In conclusion, this experiment is certainly one of the most interesting options for future work
with the AOI-API to evaluate if the bandwidth usage can indeed be cut down enough to make
this method usable for an MMORTS, with a focus on the late game with thousands of units
and large areas of the map visible.

7.4 Experiment 4 : Sniper

This scenario was designed to show how the NIProxy can be used to model bandwidth shaping
trees and strategies that can help shape bandwidth usage when for example the available
bandwidth for a given client changes. The scenario was deliberately kept small and relatively
simple to unambiguously evaluate the exact workings of the NIProxy integration.
This is important as one of the main elements is the usage of a bandwidth heuristic method
(see section 6.2.2) to try and estimate how much bandwidth a given adjustment to an AOI
will consume. To properly evaluate and demonstrate how this method works, a simple test
case is better than a more extensive example. Experiment 5 is a lot more complicated and is
designed to show how the system works in more extensive situations.

7.4.1 Description and setup

For this scenario, we have only 3 players in the world. Player 1 is a sniper who sits on top of
a building in the center of the map. The 2 other players walk around him in circles, each at
a different radius from the sniper. The sniper tracks the outer player, which causes him to
constantly update his rotation to face in the direction of the outer player. This can be seen
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Figure 7.8: The start of the sniper scenario. The red line shows that the sniper is tracking the
farthest player.

in figure 7.8. As the wedge shape is tied to the sniper’s rotation, this will also move along.
This is not a very realistic situation, but it is kept simple to demonstrate the workings of the
bandwidth shaping.
At given times, the available bandwidth for player 1 will change. This will prompt the NIProxy
to take over and select a new AOI definition that it hopes will make sure the bandwidth limit
will not be exceeded. The NIProxy bandwidth shaping tree is shown at the left in figure 7.9.
As you can see, this tree is exceedingly simple. The root node is a priority node (although
this does not really matter for this scenario) and it only has a single child leaf node, in charge
of manipulating a single InterestDefinition.
Note that this tree could have been built quite differently. Most importantly, we could have
opted to have multiple InterestDefinitions (and thus child leaf nodes) to represent the various
AOIs. In that case, only one InterestDefinition would be active at a given time and switching
to a new AOI would be done by enabling the correct child leaf node. This situation is visible
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Figure 7.9: Possible NIProxy bandwidth shaping trees for the sniper scenario

in figure 7.9 on the right. We opted to use this option in experiment 5 (see section 7.5) and
keep the tree as simple as possible in this explorative experiment. We will later discuss and
compare the two alternative approaches.

When the available bandwidth changes, the root node is notified. He in turn tells the leaf
node how much bandwidth it can use. It is up to the implementation of the leaf node to decide
which adjustments to the LOD will lead to an optimal bandwidth usage. For this, the leaf node
has a list of possible adjustments to the single InterestDefinition, called configurations. For
each configuration, we have a heuristic tied to it, that should give an indication of how much
bandwidth this configuration would use if enabled. The leaf node chooses the configuration
with the most appropriate expected bandwidth usage (the highest under the limit) and tells
the AOI-API to make the necessary changes to the InterestDefinition, in this way applying
the new configuration. The configurations and heuristics for this scenario can be found in
figure 7.10.
Note once again that this would be different if we would use multiple leaf nodes, one for each
individual configuration. Then, the InterestDefinitions would not have to be adjusted by the
AOI-API, the NIProxy would just enable the correct leaf node and by extension the correct
InterestDefinition.
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7.4.2 Results

For this scenario, we ran two different tests. The first one uses good starting heuristics that
give a realistic indication of how much bandwidth a configuration will use, i.e. a best case
scenario. The second test shows the worst case: what if the heuristics are completely wrong?
Will the implementation be able to deal with this and which errors will occur? Figure 7.10
shows these two different setups.

Figure 7.10: Different configurations and their bandwidth usage heuristics for the sniper scenario
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In figure 7.10 we see how the different configurations tie to specific AOI shapes and LODs.
Configuration 3 is the most extensive and has high LOD with large circle and wedge shaped
areas. Configuration 2 is designed to leave out the inner opponent so the sniper can focus
on his current target, i.e. the outer opponent in his wedge area. Configuration 1 drops the
outside areas and only sends the position updates of the player himself. This is quite radical
but indicates a situation where the bandwidth becomes extremely low and the game will
be nearly unplayable, but we still want the game to feel a little responsive to the player.
Configuration 0 disables even these player updates should the bandwidth drop below the
absolute limit of 510 bytes/sec (the amount a single player’s position updates use).

Simulation 1 : Best Case

Figure 7.11: Sniper experiment: the best case scenario for player 1 (i.e. the heuristics are accurate)

In figure 7.11 we can clearly see the different bandwidth limits the simulation goes through.
The scenario starts at a very high limit of 10000 bytes/sec, so configuration 3 is chosen. At
20 seconds, the limit drops to 540 bytes/sec. This causes the chosen configuration to switch
to number 1 and the AOI is adjusted accordingly, so only the positions of the sniper himself
are sent. At 40 seconds, the limit is once again put high to 10000 bytes/sec and configuration
3 is enforced once more. At 60 seconds, the limit becomes 2300 bytes/sec and configuration
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2 is appropriately chosen. After 80 seconds, the limit goes down to the very low level of 400,
which is below even the bandwidth usage of configuration 1, so all traffic is effectively shut
down. At the 100 second mark, the simulation wraps, starting at the 540 bytes/sec limit and
proceeding to 10000 bytes/sec, 2300 bytes/sec etc.

As we can see in the graph, due to the heuristic’s accuracy and this approach, the bandwidth
limits are not exceeded at any time and the most appropriate AOI is chosen at all times. Of
course, this is because the simulation was specifically designed to show that, given a good
heuristic of the bandwidth usage, the NIProxy bandwidth shaping approach can be effectively
used in this virtual environment setup. The next simulation makes it clear that the results
are quite different if the heuristics are not realistic.

Simulation 2 : Worst Case

Figure 7.12: Sniper experiment: the worst case scenario for player 1 (i.e. the heuristics are wrong)

In this simulation, the bandwidth limits fluctuate in exactly the same way as they did for sim-
ulation 1. However, we see that there are some distinct differences in the resulting bandwidth
graph. This is completely due to the use of a different heuristic for the different configura-
tions, as no other adjustments were made to the simulation.



