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Abstract

Drug development benefits enormously from a microarray experiment, a tool that allows

accurate and relatively inexpensive collection of gene expression information for thousands

of genes at a time. Recently, it has become a commonplace in biomedical research to monitor

gene expression levels associated with different phenotypes. It is the aim of the investigator

to determine which genes or combination of of genes could serve as biomarker for the IC50.

The joint modeling approach that allows the investigation of the relationship between the

gene expression and the IC50 after adjusting for the treatment effect was used in the selec-

tion and evaluation of genomic biomarkers. Depending on their intended use, biomarkers are

further classified as prognostic and therapeutic. In the hope of achieving information gain,

Supervised Principal Components Analysis (SPCA) was also conducted to construct a joint

biomarker profile. Of the 7722 genes, 288 and 900 genes can serve as therapeutic and prog-

nostic biomarkers for the response, respectively. Thirty (30) are identified to be potential

prognostic/therapeutic genes.The top 2 therapeutic, top 8 prognostic and top 5 therapeu-

tic/prognostic genomic biomarkers were used to construct their respective joint biomarker

profile.

Keywords: Biomarkers; Gene expression; Genomic Biomarker; Joint Biomarker; Joint

modeling; Microarray experiment; Phenotype; Prognostic; Therapeutic; SPCA
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1 Introduction

Today’s drug discovery process is time consuming and tremendously expensive. It has evolved

into an extremely complex procedure and can take up to fifteen years to develop one new

medicine from the earliest stages of discovery to the time it is available for treating patients.

Also, it costs millions of dollars to bring a single drug candidate to market. In early drug

experiments, each candidate drug is administered at different dosages and is tested against

target cells. Compounds that retard the growth of the cells are recommended for the next level

of testing. Phenotyping is recognised as providing a quantified measurement of drug resistance,

It involves direct quantification of drug sensitivity. The outcome of a phenotypic test may be

expressed as IC50, IC90 or IC95 value which expresses the concentration of a particular drug

required to inhibit the growth of the virus by 50%, 90% or 95%, respectively. These results are

easily interpreted but often prove to be time consuming, expensive and labour intensive.

Drug development may benefit enormously from a tool that allows accurate and relatively in-

expensive collection of gene expression information for thousands of genes at a time (Drǎghici,

2003). Gene expression data measuring the absolute or relative transcript abundance of po-

tentially every gene in the cell provide invaluable insights into the global functioning of organ-

isms (Parmigiani et al., 2006). Recently, microarray experiments have become commonplace in

biomedical research to monitor gene expression levels associated with different phenotypes. Mi-

croarray experiments involve quantitative analysis of the expression levels of many thousands of

genes in parallel. A typical analysis of DNA microarrays allows monitoring expression levels of

thousands of genes simultaneously, and identifying genes whose expression levels are significantly

changed under different experimental conditions (Azuaje, 2006). As comprehensive analyses of

genes became available, interest in developing reliable sets of measurable genetic characteristics

that correlate with specific clinical outcomes (phenotypes), such as physiological processes, phar-

macological responses to a therapeutic intervention (compound efficacy), toxicological measures,

etc., is gaining attention over the years.

Each gene represented in microarrays can be considered a potential biomarker. A consensus

definition of a biomarker is a factor that is objectively measured and evaluated as an indicator

of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeu-

tic intervention (Biomarkers Definitions Working Group, 2001).The use of biomarkers has the

potential to facilitate the availability of safer and more effective drug or biotechnology products,

to guide dose selection and to enhance their benefit-risk profile (EMEA, 2009). Appropriate

biomarkers can provide critical feedback once an agent has reached clinical testing. Perhaps

most importantly, biomarker-based studies may provide early evaluations of the key question of

mechanistic success or failure (hitting the target). Lack of mechanistic activity in early clinical

trials can help to curtail further costly clinical testing and redirect efforts toward additional pre-
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clinical studies (Park, 2004). Hence, in both pre-clinical and clinical trials, biomarkers have the

potential to encourage innovation, improve efficiency, save costs, and gain research organizations

a valuable advantage over their competitors.

The selection and evaluation of genomic biomarkers play a vital role in drug discovery and

development, motivating the use of apt statistical techniques to understand the complex nature

of the relationship between genes and clinical outcomes (Lin,et al., 2011). An incorrect or

suboptimal method might lead to a great loss in terms of identifying genes that otherwise could

have lead to a substantial improvement in understanding the properties of the relevant clinical

outcome. New developments in the possibility of predicting the clinical outcome or phenotypic

variable is not just limited to the use of a single gene expression level but also combinations

thereof (Lin et al., 2010). The former is called genomic biomarker, while the later is termed a

joint biomarker. This, however, is challenging due to high dimensionality of data and relatively

small number of observations. Moreover, although the number of genes assayed is large, there

may be only a small number of biomarkers that are associated with variations of phenotypes.

Biomarkers have been classied as prognostic and/or therapeutic depending on their relationship

with the clinical endpoint and their response to treatments.

Therapeutic genes are those that respond to treatment and possibly aid in understanding the

treatment effect on the gene-expression which can be predictive for the treatment effect on the

response and they are not linearly associated with the response.

The prognostic genes, on the other hand, are the ones that are related to the response irrespective

of treatment. These genes enable us to learn a great deal about the biological pathways between

them and the response of interest.

