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Abstract 

 

 

Life expectancy is the expected number of years of life remaining at a given age. It is a very 

important measure, a good proxy for health status and also it appears among the indicators 

used to assess the development of a country. Life expectancy is also used in public policy 

planning. 

This report looks for the determinants of life expectancy at birth and at age 65 in the EU over 

the period 1999-2007. Due to the difference in health status between men and women their 

life expectancies were modelled separately. Potential determinants present in the data set used 

are numerous and therefore are more likely to be concerned by multicollinearity. There are 

also time-dependent. Penalized Generalized Estimating Equations (PGEE) with independence 

working correlation was then applied to select among the covariates those which significantly 

explain the life expectancy in the EU. 

Among different penalty functions which could be added to the score equations of 

Generalized Estimating Equations (GEE), elastic-net and SCAD-L2 have useful properties, 

including sparsity which is necessary to perform variable selection. Through cross-validation 

SCAD-L2 proved to be the optimal penalty for both models of each gender. 

It emerges from this study that in the EU some factors affect life expectancy regardless the 

gender and the age, namely the GDP, the population size, the practising physician density and 

the variability of absolute humidity. The first three factors have a positive effect and the last 

one a negative effect on life expectancy. Indeed, considerable differences appear between 

males and females. It is also noted that the determinants of female life expectancy at birth and 

age 65 are almost the same whereas those of male life expectancy at birth and age 65 differ 

slightly. 

 

Key Words: Life expectancy, variable selection, penalized GEE, Cross-validation 
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Chapter 1: Introduction 

 

 

1.1 Background of study 

The World Health Organization (WHO) defines the life expectancy as the average number of 

years persons can expect to live, if in the future they experience the current age-specific 

mortality rates in the population [42]. It is a common measure of population health in general, 

and is often used as a summary measure to compare different populations. It summarizes the 

mortality pattern and also gives an idea on the quality of healthcare delivery and the ageing of 

population. Life expectancy is used in public policy planning. Indeed, it appears among the 

important measures of the economic well-being of a nation [28]. It is computed for each age 

but for comparison between countries the life expectancies at birth, at age 60 and 65 for males 

and females (separately) are most of the time used. 

The increase of the life expectancy in some European countries (and other developed countries 

around the world) during the 20
th

 century results from the improvements in housing, sanitation, 

and nutrition; the control of infectious diseases and maternal mortality; and the advent of 

antibiotics [37]. In 1900, one in five infants died before age 10. Life expectancy for those who 

survived to age 10 was about 60. By 1940, over 90% of infants survived to age 10. Since 1940, 

mortality reductions have shifted to older ages [43]. That is partially explained by the rising 

living standards, the improved access to better education, including for women. Between 1940 

and 1960, infectious disease mortality continued to decline with the development of 

(antibioticics) sulfa drugs in the 1930s and penicillin in the 1940s. Later in the century, new 

medical technology has been developed for treating cardiovascular disease, one of the leading 

killers which appeared after the decline of infectious disease. In 2010 the life expectancy in 

developed countries is more than 80 years [44] and is expected to increase in 2011 [45]. 

Even if the European continent is among the richest regions of the Earth and its economy 

among the largest [46], a large variation of wealth exists among its countries. The richer states 

tend to be in the West; some of the Eastern economies are still emerging from the collapse of 

the Soviet Union and Yugoslavia [46]. For instance between 1980 and 2005, the trends in life 

expectancy show a still growing gap between western and eastern parts of Europe; with longest 
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life expectancy recorded in the western part [35]. Concerning the mortality, the east-west 

inequality is also pronounced. For instance, infant mortality is higher in the eastern part of the 

region between 1980 and 2005, with the highest levels in some south-eastern countries [35]. 

1.2 Sex differences in life expectancy 

In all populations, females tend to outlive males [1]. The female life expectancy is considerably 

higher than that of men. That difference in life expectancy with respect to the gender is 

ascribed to a gender differential in health status. Men have higher rates of death (mortality) and 

more serious and chronic illnesses (morbidity) than women [26]. For instance, men are more 

likely to die from cardiovascular disease, which is acute, and often fatal at a relatively young 

age (40-60 years). According to Abdulraheem et al. [1], the differences in incidence of illness 

between males and females are attributed to three elements: (1) the biological factors because 

“boys are more likely to have problems in utero or early infancy due to having a single X 

chromosome. Occasionally, reference may be made to the hormonal differences between men 

and women as contributory.” (2) The behavioural/cultural factors: men’s "risk-taking" 

behaviours and the "male role" are the real causes of poor health [15, 16]. In other words, the 

differences in lifestyle, behaviours and attitudes between men and women determine to a large 

extent their different longevities. (3) The material/structural factors: Here, social factors (such 

as employment patterns, income, educational opportunities, government policies, provision of 

health services, etc.) are considered as determinants of health outcomes. For instance it is noted 

that structural factors are the main cause of women’s health problems [1]. 

1.3 Determinants of life expectancy (according to empirical studies) 

As we have noticed so far, life expectancy and health are strongly related. The increase of life 

expectancy in developed countries is considered as the result of health care improvement. In 

developing countries where the infant and maternal mortality rates are high, and diseases like 

malaria and tuberculosis rage (Sub-Saharan Africa for instance) the life expectancy at birth is 

lower [10]. The life expectancy is therefore used as a proxy of health status in the estimation of 

the health production function in most studies. The health production function mostly defined 

is derived from the Grossman [17] theoretical model that treats social, economic, and 

environmental factors as inputs of the production system. The outcome is the health status and 

the covariates are: “nutrient intake, income, consumption of public goods, education, time 

devoted to health related procedures, initial individual endowments like genetic makeup, and 

community endowments such as the environment” [10]. 
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For the estimation of health production function for Sub-Saharan Africa Fayissa and Gutema 

[10] used the GDP per capita, health expenditure per capita, food availability, illiteracy rate, 

population, adult alcohol consumption per capita, urbanization rate, and CO2 emissions to 

explain the health status proxied by life expectancy at birth. 

Shaw et al. [32] used the income (GDP per capita), pharmaceutical consumption, non-

pharmaceutical health care consumption, percentage of the population 65 years of age and 

older, health care consumption, alcohol consumption, smoking behavior, fruit and vegetable 

consumption, fat consumption and a spatial factor as determinants of the life expectancies for 

males and females at ages 40, 60 and 65 in OECD. In the specified model the logarithmic 

transformation is applied to all continuous variables. In particular, the wealth of a country 

(GDP) is assumed to have a strong non-linear influence on the life expectancy of its inhabitants 

[31]. Therefore in some life expectancy production function the logarithmic transformation is 

applied to the GDP [10, 32]. 

As summary demographic and socio-economic factors, health resources, lifestyle and 

environmental factors are the main determinants of life expectancy. In most studies only few 

variables are used to characterize each group of factors: diet, alcohol and tobacco consumption 

as lifestyle factors, income and education as socio-economic factors, etc. However, Poudyal et 

al. [30] included many variables in the regression model to examine the effect of natural 

resource amenities on human life expectancy in the United States. They extended the existing 

model of life expectancy production function by considering 9 demographic and socio-

economic factors, 8 medical facilities and risk factors and 12 variables to characterize the 

natural amenities and outdoor recreation resources. The outcome is the life expectancy at birth. 

1.4 Statement of the Problem 

In the framework of disease prevention and control, the Centre for Health Economics Research 

and Modeling Infectious Diseases (CHERMID) of the University of Antwerp gathered data in 

EU countries over the period 1999-2007. The database established contains different groups of 

variables: agricultural factors, burden disease, cultural and perception of illness, education and 

knowledge about antibiotics, health care system, socio-economic factors and demographic 

factors among which the life expectancies at birth, 60 years and 65 years for males and 

females. The goal of this thesis is to select variables which may explain the life expectancy in 

the EU. The three important issues in the database are multicollinearity due to the large number 

of variables, time-dependent covariates and longitudinal nature of the responses. 
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- Multicolinearity and variable selection 

In multiple regression, multicollinearity occurs when two or more predictors are highly 

correlated and provide redundant information about the response [47]. One consequence of 

multicollinearity is the increase of the standard errors of the regression coefficients [21]. 

Multicollinearity can cause strange results when attempting to study how well individual 

independent variables contribute to an understanding of the dependent variable. In general, 

multicollinearity can cause wide confidence intervals and produce parameter estimates of 

implausible magnitude or incorrect sign. Parameter estimates become very sensitive to the 

addition or deletion of observations. In truly extreme case it may prevent the determination of 

the numerical solution of the model [27]. Therefore, in the analysis, it is necessary to deal with 

multicollinearity when it is present in the data. 

In order to handle multicollinearity ridge regression has been proposed [19, 20]. That model 

consists in penalizing the least squares or residual sum of squares (RSS) of the linear 

regression model with the L2-norm    
  

   . Afterwards the L1-norm      
 
    has also been 

applied as penalty to the RSS. The resulting model is termed LASSO [33] and has a property 

that allows variable selection contrary to the ridge penalty which deals only with 

multicollinearity. In the same vein, different penalties have been proposed to concomitantly 

handle multicollinearity and perform variable selection. 

- Longitudinal data, time-dependent covariates and variable selection 

Data to analyze are correlated since the response variables are longitudinal. The repeated 

measurements over time of a life expectancy are expected to be correlated within a country. 