Chapter 7. Results 161

At first, the limit is 10000 bytes/sec. According to the heuristic, configuration 1 uses the
highest amount of bandwidth, so it is selected. After one second of measurements, the heuris-
tic is updated to reflect the actual bandwidth usage (which is, as we know, actually just
510 bytes/sec). This causes the implementation to switch configurations to the now most
appropriate configuration, number 2. This can be seen at the beginning of the graph: there
is a very small (1 second wide) hump of 510 bytes/sec before switching to the higher us-
age of 2020 byte per second. The most important thing to note here is that, even though
the bandwidth limit is respected, we are using the available bandwidth sub-optimally. The
optimal usage would be for configuration 3 (as we can see in the best case scenario). How-
ever, because the initial heuristics for configuration 3 are very low, it is never even considered.

When the limit switches back to 540, configuration 1 is appropriately selected. Remember
that its heuristic has been updated after the measurements in the first second, so that the
heuristic is now correct. When the limit switches back to 10000, configuration 2 is once again
selected, continuing the sub-optimal bandwidth usage for this limit. The switch to the 2300
bytes/sec limit at approximately 60 seconds also does not result in a configuration switch.
At the end of this interval, when the limit switches to 400, something interesting happens.
The heuristic for configuration 3 is still 300, which is as we know much too low for its actual
usage. Still, the algorithm selects configuration 3 and for a second it is allowed to be used.
This makes for the huge bandwidth spike to the highest possible bandwidth usage of 3550
bytes/sec, while we are actually supposed to use only 400 bytes/sec. Luckily, the situation
is quickly adjusted after the bandwidth measurements made during this one second. The
heuristic for configuration 3 is updated, causing the implementation to choose configuration
0 because all heuristics are now above the limit of 300.
Now that every heuristic has been updated, the simulation will continue to run normally with
optimal bandwidth usage.

Note however that if there would have never occurred a limit below 510, the wrong heuristic
for configuration 3 would never have been detected and the bandwidth usage for higher limits
would always be sub-optimal. This means wrong (initial) heuristics can not only cause sudden
bandwidth spikes, but can also have severe consequences that lead to continued sub-optimal
bandwidth usage. Let us for example think about what would happen if an intermediate
level would have too high of a heuristic, while the higher and lower levels have a correct
heuristic. When the limit becomes lower, the simulation will switch from the higher to the
lower configuration because it does not know the intermediate configuration has the wrong
heuristic and that it is actually the most appropriate option. This can prompt very big swings
in consistency and AOI shape, which are of course to be avoided.
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7.4.3 Discussion

This comparison between best and worst case gives us some very interesting conclusions, even
though the testing scenario itself was very simple.
First of all, we see that, with the exception of a few spikes, the bandwidth limits are maintained
very well. The spikes that occur due to incorrect heuristics only last for a second and are
quickly detected and repaired. So even though there might be a few of these anomalies, the
algorithm works relatively well compared to what could happen if we would not work with
a heuristic or estimation and just try every configuration until an appropriate one for that
moment was found.
This is an important achievement because there was a doubt that the NIProxies bandwidth
shaping strategies would be usable in cases where predicting bandwidth usage is difficult. The
NIProxy was mostly tested with video (and other) streams of which the actual bandwidth
usage under different configurations was perfectly predictable. Our solution using heuristics
is not foolproof, but it is a good approximation and if the heuristics are good, the method
uses the optimal configurations while staying under the set bandwidth limit, just as is the
case in the earlier NIProxy experiments.

Heuristics algorithm

There is however the important problem that it is possible that some configurations are never
visited and as such wrong heuristics can go undetected for a long time, leading to big shifts in
AOI shape and bandwidth movement. This problem can be resolved in a number of different
ways, which all come down to the notion that we will have to perform measurements for
non-active configurations to (periodically) update their heuristics.
The methods differ in how often they would update the heuristics of non-active configura-
tions. In 6.2.2, we suggested a method that would check all configurations for every packet.
This would keep the heuristics perfectly updated, but would also require large amounts of
processing power. We could instead opt for a method that checks the configurations above
and below the currently selected configuration. This is better for performance if we have a
lot of configurations, but there is still a (small) risk that a configuration will not be checked
for a long time.
Another approach would be to periodically check a non-active configuration (for example
every 5 seconds we do a 1 second measurement for 1 non-active configuration). If we make
sure the configurations that have not been selected in a while (and as such are most likely
to have outdated heuristics) are probed, we can make sure the heuristics are kept relatively
up to date without requiring too much extra processing power. Of course, combinations of
techniques and approaches are also possible and extensive testing would be needed to detect
the worst cases for each approach and see if they are acceptable enough for deployment.
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Also, as we stated before in 6.2.2, the frequency of these checks could be tied to the actual
CPU budget available. This means that if there are few players, more regular heuristic up-
dates are possible. When the number of player rises (and by consequence the CPU usage),
the frequency of the checks can drop in order not to overload the CPU. This allows for a
flexible and tunable trade-off between performance and bandwidth usage.

Note also that good initial heuristics can work, but that they are not necessarily sufficient.
In this very simple example the factual bandwidth usages for the configurations will never
change, but imagine a larger world where players are moving in and out of AOIs all the time.
An AOI that used 500 bytes/sec 5 seconds ago can now use 10 times as much if there are
more objects nearby. This means the regular heuristic updates are not only important for
preventing sub-optimal bandwidth usage: they help prevent some sudden bandwidth spikes
by making sure the expectations for bandwidth usage of a given configuration are as accurate
as possible.
Another approach that could give better results would be to take the average over time of
the measurement results, instead of just using the latest measurement as new heuristic. This
would make sure unusual situations will not radically influence the heuristics and make for a
better flow of the AOI transitions. This could lead to longer small spikes in the bandwidth
usage, as they are not responded to as quickly, but overall it would prevent too many config-
uration switches, which can help with consistency and performance.

In conclusion for the heuristic algorithm, we can state that the current algorithm is not
sufficient and should be supplemented with provisions to (periodically) recalculate the actual
bandwidth usage of non-active configurations to keep the heuristics up-to-date.

Bandwidth shaping tree structure

As discussed in 7.4.1, there are multiple ways to build a bandwidth shaping tree for the
NIProxy. Figure 7.9 shows two possible approaches for the sniper scenario, while Figure 7.13
shows our approach for the collaboration scenario.
In chapter 6 we already explained that our way of using the NIProxy was not consistent with
its original usage scenarios. In previous NIProxy experiments, extensive bandwidth trees were
used, where there would for instance be a leaf node per stream type or individual stream or
a node per other connected player. Depending on the scenario, these trees were updated and
maintained often, with complicated and possibly expensive tree operations.