In the clinical trial setting: there is a true end point and (usually) one candidate to be a surrogate

- a biomarker that is intended to substitute for the true endpoint. Prentice (1989) defined a

surrogate endpoint as a variable for which a test of the null hypothesis of no relationship to the

treatment group under comparison is also a valid test of the corresponding null hypothesis based

on the true endpoint.It is also important to highlight that a microarray experiment is equivalent

to the single trial setting and hence, the gene specic models used to compute the association

measures should be tuned to reflect the single trial setting. For a microarray with m genes,

there are m candidates that can be used as biomarker. The analysis presented in this paper

aims at finding a subset of genes, that are associated with the response, IC50, while accounting

for the treatment effects and can be used as biomarkers. The joint modeling of the phenotypic

variable/response and the gene expression facilitates the evaluation of their association. Figure

1 illustrates the joint model for the surrogacy and microarray experiments. This follows similar

lines as the one presented in the case studies of Lin et al. (2010) and Bair et al.(2006). In

addition, it is also of interest to construct a joint biomarker where relevant information from a

subset of genes is combined to predict the response.
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Figure 1: The Biomarker Setting

This thesis is organized as follows: Section 2 presents a brief description of the data. Section 3

offers the methods used to answer the objectives. It covers a detailed introduction of the joint

model to evaluate the association between the gene expression and the response after adjusting

for the treatment effect in microarray experiments. It also tackles issues on multiple hypothesis

testing or multiplicity, cross-validation and the construction of joint biomarker profile using

SPCA technique. In Section 4, the results obtained from applying the methods to the data are

presented. The paper ends with some discussions and conclusions given in Section 5.

2 Data

In this paper, we focus on the microarray setting (Figure 2), in which data are available from

a single trial. For each cell line, microarray data consisting of 7722 genes (X) together with a

(clinical/experimental) response variable (Y) are available under 2 treatments (Z). Cell lines that

have a link to the target disease were chosen. A dose-response experiment with 47 cell lines was

conducted. Of the 47 cell lines, 32 were randomized to treatment 14 and the rest to treatment

29. Each cell line is then treated with a compound that is known to belong to different clusters.

Unlike treatment 14 which is composed of compounds coming from one cluster, treatment 29

is a mixture of clusters wherein 7 of the 15 cell lines are treated with compounds that belong

to cluster 181, 3 to the reference group and the rest to 5 other different clusters. There was no

information, however, on how the clustering of compounds and the treatment groups were done.

Cell lines can respond or not respond to the compound. The IC50 represents the activity of

the cell line (responder/non responder). The IC50 phenotype is the dose level for which the

response is half way to the maximum effects. The estimated IC50 is an important measure of

compound efficacy.
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Figure 2: The Microarray Setting with Two Treatment groups

3 Methodology

This section provides methods to identify genes that can serve as therapeutic and/or prognostic

biomarkers. The most commonly used method in gene expression studies is typically done for

each gene separately. These tests are then aggregated again by ranking genes based on a statistic.

This simple approach ignores the multivariate nature of gene expression and the omnipresent

dependencies between genes. This, in turn, misses trends or interactions that exist between

different genes and fails to discover interesting gene combinations. However, because there are

typically so many groups and subgroups of correlated and interacting genes present in a single

microarray, a multivariate approach that tries to incorporate most or all covariances becomes

highly complex that consequently impede interpretability and generalizability (Ghölmann and

Talloen, 2009). Thus, the gene-by-gene analysis is often the option (Ge et al.,2003; Kerr et al.,

2000), providing a simple solution that is very helpful in extracting relevant information from

the high dimensional and complex microarray data.

3.1 Selection of Gene-Specific Biomarkers

3.1.1 Fold-change

The simplest and most intuitive approach to finding genes that are differentially expressed is to

consider the fold change which is just the difference per gene between the averages of the two

treatment groups.

Genes showing fold change above 2 (or another arbitrary cut-off) were regarded as potentially
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regulated and were chosen for further investigation. However, this method has important disad-

vantages. One is related to the fact that microarray technology tends to have a bad signal/noise

ratio for genes with low expression levels. Genes with high fold change may also be highly

variable and thus with low significance of the regulation. A small difference between means will

be hard to detect if there is lots of variability or noise. This method should only be done if

one prefers to focus on the absolute difference between groups, thereby deliberately ignoring the

information of the variation within the groups (Ghölmann and Talloen, 2009).

3.1.2 Gene-specific Joint Model

Analysis of variance (ANOVA) is a general analysis approach that can provide information

able to discern significant difference in expression levels of a gene exposed to several treatment

conditions. An ANOVA basically partitions the observed variation in gene expression between

the samples into components due to different groups and unexplained variation (the residual

noise). It determines the significance of the group effect by comparing the differences between the

groups to the variation within the group. Moreover, since selecting genes as possible biomarkers

for a particular response requires quantifying the degree of association between the response of

interest (Yi) and the gene expression (Xij), after correcting for treatment (Zi), a joint ANOVA

model is fitted for these outcomes of interest.

Following Buyse et al. (2000), the gene-specific joint model that therefore allows testing for

which gene is differentially expressed and which gene can serve as a biomarker is specified as

follows

Xij = µj + αjZi + εij

Yi = µY + βZi + εi
(1)

where the error terms have a joint zero-mean normal distribution with covariance matrix.

Σj =

(
σjj σjY

σjY σY Y

)
(2)

or equivalently formulated as(
Xij

Yi

)
∼ N

[(
µj + αjZi

µY + βZi

)
,Σj

]
(3)

and Zi is an indicator variable which takes a value of 1 if subject was randomized to treatment

14 and 0 to treatment 29. The parameters αj and β are the treatment effects upon the jth

gene and the response, respectively, and µj and µY are gene-specific and the response-related

intercepts, respectively. Furthermore, both outcomes are assumed to be normally distributed.
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The model parameters’ estimation can be implemented in R using the gls() function in the nlme

library. This would give α̂j and β̂, the maximum likelihood estimates of the treatment effect for

the jth gene expression and IC50, respectively.