Linear regression is not suitable to model such data due to the fact that it is based on the 

assumption of independence of the observations. In addition, the scientific focus of this study 

is less on the individual’s response but, more on the population-averaged response. We are 

interested by the effect of covariates on the average life expectancy in the EU (population-

averaged response) not on the life expectancy in each country (individual’s response). 

Therefore a marginal model is suitable to address our research question: “what are the 

determinants of life expectancy in the EU?” 

Generalized Estimating Equations (GEE) proposed by Liang and Zeger in 1986 [22, 38] is the 

most used marginal model because many software packages offer procedures or functions to fit 

it. However, in 1994 Pepe and Anderson [29] drew attention on the key condition for its use by 
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noting that the consistency of GEE parameter estimates depends on the type of covariates and 

the type of association among observations (Working correlation) considered. With time-

independent covariates GEE parameter estimates are consistent whatever specified working 

correlation; that is not always the case with time-dependent covariates [29]. In CHERMID 

database almost all potential determinants of life expectancy vary over time. This warns us 

about the choice of working correlation structure for the marginal model which seems 

appropriate for this study. 

The penalty functions aforementioned which are applied to the RSS can be generalized to the 

likelihood (deviance precisely) in order to proceed to variable selection [7], however in GEE 

approach the likelihood is not known. The estimating equations are derived without full 

specification of the joint distribution of the observation of a subject [5]. Thus, variable 

selection is done in GEE analysis by penalizing the score equations [8, 14]. 

1.5 Objective of the study 

The main goal is to apply penalized GEE in order to select determinants of life expectancy in 

the EU from the database established by the CHERMID. This study focuses on the life 

expectancies at birth and at age 65 for males and females separately. Broadly the structure of 

this report is as follows. The second chapter describes the subset of the database used for the 

analysis. Different penalty functions and their properties are first of all described before their 

application to GEE. The third chapter starts by the exploration of data, the assessment for the 

presence missingness which characterizes longitudinal studies and ends by the final models 

that answer the research question. The last chapter (4) lists the limitations of the methodology 

used in this report, and thus sketches some tracks for the improvement of this work and also for 

future research. 
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Chapter 2: Data and methodology 

 

 

2.1. Data 

Data analyzed in this report is a subset of the CHERMID database, which has already been 

used in the ESAC3 (European Surveillance of Antimicrobial Consumption) project to 

investigate determinants of antibiotic use. CHERMID collected data from generic databases 

(such as Eurostat and OECD health data), pertaining to the period 1999-2007. The database 

contains different groups of variables such as agricultural factors, demographics factors, 

education, culture, healthcare system and socio-economic factors. 

In the present study, we try to identify the determinants of life expectancy at birth and at 65 

years of age for female (FemLifeExpBirth and FemLifeExp_65) and male (MaleLifeExpBirth 

and MaleLifeExp_65) separately. All these response variables are considered as continuous. 

Table A.1 in the appendix describes the potential determinants of life expectancy in the EU 

countries available in the database. Almost all covariates are continuous except the binary 

variable Guidelines that indicates if there are any guidelines for Pulmonologists or General 

Practitioners. 

The peculiarity of the data set to analyze is the longitudinal structure of each of the 4 

responses, the covariates which are time-dependent and the large number of covariates (53) 

that undoubtedly, will pose the multicollinearity problem. 

 

2.2. Methodology 

2.2.1. A muticollinearity remedial measure and its extensions 

Consider the usual linear regression model           ; where the response   is an 

    vector,           ,    the intercept,   an     matrix of covariates,   a     

vector of coefficients and            . The estimates of the coefficients    and   are 

determined using the Ordinary Least Squares (OLS) method. However, the presence of 

multicollinearity may have an undesirable effect on them [21]. Different methods have been 
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proposed to deal with multicollinearity in regression analysis; some of them consist in 

combining, transforming or dropping covariates [21] others consists in modifying the 

regression method by considering principal components regression [18] or ridge regression 

[19, 20]. 

In principal components regression instead of regressing the predictor variables on the 

dependent variable directly, the principal components (index variables) that are linear 

combinations of the predictor variables are used [18]. Multicollinearity problem is solved 

because principal components are mutually uncorrelated.  

As recall, in the presence of severe multicollinearity, the standard errors of the regression 

coefficients are inflated, making it very difficult to detect the partial effect of regressors and 

making interval estimates very imprecise [21]. In such situation biased estimators, but that are 

substantially more precise than the unbiased estimators may be preferable. Ridge regression 

modifies the least squares method so that biased estimates are allowed that may result in more 

precision (smaller variability for the estimators). The ridge coefficients minimize a penalized 

Residual Sum of Squares (RSS), 

                     
 

               
 
    

 
     

  
   

 
      

equivalently                       
 

               
 
    

  
      subject to    

  
      

where   or   controls the model complexity (regularization parameter).          
  

    is a 

   penalty. In data mining linear regression model is recognized as often exhibiting high 

variance and so doesn’t reduce the prediction error [18]. Ridge regression appears as a 

shrinkage method that proposes to trade off unbiasedness in favor of greater stability. Another 

shrinkage method similar to ridge proposed by Tibshirani [33] is the least absolute shrinkage 

and selection operator (LASSO). It minimizes the residual sum of squares subject to the sum of 

the absolute value of the coefficients being less than a constant       
 
      . The LASSO is 

a member of the penalized least squares family with    penalty:            
 
   . The bridge 

regression has also been proposed with    penalty            
  

    (where   is some 

number between 0 and 2) to deal with collinearity in regressions [12, 13]. Ridge and LASSO 

are special cases of bridge penalty; the former corresponds to     and the latter to    . 

Zou and Hastie [40] combined linearly these two penalties to form the elastic-net penalty 

function                      
   

   , with   between 0 and 1. Fan and Li [9] defined 
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the Smoothly Clipped Absolute Deviation (SCAD) penalty function as              
 
    

such that  

       

 
 
 

 
 
                                                

                  
 

      
                   

       

 
                                           

            With    . 

Xie and Zeng [36].proposed the SCAD-L2 penalty which is the linear combination of SCAD 

penalty and ridge penalty:                         
   

   . The penalty functions 

are sketched in figure 1 [7, 9, 36]. We can notice the convexity of L2-norm. Elastic-net penalty 

function will fall in between ridge and LASSO if the graphs are superimposed. SCAD-L2 

penalty function is almost dominated by the L2-norm and looks like elastic-net. As in ridge 

regression presented above, all these penalties are used to perform penalized least squares 

analysis:                         
 

               
 
    

 
      

      

 

Figure 1: Penalty functions 
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2.2.2. Variable selection and penalization 

In regression analysis parsimony is an important issue. When the number of predictors is large 

we would like to determine a smaller subset that put more light on the relationship between the 

response and covariates making the model interpretation simpler. Usually stepwise procedure 

(forward selection or backward elimination) and best subset selection are used for that purpose 

[18, 23]. These variable selection methods are based on the optimization of a criterion of model 

goodness like, residual sum of squares, adjusted   , Mallow's Cp, the Akaike information 

criterion (AIC), or the Bayesian information criterion (BIC). They become computationally 

expensive (when the number of variables is too large) and ignore stochastic errors present in 

the variable selection process [4, 9]. In addition to the fact that subset selection exhibits high 

variance and so does not reduce the prediction error of the full model [18], it is also criticized 

for its inherent discreteness (variables are either retained or discarded) that may provides 

extremely variable models [33]. Subset selection method corresponds to    penalty function 

     
   

   , where we define     as        and      is the indicator function [7, 13, 33]. 

Penalized least squares methods that are continuous and do not suffer as much from high 

variability have been proposed for variable selection. LASSO is the simpler one which shrinks 

some coefficients and set others to zero (sparse representation). However the shrinkage of 

some coefficients may be excessive, introducing too much bias. Ridge penalty shrinks the 

coefficients but does not set any of them to zero [33]. Ridge regression keeps all regressors in 

the model and therefore cannot produce a parsimonious model event if it improves its 

prediction performance through a bias-variance trade-off. We can therefore notice that penalize 

the RSS is not enough to ensure variable selection, moreover shrinkage may be unnecessary. 

So, a good penalty function should satisfy three main properties according to Fan and Li [9]: 

1. Unbiasedness: The resulting estimator is nearly unbiased when the true unknown 

parameter is large to avoid unnecessary modeling bias. 

2. Sparsity: Small estimated coefficients (in absolute value) are set to zero to reduce 

model complexity (singularity at the origin). 

3. Continuity: The resulting estimator is continuous with respect to the unbiased estimate 

to avoid instability in model prediction. 

The SCAD penalty possesses all these properties. Another advantage of SCAD is that it 

possesses the “Oracle properties” defined by Fan and Li [9]; meaning in simpler words 

according to Xie and Zeng [36] that “the probability of selecting the right set of variables (with 
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nonzero coefficients) converges to 1 and that the estimators of the nonzero coefficients are 

asymptotically normal with the same means and covariances as if the zero coefficients were 

known in advance,” or in other words that “the asymptotic bias, variance, and distribution of 

the resulting estimate are the same as if the correct subset were known in advance,” according 

to Dziak [7]. It is necessary to mention that continuity is obtained with SCAD penalty when   

is larger than 2. Otherwise the SCAD penalty would converge pointwise to the    penalty and 

lose its stability [7]. Ridge shares only the continuity property with SCAD. 