Our first mission was to see if we could use InterestDefinition-based leaf nodes instead of
stream-based leaf nodes. As seen in figure 7.9, this is very well possible but it still gives
us plenty of choice on how to actually approach it. The two options here are either to
have the AOI-API deal with the different configurations directly (by just having a single



Chapter 7. Results 164

InterestDefinition and leaf node with multiple discrete levels) or, in the other case, to create
a leaf node for each configuration separately and switch not through the AOI-API but by just
enabling a new InterestDefinition and disabling the old one(s).
The first option gives us a very simple tree and makes good use of the built-in functionality of
the AOI-API to adjust areas on the fly when needed. It uses some CPU resources when doing
these adjustments though, which can be noticeable if there are many configuration switches.
The second option’s tree is a lot more complicated (especially as the number of configura-
tions rises), takes up more memory and possibly requires more tree maintenance/updates.
The cost of switching to a different AOI is somewhat lower however, as we only need to select
the appropriate leaf node.

Both approaches thus have advantages and disadvantages, but it can be argued that both are
quite usable. It depends largely on the personal preference of the tree builder (which method
is most logical, usable to the programmer) and the situation it is used in. For example, in
the next experiment, we use a combination of the two, where separate leaf nodes represent
InterestDefinitions that indicate a different game situation, while every leaf node in itself
still has separate configurations for the manipulation of that InterestDefinition. This will be
discussed in more detail in section 7.5.

7.5 Experiment 5 : Collaborative Environment version 2

This scenario is a reprise of experiment 2 (see 7.2). The main difference is that for experiment
2, we selected the appropriate InterestDefinition manually when the player’s position changed
and without using the NIProxy. In the original experiment, we also did not include variable
bandwidth limitations.
For this experiment, we wanted to try a more complicated structure for the NIProxy band-
width shaping tree and verify whether these NIProxy, in combination with AOI-API, can
hold up in a complex scenario of changing conceptual situations and external bandwidth
limits for multiple traffic stream types. This scenario is more alike some of the original
NIProxy scenarios than the previous sniper experiment. However, the bandwidth shaping
tree is completely different from the NIProxy experiments (where traffic streams were used
as leaf nodes as opposed to our InterestDefinitions), making it interesting to see a new way
of approaching a similar problem in a different conceptual context and with a different leaf
node implementation.

7.5.1 Description and setup

The setup of the experiment is almost identical to that of experiment 2, which can be seen in
figure 7.6. The main difference is that player 1 only moves from the top left building to the
top right, instead of later continuing down to the bottom building.
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Player 1 will remain stationary while the bandwidth limits change (see next section) and will
then move outside of the top left building to finally end up in the top right building, where
he once more remains stationary while the bandwidth limits alter.

As said, the bandwidth shaping tree used for this scenario is more complicated than the
simple tree for the sniper experiment. The tree has 3 different leaf nodes, each representing a
location in the world. The first leaf node is for the top left room and is rectangular in shape.
The second leaf node is for the circular AOI when player 1 steps outside. The third leaf node
corresponds to the top right building. Individually within the leaf nodes, we still have the
same kind of configuration/bandwidth heuristic pairs that we used in the sniper experiment.
This setup can be seen in figure 7.13.

Figure 7.13: NIProxy bandwidth shaping tree for the collaboration experiment

In the sniper experiment, the root node did not do all too much as there was only a single
child. Here, it is more important, as it will dictate which configuration each of the leaf nodes



Chapter 7. Results 166

will choose. The root node works with priority values for its children. The child with the
highest priority gets the first chance to use as much bandwidth as possible within the limit.
It calculates the bandwidth it will use (through the heuristics). This way, the root node can
see if there is still some bandwidth left to be distributed. If this is the case, the leaf node
with the second highest priority is given the opportunity to use bandwidth, its limit being
the original bandwidth limit minus the consumed bandwidth of the highest priority leaf node.
If there is still bandwidth left, the next leaf node gets a chance at exploiting this residual
capacity etc.
This allows us to indicate which location or states are most important to the player in a very
simple and logical way. If the player is in the top right building, the third leaf node will
get the highest priority. As we are also interested in what happens in the other building (in
experiment 2 we would get text messages from the opposite building), the first leaf node gets
second highest priority.
When we are located in one of the buildings, we are not interested in the outside area. Thus,
we can assign leaf node 2 a priority of 0, meaning that it is not active. The inverse logic can
be applied when the user goes outside: leaf node 1 and 3 become inactive by setting their
priorities to 0. Thus the priority system does not just allow us to indicate which AOI should
get the most bandwidth, but also which AOIs should be (in)active, allowing us to model
complicated situations and conditional scenarios.

When the bandwidth limits change, the priorities automatically aid in providing the most
logical bandwidth usage. For example, if we are in the top right building and the bandwidth
limit is lowered, the priority root node will make sure that the top left room is first disabled
before shutting down video for the top right room. This is arguably the desired behaviour if
the player is actively collaborating in the top right room. But this can go a lot deeper. If
the top left room is disabled but there is also not enough bandwidth available to keep the
video for the top right room, the top right room will switch to only audio or even just text.
It is possible that this leaves enough excess bandwidth to make it possible to re-enable text
communication with the top left room. This way, the bandwidth is always optimally used and
as much data as possible is delivered to the user. Note that this all happens automatically if
the priorities are set correctly and the heuristics for the leaf nodes are filled in properly. This
means the tree structure requires very little maintenance at runtime, which is in turn better
for performance and implementation complexity.

On the other end, there might be applications that would rather switch off video while main-
taining text communication with the other room when the bandwidth budget drops. While
this is not easily done with the priority node directly, a programmer could implement his
own node type that deals with this kind of situation explicitly. This is perfectly possible by
extending one of the NIProxy’s base classes for tree nodes. This means that, even if a given



Chapter 7. Results 167

situation is not directly supported by the current implementation, it is easy to develop a new
node type that delivers the required functionality.

Note that this tree setup is different from the bandwidth shaping tree on the right side in
figure 7.9. There, the individual leaf nodes were fixed, i.e. they did not change configurations
or use heuristics, but each configuration had its own individual leaf node. Here, we have a
leaf node for a world situation or location and multiple configurations within that leaf node.
This shows that there are many different ways of constructing the bandwidth shaping tree,
depending on user preference and ease of use. This in combination with the extendibility
through implementing new node types, makes the NIProxy approach very flexible, versatile
and usable in many situations.

7.5.2 Results

Figure 7.14: The bandwidth usage for player 1

The scenario begins by giving player 1 a bandwidth limit of 27000 bytes/sec, which is enough
to be able to receive video from the top left room and textual messages from the right room.
Even though we mostly used realistic heuristics, the initial estimate for the highest configura-
tion for the rooms is (intentionally) a little off, which causes the bandwidth spike at the very
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beginning of the simulation because video for the top right room is also enabled, as seen in
figure 7.14. The system quickly recovers and sends video for the top left room only. At the 20
second mark, the bandwidth limit changes to the 80000 bytes/sec, which is sufficient to allow
video from both rooms. The tree automatically makes sure that the highest configurations
are chosen for both rooms, resulting in an optimal bandwidth usage.