In the context of surrogate-marker evaluation in randomized clinical trials, Buyse and Molen-

berghs (1998) proposed the adjusted association as a measure of association, a coefficient derived

from the covariance matrix (Eq.2) of gene-specific joint model (Eq. 1).

ρj =
σjY√
σjjσY Y

(4)

Additionally, one would expect a good prognostic biomarker to have a strong association with

the true endpoint. A large value of ρj would provide evidence that the IC50 would then be

largely determined by the jth gene regardless of any treatment effect. Thus, this follows that

ρj=1 indicates a deterministic relationship between the gene expression and the response, in the

sense that, given gene expression, a perfect prediction of the IC50 score is possible. It is also

possible to get a ρj equal to 1 even if the gene is not differentially expressed.

3.1.3 Information-Theory Approach

The main rationale for explicitly accommodating for the two outcomes’ correlation is to allow for

estimation of their association (Lin et al.,2011). The information-theoretical approach proposed

by Alonso and Molenberghs (2007), which is elegant and computationally simple, can also be

considered. In this case with normally distributed bivariate outcomes, consider the following

linear models:

E(Yi|Zi) = µ̆+ β̆ × Zi (5)

E(Yi|Zi, Xij) = µ̆+ β̆Zi + ᾰXij (6)

where ᾰ is the gene-specific effect upon the outcome. Model 5 relates the expected value of the

true endpoint to the treatment only while 6 relates it to surrogate endpoint as well. Upon fitting

models 5 and 6, the individual-level association can be measured by:

R2
hj = 1− exp

(
−G2

n

)
(7)

where G2 denotes the likelihood ratio statistics to compare models 5 and 6, and n is the sample

size. Note that for continuous outcomes,R2
hj and the squared adjusted association R2

j = ρj
2,

known as the coefficient of determination from the linear model, give identical results since

model 9 is implied by the gene specific joint model with the following conditional distribution
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Yi|Zi, Xij ∼ N
(
µ̆+ β̆Zi + ᾰXij , σ

2
)

(8)

where µ̆ = µY − σjY
(
σjj

−1µj
)
, β̆ = β − σjY

(
σjj

−1
)
αj , ᾰ = σjY

(
σjj

−1
)

and σ2 = σY Y − σjY
(
σjj

−1
)

The conditional model can be extended by adding an interaction term between X and Z.

E(Yi|Zi, Xij) = µ̆+ β̆Zi + ᾰXij + δijZiXij . (9)

3.2 Testing and Evaluation of surrogate/biomarker genes in microarray ex-

periments

3.2.1 Testing for prognostic biomarkers

The associations between the gene expression and the response after adjusting for treatment

effects could be of linear or non-linear type. If a linear relationship between the gene expression

and the response, after accounting for the treatment effect, can be possibly assumed, the gene

can then serve as a prognostic biomarker, which can be used to predict the response.

To determine whether or not the gene can serve as a prognostic biomarker, the joint model is

fitted twice, assuming different covariance matrix. The likelihood ratio test is used in order to

test the null hypotheses:

H0j : Σj =

(
σjj 0

0 σY Y

)
−→ ρj = 0

H1j : Σj =

(
σjj σjY

σjY σY Y

)
−→ ρj 6= 0

(10)

A gene is declared an up-regulated prognostic biomarker if the null hypothesis in (10) is rejected

and ρj > 0, and a down-regulated prognostic biomarker when ρj < 0.

An alternative to the parametric adjusted correlation,ρj , is the nonparametric Spearman corre-

lation given below, computed based on relative ranks and not on the quantitative values of the

residuals. This is a more robust measure of association in the presence of outliers. Hence, it

can also be used to measure the association between the response and gene expression for each

gene.

rsj = 1−
6
∑n

i=1d
2
i

n(n2 − 1)
(11)

where di is the rank difference between the residuals from the joint model and n is the sample

size.
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3.2.2 Testing for therapeutic biomarkers

Using the joint model to identify therapeutic biomarkers or genes which are differentially ex-

pressed, the following null hypotheses are tested for each gene.

H0j : αj = 0

H1j : αj 6= 0
(12)

Testing the treatment effect upon the response consists of testing H0 : β = 0 versus H1 : β 6= 0.

Note that for the case, in which both: Hoj : αj = 0 and H0 : β = 0 are rejected, implies that

the gene is a potential therapeutic biomarker. In case that, Hoj : αj = 0 , H0 : β = 0, and

H0 : ρj = 0 are rejected, the gene is declared as a potential prognostic/therapeutic biomarker.

For therapeutic biomarkers, the adjusted association is not applicable since the association be-

tween the gene expression and the response is not linear. Lin et al. (2010) proposed a measure

of association for therapeutic biomarker using the regression tree. Regression tree approach

(Venables and Ripley, 1994), is a widely used technique to model the relationship between a re-

sponse and a predictor without prior knowledge of the relationship between them. It is primarily

used to construct a set of decision rules on the predictor variables by recursively partitioning

the data into successively smaller groups with binary splits based on a single predictor variable.

The optimum split is often chosen based on a split that maximizes the heterogeneity of the two

resulting groups with respect the response variable (Adetayo, K., 2010).

For a therapeutic biomarker, because gene-expression is differentially expressed, the tree can

be restricted to have only two terminal nodes (two final homogenous groups of the response),

in which the cutoff point (or the split point) is determined only by the gene-expression level.