Even if LASSO (   penalty) accomplishes automatic variable selection and continuous 

shrinkage, it is criticized for the fact that when the number of observations   is lower than the 

number of covariates   it will select at most   variables and also for the fact it tends to select 

only one variable from a group of variables highly correlated [40]. The    penalty term in the 

Elastic-net penalty confers to the latter the “grouping effect” property (which lacks to SCAD 

penalty), meaning the ability to drop or select groups of correlated variables. The    penalty 

term gives to Elastic-net the LASSO characteristics (simultaneous automatic variable selection 

and continuous shrinkage). As regards the    penalty their properties intermediate between    

and    penalties. 

The behaviour of the penalty functions for an orthogonal design (orthogonal columns of  ) are 

summarized in table A.3 in the appendix where the penalized estimates     are simple functions 

of the least squares estimates     [7, 9, 18, 36, 40]. The properties of these penalties are shown 

in figure 2. We note the undesirable properties of some of them namely the discontinuity of   -

norm; ridge which does not set coefficients to zero and then does not give sparse model. 

LASSO and elastic-net introduce considerable bias. Fortunately, with SCAD and SCAD-L2 

large coefficients are unbiased. 
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Figure 2: Penalized Estimators as Functions of the Least-Squares Estimator in the Orthogonal Case 

 

2.2.3. Generalized Estimating Equations (GEE) 

This study looks for the factors which may affect the life expectancy in the EU. It is less 

interested by the determinants of life expectancy in a specific country of the EU compared to 

others (heterogeneity among countries). A population-averaged approach is then suitable to 

model the life expectancy. Moreover data are correlated because of the longitudinal nature of 

the response variable [34]. We expect the life expectancy values (of different measurement 

times) within each country to be more correlated than across countries.  
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Different likelihood-based marginal models have been proposed mostly for discrete 

longitudinal data [5, 25], however there are computationally expensive even in situations with 

a small number of repeated measurements for each subject [5] since they require the 

specification of many parameters. GEE was proposed as marginal model by extending the 

quasi-likelihood approach to longitudinal and clustered data [5]. The response variable follows 

a distribution that belongs to the exponential family. Therefore GEE is used to model not only 

repeated binary data, but also count, ordinal and continuous data [11]. 

Let consider     the response for the subject   at time                       ,     

               the corresponding     vector of covariates and             a     

vector of unknown parameters characterizing how the response distribution depends on the 

explanatory variables. As marginal model GEE has three-part specification [5]. In the first step 

the marginal response                is related to a linear combination of the covariates, 

          
  , where      is the link function. Afterwards the variance of     is expressed as 

function of the mean,                     , where      is the variance function and   an 

unknown scale parameter. The last specification is the within-subject association among the 

vector of repeated responses assumed to be function of an additional set of association 

parameters                        .      is called working correlation matrix and 

approximates the average dependence among repeated observations over subjects. Different 

working correlation structures have been suggested, independence, exchangeability, first-order 

autoregressive (AR(1)) and unstructured [5, 25]. Fortunately, GEE yields consistent estimates 

of the regression coefficients and their variances even under misspecification of the covariance 

matrix structure (With time-independent covariates, indeed). 

The final step of GEE is the estimation of the parameter vector   and its covariance matrix. For 

the  -th subject, let    be the       diagonal matrix with        as the  -th diagonal element. 

The working covariance matrix for                  is          
          

   
. The 

parameter vector   is estimated by solving the following score equations: 

       
   

  
 
 

 
           

                       

The key property for the consistency of   , solution to (1) is           [5, 11, 29]. That is 

true if the marginal expectation     is equal to the partially-conditional expectation 

                 : 
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                                      (2) 

Diggle et al. [6] refer to the condition (2) as the Full Covariate Conditional Mean (FCCM) 

assumption. Pepe and Anderson [29] showed that this condition is not always satisfied with 

time-dependent covariates, but with time-independent covariates. They concluded that fitting a 

marginal model to longitudinal data requires that either the FCCM assumption is verified or 

that working independence GEE is used [29]. 

 

2.2.4. Penalized GEE (PGEE) 

In sections 2.2.1 and 2.2.2 we defined different penalty functions and some of their properties. 

In linear regression, they improve the OLS estimator in terms of mean squared error and 

prediction error and some of them contribute to variable selection. They can be generalized to 

likelihood-based models by replacing the objective function RSS by the model deviance 

(precisely    log-likelihood) [14]. However, the extension to GEE is not straightforward due 

to the unavailability of the joint likelihood function. To deal with collinearity in longitudinal 

data the penalized score equations approach is adopted: 

  
   

  
 
 

 
           

                     

where the first term corresponds to (1) and                is the vector derivative of the 

penalty function     . Fu [14] applied the bridge penalty to GEE with    . Subsequently 

Dziak and Li [8] applied the SCAD penalty and mentioned that the oracle property is 

maintained for penalized GEE with this penalty function. 

In this study we considered GEE with independence working correlation assumption due to the 

fact that all covariates vary randomly with the time. In order to try out the penalties defined in 

section 2.2.1, we considered the following form for the penalty function      applied to GEE: 

                              
 
     

where        is the part of the penalty function that provides sparsity of the resulting estimator, 

       is the part of the penalty function that provides the grouping-effect (has to be a convex 

function) and        . For instance by taking              and           
  the      

      for     and            for    . Elastic-net penalty is obtained by taking an   

value different from 0 and 1; in fact the SCAD penalty is applied for    . This general form 
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of the penalty function makes easier the application of the     -   penalty function proposed 

by Xie and Zeng [36]. The     -   penalty function is a linear combination of the    norm 

and the SCAD function. It is obtained by taking               ,           
  and an   

value different from 0 and 1. In addition to the three properties satisfied by the SCAD penalty, 

    -   penalty function also satisfies the grouping-effect property [36], which is important 

for variable selection in case of high multicollinearity. 

 

2.2.5. Selection of tuning parameters 

The elastic-net and SCAD-L2 penalties retained for this study have the two tuning parameters   

and  . SCAD-L2 has an additional one:  , like SCAD penalty function. However, it was shown 

that       is approximately optimal [9] for SCAD penalty. Moreover, Fan and Li [9] 

recommended to use cross-validation or generalized cross-validation method to determine 

tuning parameters for SCAD regularization. Therefore, for this study we considered       

and cross-validation method to determine the best pair       over the two-dimensional grid 

(for model selection). 

Cross-validation is a technique for assessing how the results of a statistical analysis will 

generalize to an independent data set. In k-fold cross-validation, the original data is first 

randomly partitioned into   equally (or nearly equally) sized segments or folds. Subsequently   

iterations of training and validation are performed such that, within each iteration a different 

fold of the data is held-out for validation while the remaining     folds are used for the 

learning process. Figure 3 illustrates a three-fold       cross-validation [49]. The darker 

sections of the data are used for the training process while the lighter sections are used for 

validation. In data mining 10-fold cross-validation        is commonly used. But when 

    the procedure is called leave-one-out cross-validation (LOOCV). In this study we 

performed a LOOCV at the country level, due the correlated nature of the data; meaning that 

for each iteration a country   (with its    repeated measurements) is used for validation and the 

remaining countries for training. Model fit is measured using the mean squared error (MSE) as 

follows: 

          
 

 
     
 
   ;    where      
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The goal of cross-validation is to estimate the expected level of fit of a model to a data set that 

is independent of the data that were used to train the model. Cross-validation over a two-

dimensional grid consists in fixing a set of values for each tuning parameter   and  , and 

afterwards computing the MSE (by applying cross-validation algorithm) for each pair. The pair 

corresponding to the minimum MSE is the best. 

 

 

Figure 3: Procedure of three-fold cross-validation [49] 
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Chapter 3. Results 

 

 

3.1. Exploratory Data Analysis 

3.1.1. Context 

Not all countries of the EU were included in the analysis. Table 1 shows the list of the 24 

countries concerned. No selection of countries was done, the single exclusion criteria is the 

unavailability of data. We can notice from table 1 that data are not available for the 9 

measurement occasions (1999-2007) in all countries. In Greece and Latvia for instance, data 

are available for 5 years only, for 6 years in Croatia, for 7 years in the Czech Republic, Norway 

and Poland, for 8 years in Finland, France, Italy, Slovakia and United Kingdom. We have all 

data for the remaining 12 countries (50%). 

 

Table 1: List of countries and number of years that observations are available 

Country Number of years   Country Number of years   Country Number of years 

Austria 9   Germany 9   Norway 7 

Belgium 9   Greece 5   Poland 7 

Croatia 6   Hungary 9   Portugal 9 

Czech Republic 7   Ireland 9   Slovakia 8 

Denmark 9   Italy 8   Slovenia 9 

Estonia 6   Latvia 5   Spain 9 

Finland 8   Luxembourg 9   Sweden 9 

France 8   Netherlands 9   United Kingdom 8 

 

The map of figure 4 illustrates the female life expectancy at birth in the EU in 1999 (beginning 

of the study period). We can see that the females have a higher life expectancy at birth in 

France (Paris), Italy (Rome), Luxembourg, Spain (Madrid), Sweden (Stockholm) and 

Switzerland (Bern). The map also points out the lack of data for Croatia (Zagreb) and Latvia 

(Riga). 

 



18 

 

Figure 4: Life expectancy of females at birth in 1998 in the EU (Source: EUROSTAT website) 

 

3.1.2. Response variables 

The response variables of this study are life expectancy at birth and life expectancy at age 65. 

Figure 5 portrays their evolutions over time in each country per gender. One notes a 

considerable between- country variability and small within-country variability showing that 

data are correlated. Regardless the gender, the evolution of each response variables is almost 

linear in most of the countries. 