After 40 seconds, player 1 starts to move outside of the room and into the outside area.
When this happens, only the leaf node that represents the outside region becomes active.
The priorities for the rooms are assigned 0, effectively disabling them. As the bandwidth
limit is still 80000, the outside AOI is set to its highest configuration. This uses considerably
less bandwidth than the limit, but this is due to the game logic and semantics (when outside,
the player is not interested in the rooms) and not due to the bandwidth shaping approach.
While outside, the limit changes to 27000 bytes/sec again. As the bandwidth usage of the
outside AOI is still plenty below this limit, no changes occur. Then, player 1 enters the top
right room. This causes the leaf nodes for the rooms to become active again (the top right
room gets highest priority, the top left room second highest) and the outside AOI is disabled.
As the current limit only allows for video from one room (as was the case in the beginning of
the simulation) player 1 receives video from the top right room and text from the top left room.

After 70 seconds, the bandwidth limit is set to the low value of 2000 bytes/sec. This is only
enough to allow for textual communications with one room. Automatically, the leaf node
for the top right room disables video and switches to an alternate configuration as to not
exceed the bandwidth limit. This leaves insufficient bandwidth for the left room to send any
data, so it automatically switches to configuration 0. Note that the bandwidth usage in this
stage is slightly lower than when the user was outside, as the textual message stream uses
less bandwidth than the outside position stream.
Finally, after 90 seconds, the limit is reset to 80000 bytes/sec and both rooms can start
sending video to player 1 once more.

7.5.3 Discussion

This experiment clearly shows the flexibility, extendibility and versatility of the NIProxy
bandwidth shaping trees and that, in combination with the AOI-API, they can help ensure
that bandwidth limits are respected.

It is clear that there are many ways to design the bandwidth shaping tree structure. Depend-
ing on the logical structure of the game and the different situations a player can be in, the
tree can consist of many combinations of individual nodes, coming together to provide com-
plex behaviour. Important here is that the tree structures are logical and that its parameters
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and concepts are easily mapped to concepts in the environment. For example, the priority
root node allowed to specify which part of the virtual world was most important, depending
on the user location. It also allowed to disable certain InterestDefinitions if they were not
desirable during a particular world state. Next to this, the fact that the leaf nodes represent
individual AOIs or locations, makes it very easy to assess which ones should be (in)active
during a particular situation. The ease of use for the programmers is thus large.
Perhaps even more important is that, by tweaking these simple parameters, the complex
bandwidth shaping behaviour is automatically provided without having to change the tree
structure or to add specific implementation code for each different situation. If the tree is con-
figured appropriately at the start of the program, bandwidth limit changes will automatically
propagate and solicit an appropriate change in the AOIs. This also means that time and care
should be spent in designing and testing different bandwidth shaping trees and configurations
for every specific virtual environment in order to obtain the most optimal functioning of the
system when deployed.

7.6 Experiment 6 : Medium Scale

As the previous experiments all involved fewer than 10 simulated clients at a time, we have
not yet tested the scalability of our implementation or approach in a large scale virtual
environment. It is important to see if the bandwidth shaping also works in these settings and
also that the technique does not incur too high performance penalties which lead to a lower
supported number of clients on a single proxy server.
Originally, we conducted ?the large scale experiments on a separate server cluster with large
amounts of clients. Because of our findings in these experiments however, which were unex-
pected and will be discussed in more detail in section 7.7, we decided to also perform tests
on a more medium number of clients. This allows us to explain the approach we took for
simulating player movement more in detail while also showing how the technique could be
used in a smaller scale setup, for instance on a single dedicated FPS server, to provide extra
bandwidth scalability.

7.6.1 Description and setup

For these medium scale simulations, we connected 20 clients at once to a single proxy server.
These clients are controlled through one of two different movement algorithms: either circle
or flocking. The circle algorithm has a client moving on a single circle-shaped path, while
the flocking algorithm uses more complex behaviours of separation, alignment and cohesion.
As discussed before in section 6.4.1, these methods do not simulate very realistic player
movement, but they come close enough to being usable in these scenarios. The reason we



Chapter 7. Results 170

use two different movement algorithms is to be able to investigate which impact this has on
overall bandwidth usage and bandwidth scalability. This helps us form a conclusion on the
hypothesis that, depending on the type of virtual environment (and thus also type of player
movements), different bandwidth shaping provisions must be addressed.
Note that these simulations are indeed quite different from the previous 5 experiments. Now,
the client movement is somewhat random, causing clients to enter and exit each other’s AOIs
with a much higher frequency and in a much less predictable fashion than in the controlled
environments of the previous experiments. Where the former experiments delivered easily
interpretable results, the measurements for these simulations will be more prone to interpre-
tation and they warrant closer inspection.

For the simulation runs, 6 different setups were considered: 1 time with filtering disabled, 1
time with no change in bandwidth limits and one time with changing bandwidth limits. Ad-
ditionally, they were tested with both movement behaviours. From these setups, we are able
to draw conclusions on performance (through the measured round trip times), the fluctuation
of bandwidth usage and the amount of possible bandwidth savings from the technique as
opposed to using no filtering at all. The setups with changing bandwidth limits allow us to
see how well bandwidth constraints can be satisfied through simple adjustments to the AOIs
in this more chaotic approach.

7.6.2 Results

Figure 7.15 shows the bandwidth measurements for the two different movement behaviours
in a simulation where the bandwidth limits are not adjusted over time and with filtering
enabled. Please note that these results are the averaged measurements of the 20 clients, that
both datasets were gathered in independent simulations and that both vertical axes indicate
the outgoing bandwidth. Also note that the graph is lacking the averaged measurements for
the disabled filtering. As this bandwidth usage is relatively constant at 30200 bytes/sec and
because it would make the differences between the two behaviours less clear, we decided not
to include it in this graph.

Figure 7.15 is interesting because it shows that the flocking movement behaviour not only
consumes more bandwidth overall than the circular movement pattern, it is also far more
irregular. Further inspection of the results confirms that this is strongly tied to the average
number of objects in the client’s AOI. The average number of clients in the AOI of a client
moving according to the circle behaviour was 4,5 with a low variance. For flocking, this
number was 8, with a high variance. As the same size and shape of AOI was used for both
simulations, this indicates that the flocking behaviour leads to more clients being within an
AOI on average. This can be explained by the fact that flocking has a cohesion component,
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Figure 7.15: The bandwidth usage of the circle and the flocking movement behaviours (filtering
enabled)

which tries to maintain an optimal distance between the clients, something which is not
present in the circle behaviour.
These results indeed suggest that, depending on the exact movement behaviours of play-
ers in the virtual world, the bandwidth patterns will be different, which in turn leads to the
need for individually tailored bandwidth shaping approaches per kind of movement behaviour.