An example of the cutoff point is shown as the vertical line in Figure 3. The total variability

of the response, the deviance, without any information about the gene expression level can be

measured by

D(Y ) =

n∑
i=1

(Yi − µ̂)2 (13)

where µ̂ =
∑n

i=1
Yi
n and i = 1, . . . , n indexes the arrays.

Let D1(Y |X) and D2(Y |X) denote the deviance in each of the terminal nodes and D(Y |X)

be their sum. The deviance reduction,D(Y ) −D(Y |X), measures the gain in prediction of the

response level using gene-expression, as compared to the case where the gene-expression is not

used. In other words, the reduction in deviance measures whether information about the gene-

expression is relevant for predicting the response level. The relative deviance reduction, R2
D, is

given by

R2
D =

D(Y )−D(Y |X)

DY
(14)
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Figure 3: An illustration of a regression tree model for a hypothetical example with two terminal

nodes. The blue line in the plot indicates the split point in the regression tree. In D(Y ) represents

the total variability in the response Y, while D1(Y |X) and D2(Y |X) represent the variability

within each of the terminal nodes.

which measures the proportion of variability explained by the regression tree model.

Although prognostic and therapeutic biomarkers are evaluated using different validity measures,

R2
D and R2

j , respectively, they both, however, belong to the family of information theoretic

association measures. This implies that both measures can be equally interpreted as tools that

measure the proportion of information in the response captured by using the gene expression

(Lin et al., 2010).

3.3 Cross-Validation

Too much variability or presence of several outlying values especially for small datasets can

distort the true relationship between the response and the gene expression. Leave-one-out cross

validation was performed to assess the quality of the resulting measures of association for each

type of biomarker. Each learning set is created by taking all the samples except one, the test

set being the sample left out. Thus, for 47 samples, we have 47 different learning sets and 47

different tests set A comparable results of the measure of association using the full data and the

47 cross validation data sets suggests a good estimate of R2 values.

3.4 Multiplicity

All the tests mentioned in the preceding subsections are repeated as many times as there are

genes in the microarray dataset. This increases the number of false positive results, i.e genes are

found to be statistically different between conditions or is linearly associated with the response,
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but are not in reality. This problem of multiple testing or multiplicity needs to be corrected

by calculating an adjusted p-value that takes into account the number of tests that have been

carried out. Every multiple testing correction procedure uses some error rate to measure the

occurrence of incorrect conclusions. Two types of error rates are the Family-wise error rate

(FWER) and false discovery rate (FDR).

FWER refers to the expected occurrence of false positives among all tested genes, assuming

that the null hypothesis is true. Here, the term family refers to the collection of hypotheses

H1, . . . ,Hm that is being considered for joint testing. Once the family has been defined, strong

control of the FWER (at a joint level α) requires that FWER6 α for all possible constellations

of true and false hypotheses (Lehmann and Romano, 2005).

On the other hand, the FDR is the expected occurrence of false positives among the genes call

significant assuming that the null hypothesis is true. (Ghölmann and Talloen, 2009). While

FWER methods only allow very few occurrences of false positives, FDR methods allow a per-

centage of positives to be false positives. In multiple testing, strong control of the Family-Wise

error rate (FWER) can be unnecessarily stringent in microarray settings (Xu and Hsu, 2007).

Traditional approaches to control FWER are too conservative when applied to microarray data.

Approaches based on the control of the FDR have gained their popularity in the microarray

setting, because they lead to a higher power as compared to the methods that control the

FWER.

Various procedures to control FDR have been proposed (Benjamini, Hochberg, 1995; Benajamini

and Yekuteli, 2001; Yuketili and Benjamini,1999). The Benjamini and Hochberg (BH) is only

theoretically valid when the genes are not correlated. The Benjamini and Yuketieli (BY) method

is valid for any level of correlation between the genes but is so conservative that almost no one

uses it. Simulation suggests that the BH method is unlikely to fail for realistic scenarios and is

not too conservative, which is therefore the preferred choice in the microarray setting (Ghölmann

and Talloen, 2009).

The FDR correction is applied after ordering the p-values from largest to smallest. The BH-FDR

is computed as follow:

pBH
j = pj

m

order(pj)
with j = 1, . . . ,m genes (15)

Note that the multiplicity correction affects only the arbitrary threshold choice and does not

change the ranking of the genes. All the tests make use of an FDR level of 0.05.
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3.5 Joint Biomarker Profile

3.5.1 Supervised Principal Component Analysis (SPCA)

The gene-specific approach allows identifying individual genes as biomarkers. However, infor-

mation gain might be achieved if a joint biomarker could be constructed. This joint biomarker

profile combines the information from expression levels of individual genes into one score and use

this score as a biomarker. In the microarray setting, the number of predictors (genes) is large

compared to the number of observations and the design matrix (X) is likely to be singular which

makes linear regression to summarize information into one linear predictor no longer feasible.

One way out is to eliminate the multicollinearity problem by performing principal component

analysis (PCA). Then, the first principal component (i.e the gene profile/signature) is used to

predict the response. In gene expression, the first principal component can be interpreted as

the weighted average across the selected genes that explain the largest amount of variation in

the data (Parmigiani, 2003). However, as mentioned by H.M. Bøvelstad( 2007), a drawback of

PCA is that there is no guarantee that the principal component is associated with the response.

That is, directions with high variability in the gene expressions can be due to effects that are not

related to the response. Bair et al. (2004) then proposed the supervised principal components

(SPCA) method, to construct a gene profile that can be used to predict a quantitative response.