In 1999 the average male life expectancy at birth is 73.5 in the 24 countries, it reaches 74.81 in 

2007. The average female life expectancy is 80.09 in 1999 and 81.36 in 2007. The average life 

expectancy at age 65 of males starts at 15.02 in 1999 to reach 16.08 in 2007. That of females 

starts at 18.8 and reaches 19.83. The large disparity between males and females justifies 

somehow why we will look for the determinants of life expectancy separately for both genders. 

One also notices a certain parallelism between the profiles. In addition to the low between-

country variability, that suggests that a marginal model would reflect the trend in the evolution 

of life expectancy in most of the countries. 
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Figure 5 also shows up the missingness issue. As mentioned earlier countries with complete 

data represent 50%. As table A.4 in the appendix shows, monotone missingness represents 

20.83% and intermittent (non-monotone) missingness 29.17%. 

 

Figure 5: Profiles of the life expectancy at birth and at age 65 (Males and Females) 

 

3.1.3. Covariates 

Covariates are also affected by missingness. Multiple imputation was applied to deal with that. 

A total of 5 data sets were generated in order to account for the uncertainty related to the 

multiple imputation in the analysis [25]. Almost all covariates are time-varying. Figure 6 

depicts the evolution of the single binary covariate (Guidelines) and one continuous covariate 

randomly selected (Gini). We can notice that within almost all country Gini varies over time. 

Even Guidelines changes over time within a country. 
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Figure 6: Profiles of two covariates (Gini and Guidelines) 

 

3.2. Penalized GEE 

In this report we look for the determinants of life expectancy for males and females separately. 

For each gender we also search the determinants of life expectancy at birth and at age 65 apart. 

Four types of models are thus considered. However, the missingness of covariates has been 

handled with multiple imputation and five data set were generated to that end. Each of the four 

types of model is then fitted five times in order to take into account the variability related to 

multiple imputation. 

 

3.2.1. Comparison of Elastic-Net and SCAD-L2: MSE 

Elastic-net and SCAD-L2 penalties depend on a tuning parameter   supported on the interval 

[0,1] and a tuning parameter    . As recall SCAD-L2 depends on an additional tuning 

parameter    . But in this analysis we used the optimal value       proposed by Fan and 

Li [9]. In order to select optimal values for the parameters   and   we performed cross-

validation over a two-dimensional grids for each of the 20 models to consider. For both 

penalties 10 values equally spaced were considered in the interval         for the parameter  . 

For the elastic-net penalty we generated in the interval                200 values equally 

spaced for the parameter  ; for SCAD-L2 rather 400 values equally spaced were generated 

between 0.001 and 1 for the latter tuning parameter. 
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Figure 7 shows the MSE of the each of the four types of models in the grid of pair       for 

the first data set. It compares elastic-net with SCAD-L2. Figures A.1, to A.4 in the appendix 

present the results for the four remaining data sets. We note a high sensitivity of all models 

with respect to the choice of the pair      . However, the effect of the tuning parameter   is 

more pronounced only for larger values of the tuning parameter  , not for its smaller values. 

Whatever   value considered, we note a high sensitivity of each model with respect to the   

values. These figures also point out a noticeable difference between the elastic-net penalty and 

the SCAD penalty for each model. They briefly indicate a substantial variability among the 

five data sets. They also suggest different optimal models for each gender and each age.  

 

Figure 7: Two-dimensional grid cross-validation (on PGEE)  for the pair      : Data set 1 

 

As a reminder both elastic-net and SCAD-L2 satisfy the main properties required to apply 

penalization for variable selection purpose. But they seem to perform differently on our data as 

we observed on figures 7, A.1 to A.4. Table 2 compares the two penalties first of all by the 

means of the minimum MSEs in the 20 grids described above. We can notice that except the 

model for male life expectancy on the third data set and that of male life expectancy at age 65 

on the fourth data set, for each model the minimum MSE of SCAD-L2 penalty is lower than 

that of elastic-net. After taking into account variability caused by multiple imputation by 

averaging the MSE of the five data sets for each type of model, the so-obtained MSEs indicate 

that SCAD-L2 is the optimal penalty i.e. the one that minimizes the MSE on average. 
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Table 2: Comparison of elastic-net and SCAD-L2: Minimum MSE in the two-dimensional grid 

Gender Age Data set 
Elastic-Net SCAD-L2 

MSE SE Alpha Lambda MSE SE Alpha Lambda 

Male Birth 1 0.4051 0.0155 0.1 0.0154 0.3866 0.0144 0.6 0.0210 

Male Birth 2 0.4039 0.0126 0.3 0.0064 0.3669 0.0121 0.8 0.0260 

Male Birth 3 0.3415 0.0124 0.1 0.0084 0.3421 0.0123 0.2 0.0110 

Male Birth 4 0.3566 0.0116 0.4 0.0038 0.3245 0.0115 1.0 0.0335 

Male Birth 5 0.3476 0.0116 0.1 0.0072 0.3278 0.0114 0.9 0.0210 

Mean 0.3709 
   

0.3496 
   

Male 65 1 0.1702 0.0068 0.1 0.0132 0.1541 0.0069 0.5 0.0260 

Male 65 2 0.1698 0.0066 0.1 0.0164 0.1548 0.0058 0.2 0.0310 

Male 65 3 0.1471 0.0061 0.1 0.0104 0.1407 0.0064 0.3 0.0510 

Male 65 4 0.1344 0.0056 1.0 0.0022 0.1356 0.0053 0.8 0.0185 

Male 65 5 0.1295 0.0048 0.1 0.0036 0.1231 0.0045 0.6 0.0110 

Mean 0.1502 
   

0.1417 
   

Female Birth 1 0.6827 0.0287 0.9 0.0012 0.6210 0.0245 0.3 0.3385 

Female Birth 2 0.6801 0.0242 0.1 0.0042 0.5662 0.0224 0.3 0.3235 

Female Birth 3 0.4561 0.0193 0.1 0.0006 0.3253 0.0123 1.0 0.0285 

Female Birth 4 0.7152 0.0267 1.0 0.0014 0.6028 0.0229 1.0 0.0235 

Female Birth 5 0.5213 0.0215 0.1 0.0010 0.4966 0.0214 0.9 0.0185 

Mean 0.6111 
   

0.5224 
   

Female 65 1 0.5284 0.0216 0.1 0.0014 0.5254 0.0217 1.0 0.0110 

Female 65 2 0.5656 0.0203 0.1 0.0032 0.5083 0.0237 0.3 0.2785 

Female 65 3 0.3672 0.0155 0.1 0.0006 0.3587 0.0153 1.0 0.0085 

Female 65 4 0.6212 0.0227 1.0 0.0008 0.5221 0.0239 1.0 0.0235 

Female 65 5 0.4772 0.0197 0.1 0.0008 0.4733 0.0196 1.0 0.0185 

Mean 0.5119 
   

0.4775 
   

 

3.2.2. Profiles of elastic-net and SCAD-L2 coefficients (Paths) 

The difference between elastic-net and SCAD-L2 appears in the way they bias the coefficients; 

that has an effect on the MSE as we noticed in table 2. Their theoretical effects (orthogonal 

design case) on coefficient estimates are shown in table A.3 in the appendix and figure 2. 

Figures 8 and 9 compare the behaviours of both penalties on the first data set for the models of 

male and female life expectancy at birth. For each figure, the left panels represent the profiles 

of all 53 coefficients (of the 53 covariates) and the right panels those of 20% of coefficients 

randomly selected. It is easy to notice that both penalties set coefficients to zero. SCAD-L2 

varies more than elastic-net, mostly for smaller values of the tuning parameter  . We can 

notice for both penalty functions that for some   values the coefficients are rather biased (in 

absolute value) upward not downward; that is surely the consequence of multicollinearity that 

our data suffer from. These graphs are built with the optimal pairs      . The vertical dashed 

lines represent the optimal   (Optimal model).  
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Figure 8: Profiles of elastic-net coefficients on data set 1. All 53 variables on left and 20% randomly 

selected on right 

 

 

Figure 9: Profiles of SCAD-L2 coefficients on data set 1. All 53 variables on left and 20% randomly selected 

on right 
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3.2.3. Selection of optimal pair       

On one hand it emerges from section 3.2.1. that SCAD-L2 penalty will be used for variable 

selection. On the other hand, the grid is made up of different pairs      . Therefore, for each 

of the 20 models it is necessary to select the pair that minimizes the MSE. The first idea is to 

select the pair with the smallest MSE. But, each MSE has a certain variability attached to it, for 

instance in the grid of the model for male life expectancy at birth on data set 1, the minimum 

MSE is 0.3866 with a standard error of 0.0144 (Table 2). This means that in a grid the model 

with minimum MSE may not be the single optimal model. Therefore we selected the optimal 

pair different, precisely in two steps. The optimal   is first of all determined. It corresponds to 

the estimate    of the model with minimum MSE. Afterwards the optimal   is determined with 

the “one-standard error” rule. The inclusion of a “one-standard error” rule provides a collection 

of good models in which we select the one with the largest    as the optimal model. Figure 10 

illustrates the application of “one-standard error” rule. Two situations are presented. The left 

panel is the model for male life expectancy at birth on the third data set, with minimum MSE 

0.3421 and the related standard error 0.0123 (Table 2). The corresponding optimal        and 

the corresponding        . By application of “one-standard error” rule, all models with 

MSE between 0.3421 and 0.3421 + 0.0123 = 0.3544 are good; that are the four models under 

the horizontal dashed line (at “one-standard error” of the minimum MSE).  