Figure 7.16 once more compares the two different movement behaviours, but this time we
clearly see that the bandwidth limits. With them, the AOI definitions have changed at set
times during the simulation. The simulation begins with a large circular AOI with a high
LOD. At 60 seconds, the bandwidth limit goes down and we switch to a much smaller cir-
cular AOI with a lower LOD. This is clearly visible in the graph as the bandwidth usage
goes down considerably. At 135 seconds, the bandwidth limit goes up slightly. With this,
the AOI switches to a dual-circular shape, consisting of a small inner circle with high LOD
and a larger outer circle with medium LOD. It is a little more difficult to see, but there is a
medium bandwidth usage during this interval, up to 200 seconds, where the bandwidth limit
becomes high again and we switch back to the large circular AOI with high LOD. Note that
these bandwidth limits and AOI switches are done manually and that the NIProxy was not
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Figure 7.16: The bandwidth usage of the circle and the flocking movement behaviours with changing
bandwidth limits

used in these simulations.

The measurements shown in this graph confirm our earlier findings. Even though the circle-
based movement has a lot more variance in this graph, as opposed to the graph in figure
7.15, the variance in the flocking behaviour is still considerably higher and the bandwidth
spikes and gaps are consequently larger. It is significantly less clear though that the flocking
behaviour uses more overall bandwidth than the circle movement. This could be explained by
the fact that different AOI shapes and LOD were used for this simulation when compared to
the simulations in figure 7.15. The first simulations use a smaller AOI than the bandwidth-
limited ones, so it can also be reasoned that clients that were just outside of this smaller AOI
in the first simulations, will be just inside the AOI in the second ones. If we assume this is less
the case for the Flocking behaviour, it can help explain the smaller difference in bandwidth
usage between the two movement patterns in this second graph.

In figure 7.17 we can see a comparison between the round trip times for two simulations,
one in which the filtering was disabled and one in which it was enabled. Logically, we would
expect the simulation in which the filtering is enabled to perform less, as it needs to do a lot
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Figure 7.17: Round trip times for enabled and disabled bandwidth filtering

more calculations to determine which objects are in which AOIs. However, in figure 7.17 we
can see that the version without filtering has higher peaks for the round trip time than the
version with filtering, which is the opposite of what we would expect. It should also be said
that the difference is not very striking and that the measurements are close enough to say
that there are no truly significant differences. This graph was chosen as an example, as we
found that these small differences were true for each simulation with 20 clients, and as such
this graph is indicative of the overall measurements.

There can be multiple reasons for the small difference and unexpected measurements. ALVIC-
NG was not entirely built with performance in mind, and things such as a custom memory
manager are not implemented. NetworkPackets that arrive on the proxy are copied multiple
times and sent through many functions before they are sent to the client. It is our belief that
this packet pipeline incurs a lot of overhead because of inefficient memory handling. If this
overhead is indeed large, it will in fact be reduced by the filtering implementation, as this
will severely cut down on the number of packets that is actually sent from the proxy server to
the client. This way, the extra CPU power required by the filtering is offset by the memory
lookup savings we get because of dropped packets, thus resulting in a slightly lower overall
RTT time for the simulation with filtering enabled.
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A less plausible explanation could be that it is due to the fact that these simulations were
largely executed on a single virtual machine and not on the server cluster. Virtual machines
are known not to provide full performance and to cause performance fluctuations since other
actions on the hosting operating system could influence CPU usage and thus also round trip
time. However, this is less likely as the same trend manifests itself in over 10 different simula-
tions performed. Another explanation could be that we need to draw more graphical entities
on the GUI if the filtering is disabled (as all clients will see and thus also render all other
clients). However, this extra number of rendered clients is not high with 20 clients total,
which also makes this theory less likely.

7.6.3 Discussion

When looking at the different graphs, it is clear that there is a difference between the band-
width use and fluctuations of the circle and flocking movement behaviours. This confirms
our hypothesis that individualized bandwidth shaping strategies might be needed on a per
NVE-type basis to provide optimal bandwidth usage.
When we look at figure 7.16, we can also see it is much more difficult to ensure a certain
bandwidth limit in these types of situations. Even though we did not use hard bandwidth
limits in the simulations (we just changed the AOI shapes to show the relative differences in
bandwidth usage), it is clear that especially for the Flocking movement it will be difficult to at
all times retain this bandwidth limit, as there are many high spikes in the bandwidth usage.
For the circle movement, this is a lot better, as it shows a lot less variance overall, but there
are still plenty of bandwidth anomalies that could potentially cause problems. Overall, a more
extensive simulation is probably needed, possibly with the integration of the NIProxy and
appropriate bandwidth shaping trees, AOI configurations and heuristics. With this limited
data, it is difficult to conclude how well bandwidth limits can be satisfied using our techniques.

The same is true for the research question about performance and how it is affected by the
filtering implementation. The results are inconclusive and even indicate an inverse of the
expected result that filtering would require more CPU power than no filtering. Because the
differences between the datasets are not all that large and there are many factors that might
influence this performance, it is needed to perform further testing on a larger scale to see if
these trends continue

Finally, since we use movement behaviours that are not necessarily realistic and because the
used AOI shapes and player interactions are not based on game logic (as they were in the other
experiments), we cannot make any statements about consistency within these experiments.
This is because consistency is strongly tied to the game logic and what measure of consistency
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is needed for the human player to be able to play the game without noticing errors. A more
rigorously designed experiment, set in a real game scenario with realistic player movement is
needed to judge the measure in which we can retain consistency. Overall however, we could
say that consistency retention is relatively bad for this type of scenario, especially with low
bandwidth limits, as the number of clients in the AOI can drop quite low, limiting the client’s
interaction options in the environment.

7.7 Experiment 7 : Large Scale

These final experiments were aimed at simulation large scale situations for virtual environ-
ments with thousands of users. However, all these experiments use only 100 clients and 1
server of every type (1 proxy, 1 logic server, 1 region management server and 1 client con-
troller). This is because we found that the experiments with 100 were already difficult to
execute and that the data collected from them is largely inconclusive, due to various factors.
As such, it is not useful to test with even more clients, as the results will be of doubtful
quality.
In this section, we will discuss our simulations for 100 clients and investigate the results.