SPCA is similar to conventional principal components analysis except that one can use only

those genes with the strongest estimated correlation with the response. This supervised analysis

(i.e., supervised gene screening step) reduces the dimension of the expression matrix (X) and

greatly increases the likelihood that the resulting principal components are associated with the

outcome of interest. The SPCA, therefore, relies on the underlying assumption that there is a

latent variable U(X) (the gene profile), which is maximally associated with the response variable

Y. This is in contrast to the setting considered in the individual genomic biomarkers, in which

the biomarker (gene-expression) is not latent but observed (Tilahun et al.., 2010).

3.5.2 Joint prognostic biomarker

Upon identification of the top k potential prognostic biomarkers using the gene specific joint

model (1), PCA was used to summarize them into a single value, denoted by U(XI)i. The

surrogacy measure can be obtained by fitting the joint model for the outcome and the joint

biomarker profile

U(XI)i = γ́ + β́Zi + έi

Yi = γ̃ + β̃Zi + ε̃i
(16)

which implies that condition on the gene profile, the IC50 follows the following regression model

Yi = γ + δU(XI)i + βZi + εi (17)
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Once the joint biomarker,U(XI)i is computed, the same measures presented for gene specific joint

model, ρ or R2, can be used to quantify its association with the response, with the spearmans

correlation, rs as an alternative. The final joint biomarker profile is composed of k number

of top genes that maximizes R2. Similarly, genes that are classified as prognostic/therapeutic

biomarkers are also used to construct a joint profile.

3.5.3 Joint therapeutic biomarker

For therapeutic biomarker genes, similar to the single-gene case, the regression tree with two

terminal nodes is used, that can be expressed as

Yi = γ0 + γ1Ii [U(XII)i] + εi, Ii [U(XII)i] =

{
1 U(XII) > η

0 U(XII) ≤ η

}
(18)

where Ii [U(XII)i] is an indicator variable, that depends on the split point (η) dening the two

terminal nodes in the regression tree. The number of top genes, k, is determined based on the

gene profile that maximizes the relative deviance reduction, R2
D.
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Figure 4: Box plot of IC50 in treatments 14 and 29.

4 Results

The box plot in figure 4 shows the distribution of the phenotypic variable, IC50, by treatment.

Two extreme upper values are observed for treatment 29. The group means for treatment 14 and

29 are respectively 6.8661and 6.1693, giving a difference of 0.6968. This suggests that treatment

29 has better inhibition. Testing the treatment effect upon the response using the joint model

produced a test-statistic equal to -3.167 with corresponding p-value of 0.0028, an evidence of a

significant treatment effect.

4.1 Testing and Evaluation of surrogate/biomarker genes

Given that the treatment effect upon the response is present, methods discussed in section 3 to

identify differentially expressed genes that can serve as therapeutic biomarkers are applied. A

maximum fold change of 1.28 was observed. The intensity plot showing the expression levels

of the top three genes with the highest treatment effect are depicted in figure 5. The average

group intensities are indicated by a horizontal line. In the figure, notice that treatment 29 is

a mixture of different shapes. This is to differentiate major clusters from which the compound

used in treating the cell lines came from. In addition, the expression levels of the genes using

a reference compound and a placebo, Dimethyl sulfoxide (DMSO), which can both serve as

control, are presented. Note, however, that this paper investigates only the difference between

the two treatment groups and the control versus treatment effect can be another focus of ones

research. Interestingly, it is generally observed that treatment 29 has the same mean level with
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Figure 5: Intensity plots of top 3 genes ranked based on Fold change.

the control groups. Figure 5 also reveals that the genes have different variation across the

replicates within a treatment. This implies that ranking genes based on the fold change will not

produce an accurate gene list that can serve as most potential therapeutic biomarkers. Indeed

a gene with the high fold change may just be highly variable and thus with low significance of

the difference.

Hence, it is of advantage to use the gene-specific joint model that allows the test for the sig-

nificance of the treatment effects upon the gene expression (Ho : αj = 0) while incorporating

the information of variation within the treatment. Of the 7722 genes, 288 were found to be

differentially expressed at FDR level of 0.05. Figure 6 shows the expression levels for the top

three differentially expressed genes. Observe that, although the fold change exhibited by the

genes is small, it can be seen that the variation within the group is also small which led to a

significant treatment effect. This can be clearly visualized by using a volcano plot in figure 7
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Figure 6: Intensity Plots of Top 3 genes ranked on the basis of statistical significance

that plots the fold change versus the log10(p-value), where a number of genes are significant

(green points) at FDR level of 0.01 despite a small fold change.

Figure 8 shows a heatmap of the 50 most differentially expressed gene where every row represents

a gene expression profile of many genes across several samples. The abundance is depicted by

color coded squares where red refers to up-regulated genes, white depicts genes that do not

change, and blue depicts down regulated genes. It is readily noticeable that the genes nicely

separate the samples treated with treatment 14 (gray-colored columns) and 29 (red-colored

columns), which is as expected.

The list of the top 15 differentially expressed genes which are not linearly related with the re-

sponse after adjusting for treatment effect (graphically supported in lower panel of figure 8) that

can serve as therapeutic biomarkers are presented in table 1. The relative deviance reduction,

R2
D using the regression tree, is used to measure the quality of the therapeutic biomarkers.
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Figure 7: Volcano plot

Figure 8: Heatmap of top 50 differentially expressed genes
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Inspecting the R2
D of the top 20 potential therapeutic biomarkers reveals that the values are

very low with 0.4760 as the highest. This may be explained by examining the upper panel of

figure 9 wherein the cut-off point does not clearly separate the data into two homogenous groups

that corresponds to the treatment groups. Moreover, the variability within each of the terminal

nodes D(Y |X), is too high. This suggests that the total variability in the response is not much

reduced by forming these two groups in the gene expression. The leave-one out cross validation

data yield comparable results with the original data which might give comfort to the validity of

the measures.