 

Figure 10: Examples of “one-standard error” rule application (Focus in the optimal region) 
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Among them the optimal model is the one with largest   value (model covered by the vertical 

dashed line), meaning the optimal parameter          . In the right panel however (model of 

female life expectancy at birth on the fourth data set), the optimal   corresponds to that of the 

model with minimum MSE,          . Indeed, the latter is the only model under the “one-

standard error” line. Figures A.5 to A.8 in the appendix show the application of “one-standard 

error” rule to all 20 considered models. 

 

3.2.4. Comparison of deletion rules (SCAD-L2 penalty) 

The considerable difference between our five data sets started to emerge from the previous 

analyses (difference between optimal pairs       of the five data sets for the same type of 

model); in this section that is clearly visible. As we can notice for the model of life expectancy 

at birth (Table A. 5 in the appendix), penalized coefficients vary too much between the data 

sets. Coefficients set to zero are not the same across the data set. We obtain similar results with 

the models of male life expectancy at age 65, female life expectancy at birth and at age 65. 

Thus three rules were defined in order to account for the variability related to multiple 

imputation in the selection of variables. The first one is the “Majority Vote Deletion Rule” 

(MVDR): It consists in dropping variables set to zero by the majority of the five data sets, 

meaning by at least 3 data sets. The second is the “Union Deletion Rule” (UDR): it consists in 

dropping all variables set to zero by at least one data set. The last one is the “Intersection 

Deletion Rule” (IDR): It consists in deleting a variable if its penalized coefficient is equal to 

zero for each of the data sets.  

By definition UDR selects less variables and IDR selects more variables. MVDR appears in 

between the two rules. That is satisfied in our case as table 3 shows up. For example, for the 

model of male life expectancy at birth IDR keeps all 53 variables, UDR selects 25 and MVDR 

35. However, it is necessary to mention that the three rules would have led to the same result if 

PGEE had set to zero the coefficients of the same variables simultaneously for the five data 

sets. Since it is not the case the performance of the three rules has to be assessed. Thus, with 

the selected variables cross-validation was performed on GEE. Table 3 contains the MSE and 

their standard errors which have resulted. IDR with almost the highest selection rate has the 

poorest performance. MVDR has the best performance for two models and UDR for two 

models also. However MVDR is retained to build the final models because the number of 
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variables selected by UDR for the model of female life expectancy at birth seems too small 

(selection rate of 20.75%, only). 

Table 3: Comparison of dropping rules through cross-validation on GEE 

Gender Age 
# Covariates 

selected 
Selection 

Rate 

MSE per data set (SE) Average 
MSE SUB1 SUB2 SUB3 SUB4 SUB5 

Majority Vote Deletion Rule 

Male Birth 35 66.04% 0.2650 0.2676 0.2052 0.2173 0.2524 0.2415 
    

  
(0.0148) (0.0124) (0.0101) (0.0086) (0.0128) 

 
Male 65 38 71.70% 0.1548 0.1492 0.1802 0.1533 0.1181 0.1511 
    

  
(0.0040) (0.0049) (0.0079) (0.0060) (0.0034) 

 
Female Birth 29 54.72% 1.1465 1.3682 0.9367 0.9783 0.9351 1.0730 
    

  
(0.0769) (0.1095) (0.0625) (0.0661) (0.0617) 

 
Female 65 32 60.38% 1.1573 1.1272 1.0540 0.9855 0.9426 1.0533 
    

  
(0.0881) (0.0933) (0.0819) (0.0789) (0.0703) 

 
Union Deletion Rule 

Male Birth 25 47.17% 0.1786 0.1827 0.1629 0.1376 0.2299 0.1783 
    

  
(0.0059) (0.0073) (0.0066) (0.0048) (0.0094) 

 
Male 65 26 49.06% 0.3792 0.3611 0.3727 0.3578 0.3437 0.3629 
    

  
(0.0131) (0.0129) (0.0135) (0.0139) (0.0120) 

 
Female Birth 11 20.75% 0.8738 0.8871 0.9297 0.9472 0.9508 0.9177 
    

  
(0.0378) (0.0380) (0.0369) (0.0405) (0.0430) 

 
Female 65 10 18.87% 1.2523 1.3272 1.3635 1.3738 1.2679 1.3169 
    

  
(0.2024) (0.2189) (0.2313) (0.2306) (0.2000) 

 
Intersection Deletion Rule 

Male Birth 53 100.00% 0.6346 0.6134 0.5303 0.5146 0.4308 0.5447 
    

  
(0.0323) (0.0271) (0.0251) (0.0241) (0.0242) 

 
Male 65 49 92.45% 0.3629 0.3454 0.3600 0.3187 0.2289 0.3232 
    

  
(0.0154) (0.0153) (0.0178) (0.0143) (0.0078) 

 
Female Birth 42 79.25% 1.7974 2.0264 1.7231 1.7899 1.3720 1.7417 
    

  
(0.1179) (0.1436) (0.1141) (0.1167) (0.0858) 

 
Female 65 51 96.23% 2.0643 2.0775 1.9695 2.3475 2.1182 2.1154 
    

  
(0.1461) (0.1592) (0.1358) (0.1623) (0.1425) 

 
 

3.3. Final models: GEE 

3.3.1. Data preparation 

In the PGEE algorithm used above the response is centered and the covariates are standardized 

(mean 0 and variance 1). Then covariates are used on the same scale. However, some variables 

exhibit a very large standard deviance namely CHICPROD, GDP, HopBeds, Pop, PopDens 

and TOTALHE. (Table A.2 in the appendix). They may mislead inference on parameter 

estimates if they are included in the model without any transformation. We can also notice 

from figure 11 that even for our data the relationship between GDP and life expectancy is not 

linear. Logarithmic transformation was then applied as attempt to capture that non-linear 

relationship between each outcome and GDP [10, 32]. This monotonous transformation has an 

additional advantage of reducing the variability of our covariate; therefore it was generalized to 

others covariates with large variance (Table A.2). In the final models which are GEE, 
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covariates selected with PGEE are not centered, therefore transformation of those with larger 

variance is useful. 

 

Figure 11: Scatter plot of each outcome variable against GDP and log(GDP) (First data set) 

 

3.3.2. Estimation of final models 

In previous sections we based variable selection (and model comparison) on biased coefficients 

estimates and prediction performance (use of cross-validation). The so-selected covariates are 

used to fit GEE. For each of the four types of model, GEE is fitted to each of the five data sets. 

But contrary to the PGEE where we defined rules in order to pool the results on the five data 

sets, the five analyses in this case are combined into a single one using the algorithm proposed 

by Rubin [25]. Therefore model refinement is now based on the pooled inference on the 

parameters estimates. 

Finally, 25 variables out of 53 explain the male life expectancy at birth (Table A.6 in the 

appendix) and 21 explain the male life expectancy at age 65 (Table A.7 in the appendix). 

Regarding female, 19 variables out of 53 affect the life expectancy at birth (Table A.8 in the 

appendix) and 21 affect the life expectancy at age 65 (Table A.9 in the appendix). For each 

model some factors are positively related to the life expectance whereas others are negatively 

related to it. 
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3.3.3. Model interpretation 

PGEE was fitted to our data using R code written by Blommaert [3]. Model selection was 

mainly based on cross-validation. After taking into account the variability related to the 

multiple imputation, method used to handle the missingness of covariates, the four types of 

models so-obtained can be interpreted. 

 

3.3.3.1. Determinants of male life expectancy at birth (Appendix: Table A.6) 

In the EU many factors have a positive effect on male life expectancy at birth, namely among 

other things the GDP, the population size, the practising physician density and the proportion 

of person aged 65. The increase of the percentage of public sector expenditure on health in the 

total government expenditure, and the increase of birth rate also affect positively the male life 

expectancy at birth. In the countries where the number of hours worked per week in full time 

employment is higher, at birth males are expected to live longer. Unexpectedly, the increase of 

suicide rate and also the increase of corruption index score are related with the increase of male 

life expectancy at birth. 

Not all death rates explain the male life expectancy at birth. Deaths due to pneumonia, liver, 

diabetes, chronic diseases, alcohol abuse, Aids, diseases of respiratory system and accidents 

contribute significantly to the reduction of that life expectancy. Others factors which are 

negatively related to the male life expectancy at birth are the infant deaths per 1000 live births, 

the variability of absolute humidity, the percentage of urban population, the percentage of 

regular daily smokers and the ratio of females to males (the number of women per 100 men). 

Countries with higher male life expectancy at birth seem to be less atheist (give more attention 

to religion) than those with smaller male life expectancy at birth. Surprisingly this response 

variable seems to decrease with the hospital bed density and the percentage of total expenditure 

on private health in the total expenditure on health. 

 

3.3.3.2. Determinants of male life expectancy at age 65 (Appendix: Table A.7) 

Male life expectancy at age 65 increases with the total population size, the practising physician 

density, the GDP, the number of hours worked per week for full time employment, the total 

health expenditure (as percentage of GDP) and surprisingly the fact that less people in the 
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country can be trusted. Like the male life expectancy at birth, the corruption index score is 

positively related to male life expectancy at age 65. Death rates due to pneumonia, ischaemic 

heart disease, cancer, Aids, influenza, diseases of the respiratory system and accidents 

significantly reduce the male life expectancy at age 65. Others factors negatively related to this 

response variable are the variability of absolute humidity, the average population density per 

square kilometer, the percentage of regular daily smokers, the hospital bed density and the total 

expenditure on private health as a percentage of total expenditure on health. The more a 

country is religious, the higher its male life expectancy at age 65 seems to be. In addition, male 

life expectancy at age 65 is lower in countries where most of the people think that the greater 

respect for authority is a bad thing. 