7.7.1 Description and setup

The executed simulations are very similar in setup to those for experiment 6, discussed before.
We once again perform simulations with filtering disabled and with filtering enabled but with
no change in bandwidth limits. The simulations with changing bandwidth limits were not
executed on this scale because the results of the other simulations were already of doubtful
quality.
The main difference is that these larger scale simulations are done on a separate server cluster
and that instead of 20 clients, we simulate 100 clients at a time. In the previous experiment,
the clients all connected at the same time. Here, the clients connect with an interval of 1
second (i.e. normally all clients are connected 100 seconds after the simulation starts). This
allows us to better observe the number of clients a proxy server can comfortably support
before we notice severe increases in the round trip times (which indicate too high CPU usage
on the proxy).

7.7.2 Results

Filtering and 10 updates/s

First, we compare the results for 10 updates/s per client for the two movement types. We plot
their outgoing bandwidth next to the observed round trip times, to see if there is a connection
between bandwidth usage and changes in round trip time.
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Figure 7.18: The bandwidth usage and round trip time (in milliseconds, right vertical axis) of the
circle movement behaviour at 10 updates per second per client

Figure 7.18 shows the results of the simulation for the circle behaviour, while figure 7.19 shows
the results for the flocking behaviour. At first sight, they seem to have much in common. For
both simulations, the round trip time starts going up considerably round the 50 to 60 second
mark. The round trip times keep climbing steadily until they become more or less stabile
again after 160 to 180 seconds (the point at which the clients have stopped spawning).
In figure 7.19 there seems to be a clear connection between the round trip times and the
outgoing bandwidth: as the round trip time goes up, the bandwidth usage goes down. This
trend is less obvious in figure 7.18, but we can still see that there is somewhat less bandwidth
usage after the 120 second mark than overall before. This connection between bandwidth
and round trip time could possibly be explained by saying that the round trip time rising so
high is a clear indication that the proxy server was having a hard time dealing with all the
traffic. As the proxy servers becomes overloaded, it starts dropping packets (as we use the
UDP protocol), which never get distributed back to the clients. These dropped packets cause
the measured bandwidth to go down.
The graphs also confirm the previous experiments by showing that the flocking behaviour
uses more overall bandwidth than the circle movement and has a larger variance.
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Figure 7.19: The bandwidth usage and round trip time (in milliseconds, right vertical axis) of the
flocking movement behaviour at 10 updates per second per client

However, despite these seemingly logical results, we noticed some anomalies during the sim-
ulations. Firstly, all clients should have been spawned at the 100 second mark (as we spawn
one client every second). However, we noticed this process received serious delays, resulting
in the total 100 clients only being spawned around 160 seconds. We thought this could be due
to an overloaded bot simulator (as that is the only possible factor that can delay the spawning
process). However, when looking at the CPU usage of the client simulator (which was run on
its own machine as only process), it was clear it never went over 50% CPU usage and that
it usually even only used around 10%. As such, we have been unable to find an explanation
for this delay in client spawning. The simulations where the filtering was disabled gave even
larger delays, as we will discuss in the next section.

Filtering and 2 updates/s

After the two previous simulations, we wanted to see if lowering the update rate to 2 updates
per second would have an influence on the bandwidth/round trip time connection and in
which way.
As we can clearly see in figure 7.20 and figure 7.21, the moment at which the round trip time
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Figure 7.20: The bandwidth usage and round trip time (in milliseconds, right vertical axis) of the
circle movement behaviour at 2 updates per second per client

starts going up is no longer at 60 seconds, but after 120 seconds. This means that the proxy
server gets overloaded a lot later and that the amount of updates per second indeed has a
serious influence on how many clients can be connected to the proxy server at the same time.
We can also see once more that the flocking behaviour uses more bandwidth overall than the
circle movement. At the same time, figure 7.20 seems to contradict the previous observations
that flocking has a higher variance than the circle movement, as we can clearly see the very
periodic bandwidth spikes for the circle movement. However, this can be explained by the
nature of the circle movement. The client will always follow the same circle and such, at
some point, he will pass his starting point again (and again later etc.). This explains the
periodicity. The fact that this was much less obvious in the other graphs is because the
initial positions of the clients and the radii of the circles is entirely random and not the same
for every simulation with the circle movement. For this particular simulation, the spawning
positions were so that most clients were in a semi-circle around the center of the world map.
As such, when they moved away from this center, less other clients were in their AOI and the
bandwidth usage goes down. When they move back in the direction of the center however,
more clients come in their AOI (as all clients are gathering in the center instead of being
more dispersed on the edges of the map) and the bandwidth goes up again. Because of the
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Figure 7.21: The bandwidth usage and round trip time (in milliseconds, right vertical axis) of the
flocking movement behaviour at 2 updates per second per client

periodicity, this manifests itself as a series of bandwidth spikes.

A more important observation here however, is that the previously observed connection be-
tween bandwidth usage and round trip time seems to be completely non-existent. Especially
in figure 7.20, we see that the bandwidth spikes and bandwidth usage is still at a very similar
level as before the 120 second mark where the round trip time goes op. This is less clear in
figure 7.21, but here we also cannot say that we see a clear connection between the round
trip time going up and the bandwidth going down. These results are very unexpected and
remain without an explanation.
This is coupled to the very sudden rise of the round trip time, as opposed to the very gradual
ascent in the simulations with 10 updates per second. Here, the round trip time goes up
from a very low level in about 20 seconds, where the previous simulations did the same in
100 seconds. The fact that the rise is short before stabilizing is normal, as it only starts 40
seconds before the spawning of the clients ends and we converge to a stable round trip time
(where in the other simulations, it was 100 seconds before the spawning ended). However,
the strange thing is that the rise in round trip time is so high for the latter experiments.
We would expect the rise to continue for 20 seconds before becoming stable at maybe 500 to
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1000ms. However, it rises much higher, almost to the same level as for the simulations with
10 updates per second.
This can indicate that the rise of round trip time is not (completely) coupled to the CPU
usage because of client traffic. If this would be the case, the rise of round trip time should be
a lot less high for the simulations with 2 updates per second. This in combination with the
very sudden rise in the round trip times makes us think the performance deterioration might
have something to do with other side effects, such as memory leaks that reach a critical point
around 130 seconds, buffers that are completely filled around that time or thread pools that
are depleted. This is only a guess and remains untested. Much deeper analysis of the exact
resource usage of the proxy servers is needed before we can create conclusive simulations that
can give us an idea of how the filtering affects the performance and also how different update
rates affect this performance.
This hypothesis of a deeper underlying cause to the strange performance measurements is
deepened by the results for simulations where the filtering is disabled, as we will discuss next.