Table 1: Results of top 15 differentially expressed genes with their significant treatment effects

alpha, raw p-values, BH-FDR adjusted p-values and Relative Deviance Reduction (full and leave-

one-out cross validation) using the regression tree

ID α t-stat p-value Adj-pval R2
D R2

Dcv

5698 at -0.2329 -5.5701 <0.0001 0.0001 0.4081 0.4084

10221 at 0.3911 5.5698 <0.0001 0.0001 0.1983 0.1999

55621 at 0.3361 5.5644 <0.0001 0.0001 0.3086 0.3089

10769 at 0.3358 5.5531 <0.0001 0.0001 0.2182 0.2157

150094 at 0.2715 5.5122 <0.0001 0.0001 0.4350 0.4358

54206 at 0.6147 5.4897 <0.0001 0.0001 0.1070 0.1085

57602 at 0.3414 5.3225 <0.0001 0.0003 0.4759 0.4760

7975 at 0.3671 5.2661 <0.0001 0.0003 0.0675 0.0694

92335 at -0.2090 -5.2389 <0.0001 0.0003 0.1473 0.1555

221687 at -0.1789 -5.2371 <0.0001 0.0003 0.2282 0.2234

23481 at 0.3177 5.2178 <0.0001 0.0003 0.1199 0.1245

51203 at -0.2185 -5.2042 <0.0001 0.0003 0.2440 0.2395

3029 at -0.1509 -5.1399 <0.0001 0.0004 0.1243 0.1274

10045 at 0.2341 5.1133 <0.0001 0.0004 0.1586 0.1637

10678 at 0.1676 5.0611 <0.0001 0.0005 0.1177 0.1577

4.2 The adjusted Association ρj: Testing for prognostic Biomarkers

For a gene to be identified as potential prognostic biomarkers, it must be shown to be linearly

associated with the response after accounting for treatment effect. The gene-specific joint model

is fitted twice to all genes and the likelihood ratio test is performed in order to test the null

hypothesis that the correlation between the response and gene expression is zero (H0j : ρj = 0)

using an FDR level of 0.05. Figure 10 shows that the genes are not differentially expressed
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Figure 9: Scatterplot of gene expression and response (upper panel) and their corresponding

residuals from the joint model (lower panel) of the top 5 differentially expressed genes, where the

vertical lines are the cut-off values of the regression tree.

(upper panel) and the linear pattern between the gene expression and the response, remains

after adjusting for the treatment effect, i.e. the residuals resulting from the joint model (lower

panel). Table 2 lists the results for the top 15 genes with the highest R2 using both the full

data and the leave-one-out cross validation datasets, The R2 for both datasets are similar which

supports the validity of the obtained measures.

4.3 Therapeutic/Prognostic: Type I/II

There are 30 genes classified as either prognostic/therapeutic gene after multiplicity adjustment.

The list of the top 10 genes with the highest adjusted association is presented in table 3. Scatter

plots are produced for the top 5 genes which are displayed in figure 11. It can be observed

that the two treatment groups are quite separated with respect to gene expression and response

(upper panel) and their association can be summarized by a straight line (lower panel). To

check the influence of outlying case(s), leave-one out cross validation was performed and theR2
cv

gives an indication of a reasonable R2, having similar values. Most of the genes of this type are

down-regulated, i.e ρ < 0.
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Figure 10: Scatterplot of gene expression and response (upper panel) and their corre-

sponding residuals from the joint model (lower panel) of the top 5 potential prognostic

biomarkers.

Figure 11: Scatterplot of gene expression and response (upper panel) and their cor-

responding residuals from the joint model (lower panel) of the top 5 potential prog-

nostic/therapeutic biomarkers.
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Table 2: Results of top 15 genes with the highest significant adjusted association, raw p-values

(LRT), BH-FDR adjusted p-values, Spearman correlation

ID ρ rs LRT p-value Adj-pval R2 R2
cv

1523 at -0.7022 -0.5872 <0.0001 0.00012 0.4931 0.4928

7408 at 0.6839 0.5210 <0.0001 0.00016 0.4677 0.4672

171017 at -0.6731 -0.6087 <0.0001 0.00016 0.4530 0.4525

10309 at -0.6723 -0.5888 <0.0001 0.00016 0.4520 0.4658

55624 at 0.6703 0.5574 <0.0001 0.00016 0.4493 0.4496

6242 at -0.6699 -0.5478 <0.0001 0.00016 0.4487 0.4510

23623 at -0.6605 -0.5203 <0.0001 0.00021 0.4362 0.4577

23647 at -0.6587 -0.5796 <0.0001 0.00021 0.4339 0.4343

4900 at -0.6574 -0.4552 <0.0001 0.00021 0.4322 0.4319

81542 at 0.6523 0.5628 <0.0001 0.00024 0.4256 0.4248

388552 at -0.6518 -0.4751 <0.0001 0.00024 0.4248 0.4246

57037 at -0.6488 -0.6105 <0.0001 0.00026 0.4210 0.4237

1594 at -0.6475 -0.6278 <0.0001 0.00026 0.4193 0.4207

4731 at -0.6460 -0.5173 <0.0001 0.00026 0.4174 0.4167

57583 at 0.6421 0.4612 <0.0001 0.00030 0.4123 0.4138

4.4 Testing for interaction between group and gene expression: δj

The conditional model is extended by adding the interaction between group and gene expression.