 

3.3.3.3. Determinants of female life expectancy at birth (Appendix: Table A.8) 

In the EU female life expectancy at birth increase with the GDP, the population size, the 

practising physician density, the ratio of females to males and against all the odds the total 

Greenhouse gas emissions. It is negatively related to the variability of absolute humidity, the 

average population density per square kilometer, the hospital bed density, the percentage of 

population aged 0-14, the infant deaths per 1000 live births and the percentage of public sector 

expenditure on health in the total government expenditure. Moreover, female life expectancy at 

birth is larger in countries where more people think that it is a very good thing of having 

experts who make decisions about the country and also in countries where more people think 

that the greater respect for authority is a good thing. It is lower in countries with larger private 

households' out-of-pocket payment on health (as % of total health expenditure). The out-of-

pocket expenditure on health is defined as the direct outlays of households, including gratuities 

and in-kind payments made to health practitioners and to suppliers of pharmaceuticals, 

therapeutic appliances and other goods and services [48]. In addition to the infant deaths per 

1000 live births, deaths that significantly contribute to the reduction of female life expectancy 

at birth are those due to pneumonia, ischaemic heart disease, chronic diseases, cancer and Aids. 
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3.3.3.4. Determinants of female life expectancy at age 65 (Appendix: Table A.9) 

The determinants of female life at age 65 are not too different from those of female life 

expectancy at birth. The former outcome is positively related to the GDP, the population size, 

the practising physician density, the ratio of females to males, the total health expenditure (as 

percentage of GDP) and against all the odds the suicide rate and the fact that less people in the 

country can be trusted. It is negatively related to the variability of absolute humidity, the 

percentage of the population aged 65 and above, the average population density per square 

kilometer, the hospital bed density, the percentage of the population aged 0-14, the private 

households' out-of-pocket payment on health (as percentage of total health expenditure), the 

Public sector expenditure on health (as percentage of total government expenditure) and the 

fact that less people in a country think that greater respect for authority is a very bad thing. 

Death rates due to pneumonia, ischaemic heart disease, cancer, Aids and others acute 

respiratory infections importantly reduce the female life expectancy at age 65. 
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Chapter 4: Discussion and conclusion 

 

 

4.1. Discussion 

4.1.1. Missingness 

The four outcomes are affected by missingness. By basing variable selection on GEE we 

indirectly assume that the missingness mechanism is MCAR (Missing Completely At 

Random), meaning that the missingness is independent of both observed and unobserved data. 

This assumption seems plausible since data analyzed come from administrative sources. The 

reason of missingness in administrative data can mostly be structural (organizational, political, 

economical) and may differ from one country to another. In fact many elements come into play 

in the production of such data; that is why we deemed MCAR assumption less doubtful. 

However this assumption is more often considered as too strong to hold and the weaker 

Missing At Random (MAR) assumption is most of the time preferred. Missing data are said to 

be MAR if the probability of missingness depends only on observed data.  

Under MAR, valid inferences can be obtained through Weighted GEE (WGEE) by modelling 

the monotone missingness (dropout) process [25] and a likelihood-based analysis without the 

need for modelling the monotone missingness process [24]. The latter case means fitting a 

Linear Mixed Model (LMM) to our data. However, We could not apply this model to our data 

because of lack of tools on LMM with time-dependent covariates. In fact, Diggle et al. [6] 

stated that the FCCM assumption defined by Pepe and Anderson [29] is not only required for 

the application GEE, it is an important issue for all longitudinal data analysis methods 

including likelihood-based methods such as linear and generalized linear mixed models. Due to 

lack of theory on penalized WGEE it was not also applied; theory is available only on PGEE 

that we used. 
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4.1.2. Penalization 

In regression analysis, if an important predictor is left out coefficient estimates will be biased 

and predictive performance may be poor [7]. However, we learnt that by controlling the 

biasedness of the coefficient estimates the predictive performance of the model can be improve 

(through bias-variance trade-off) and also we can gain in terms of interpretability of the model. 

Different penalties have been defined in this report. Ridge cannot be used for variable selection 

because of its lack of sparsity. Among those which can be used for that purpose LASSO is 

sometimes blamed because its shrinkage produces biased estimates for the large coefficients 

and that is not always desired. Therefore adaptive LASSO has been proposed, in which 

adaptive (data-dependent) weights are used for penalizing different coefficients in the    

penalty:        
 
   . It was shown that the adaptive LASSO enjoys the oracle properties like 

SCAD [39]. 

The elastic-net penalty defined in section 2.2.1. is known as “naïve elastic-net”. Elastic net 

(corrected) parameter estimates are obtained by multiplying the naïve ones by a factor [40]. 

Naïve elastic-net is defined as a linear combination of   and    norms; by replacing    with 

adaptive LASSO penalty we obtain the adaptive elastic net penalty which also enjoys oracle 

properties [41]. 

Even though SCAD-L2 proved to be the optimal penalty in our analysis, it is more time-

consuming for model selection compared to its counterpart elastic-net. As we noticed in figures 

7, A.1-4, model performance varies too much with SCAD-L2 penalty, mostly for smaller 

values of the tuning parameter  . That makes selection of optimal model difficult as depicted in 

figure A.8 in the appendix (different minima) where a wrong specification of the   range of 

values would lead to the selection of a wrong optimal model. We overcame this situation by 

considering a wider range of values. 

 

4.1.3. Expectations 

In our finals models the relationships between some covariates and the life expectancies are 

contrary to the expectations, namely the total greenhouse gas emissions (CO2) which is rather 

positively related to the female life expectancy at birth and the suicide rate (SUICIDE) also 

positively associated to the male life expectancy at birth and female life expectancy at age 65. 

Corruption is a symptom of deep institutional weaknesses and leads to inefficient economic, 
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social, and political outcomes. It reduces among other things expenditures for education and 

health. Akçay [2] showed that corruption in all its aspects retards human development, but our 

models reveal contradictory results: the relationship between corruption index and male life 

expectancy (at bird or age 65) rather is positive for our data. These results that are in 

contradiction with our expectations call for further research, maybe by considering a larger 

period of time (more than 9 years). The positive relationship between life expectancy and the 

fact the “less people in the country can be trusted” can be attributed to the subjective nature of 

the related covariate. For the four models, none of the variables on education has been selected 

although the latter is known as a determinant of life expectancy. 

 

4.2. Conclusion 

It emerges from this analysis that between 1999 and 2007 in the EU, the wealth of a country, 

the population size, and the practising physician density positively affect the life expectancy 

whatever age and gender considered. The life expectancy is negatively related to the variability 

of absolute humidity and the hospital bed density regardless age and sex. Deaths due to Aids 

and pneumonia reduce the average number of years a person can expect to live without regard 

to the age and gender. As the density of hospital beds, a high variation of absolute humidity 

also seems to have an adverse effect life expectancy of every person. With the exception of 

those determinants that are common to everyone, we can notice that the determinants of female 

life expectancy at age 65 are almost the same as those of the female life expectancy at birth. 

However, that is not the case for males. 

 

4.3. Prospects 

At the end of this work, we can note that several improvements can be made thereto 

theoretically and also practically. Practically, one of the first improvements that can be made is 

to write R code that computes standard errors of the penalized parameter estimates. Thus 

model refinement could be based on PGEE, not GEE. Secondly, a new multiple imputation 

method can be applied to handle the missingness of covariates. The method used in this study 

leads to a high variability among the data sets and even to almost the loss of sparsity when the 

PGEE results on the five data sets are combined. 
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On the theoretical side the task seems heavy, and even complex. First of all we propose the 

extension of penalization to WGEE so that variable selection can be done not only under the 

strong MCAR assumption, but also under the weaker and acceptable MAR assumption. We 

also propose to perform nonlinear modelling to capture the true relationship between life 

expectancy and GDP. In that case, we can further think of penalized nonlinear model in order 

to proceed at the same time to variable selection. 
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Appendix 

 

 