No filtering

Figure 7.22: The bandwidth usage and round trip time (in milliseconds, right vertical axis) of the
circle movement behaviour at 2 updates per second per client with filtering disabled
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Finally, we perform the same simulations with the filtering disabled. This means we use the
original ALVIC-NG implementation for packet handling with only the bandwidth measure-
ment code of ourselves as an extra step. We would expect this to give us results similar to
the original ALVIC-NG scalability experiments [85], where a single proxy server was shown
to be able to handle up to 625 simultaneous clients at 3 updates per second.
However, the actual measurements are very strange and do not directly support this. The
weirdest things are the extremely fluctuating bandwidth measurements, where there are plenty
of measurement that show zero bandwidth usage. This could indicate very high CPU usage
(causing threads to be slowed down for example), but the round trip time measurements
do not support this hypothesis. In fact, the round trip times are a lot lower than those
of the previous simulation measurements (as can be expected), which makes the bandwidth
measurements even stranger.
Because these measurements were so strange, we performed them multiple times, each time
resulting in similar measurements. Another weird anomaly that we noticed was the spawning
delay that we also noticed in the previous simulations. We would expect all clients to be
spawned after 100 seconds, where this took about 160 seconds for the previous simulations.
For these simulations with the filtering disabled however, we saw that all bots were only
spawned after about 300 seconds. This adds to the idea that there is a deeper reason for
these weird measurements that we have been seeing for the large scale experiments, as this
spawning delay is completely inexplicable and warrants further investigation.

Even though the simulations with 2 updates per second gave us these weird results ,we
decided to also do simulations with 10 updates per second with the filtering disabled. Sadly,
we cannot present those results as they were completely unusable. As soon as the simulation
had spawned about 20 clients, the simulation started behaving very strangely. For example,
the output files for the round trip time measurements weren’t even being created, let alone
written, for many clients. Instead of 100 measurement files (as we had gotten from the
previous simulations), this simulation only resulted in 26 files. 20 for the first 20 clients and
then sporadically a file for a random client.
The bandwidth measurements were also off. When looking at the files, we could see that there
were gaps in the bandwidth measurement: i.e. there was not a line in the file for every second
of the simulation, which was the case for all the previous experiments. Note that these gaps
are not the sudden gaps of 0 bandwidth in the graph: those are actual written bandwidth
measurements in the file.

7.7.3 Discussion

The main conclusion for the simulations in this experiment is that we can present no conclusive
results on the scalability characteristics of our implementation or the normal ALVIC-NG
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implementation in general. Where the first simulations looked like they could provide us with
logical measurements and following conclusions, these conclusions were later contradicted by
other, very similar simulation results.
The most important question, namely how does the overhead incurred by the filtering im-
plementation influences the maximum number of clients a proxy server can support, could
not be answered. Looking at the measurements, one could say that the simulation without
filtering clearly shows that it has no increase in round trip time, as opposed to the simulations
with filtering, where the round trip times went up spectacularly after a low number of clients.
However, given the other anomalies in the measurements and the observed behaviour while
performing the experiments, it is very difficult to just draw this conclusion. We hypothesize
that there are deeper, underlying reasons in the lower layers of the implementation of the
ALVIC-NG and possibly AOI-API codebase that lead to these strange measurements. As
such, we cannot formulate a clear answer to this research question based on the results and
say that a deeper investigation into the implementation is needed.

7.8 Conclusions

After describing the various experiments and simulations that we performed, it is time to
discuss how they have helped answer our various research questions that we posed at the
beginning of this chapter.

• How versatile is the technique?
Through the various experiments, we have shown that the implemented techniques are
very versatile and that they can be applied to a wide array of different type of virtual
environments. Even traditionally difficult game types, such as an FPS or RTS, can be
modeled through the AOI-API, where it is very important that logic from the game
world can be coupled to logic in the AOI definitions. This is for example visible in the
coupling of AOI radius with weapon range in an FPS and line of sight in an RTS. The
simulations also show that using these models, the player’s expectations for the virtual
environment can be largely retained while effectively cutting down on bandwidth usage.

In addition, we have shown that the basic principles behind the NIProxy, and the
bandwidth shaping trees in particular, are very flexible and extendable. Even though
most of our scenarios were never envisioned in the original design of the NIProxy, it was
relatively easy to incorporate our own game logic into the existing implementation. The
experiments show that the bandwidth shaping trees can be successfully used to manage
bandwidth streams in a virtual environment, while also being very logical to build and
maintain when coupled to game concepts and player state.

• How effective is the technique in limiting bandwidth?
Firstly, we want to know how big the total bandwidth gain is that can be obtained
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by this technique. While depending on the specific game or environment and specific
AOI definitions used, throughout the experiments we have seen that there can be huge
differences between the bandwidth usage with filtering enabled or disabled, while for
the most part keeping consistency intact.

The second aspect was if we could also make sure the bandwidth usage stays below set
bandwidth limits. In many of the simple, controlled simulations this was definitely the
case. Especially when coupled with good bandwidth heuristics and knowledge about the
game logic, any bandwidth limit can be respected given enough up front configuration.
Next to this, the implementation is very fast in detecting errors in its bandwidth shaping,
which reduces the risk of precarious bandwidth situations becoming even more harmful.

For the less controlled and larger scale experiments, this aspect of the technique was less
clearly defendable. This is partly because we work with somewhat unrealistic portrayals
of user movement, but also partly because the AOI definitions were not founded in a
particular game logic or environment. As we have seen in the earlier experiments, game
logic is very important to make an accurate model of the AOIs that are best fit for a
particular game or environment. Only if we have the correct AOI model and player
movement can we accurately assess if various bandwidth limits can be respected.

Based on these simple larger scale experiments however, we can say that it is likely that
bandwidth limits can also be kept in larger scale situations, but that there will most
likely be more sudden spikes or gaps in the bandwidth usage. Luckily, it was shown that
our techniques can deal with these changes quickly and effectively, which strengthens
our belief that the technique is usable for fine-grained bandwidth shaping in large scale
environments.

• How well does the technique retain consistency?
The retention of consistency is, much like the previously discussed adherence to band-
width limits, very game or environment dependent. It is very difficult to think of an
objective measure that can be used to track consistency for all types of game logic.
Depending on the game, it will be very harmful to the player if certain elements are
invisible, or not harmful at all.

For the simpler experiments, this consistency was preserved relatively well (even though
we did make some remarks for the FPS experiment, see section 7.1). This can be
explained once more by the fact that the AOI definitions and as such the bandwidth
shaping strategies were all built starting from a good conceptual knowledge of the
possible world states. This can severely help limit the chances of certain AOI definitions
having a negative impact on the user’s experience in the game, even when the bandwidth
limits change.