It is then fitted to each gene and the null hypothesis of no interaction effect (δj = 0) is tested.

The adjusted association based on the information theory was calculated. Thirty-three genes

were found to have significant interaction effects after adjusting for multiplicity at the FDR of

0.05.

The top 5 genes with highest adjusted association are shown in figure 12. It can be readily seen

that the significant interaction effect for Gene 8884 is only attained due to the presence of one

Figure 12: Scatterplot of gene expression and response displaying interaction effects
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Table 3: Results of top 15 prognostic/therapeutic biomarkers with the highest significant adjusted

association

ID α t-stat p-value Adj-pval ρ rs R2 R2
cv

54733 at 0.2298 3.9552 0.0002 0.0088 -0.5905 -0.6490 0.3487 0.3482

162979 at 0.1698 3.0530 0.0030 0.0481 -0.5775 -0.5760 0.3336 0.3387

55156 at -0.1821 -3.0515 0.0030 0.0482 0.5514 0.5068 0.3041 0.3046

152518 at 0.1998 4.1940 0.0001 0.0051 -0.5478 -0.6195 0.3001 0.3008

130367 at 0.2260 3.8256 0.0002 0.0116 -0.5371 -0.5768 0.2885 0.2887

8139 at 0.2304 3.7375 0.0003 0.0139 -0.5369 -0.4947 0.2883 0.2875

6195 at 0.1626 3.0457 0.0030 0.0486 -0.5176 -0.4265 0.2679 0.2718

10322 at 0.0979 3.3242 0.0013 0.0303 -0.5110 -0.4720 0.2611 0.2630

23108 at 0.1921 3.7717 0.0003 0.0129 -0.4939 -0.4675 0.2439 0.2429

57630 at 0.0996 3.6593 0.0004 0.0157 0.4921 0.4195 0.2422 0.2430

730101 at -0.1748 -3.2590 0.0016 0.0343 -0.4793 -0.4107 0.2298 0.2308

285958 at 0.3246 3.2385 0.0017 0.0356 -0.4609 -0.5390 0.2124 0.2115

6662 at 0.2715 3.0803 0.0027 0.0460 -0.4578 -0.4236 0.2096 0.2087

54475 at 0.2836 3.5266 0.0007 0.0203 -0.4529 -0.4904 0.2051 0.2044

84800 at 0.4824 3.8359 0.0002 0.0114 -0.4495 -0.4772 0.2020 0.2014

point that influences the line. Table 4 presents the list of the top 15 genes with the highest R2
h.

4.5 Joint Biomarker Profile

Several genes were identified as individual biomarker in the previous section. However, combining

information about expression levels from a number of potential biomarkers into one variable,

collectively termed as joint biomarker, might improve the quality of the obtained measures of

association. SPCA was conducted for each type of biomarker and prediction of the response is

done using the first principal components. The scatter plots of the first principal components

against the response is shown in figures 13, 15, and 17.

For the construction of potential joint therapeutic biomarker, the top 2 therapeutic genes were

used since it gave the highest R2
D of 0.435 (Refer to figure 14). This is lower than the highest

observed R2
D among the individual biomarkers of 0.47. Therefore the gain in constructing a joint

therapeutic profile is not evident in this case. The splitting of the groups with respect to the

gene expression resulted to a lot of misclassified observations, i.e., there is no clear separation

of the two treatment groups. Regression Tree approach, in this case, is not a good approach to

evaluate a nonlinear relationship between a biomarker and a response.
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Table 4: Results for top 15 Genes that exhibited treatment-gene interaction effects: test-statistic,

raw-pvalue, BH-FDR adjusted p-values, measure of association without interaction and adjusted

association with interaction

ID t-stat p-value Adj-pval R2
hw—o R2

hw—interaction

8884 at 5.1758 <0.0001 <0.0001 0.1673 0.4869

93622 at 4.6566 <0.0001 <0.0001 0.2194 0.4811

8644 at -4.4728 <0.0001 0.0340 0.2186 0.4667

29968 at -4.9865 <0.0001 <0.0001 0.0934 0.4255

117246 at 4.4164 0.0001 0.0340 0.1598 0.4220

6047 at 4.8110 <0.0000 <0.0001 0.1075 0.4198

26073 at 4.4520 0.0001 0.0340 0.1523 0.4197

284184 at 4.8484 <0.0001 <0.0001 0.0840 0.4078

79230 at 4.5574 <0.0001 <0.0001 0.1151 0.4033

28991 at 4.8875 <0.0001 <0.0001 0.0703 0.4023

57019 at 4.5028 0.0001 0.0340 0.1066 0.3929

4214 at -4.5335 <0.0001 0.0000 0.0979 0.3896

224 at -4.2379 0.0001 0.0340 0.1275 0.3846

54807 at 4.4326 0.0001 0.0340 0.0857 0.3724

The number of potential prognostic genes that can together serve as joint prognostic biomarker

is determined based on the joint profile that gives the highest R2. The top 8 genes yielded an

R2 of 0.5995 when used together as a potential joint prognostic profile. This is much better

than when using a single gene as biomarker in this case. However, the significance of the asso-

ciation measure of the joint profile is not tested. The same observation holds for the potential/

therapeutic biomarkers, a large improvement in the R2 is observed when using the top 5 genes

as joint biomarker.