Table A. 1: Description of variables 

N° Variable Name Variable Description 

   Response Variables 

1 FemLifeExpBirth Female life expectancy at birth 

2 FemLifeExp_65 Female life expectancy at 65 

   3 MaleLifeExpBirth Male life expectancy at birth 

4 MaleLifeExp_65 Male life expectancy at 65 

   Covariates 

1 ALCOHOL Pure alcohol consumption, liters per capita 

2 BirthRate Birth rate 

3 CHICPROD Production of chicken 

4 CO2 Total Greenhouse Gas Emissions (in CO2 equivalent) indexed to 1990 

5 CPI Corruption Index Score 

6 DEATHACC Death rate due to accidents 

7 DRAids Death rate of Aids 

8 DRAlcohol Death rate due to alcohol abuse 

9 DRCancer Death rate due to cancer 

10 DRChronic Death rate due to chronic diseases 

11 DRDiabetes Death rate due to diabetes Mellitis 

12 DRIschaemic Death rate due to ischaemic heart disease 

13 DRLiver Death rate due to chronic liver disease 

14 DRNervous Death rate due to nervous system 

15 DRPneumonia Death rate due to pneumonia 

16 ExpertCountry Having experts make decisions about the country 

17 ExpPrivPercTot Total expenditure on private health as a percentage of total expenditure on health 

18 GDP GDP / capita at Purchasing power standard 

19 Gini Gini Measure of (income) inequality or concentration 

20 Guidlines 
Are there treatment guidelines available to GPs or Pulmologists for treating respiratory 
track infections 

21 HopBeds Hospital beds per 100000 inhabitants 

22 HourWeek Hours worked per week of full time employment 

23 InfMort Infant deaths per 1000 live births 

24 IVHTB 
Percentage of infants vaccinated against invasive disease due to Haemophilius 
influenzae type b 

25 MeanHumidity Average absolute humidity 

26 OOPPH Private households' out-of-pocket payment on health as % of total health expenditure 

27 PDBEF5 Probability of dying before age 5 

28 PEHPERCGSPEN 
Public sector expenditure on health as % of total government expenditure, WHO 
estimates 

29 PercSmoker % of regular daily smokers in the population, age 15+ 

30 PERTUSIS Percentage of infants vaccinated against Pertusis 

31 Physicians Practising physicians per 100,000 

32 Pop Population (on 1 Jan) 
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N° Variable Name Variable Description 

   33 POP0_14 % Population aged 0-14 

34 PopDens Average Population Density per km2 

35 PovertyRate Poverty rate 

36 PropPop65 % Population aged 65 and above 

37 Religious Religious person 

38 RespAuthor Greater respect for authority 

39 RUBELLA Percentage of infants vaccinated against Rubella 

40 SchoolExp Educational level School expectancy Years 

41 SDHumidity Standard deviation of absolute humidity 

42 SDRBAE Death rate due to bronchitis asthma & emphysema 

43 SDRCRONLOWRES Death rate due to chronic lower respiratory diseases 

44 SDRINFLU Death rate due to influenza 

45 SDROARESINF Death rate due to other acute respiratory infections 

46 SDRRESSYS Death rate due to diseases of the respiratory system 

47 SUICIDE Death rate due to suicide 

48 TotalExpPercGDP Total health expenditure as % of GDP 

49 TOTALHE Total health expenditure, PPP$ per capita, WHO estimates 

50 TrustMost Most people can be trusted 

51 UpperSecond Educational level Attainment upper secondary 

52 URBANPOP % of Urban Population 

53 WomenMen Women per men 

 

 

Table A. 2: Effect of logarithmic transformation of variables with large variances 

Descriptive Statistique 
x 

CHICPROD GDP HopBeds Pop PopDens TOTALHE 

Data set 1 

Mean(x) 51846.46 22916.40 586.18 19827764.30 135.44 2178.40 

SD(x) 56250.33 9838.32 178.10 23634764.12 109.35 1029.25 

SD(log(x)) 1.43 0.41 0.32 1.30 0.87 0.55 

Data set 2 

Mean(x) 51560.58 22960.29 586.72 19827764.30 135.51 2199.26 

SD(x) 56230.34 9787.51 177.72 23634764.12 109.32 999.70 

SD(log(x)) 1.48 0.41 0.32 1.30 0.87 0.53 

Data set 3 

Mean(x) 50699.87 22984.62 586.75 19827764.30 135.50 2201.75 

SD(x) 56753.10 9767.15 177.20 23634764.12 109.32 1016.12 

SD(log(x)) 1.56 0.41 0.32 1.30 0.87 0.54 

Data set 4 

Mean(x) 51573.50 22953.02 586.85 19827764.30 135.51 2197.29 

SD(x) 56318.93 9798.49 177.14 23634764.12 109.32 1020.65 

SD(log(x)) 1.47 0.41 0.32 1.30 0.87 0.55 

Data set 5 

Mean(x) 50104.89 22911.22 586.95 19827764.30 135.48 2194.88 

SD(x) 56284.51 9852.95 177.38 23634764.12 109.32 1047.53 

SD(log(x)) 1.60 0.42 0.32 1.30 0.87 0.57 
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Table A. 3: Orthogonal-Case Behavior of Selection and Regularization Methods 

Penalty Estimate in Orthogonal-Predictors Linear Model Case 

Classical (Subset selection)      
               

                 
    

Ridge                 

LASSO      

                    

                          

                       

    

Elastic-net                         
                                               

          

        
                         

    

SCAD     

 
 
 

 
 

                                                       

                                        

 
   

   
 

           

   
                    

                                                      

    

SCAD-L2      

                                                       

                                        

                                                     

   

 

 

Table A. 4: Missingness pattern and their occurrence frequencies for the life expectancy at birth and the 

life expectancy at age 65 for both males and females (O: observed, M: Missing) 

1999 2000 2001 2002 2003 2004 2005 2006 2007 Count % 

Complete 

O O O O O O O O O 12 50.00 

Monotone Missingness 

O O O O O M M M M 1 4.17 

O O O O O O O O M 4 16.67 

Subtotal 5 20.83 

Non-Monotone Missingness 

O O O O M O O M O 1 4.17 

M M M O M O O O O 1 4.17 

O O O O M O O O O 1 4.17 

M M M O O O O O O 2 8.33 

O M M O O O O O O 1 4.17 

M M O O O O O O O 1 4.17 

Subtotal 7 29.17 
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Figure A. 1: Two-dimensional grid cross-validation (on PGEE)  for the pair (α,λ): Data set 2 

 

 

 

Figure A. 2: Two-dimensional grid cross-validation (on PGEE) for the pair (α,λ): Data set 3 
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Figure A. 3: Two-dimensional grid cross-validation (on PGEE) for the pair (α,λ): Data set 4 

 

 

 

Figure A. 4: Two-dimensional grid cross-validation (on PGEE) for the pair (α,λ): Data set 5 
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Figure A. 5: "One-standard error" rule application (MaleLifeExpBirth, Data set 1 to 5) 

 

 

 

Figure A. 6: "One-standard error" rule application (MaleLifeExp_65, Data set 1 to 5) 
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Figure A. 7: "One-standard error" rule application (FemLifeExpBirth, Data set 1 to 5) 

 

 

 

Figure A. 8: "One-standard error" rule application (FemLifeExp_65, Data set 1 to 5) 
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Table A. 5: Penalized coefficient estimates (Male life expectancy at birth) 

NAMEVAR Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 

MeanHumidity 0.1280 0.0778 0.1002 0.0000 0.0000 
SDHumidity -0.1224 -0.0786 -0.1142 0.0000 -0.1529 
TrustMost -0.0904 0.0000 -0.1037 0.0000 0.0000 
ExpertCountry 0.0000 0.0000 0.0480 0.0000 0.0000 
Religious -0.1218 -0.1558 -0.1072 -0.2607 -0.1850 
WomenMen -0.3998 -0.5577 -0.4750 -0.4307 -0.5345 
UpperSecond 0.1328 0.0000 0.0446 0.0000 0.0000 
SchoolExp 0.0000 0.0000 0.0322 0.0000 0.0000 
PropPop65 0.2504 0.3389 0.3262 0.5335 0.3642 
PovertyRate 0.0000 0.0000 0.0414 0.0000 0.0000 
PopDens -0.0822 0.0000 -0.0523 0.0000 0.0000 
Pop 0.2437 0.2454 0.1581 0.3596 0.2252 
Physicians 0.4104 0.4747 0.3590 0.4385 0.4476 
InfMort -0.1306 -0.1482 -0.1719 -0.2994 -0.2056 
HourWeek 0.1413 0.1629 0.1329 0.2481 0.2068 
HopBeds -0.2866 -0.3259 -0.2397 -0.3690 -0.4284 
GDP 0.2953 0.1941 0.2688 0.2561 0.2555 
DRPneumonia -0.1635 -0.1536 -0.2701 -0.2741 -0.2742 
DRNervous 0.0000 0.0000 0.0451 0.0000 0.1449 
DRLiver -0.1314 -0.2012 -0.1456 -0.2427 -0.1590 
DRIschaemic -0.3190 -0.2222 -0.1769 -0.2323 -0.2494 
DRDiabetes -0.0946 -0.1242 -0.0714 0.0000 0.0000 
DRChronic -0.3158 -0.2660 -0.4730 -0.5159 -0.4092 
DRCancer -0.3399 -0.2205 -0.1316 0.0000 -0.1453 
DRAlcohol -0.2174 -0.1697 -0.1996 -0.4161 -0.1840 
DRAids -0.4785 -0.4319 -0.4423 -0.3882 -0.4506 
BirthRate 0.1712 0.2822 0.1578 0.5023 0.2275 
SDRRESSYS -0.1504 -0.2541 -0.0786 -0.1325 -0.1705 
SDRINFLU -0.0172 -0.0056 -0.0149 0.0000 0.0000 
SDROARESINF -0.1829 -0.1693 -0.1528 -0.0004 -0.1808 
SDRBAE 0.0000 0.0000 -0.0665 0.0000 -0.2125 
SDRCRONLOWRES 0.0000 0.0000 0.0213 0.0000 0.0912 
CPI 0.3232 0.4963 0.3634 0.6724 0.4380 
POP0_14 0.0000 0.0000 -0.0380 0.0000 0.0000 
URBANPOP -0.0650 -0.1351 -0.1321 -0.3070 -0.1861 
ALCOHOL 0.0000 0.0000 -0.0645 0.0000 -0.0906 
IVHTB 0.0945 0.0826 0.0767 0.0000 0.0898 
OOPPH 0.0000 0.0000 -0.0291 0.0000 0.0000 
PERTUSIS -0.1374 -0.1726 -0.1096 -0.0011 -0.1363 
RUBELLA 0.0000 0.0000 -0.0145 0.0000 0.0000 
TOTALHE 0.0000 0.0000 0.0936 0.0000 0.0000 
PEHPERCGSPEN 0.1194 0.1926 0.1269 0.2788 0.2127 
CHICPROD 0.1139 0.1610 0.1776 0.0000 0.1462 
PDBEF5 -0.1852 -0.1663 -0.1120 0.0000 -0.0975 
PercSmoker -0.1393 -0.1278 -0.1657 0.0000 0.0000 
ExpPrivPercTot -0.1112 -0.1118 -0.1135 -0.1960 -0.1475 
RespAuthor -0.0658 0.0000 -0.0606 0.0000 0.0000 
TotalExpPercGDP 0.1010 0.0000 0.0764 0.0000 0.0000 
Gini 0.0000 0.0000 0.0104 0.0000 0.0000 
SUICIDE 0.0626 0.1575 0.1133 0.3370 0.2246 
DEATHACC -0.8331 -0.8913 -0.8683 -0.9360 -0.9601 
CO2 0.1984 0.1824 0.1483 0.0000 0.0000 
Guidlines 0.0664 0.0000 -0.0179 0.0000 0.0000 
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Table A. 6: Final model for male life expectancy at birth (MaleLifeExpBirth) 