As the larger scaled experiments primarily use algorithms that are not completely real-



Chapter 7. Results 184

istic or based on actual player movement observations, it is much more difficult to give
a conclusion for the consistency retention capabilities of our technique for larger scale
environments. When looking at the smaller experiments however, it is likely that these
concepts can be transferred in some way or the other to the large scale equivalent and
as such that a good measure of consistency will be kept in those situations as well.

The most important thing here is the versatility of the AOI-API and the bandwidth
shaping techniques. It is very easy and quick to change to a different AOI definition,
which means that should the consistency start to deteriorate, we can switch to a new
model in which the consistency is kept better in that particular situation. There will
always be a trade off between this consistency and the bandwidth usage, but with our
technique this trade off is very controllable, especially at runtime.

• How does the technique affect the performance of the proxy servers?
This last question remains unanswered by our simulation results. As discussed in ex-
periments 6 and 7, we ran a large number of different simulations to assess not only
the bandwidth characteristics of a large scale setup, but also how it would affect the
proxy server’s performance and eventually the observed round trip time (or ping) for
the users, which is a very important measurement for the application to feel responsive
and interactive.

The simulation results were inconclusive. While with medium scale simulations it ap-
pears that there is relatively little impact from the added filtering implementation (see
figure 7.17), the larger scale measurements contradict this in many ways while showing
several other anomalies as well. Because of these anomalies, our hypothesis is that these
performance issues might have a deeper origin within the implementation and are not
just dependent on if we use our filtering implementation or not.

As such, a deeper investigation and possible re-implementation of certain parts of the
ALVIC-NG, AOI-API and NIProxy frameworks are needed before running these simu-
lations again and drawing conclusions from their results.



Chapter 8

Conclusion

A couple of important conclusions can be drawn from the first part of this thesis.
Firstly, that dynamic bandwidth scalability is needed and useful in nearly all forms of NVE
development and deployment. While zoning is the prevalent technology for this purpose, we
find that additional techniques for bandwidth shaping are needed to make specific types of
NVEs possible. Game types such as First Person Shooters and Real Time Strategy games or
more serious applications such as collaborative environments often have specific bandwidth
usage characteristics that cannot be managed by using only zoning. For these types of NVEs,
a more fine-grained technique for bandwidth control is needed.
Secondly, after examining various other techniques and determining which techniques are
used in other existing systems, we came to the conclusion that not one technique is optimal
for all NVE types. Depending on the exact game or application logic and even deployment
characteristics, there are different expectations for consistency and bandwidth usage. The
most flexible of the researched techniques is Area of Interest, as it can be used to model a
wide array of different situations and can be coupled directly to the NVE logic to provide a
meaningful connection between bandwidth and consistency that can be used when determin-
ing the best trade-off between those two parameters.

In our implementation of an Area of Interest system for the second part of this thesis, we put
a strong emphasis on this versatility to make sure our technique would be usable in as many
types of NVE as possible. Our AOI-API for instance includes Level of Detail management,
multiple AOIs per user, different AOI shapes and dynamic AOI shape adjustments. We couple
this AOI system to the bandwidth shaping tree technique originally used in the NIProxy
project [93]. This allows us to provide very fine-grained bandwidth control that is flexible
and able to quickly react to changes in bandwidth availability. We implemented and tested
various use cases and experiments that show the power and flexibility of our technique and
its ability to provide good and adaptable bandwidth shaping at runtime.
These experiments also showed once again that the exact type of NVE we use the technique
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in can have a large impact on the obtained results. As such, the large versatility of our im-
plementation does not only allow us to create many different types of NVE, it also allows us
to provide very fine-grained modeling of specific situations for each of these NVEs and thus
obtain the optimal AOI definitions and bandwidth shaping for many situations.

The research question on the usability of the proposed technique for larger scale deployment
remains open. Several (external) factors contributed to the non-conclusive results, includ-
ing performance issues in the underlying implementation and the absence of realistic player
movement in combination with a conceptual world logic on which to base the AOI definitions.
With additional effort however, these issues can clearly be resolved.
Future work is needed to investigate the exact usability of our technique for the envisioned
applications, such as MMOFPSs or MMORTSs. But the high versatility of the implementa-
tion and good test results for smaller scale scenarios make it likely that it will be possible to
use our technique in these challenging large scale settings to provide a flexible way to tune
the consistency/bandwidth tradeoff.
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Future work

There are various aspects about our technique that can be improved or extended upon.
Firstly, it is important to review the ALVIC-NG implementation and find ways to optimize
its performance or at least identify the source of the issues we encountered in our large scale
experiments. Optimization of this implementation, for example through explicit memory
management or by using less threads for the network communication, will help improve per-
formance even if the AOI techniques are not used, which will in turn increase the number
of clients that a single proxy can support. This leads to a lower overall number of deployed
proxy servers in the network and thus cost and maintenance.
Secondly, we should look into a more integrated solution for the coupling between ALVIC-
NG and the AOI-API/NIProxy implementation. Up to this point, the versatility provided by
adding our techniques via a plugin-like system allowed us to work without worrying about the
effect or our implementation on ALVIC-NG while other people were working with the same
code base. However, now that the implementation is completed, we would like to use it in
other areas of ALVIC-NG as well (for instance to calculate which neighbouring areas should
be requested by the proxy server). An integration of the AOI-API in the more basic layers of
ALVIC-NG gives more modules access to it and extends the capabilities for developers that
use the system.
Thirdly, the implementation of the RTS experiment and scenarios can prove to be a very
interesting use case for our suggested techniques and help determine if a large scale RTS is
possible without using the traditional lockstep/fully deterministic simulation. In addition, it
can provide some insight in possible approaches to networked physics, which is an important
area of research, even for smaller scaled games.
Fourthly, the NIProxy can be adapted to be of a more modular nature and thus more parts
of it can be fit into ALVIC-NG. This would not only benefit the NIProxy’s re-usability in
other projects but also enhance ALVIC-NGs capabilities with for example video transcoding
services, which makes it more attractive for collaborative environments.
Lastly, a bigger project can be started in which we first gather realistic movement data from
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players in an existing NVE. After this, we can run extensive experiments, using various AOI
models based on the NVE logic, to see how different AOI models impact the consistency and
bandwidth usage for this particular game. We can also use those experiments to find the best
way of constructing fitting heuristics for the bandwidth shaping system. Only when a pipeline
has been devised for iterating towards the optimal AOI models and bandwidth heuristics, can
we think about integrating this system as an important part of a (commercially) deployed
NVE.
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