5 Discussion and Conclusion

This study aims to identify and evaluate gene-specific biomarkers for IC50, a summary of cell

lines activity in a dose-response experiment. Moreover, a joint biomarker is also constructed

using information from several genes simultaneously. The selection and evaluation of biomarkers

uses the same set of methods that have been devised to validate surrogate endpoints.The analy-

sis in this paper is similar to the case study presented by Tilahun et al. (2010) where they also

look for potential gene-specific and joint biomarkers for the response. The purpose of finding

biomarkers is not just limited to classify microarray samples into groups, but to predict the clin-

ical outcome (Lin et al., 2010). Biomarkers have been classied as prognostic and/or therapeutic
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Figure 13: Plot of R2
D using the top k genes

as potential joint therapeutic biomarkers Figure 14: Joint biomarker profile using the top 2

potential therapeutic biomarkers

Figure 15: Plot of R2 using the top k genes

as potential joint prognostic biomarkers Figure 16: Joint biomarker profile using the top 8

potential prognostic biomarkers

Figure 17: Plot of R2 using the top k genes as

potential joint therapeutic/prognostic biomark-

ers

Figure 18: Joint biomarker profile using the top 5

potential prognostic biomarkers
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depending on their relationship with the clinical endpoint and their response to treatments.

A gene-by-gene analysis was carried out to tests whether a gene can be used as potential prog-

nostic/therapeutic biomarker. The joint modeling for gene expression and response was adopted

to facilitate the identification of these two types of biomarkers. For the first type, the gene ex-

pression can be used to predict the level of the response through a linear association adjusting

for the treatment effect whereas for the second type, a non-linear association with the response

is observed but the gene is differentially expressed, given a significant treatment effect upon the

response. Here, the treatment effect on the gene-expression can be predictive for the treatment

effect on the response.

Of the 7722 genes, 288 and 900 genes can serve as therapeutic and prognostic biomarkers for the

response, respectively. Thirty (30) are identified to be potential prognostic/therapeutic genes.

All hypothesis involved in the identification is tested using an FDR level of 0.05.

An R2- type measure of association was used to evaluate the quality of a certain biomarker.

For prognostic biomarkers, since linear association is evident between the gene expression and

the response after correcting for treatment effect, the adjusted association proposed by Buyse

and Molenberghs (1998), that is a widely used measure of association in the surrogate marker

literature, is estimated. In this case, where the response is of continuous type and is assumed

to follow a normal distribution, the information-theoretical approach (Alonso and Molenberghs,

2007) to model the correlation between the gene expression and the response adjusting for treat-

ment effect provides similar results with the joint modeling approach from where the adjusted

association is based. But the information theoretic approach proves to be advantageous since,

as outlined by Tilahun et al. (2010), it involves less computation time given the number of

potential biomarkers available, which amounts to the number of models that need to be fitted.

Additionally, it can be also applied to non-normal setting. Nevertheless, the joint model also

allows estimating a non-linear association (using Spearmans correlation) between the response

and the gene-expression after adjusting for the treatment effects for the prognostic biomarkers.

The potential prognostic biomarkers are then ranked based on the adjusted association.

On the other hand, the association with the response of the second type of biomarker can not be

captured by the linear association using a linear regression model. One of the possible measures

proposed to quantify the amount of information in the response captured by the gene expression

is by using the relative deviance reduction, obtained from fitting a regression tree. The splitting

of the groups with respect to the gene expression resulted to a lot of misclassified observations,

i.e., there is no clear separation of the two treatment groups. Regression Tree approach, in this

case, is not a good approach to evaluate the association between differentially expressed genes

and a response. Hence, the need to find measures that could optimally capture this possibly

non-linear relationship can be another focus of research.



5 DISCUSSION AND CONCLUSION 25

Also, the possible influence of an outlying observation in the measures of association is also

a concern. In some cases a reasonably linear relationship appears to be nonlinear due to a

few number of outlying observations. It is therefore worthwhile to thoroughly investigate the

type of genes that have been selected before making a decision to promote a gene as a possible

biomarker.In this case, the leave-one out cross-validation was performed to ensure a reliable

estimate of R2 values.

For the construction of the joint biomarkers, the supervised principal component analysis (SPCA)

was employed. Following the approach of Tilahun et al. (2010), a joint biomarker consisting of

a subset of the top 20 genes are constructed and each is evaluated using the respective measure

of association for each type of biomarker. The joint biomarker that maximized the association is

then chosen. Further, it was checked whether the magnitude of the measure has increased when

using a joint biomarker than the gene-specific biomarker. It was found out that among the mea-

sures; only the relative deviance reduction of the potential joint therapeutic biomarker that is

composed of the top 2 genes has lower value than the maximum value obtained by a gene-specific

therapeutic biomarker. In this case, there is no gain in constructing a joint biomarker. But for

the other two sets of biomarkers, the joint biomarkers provide an improvement in the measure

of association. The top 8 and top 5 genes are used to construct the joint prognostic and joint

prognostic/therapeutic biomarkers, respectively. Take note however that significance testing of

the resulting measures was not carried out here. Arguably, the evaluation of the biomarkers can

be an important component in the decision making process, but at least equally important is

experts’ opinion coming in from pharmacological, biological, clinical, economical considerations.

In addition, SPCA is not the only proposed method to identify joint biomarkers in the literature.

In fact, constructing a joint biomarker profile is still the topic of ongoing research. Moreover,

before using these genes as biomarkers, validation procedure should be carried out, either using

independent experiments or biological validation.All the analyses presented in this paper are

done using the R 2.11.0 software.

As a conclusion, joint modeling of phenotypic variables and gene expression data permits the

selection and evaluation of genomic biomarkers in early drug development experiments. It is

also the first step in the construction of a joint biomarker. Furthermore, genomic biomarkers

can be classified as prognostic and/or therapeutic ones depending on their intended use. Once

target genes are identified as potentially good biomarkers, their selection and relevance are still

to be validated.
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