Parameter Estimate Std Error 95% Confidence Limits P-value 

intercept 62.7443 3.1562 56.2362 69.2525 <.0001 

Positive effect 

BirthRate 0.1421 0.0315 0.0799 0.2044 <.0001 
CPI 0.1754 0.0285 0.1168 0.2341 <.0001 
HourWeek 0.1623 0.0267 0.1090 0.2156 <.0001 
Log(GDP) 2.2732 0.2792 1.6573 2.8891 <.0001 
Log(Pop) 0.4232 0.0453 0.3269 0.5196 <.0001 
PEHPERCGSPEN 0.0887 0.0173 0.0544 0.1231 <.0001 
Physicians 0.0062 0.0007 0.0047 0.0077 <.0001 
PropPop65 0.2307 0.0267 0.1774 0.2839 <.0001 
SUICIDE 0.0755 0.0092 0.0574 0.0935 <.0001 

Negative effect 

DEATHACC -0.0475 0.0050 -0.0574 -0.0375 <.0001 
DRAids -0.1211 0.0304 -0.1853 -0.0568 0.0010 
DRAlcohol -0.0701 0.0156 -0.1033 -0.0370 0.0004 
DRChronic -0.0139 0.0020 -0.0181 -0.0098 <.0001 
DRDiabetes -0.0162 0.0062 -0.0285 -0.0040 0.0097 
DRLiver -0.0198 0.0061 -0.0319 -0.0078 0.0015 
DRPneumonia -0.0171 0.0070 -0.0322 -0.0020 0.0298 
ExpPrivPercTot -0.0231 0.0046 -0.0323 -0.0139 <.0001 
InfMort -0.0741 0.0332 -0.1398 -0.0085 0.0271 
Log(HopBeds) -1.2851 0.1217 -1.5245 -1.0458 <.0001 
PercSmoker -0.0141 0.0077 -0.0296 0.0014 0.0729 
Religious -1.2148 0.1949 -1.6042 -0.8255 <.0001 
SDHumidity -0.1174 0.0366 -0.1910 -0.0439 0.0024 
SDRRESSYS -0.0096 0.0038 -0.0176 -0.0015 0.0228 
URBANPOP -0.0245 0.0036 -0.0316 -0.0173 <.0001 
WomenMen -0.1541 0.0250 -0.2073 -0.1008 <.0001 

 

Table A. 7: Final model for male life expectancy at age 65 (MaleLifeExp_65) 

Parameter Estimate Std Error 95% Confidence Limits P-value 

intercept 3.3422 2.3148 -1.3073 7.9916 0.1550 

Positive effect 

CPI 0.1194 0.0278 0.0648 0.1741 <.0001 
HourWeek 0.0651 0.0224 0.0209 0.1093 0.0041 
Log(GDP) 1.3512 0.1452 1.0554 1.6470 <.0001 
Log(Pop) 0.3043 0.0257 0.2538 0.3547 <.0001 
Physicians 0.0037 0.0005 0.0027 0.0046 <.0001 
TotalExpPercGDP 0.1096 0.0248 0.0610 0.1583 <.0001 
TrustMost 1.1850 0.3319 0.5321 1.8380 0.0004 

Negative effect 

DEATHACC -0.0070 0.0025 -0.0120 -0.0020 0.0062 
DRAids -0.1821 0.0170 -0.2156 -0.1486 <.0001 
DRCancer -0.0122 0.0014 -0.0150 -0.0095 <.0001 
DRIschaemic -0.0050 0.0006 -0.0062 -0.0039 <.0001 
DRPneumonia -0.0141 0.0037 -0.0214 -0.0067 0.0003 
ExpPrivPercTot -0.0112 0.0034 -0.0181 -0.0043 0.0019 
Log(HopBeds) -0.7178 0.1042 -0.9251 -0.5104 <.0001 
Log(PopDens) -0.3857 0.0347 -0.4538 -0.3176 <.0001 
PercSmoker -0.0218 0.0055 -0.0331 -0.0106 0.0005 
Religious -0.5577 0.1167 -0.7878 -0.3276 <.0001 
RespAuthor -0.6261 0.1620 -0.9458 -0.3064 0.0002 
SDHumidity -0.1122 0.0278 -0.1684 -0.0560 0.0002 
SDRINFLU -0.1281 0.0406 -0.2102 -0.0461 0.0030 
SDRRESSYS -0.0052 0.0023 -0.0098 -0.0006 0.0289 
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Table A. 8: Final model for female life expectancy at birth (FemLifeExpBirth) 

Parameter Estimate Std Error 95% Confidence Limits P-value 

intercept 76.0788 3.0715 70.0140 82.1437 <.0001 

Positive effect 

CO2 0.0098 0.0024 0.0050 0.0145 <.0001 
Log(GDP) 1.3131 0.1740 0.9666 1.6597 <.0001 
Log(Pop) 0.2825 0.0270 0.2294 0.3356 <.0001 
Physicians 0.0038 0.0007 0.0023 0.0052 <.0001 
WomenMen 0.0626 0.0198 0.0227 0.1026 0.0029 

Negative effect 

DRAids -0.2567 0.0275 -0.3113 -0.2022 <.0001 
DRCancer -0.0181 0.0032 -0.0246 -0.0115 <.0001 
DRChronic -0.0117 0.0027 -0.0173 -0.0061 0.0003 
DRIschaemic -0.0080 0.0012 -0.0104 -0.0055 <.0001 
DRPneumonia -0.0243 0.0049 -0.0344 -0.0142 <.0001 
ExpertCountry -1.0738 0.1322 -1.3346 -0.8130 <.0001 
InfMort -0.1200 0.0436 -0.2080 -0.0320 0.0087 
Log(HopBeds) -0.5304 0.1118 -0.7508 -0.3100 <.0001 
Log(PopDens) -0.5844 0.0603 -0.7032 -0.4657 <.0001 
OOPPH -0.0348 0.0078 -0.0508 -0.0189 <.0001 
PEHPERCGSPEN -0.0325 0.0172 -0.0664 0.0014 0.0600 
POP0_14 -0.0858 0.0263 -0.1381 -0.0336 0.0016 
RespAuthor -1.2151 0.1793 -1.5726 -0.8576 <.0001 
SDHumidity -0.1739 0.0400 -0.2529 -0.0948 <.0001 

 

 

Table A. 9: Final model for female life expectancy at age 65 (FemLifeExp_65) 

Parameter Estimate Std Error 95% Confidence Limits P-value 

intercept 9.7330 3.1590 3.4924 15.9736 0.0024 

Positive effect 

Log(GDP) 1.4721 0.1747 1.1252 1.8191 <.0001 
Log(Pop) 0.2985 0.0399 0.2203 0.3767 <.0001 
Physicians 0.0030 0.0006 0.0019 0.0041 <.0001 
SUICIDE 0.0402 0.0121 0.0151 0.0654 0.0033 
TotalExpPercGDP 0.1481 0.0420 0.0616 0.2347 0.0017 
TrustMost 1.2815 0.3476 0.5911 1.9719 0.0004 
WomenMen 0.0644 0.0170 0.0305 0.0982 0.0003 

Negative effect 

DRAids -0.2225 0.0314 -0.2846 -0.1604 <.0001 
DRCancer -0.0174 0.0027 -0.0227 -0.0121 <.0001 
DRChronic -0.0048 0.0026 -0.0100 0.0004 0.0709 
DRIschaemic -0.0071 0.0013 -0.0098 -0.0044 <.0001 
DRPneumonia -0.0253 0.0041 -0.0336 -0.0170 <.0001 
Log(HopBeds) -0.9163 0.1286 -1.1684 -0.6642 <.0001 
Log(PopDens) -0.5463 0.0528 -0.6514 -0.4412 <.0001 
OOPPH -0.0236 0.0053 -0.0342 -0.0131 <.0001 
PEHPERCGSPEN -0.0805 0.0203 -0.1219 -0.0392 0.0004 
POP0_14 -0.0978 0.0219 -0.1410 -0.0547 <.0001 
PropPop65 -0.0975 0.0268 -0.1502 -0.0447 0.0003 
RespAuthor -1.3379 0.1941 -1.7188 -0.9569 <.0001 
SDHumidity -0.0991 0.0341 -0.1672 -0.0309 0.0051 
SDROARESINF -0.1091 0.0174 -0.1440 -0.0742 <.0001 
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